tcp_output.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes: Pedro Roque : Retransmit queue handled by TCP.
  22. * : Fragmentation on mtu decrease
  23. * : Segment collapse on retransmit
  24. * : AF independence
  25. *
  26. * Linus Torvalds : send_delayed_ack
  27. * David S. Miller : Charge memory using the right skb
  28. * during syn/ack processing.
  29. * David S. Miller : Output engine completely rewritten.
  30. * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
  31. * Cacophonix Gaul : draft-minshall-nagle-01
  32. * J Hadi Salim : ECN support
  33. *
  34. */
  35. #define pr_fmt(fmt) "TCP: " fmt
  36. #include <net/tcp.h>
  37. #include <linux/compiler.h>
  38. #include <linux/gfp.h>
  39. #include <linux/module.h>
  40. /* People can turn this off for buggy TCP's found in printers etc. */
  41. int sysctl_tcp_retrans_collapse __read_mostly = 1;
  42. /* People can turn this on to work with those rare, broken TCPs that
  43. * interpret the window field as a signed quantity.
  44. */
  45. int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
  46. /* Default TSQ limit of four TSO segments */
  47. int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
  48. /* This limits the percentage of the congestion window which we
  49. * will allow a single TSO frame to consume. Building TSO frames
  50. * which are too large can cause TCP streams to be bursty.
  51. */
  52. int sysctl_tcp_tso_win_divisor __read_mostly = 3;
  53. /* By default, RFC2861 behavior. */
  54. int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
  55. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  56. int push_one, gfp_t gfp);
  57. /* Account for new data that has been sent to the network. */
  58. static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
  59. {
  60. struct inet_connection_sock *icsk = inet_csk(sk);
  61. struct tcp_sock *tp = tcp_sk(sk);
  62. unsigned int prior_packets = tp->packets_out;
  63. tcp_advance_send_head(sk, skb);
  64. tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  65. tp->packets_out += tcp_skb_pcount(skb);
  66. if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  67. tcp_rearm_rto(sk);
  68. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  69. tcp_skb_pcount(skb));
  70. }
  71. /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  72. * window scaling factor due to loss of precision.
  73. * If window has been shrunk, what should we make? It is not clear at all.
  74. * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  75. * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  76. * invalid. OK, let's make this for now:
  77. */
  78. static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  79. {
  80. const struct tcp_sock *tp = tcp_sk(sk);
  81. if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
  82. (tp->rx_opt.wscale_ok &&
  83. ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
  84. return tp->snd_nxt;
  85. else
  86. return tcp_wnd_end(tp);
  87. }
  88. /* Calculate mss to advertise in SYN segment.
  89. * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
  90. *
  91. * 1. It is independent of path mtu.
  92. * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
  93. * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
  94. * attached devices, because some buggy hosts are confused by
  95. * large MSS.
  96. * 4. We do not make 3, we advertise MSS, calculated from first
  97. * hop device mtu, but allow to raise it to ip_rt_min_advmss.
  98. * This may be overridden via information stored in routing table.
  99. * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
  100. * probably even Jumbo".
  101. */
  102. static __u16 tcp_advertise_mss(struct sock *sk)
  103. {
  104. struct tcp_sock *tp = tcp_sk(sk);
  105. const struct dst_entry *dst = __sk_dst_get(sk);
  106. int mss = tp->advmss;
  107. if (dst) {
  108. unsigned int metric = dst_metric_advmss(dst);
  109. if (metric < mss) {
  110. mss = metric;
  111. tp->advmss = mss;
  112. }
  113. }
  114. return (__u16)mss;
  115. }
  116. /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
  117. * This is the first part of cwnd validation mechanism.
  118. */
  119. void tcp_cwnd_restart(struct sock *sk, s32 delta)
  120. {
  121. struct tcp_sock *tp = tcp_sk(sk);
  122. u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
  123. u32 cwnd = tp->snd_cwnd;
  124. tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
  125. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  126. restart_cwnd = min(restart_cwnd, cwnd);
  127. while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
  128. cwnd >>= 1;
  129. tp->snd_cwnd = max(cwnd, restart_cwnd);
  130. tp->snd_cwnd_stamp = tcp_jiffies32;
  131. tp->snd_cwnd_used = 0;
  132. }
  133. /* Congestion state accounting after a packet has been sent. */
  134. static void tcp_event_data_sent(struct tcp_sock *tp,
  135. struct sock *sk)
  136. {
  137. struct inet_connection_sock *icsk = inet_csk(sk);
  138. const u32 now = tcp_jiffies32;
  139. if (tcp_packets_in_flight(tp) == 0)
  140. tcp_ca_event(sk, CA_EVENT_TX_START);
  141. tp->lsndtime = now;
  142. /* If it is a reply for ato after last received
  143. * packet, enter pingpong mode.
  144. */
  145. if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
  146. icsk->icsk_ack.pingpong = 1;
  147. }
  148. /* Account for an ACK we sent. */
  149. static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
  150. {
  151. tcp_dec_quickack_mode(sk, pkts);
  152. inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
  153. }
  154. u32 tcp_default_init_rwnd(u32 mss)
  155. {
  156. /* Initial receive window should be twice of TCP_INIT_CWND to
  157. * enable proper sending of new unsent data during fast recovery
  158. * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
  159. * limit when mss is larger than 1460.
  160. */
  161. u32 init_rwnd = TCP_INIT_CWND * 2;
  162. if (mss > 1460)
  163. init_rwnd = max((1460 * init_rwnd) / mss, 2U);
  164. return init_rwnd;
  165. }
  166. /* Determine a window scaling and initial window to offer.
  167. * Based on the assumption that the given amount of space
  168. * will be offered. Store the results in the tp structure.
  169. * NOTE: for smooth operation initial space offering should
  170. * be a multiple of mss if possible. We assume here that mss >= 1.
  171. * This MUST be enforced by all callers.
  172. */
  173. void tcp_select_initial_window(int __space, __u32 mss,
  174. __u32 *rcv_wnd, __u32 *window_clamp,
  175. int wscale_ok, __u8 *rcv_wscale,
  176. __u32 init_rcv_wnd)
  177. {
  178. unsigned int space = (__space < 0 ? 0 : __space);
  179. /* If no clamp set the clamp to the max possible scaled window */
  180. if (*window_clamp == 0)
  181. (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
  182. space = min(*window_clamp, space);
  183. /* Quantize space offering to a multiple of mss if possible. */
  184. if (space > mss)
  185. space = rounddown(space, mss);
  186. /* NOTE: offering an initial window larger than 32767
  187. * will break some buggy TCP stacks. If the admin tells us
  188. * it is likely we could be speaking with such a buggy stack
  189. * we will truncate our initial window offering to 32K-1
  190. * unless the remote has sent us a window scaling option,
  191. * which we interpret as a sign the remote TCP is not
  192. * misinterpreting the window field as a signed quantity.
  193. */
  194. if (sysctl_tcp_workaround_signed_windows)
  195. (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
  196. else
  197. (*rcv_wnd) = space;
  198. (*rcv_wscale) = 0;
  199. if (wscale_ok) {
  200. /* Set window scaling on max possible window */
  201. space = max_t(u32, space, sysctl_tcp_rmem[2]);
  202. space = max_t(u32, space, sysctl_rmem_max);
  203. space = min_t(u32, space, *window_clamp);
  204. while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
  205. space >>= 1;
  206. (*rcv_wscale)++;
  207. }
  208. }
  209. if (mss > (1 << *rcv_wscale)) {
  210. if (!init_rcv_wnd) /* Use default unless specified otherwise */
  211. init_rcv_wnd = tcp_default_init_rwnd(mss);
  212. *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
  213. }
  214. /* Set the clamp no higher than max representable value */
  215. (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
  216. }
  217. EXPORT_SYMBOL(tcp_select_initial_window);
  218. /* Chose a new window to advertise, update state in tcp_sock for the
  219. * socket, and return result with RFC1323 scaling applied. The return
  220. * value can be stuffed directly into th->window for an outgoing
  221. * frame.
  222. */
  223. static u16 tcp_select_window(struct sock *sk)
  224. {
  225. struct tcp_sock *tp = tcp_sk(sk);
  226. u32 old_win = tp->rcv_wnd;
  227. u32 cur_win = tcp_receive_window(tp);
  228. u32 new_win = __tcp_select_window(sk);
  229. /* Never shrink the offered window */
  230. if (new_win < cur_win) {
  231. /* Danger Will Robinson!
  232. * Don't update rcv_wup/rcv_wnd here or else
  233. * we will not be able to advertise a zero
  234. * window in time. --DaveM
  235. *
  236. * Relax Will Robinson.
  237. */
  238. if (new_win == 0)
  239. NET_INC_STATS(sock_net(sk),
  240. LINUX_MIB_TCPWANTZEROWINDOWADV);
  241. new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
  242. }
  243. tp->rcv_wnd = new_win;
  244. tp->rcv_wup = tp->rcv_nxt;
  245. /* Make sure we do not exceed the maximum possible
  246. * scaled window.
  247. */
  248. if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
  249. new_win = min(new_win, MAX_TCP_WINDOW);
  250. else
  251. new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
  252. /* RFC1323 scaling applied */
  253. new_win >>= tp->rx_opt.rcv_wscale;
  254. /* If we advertise zero window, disable fast path. */
  255. if (new_win == 0) {
  256. tp->pred_flags = 0;
  257. if (old_win)
  258. NET_INC_STATS(sock_net(sk),
  259. LINUX_MIB_TCPTOZEROWINDOWADV);
  260. } else if (old_win == 0) {
  261. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
  262. }
  263. return new_win;
  264. }
  265. /* Packet ECN state for a SYN-ACK */
  266. static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
  267. {
  268. const struct tcp_sock *tp = tcp_sk(sk);
  269. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
  270. if (!(tp->ecn_flags & TCP_ECN_OK))
  271. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
  272. else if (tcp_ca_needs_ecn(sk) ||
  273. tcp_bpf_ca_needs_ecn(sk))
  274. INET_ECN_xmit(sk);
  275. }
  276. /* Packet ECN state for a SYN. */
  277. static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
  278. {
  279. struct tcp_sock *tp = tcp_sk(sk);
  280. bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
  281. bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
  282. tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
  283. if (!use_ecn) {
  284. const struct dst_entry *dst = __sk_dst_get(sk);
  285. if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
  286. use_ecn = true;
  287. }
  288. tp->ecn_flags = 0;
  289. if (use_ecn) {
  290. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
  291. tp->ecn_flags = TCP_ECN_OK;
  292. if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
  293. INET_ECN_xmit(sk);
  294. }
  295. }
  296. static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
  297. {
  298. if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
  299. /* tp->ecn_flags are cleared at a later point in time when
  300. * SYN ACK is ultimatively being received.
  301. */
  302. TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
  303. }
  304. static void
  305. tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
  306. {
  307. if (inet_rsk(req)->ecn_ok)
  308. th->ece = 1;
  309. }
  310. /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
  311. * be sent.
  312. */
  313. static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
  314. struct tcphdr *th, int tcp_header_len)
  315. {
  316. struct tcp_sock *tp = tcp_sk(sk);
  317. if (tp->ecn_flags & TCP_ECN_OK) {
  318. /* Not-retransmitted data segment: set ECT and inject CWR. */
  319. if (skb->len != tcp_header_len &&
  320. !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
  321. INET_ECN_xmit(sk);
  322. if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
  323. tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
  324. th->cwr = 1;
  325. skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
  326. }
  327. } else if (!tcp_ca_needs_ecn(sk)) {
  328. /* ACK or retransmitted segment: clear ECT|CE */
  329. INET_ECN_dontxmit(sk);
  330. }
  331. if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
  332. th->ece = 1;
  333. }
  334. }
  335. /* Constructs common control bits of non-data skb. If SYN/FIN is present,
  336. * auto increment end seqno.
  337. */
  338. static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
  339. {
  340. skb->ip_summed = CHECKSUM_PARTIAL;
  341. skb->csum = 0;
  342. TCP_SKB_CB(skb)->tcp_flags = flags;
  343. TCP_SKB_CB(skb)->sacked = 0;
  344. tcp_skb_pcount_set(skb, 1);
  345. TCP_SKB_CB(skb)->seq = seq;
  346. if (flags & (TCPHDR_SYN | TCPHDR_FIN))
  347. seq++;
  348. TCP_SKB_CB(skb)->end_seq = seq;
  349. }
  350. static inline bool tcp_urg_mode(const struct tcp_sock *tp)
  351. {
  352. return tp->snd_una != tp->snd_up;
  353. }
  354. #define OPTION_SACK_ADVERTISE (1 << 0)
  355. #define OPTION_TS (1 << 1)
  356. #define OPTION_MD5 (1 << 2)
  357. #define OPTION_WSCALE (1 << 3)
  358. #define OPTION_FAST_OPEN_COOKIE (1 << 8)
  359. struct tcp_out_options {
  360. u16 options; /* bit field of OPTION_* */
  361. u16 mss; /* 0 to disable */
  362. u8 ws; /* window scale, 0 to disable */
  363. u8 num_sack_blocks; /* number of SACK blocks to include */
  364. u8 hash_size; /* bytes in hash_location */
  365. __u8 *hash_location; /* temporary pointer, overloaded */
  366. __u32 tsval, tsecr; /* need to include OPTION_TS */
  367. struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
  368. };
  369. /* Write previously computed TCP options to the packet.
  370. *
  371. * Beware: Something in the Internet is very sensitive to the ordering of
  372. * TCP options, we learned this through the hard way, so be careful here.
  373. * Luckily we can at least blame others for their non-compliance but from
  374. * inter-operability perspective it seems that we're somewhat stuck with
  375. * the ordering which we have been using if we want to keep working with
  376. * those broken things (not that it currently hurts anybody as there isn't
  377. * particular reason why the ordering would need to be changed).
  378. *
  379. * At least SACK_PERM as the first option is known to lead to a disaster
  380. * (but it may well be that other scenarios fail similarly).
  381. */
  382. static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
  383. struct tcp_out_options *opts)
  384. {
  385. u16 options = opts->options; /* mungable copy */
  386. if (unlikely(OPTION_MD5 & options)) {
  387. *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
  388. (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
  389. /* overload cookie hash location */
  390. opts->hash_location = (__u8 *)ptr;
  391. ptr += 4;
  392. }
  393. if (unlikely(opts->mss)) {
  394. *ptr++ = htonl((TCPOPT_MSS << 24) |
  395. (TCPOLEN_MSS << 16) |
  396. opts->mss);
  397. }
  398. if (likely(OPTION_TS & options)) {
  399. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  400. *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
  401. (TCPOLEN_SACK_PERM << 16) |
  402. (TCPOPT_TIMESTAMP << 8) |
  403. TCPOLEN_TIMESTAMP);
  404. options &= ~OPTION_SACK_ADVERTISE;
  405. } else {
  406. *ptr++ = htonl((TCPOPT_NOP << 24) |
  407. (TCPOPT_NOP << 16) |
  408. (TCPOPT_TIMESTAMP << 8) |
  409. TCPOLEN_TIMESTAMP);
  410. }
  411. *ptr++ = htonl(opts->tsval);
  412. *ptr++ = htonl(opts->tsecr);
  413. }
  414. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  415. *ptr++ = htonl((TCPOPT_NOP << 24) |
  416. (TCPOPT_NOP << 16) |
  417. (TCPOPT_SACK_PERM << 8) |
  418. TCPOLEN_SACK_PERM);
  419. }
  420. if (unlikely(OPTION_WSCALE & options)) {
  421. *ptr++ = htonl((TCPOPT_NOP << 24) |
  422. (TCPOPT_WINDOW << 16) |
  423. (TCPOLEN_WINDOW << 8) |
  424. opts->ws);
  425. }
  426. if (unlikely(opts->num_sack_blocks)) {
  427. struct tcp_sack_block *sp = tp->rx_opt.dsack ?
  428. tp->duplicate_sack : tp->selective_acks;
  429. int this_sack;
  430. *ptr++ = htonl((TCPOPT_NOP << 24) |
  431. (TCPOPT_NOP << 16) |
  432. (TCPOPT_SACK << 8) |
  433. (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
  434. TCPOLEN_SACK_PERBLOCK)));
  435. for (this_sack = 0; this_sack < opts->num_sack_blocks;
  436. ++this_sack) {
  437. *ptr++ = htonl(sp[this_sack].start_seq);
  438. *ptr++ = htonl(sp[this_sack].end_seq);
  439. }
  440. tp->rx_opt.dsack = 0;
  441. }
  442. if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
  443. struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
  444. u8 *p = (u8 *)ptr;
  445. u32 len; /* Fast Open option length */
  446. if (foc->exp) {
  447. len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
  448. *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
  449. TCPOPT_FASTOPEN_MAGIC);
  450. p += TCPOLEN_EXP_FASTOPEN_BASE;
  451. } else {
  452. len = TCPOLEN_FASTOPEN_BASE + foc->len;
  453. *p++ = TCPOPT_FASTOPEN;
  454. *p++ = len;
  455. }
  456. memcpy(p, foc->val, foc->len);
  457. if ((len & 3) == 2) {
  458. p[foc->len] = TCPOPT_NOP;
  459. p[foc->len + 1] = TCPOPT_NOP;
  460. }
  461. ptr += (len + 3) >> 2;
  462. }
  463. }
  464. /* Compute TCP options for SYN packets. This is not the final
  465. * network wire format yet.
  466. */
  467. static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
  468. struct tcp_out_options *opts,
  469. struct tcp_md5sig_key **md5)
  470. {
  471. struct tcp_sock *tp = tcp_sk(sk);
  472. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  473. struct tcp_fastopen_request *fastopen = tp->fastopen_req;
  474. #ifdef CONFIG_TCP_MD5SIG
  475. *md5 = tp->af_specific->md5_lookup(sk, sk);
  476. if (*md5) {
  477. opts->options |= OPTION_MD5;
  478. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  479. }
  480. #else
  481. *md5 = NULL;
  482. #endif
  483. /* We always get an MSS option. The option bytes which will be seen in
  484. * normal data packets should timestamps be used, must be in the MSS
  485. * advertised. But we subtract them from tp->mss_cache so that
  486. * calculations in tcp_sendmsg are simpler etc. So account for this
  487. * fact here if necessary. If we don't do this correctly, as a
  488. * receiver we won't recognize data packets as being full sized when we
  489. * should, and thus we won't abide by the delayed ACK rules correctly.
  490. * SACKs don't matter, we never delay an ACK when we have any of those
  491. * going out. */
  492. opts->mss = tcp_advertise_mss(sk);
  493. remaining -= TCPOLEN_MSS_ALIGNED;
  494. if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
  495. opts->options |= OPTION_TS;
  496. opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
  497. opts->tsecr = tp->rx_opt.ts_recent;
  498. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  499. }
  500. if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
  501. opts->ws = tp->rx_opt.rcv_wscale;
  502. opts->options |= OPTION_WSCALE;
  503. remaining -= TCPOLEN_WSCALE_ALIGNED;
  504. }
  505. if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
  506. opts->options |= OPTION_SACK_ADVERTISE;
  507. if (unlikely(!(OPTION_TS & opts->options)))
  508. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  509. }
  510. if (fastopen && fastopen->cookie.len >= 0) {
  511. u32 need = fastopen->cookie.len;
  512. need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  513. TCPOLEN_FASTOPEN_BASE;
  514. need = (need + 3) & ~3U; /* Align to 32 bits */
  515. if (remaining >= need) {
  516. opts->options |= OPTION_FAST_OPEN_COOKIE;
  517. opts->fastopen_cookie = &fastopen->cookie;
  518. remaining -= need;
  519. tp->syn_fastopen = 1;
  520. tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
  521. }
  522. }
  523. return MAX_TCP_OPTION_SPACE - remaining;
  524. }
  525. /* Set up TCP options for SYN-ACKs. */
  526. static unsigned int tcp_synack_options(struct request_sock *req,
  527. unsigned int mss, struct sk_buff *skb,
  528. struct tcp_out_options *opts,
  529. const struct tcp_md5sig_key *md5,
  530. struct tcp_fastopen_cookie *foc)
  531. {
  532. struct inet_request_sock *ireq = inet_rsk(req);
  533. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  534. #ifdef CONFIG_TCP_MD5SIG
  535. if (md5) {
  536. opts->options |= OPTION_MD5;
  537. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  538. /* We can't fit any SACK blocks in a packet with MD5 + TS
  539. * options. There was discussion about disabling SACK
  540. * rather than TS in order to fit in better with old,
  541. * buggy kernels, but that was deemed to be unnecessary.
  542. */
  543. ireq->tstamp_ok &= !ireq->sack_ok;
  544. }
  545. #endif
  546. /* We always send an MSS option. */
  547. opts->mss = mss;
  548. remaining -= TCPOLEN_MSS_ALIGNED;
  549. if (likely(ireq->wscale_ok)) {
  550. opts->ws = ireq->rcv_wscale;
  551. opts->options |= OPTION_WSCALE;
  552. remaining -= TCPOLEN_WSCALE_ALIGNED;
  553. }
  554. if (likely(ireq->tstamp_ok)) {
  555. opts->options |= OPTION_TS;
  556. opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
  557. opts->tsecr = req->ts_recent;
  558. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  559. }
  560. if (likely(ireq->sack_ok)) {
  561. opts->options |= OPTION_SACK_ADVERTISE;
  562. if (unlikely(!ireq->tstamp_ok))
  563. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  564. }
  565. if (foc != NULL && foc->len >= 0) {
  566. u32 need = foc->len;
  567. need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  568. TCPOLEN_FASTOPEN_BASE;
  569. need = (need + 3) & ~3U; /* Align to 32 bits */
  570. if (remaining >= need) {
  571. opts->options |= OPTION_FAST_OPEN_COOKIE;
  572. opts->fastopen_cookie = foc;
  573. remaining -= need;
  574. }
  575. }
  576. return MAX_TCP_OPTION_SPACE - remaining;
  577. }
  578. /* Compute TCP options for ESTABLISHED sockets. This is not the
  579. * final wire format yet.
  580. */
  581. static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
  582. struct tcp_out_options *opts,
  583. struct tcp_md5sig_key **md5)
  584. {
  585. struct tcp_sock *tp = tcp_sk(sk);
  586. unsigned int size = 0;
  587. unsigned int eff_sacks;
  588. opts->options = 0;
  589. #ifdef CONFIG_TCP_MD5SIG
  590. *md5 = tp->af_specific->md5_lookup(sk, sk);
  591. if (unlikely(*md5)) {
  592. opts->options |= OPTION_MD5;
  593. size += TCPOLEN_MD5SIG_ALIGNED;
  594. }
  595. #else
  596. *md5 = NULL;
  597. #endif
  598. if (likely(tp->rx_opt.tstamp_ok)) {
  599. opts->options |= OPTION_TS;
  600. opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
  601. opts->tsecr = tp->rx_opt.ts_recent;
  602. size += TCPOLEN_TSTAMP_ALIGNED;
  603. }
  604. eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
  605. if (unlikely(eff_sacks)) {
  606. const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
  607. opts->num_sack_blocks =
  608. min_t(unsigned int, eff_sacks,
  609. (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
  610. TCPOLEN_SACK_PERBLOCK);
  611. size += TCPOLEN_SACK_BASE_ALIGNED +
  612. opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
  613. }
  614. return size;
  615. }
  616. /* TCP SMALL QUEUES (TSQ)
  617. *
  618. * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
  619. * to reduce RTT and bufferbloat.
  620. * We do this using a special skb destructor (tcp_wfree).
  621. *
  622. * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
  623. * needs to be reallocated in a driver.
  624. * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
  625. *
  626. * Since transmit from skb destructor is forbidden, we use a tasklet
  627. * to process all sockets that eventually need to send more skbs.
  628. * We use one tasklet per cpu, with its own queue of sockets.
  629. */
  630. struct tsq_tasklet {
  631. struct tasklet_struct tasklet;
  632. struct list_head head; /* queue of tcp sockets */
  633. };
  634. static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
  635. static void tcp_tsq_handler(struct sock *sk)
  636. {
  637. if ((1 << sk->sk_state) &
  638. (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
  639. TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
  640. struct tcp_sock *tp = tcp_sk(sk);
  641. if (tp->lost_out > tp->retrans_out &&
  642. tp->snd_cwnd > tcp_packets_in_flight(tp))
  643. tcp_xmit_retransmit_queue(sk);
  644. tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
  645. 0, GFP_ATOMIC);
  646. }
  647. }
  648. /*
  649. * One tasklet per cpu tries to send more skbs.
  650. * We run in tasklet context but need to disable irqs when
  651. * transferring tsq->head because tcp_wfree() might
  652. * interrupt us (non NAPI drivers)
  653. */
  654. static void tcp_tasklet_func(unsigned long data)
  655. {
  656. struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
  657. LIST_HEAD(list);
  658. unsigned long flags;
  659. struct list_head *q, *n;
  660. struct tcp_sock *tp;
  661. struct sock *sk;
  662. local_irq_save(flags);
  663. list_splice_init(&tsq->head, &list);
  664. local_irq_restore(flags);
  665. list_for_each_safe(q, n, &list) {
  666. tp = list_entry(q, struct tcp_sock, tsq_node);
  667. list_del(&tp->tsq_node);
  668. sk = (struct sock *)tp;
  669. smp_mb__before_atomic();
  670. clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
  671. if (!sk->sk_lock.owned &&
  672. test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
  673. bh_lock_sock(sk);
  674. if (!sock_owned_by_user(sk)) {
  675. clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
  676. tcp_tsq_handler(sk);
  677. }
  678. bh_unlock_sock(sk);
  679. }
  680. sk_free(sk);
  681. }
  682. }
  683. #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
  684. TCPF_WRITE_TIMER_DEFERRED | \
  685. TCPF_DELACK_TIMER_DEFERRED | \
  686. TCPF_MTU_REDUCED_DEFERRED)
  687. /**
  688. * tcp_release_cb - tcp release_sock() callback
  689. * @sk: socket
  690. *
  691. * called from release_sock() to perform protocol dependent
  692. * actions before socket release.
  693. */
  694. void tcp_release_cb(struct sock *sk)
  695. {
  696. unsigned long flags, nflags;
  697. /* perform an atomic operation only if at least one flag is set */
  698. do {
  699. flags = sk->sk_tsq_flags;
  700. if (!(flags & TCP_DEFERRED_ALL))
  701. return;
  702. nflags = flags & ~TCP_DEFERRED_ALL;
  703. } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
  704. if (flags & TCPF_TSQ_DEFERRED)
  705. tcp_tsq_handler(sk);
  706. /* Here begins the tricky part :
  707. * We are called from release_sock() with :
  708. * 1) BH disabled
  709. * 2) sk_lock.slock spinlock held
  710. * 3) socket owned by us (sk->sk_lock.owned == 1)
  711. *
  712. * But following code is meant to be called from BH handlers,
  713. * so we should keep BH disabled, but early release socket ownership
  714. */
  715. sock_release_ownership(sk);
  716. if (flags & TCPF_WRITE_TIMER_DEFERRED) {
  717. tcp_write_timer_handler(sk);
  718. __sock_put(sk);
  719. }
  720. if (flags & TCPF_DELACK_TIMER_DEFERRED) {
  721. tcp_delack_timer_handler(sk);
  722. __sock_put(sk);
  723. }
  724. if (flags & TCPF_MTU_REDUCED_DEFERRED) {
  725. inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
  726. __sock_put(sk);
  727. }
  728. }
  729. EXPORT_SYMBOL(tcp_release_cb);
  730. void __init tcp_tasklet_init(void)
  731. {
  732. int i;
  733. for_each_possible_cpu(i) {
  734. struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
  735. INIT_LIST_HEAD(&tsq->head);
  736. tasklet_init(&tsq->tasklet,
  737. tcp_tasklet_func,
  738. (unsigned long)tsq);
  739. }
  740. }
  741. /*
  742. * Write buffer destructor automatically called from kfree_skb.
  743. * We can't xmit new skbs from this context, as we might already
  744. * hold qdisc lock.
  745. */
  746. void tcp_wfree(struct sk_buff *skb)
  747. {
  748. struct sock *sk = skb->sk;
  749. struct tcp_sock *tp = tcp_sk(sk);
  750. unsigned long flags, nval, oval;
  751. /* Keep one reference on sk_wmem_alloc.
  752. * Will be released by sk_free() from here or tcp_tasklet_func()
  753. */
  754. WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
  755. /* If this softirq is serviced by ksoftirqd, we are likely under stress.
  756. * Wait until our queues (qdisc + devices) are drained.
  757. * This gives :
  758. * - less callbacks to tcp_write_xmit(), reducing stress (batches)
  759. * - chance for incoming ACK (processed by another cpu maybe)
  760. * to migrate this flow (skb->ooo_okay will be eventually set)
  761. */
  762. if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
  763. goto out;
  764. for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
  765. struct tsq_tasklet *tsq;
  766. bool empty;
  767. if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
  768. goto out;
  769. nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
  770. nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
  771. if (nval != oval)
  772. continue;
  773. /* queue this socket to tasklet queue */
  774. local_irq_save(flags);
  775. tsq = this_cpu_ptr(&tsq_tasklet);
  776. empty = list_empty(&tsq->head);
  777. list_add(&tp->tsq_node, &tsq->head);
  778. if (empty)
  779. tasklet_schedule(&tsq->tasklet);
  780. local_irq_restore(flags);
  781. return;
  782. }
  783. out:
  784. sk_free(sk);
  785. }
  786. /* Note: Called under hard irq.
  787. * We can not call TCP stack right away.
  788. */
  789. enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
  790. {
  791. struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
  792. struct sock *sk = (struct sock *)tp;
  793. unsigned long nval, oval;
  794. for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
  795. struct tsq_tasklet *tsq;
  796. bool empty;
  797. if (oval & TSQF_QUEUED)
  798. break;
  799. nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
  800. nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
  801. if (nval != oval)
  802. continue;
  803. if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
  804. break;
  805. /* queue this socket to tasklet queue */
  806. tsq = this_cpu_ptr(&tsq_tasklet);
  807. empty = list_empty(&tsq->head);
  808. list_add(&tp->tsq_node, &tsq->head);
  809. if (empty)
  810. tasklet_schedule(&tsq->tasklet);
  811. break;
  812. }
  813. return HRTIMER_NORESTART;
  814. }
  815. /* BBR congestion control needs pacing.
  816. * Same remark for SO_MAX_PACING_RATE.
  817. * sch_fq packet scheduler is efficiently handling pacing,
  818. * but is not always installed/used.
  819. * Return true if TCP stack should pace packets itself.
  820. */
  821. static bool tcp_needs_internal_pacing(const struct sock *sk)
  822. {
  823. return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
  824. }
  825. static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
  826. {
  827. u64 len_ns;
  828. u32 rate;
  829. if (!tcp_needs_internal_pacing(sk))
  830. return;
  831. rate = sk->sk_pacing_rate;
  832. if (!rate || rate == ~0U)
  833. return;
  834. /* Should account for header sizes as sch_fq does,
  835. * but lets make things simple.
  836. */
  837. len_ns = (u64)skb->len * NSEC_PER_SEC;
  838. do_div(len_ns, rate);
  839. hrtimer_start(&tcp_sk(sk)->pacing_timer,
  840. ktime_add_ns(ktime_get(), len_ns),
  841. HRTIMER_MODE_ABS_PINNED);
  842. }
  843. /* This routine actually transmits TCP packets queued in by
  844. * tcp_do_sendmsg(). This is used by both the initial
  845. * transmission and possible later retransmissions.
  846. * All SKB's seen here are completely headerless. It is our
  847. * job to build the TCP header, and pass the packet down to
  848. * IP so it can do the same plus pass the packet off to the
  849. * device.
  850. *
  851. * We are working here with either a clone of the original
  852. * SKB, or a fresh unique copy made by the retransmit engine.
  853. */
  854. static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
  855. gfp_t gfp_mask)
  856. {
  857. const struct inet_connection_sock *icsk = inet_csk(sk);
  858. struct inet_sock *inet;
  859. struct tcp_sock *tp;
  860. struct tcp_skb_cb *tcb;
  861. struct tcp_out_options opts;
  862. unsigned int tcp_options_size, tcp_header_size;
  863. struct tcp_md5sig_key *md5;
  864. struct tcphdr *th;
  865. int err;
  866. BUG_ON(!skb || !tcp_skb_pcount(skb));
  867. tp = tcp_sk(sk);
  868. skb->skb_mstamp = tp->tcp_mstamp;
  869. if (clone_it) {
  870. TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
  871. - tp->snd_una;
  872. tcp_rate_skb_sent(sk, skb);
  873. if (unlikely(skb_cloned(skb)))
  874. skb = pskb_copy(skb, gfp_mask);
  875. else
  876. skb = skb_clone(skb, gfp_mask);
  877. if (unlikely(!skb))
  878. return -ENOBUFS;
  879. }
  880. inet = inet_sk(sk);
  881. tcb = TCP_SKB_CB(skb);
  882. memset(&opts, 0, sizeof(opts));
  883. if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
  884. tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
  885. else
  886. tcp_options_size = tcp_established_options(sk, skb, &opts,
  887. &md5);
  888. tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
  889. /* if no packet is in qdisc/device queue, then allow XPS to select
  890. * another queue. We can be called from tcp_tsq_handler()
  891. * which holds one reference to sk_wmem_alloc.
  892. *
  893. * TODO: Ideally, in-flight pure ACK packets should not matter here.
  894. * One way to get this would be to set skb->truesize = 2 on them.
  895. */
  896. skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
  897. /* If we had to use memory reserve to allocate this skb,
  898. * this might cause drops if packet is looped back :
  899. * Other socket might not have SOCK_MEMALLOC.
  900. * Packets not looped back do not care about pfmemalloc.
  901. */
  902. skb->pfmemalloc = 0;
  903. skb_push(skb, tcp_header_size);
  904. skb_reset_transport_header(skb);
  905. skb_orphan(skb);
  906. skb->sk = sk;
  907. skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
  908. skb_set_hash_from_sk(skb, sk);
  909. refcount_add(skb->truesize, &sk->sk_wmem_alloc);
  910. skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
  911. /* Build TCP header and checksum it. */
  912. th = (struct tcphdr *)skb->data;
  913. th->source = inet->inet_sport;
  914. th->dest = inet->inet_dport;
  915. th->seq = htonl(tcb->seq);
  916. th->ack_seq = htonl(tp->rcv_nxt);
  917. *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
  918. tcb->tcp_flags);
  919. th->check = 0;
  920. th->urg_ptr = 0;
  921. /* The urg_mode check is necessary during a below snd_una win probe */
  922. if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
  923. if (before(tp->snd_up, tcb->seq + 0x10000)) {
  924. th->urg_ptr = htons(tp->snd_up - tcb->seq);
  925. th->urg = 1;
  926. } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
  927. th->urg_ptr = htons(0xFFFF);
  928. th->urg = 1;
  929. }
  930. }
  931. tcp_options_write((__be32 *)(th + 1), tp, &opts);
  932. skb_shinfo(skb)->gso_type = sk->sk_gso_type;
  933. if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
  934. th->window = htons(tcp_select_window(sk));
  935. tcp_ecn_send(sk, skb, th, tcp_header_size);
  936. } else {
  937. /* RFC1323: The window in SYN & SYN/ACK segments
  938. * is never scaled.
  939. */
  940. th->window = htons(min(tp->rcv_wnd, 65535U));
  941. }
  942. #ifdef CONFIG_TCP_MD5SIG
  943. /* Calculate the MD5 hash, as we have all we need now */
  944. if (md5) {
  945. sk_nocaps_add(sk, NETIF_F_GSO_MASK);
  946. tp->af_specific->calc_md5_hash(opts.hash_location,
  947. md5, sk, skb);
  948. }
  949. #endif
  950. icsk->icsk_af_ops->send_check(sk, skb);
  951. if (likely(tcb->tcp_flags & TCPHDR_ACK))
  952. tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
  953. if (skb->len != tcp_header_size) {
  954. tcp_event_data_sent(tp, sk);
  955. tp->data_segs_out += tcp_skb_pcount(skb);
  956. tcp_internal_pacing(sk, skb);
  957. }
  958. if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
  959. TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
  960. tcp_skb_pcount(skb));
  961. tp->segs_out += tcp_skb_pcount(skb);
  962. /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
  963. skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
  964. skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
  965. /* Our usage of tstamp should remain private */
  966. skb->tstamp = 0;
  967. /* Cleanup our debris for IP stacks */
  968. memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
  969. sizeof(struct inet6_skb_parm)));
  970. err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
  971. if (likely(err <= 0))
  972. return err;
  973. tcp_enter_cwr(sk);
  974. return net_xmit_eval(err);
  975. }
  976. /* This routine just queues the buffer for sending.
  977. *
  978. * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
  979. * otherwise socket can stall.
  980. */
  981. static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
  982. {
  983. struct tcp_sock *tp = tcp_sk(sk);
  984. /* Advance write_seq and place onto the write_queue. */
  985. tp->write_seq = TCP_SKB_CB(skb)->end_seq;
  986. __skb_header_release(skb);
  987. tcp_add_write_queue_tail(sk, skb);
  988. sk->sk_wmem_queued += skb->truesize;
  989. sk_mem_charge(sk, skb->truesize);
  990. }
  991. /* Initialize TSO segments for a packet. */
  992. static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  993. {
  994. if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
  995. /* Avoid the costly divide in the normal
  996. * non-TSO case.
  997. */
  998. tcp_skb_pcount_set(skb, 1);
  999. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1000. } else {
  1001. tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
  1002. TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
  1003. }
  1004. }
  1005. /* When a modification to fackets out becomes necessary, we need to check
  1006. * skb is counted to fackets_out or not.
  1007. */
  1008. static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
  1009. int decr)
  1010. {
  1011. struct tcp_sock *tp = tcp_sk(sk);
  1012. if (!tp->sacked_out || tcp_is_reno(tp))
  1013. return;
  1014. if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
  1015. tp->fackets_out -= decr;
  1016. }
  1017. /* Pcount in the middle of the write queue got changed, we need to do various
  1018. * tweaks to fix counters
  1019. */
  1020. static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
  1021. {
  1022. struct tcp_sock *tp = tcp_sk(sk);
  1023. tp->packets_out -= decr;
  1024. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  1025. tp->sacked_out -= decr;
  1026. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1027. tp->retrans_out -= decr;
  1028. if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
  1029. tp->lost_out -= decr;
  1030. /* Reno case is special. Sigh... */
  1031. if (tcp_is_reno(tp) && decr > 0)
  1032. tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
  1033. tcp_adjust_fackets_out(sk, skb, decr);
  1034. if (tp->lost_skb_hint &&
  1035. before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
  1036. (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
  1037. tp->lost_cnt_hint -= decr;
  1038. tcp_verify_left_out(tp);
  1039. }
  1040. static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
  1041. {
  1042. return TCP_SKB_CB(skb)->txstamp_ack ||
  1043. (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
  1044. }
  1045. static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
  1046. {
  1047. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1048. if (unlikely(tcp_has_tx_tstamp(skb)) &&
  1049. !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
  1050. struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
  1051. u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  1052. shinfo->tx_flags &= ~tsflags;
  1053. shinfo2->tx_flags |= tsflags;
  1054. swap(shinfo->tskey, shinfo2->tskey);
  1055. TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
  1056. TCP_SKB_CB(skb)->txstamp_ack = 0;
  1057. }
  1058. }
  1059. static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
  1060. {
  1061. TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
  1062. TCP_SKB_CB(skb)->eor = 0;
  1063. }
  1064. /* Function to create two new TCP segments. Shrinks the given segment
  1065. * to the specified size and appends a new segment with the rest of the
  1066. * packet to the list. This won't be called frequently, I hope.
  1067. * Remember, these are still headerless SKBs at this point.
  1068. */
  1069. int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
  1070. unsigned int mss_now, gfp_t gfp)
  1071. {
  1072. struct tcp_sock *tp = tcp_sk(sk);
  1073. struct sk_buff *buff;
  1074. int nsize, old_factor;
  1075. int nlen;
  1076. u8 flags;
  1077. if (WARN_ON(len > skb->len))
  1078. return -EINVAL;
  1079. nsize = skb_headlen(skb) - len;
  1080. if (nsize < 0)
  1081. nsize = 0;
  1082. if (skb_unclone(skb, gfp))
  1083. return -ENOMEM;
  1084. /* Get a new skb... force flag on. */
  1085. buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
  1086. if (!buff)
  1087. return -ENOMEM; /* We'll just try again later. */
  1088. sk->sk_wmem_queued += buff->truesize;
  1089. sk_mem_charge(sk, buff->truesize);
  1090. nlen = skb->len - len - nsize;
  1091. buff->truesize += nlen;
  1092. skb->truesize -= nlen;
  1093. /* Correct the sequence numbers. */
  1094. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1095. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1096. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1097. /* PSH and FIN should only be set in the second packet. */
  1098. flags = TCP_SKB_CB(skb)->tcp_flags;
  1099. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1100. TCP_SKB_CB(buff)->tcp_flags = flags;
  1101. TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
  1102. tcp_skb_fragment_eor(skb, buff);
  1103. if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
  1104. /* Copy and checksum data tail into the new buffer. */
  1105. buff->csum = csum_partial_copy_nocheck(skb->data + len,
  1106. skb_put(buff, nsize),
  1107. nsize, 0);
  1108. skb_trim(skb, len);
  1109. skb->csum = csum_block_sub(skb->csum, buff->csum, len);
  1110. } else {
  1111. skb->ip_summed = CHECKSUM_PARTIAL;
  1112. skb_split(skb, buff, len);
  1113. }
  1114. buff->ip_summed = skb->ip_summed;
  1115. buff->tstamp = skb->tstamp;
  1116. tcp_fragment_tstamp(skb, buff);
  1117. old_factor = tcp_skb_pcount(skb);
  1118. /* Fix up tso_factor for both original and new SKB. */
  1119. tcp_set_skb_tso_segs(skb, mss_now);
  1120. tcp_set_skb_tso_segs(buff, mss_now);
  1121. /* Update delivered info for the new segment */
  1122. TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
  1123. /* If this packet has been sent out already, we must
  1124. * adjust the various packet counters.
  1125. */
  1126. if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
  1127. int diff = old_factor - tcp_skb_pcount(skb) -
  1128. tcp_skb_pcount(buff);
  1129. if (diff)
  1130. tcp_adjust_pcount(sk, skb, diff);
  1131. }
  1132. /* Link BUFF into the send queue. */
  1133. __skb_header_release(buff);
  1134. tcp_insert_write_queue_after(skb, buff, sk);
  1135. return 0;
  1136. }
  1137. /* This is similar to __pskb_pull_tail(). The difference is that pulled
  1138. * data is not copied, but immediately discarded.
  1139. */
  1140. static int __pskb_trim_head(struct sk_buff *skb, int len)
  1141. {
  1142. struct skb_shared_info *shinfo;
  1143. int i, k, eat;
  1144. eat = min_t(int, len, skb_headlen(skb));
  1145. if (eat) {
  1146. __skb_pull(skb, eat);
  1147. len -= eat;
  1148. if (!len)
  1149. return 0;
  1150. }
  1151. eat = len;
  1152. k = 0;
  1153. shinfo = skb_shinfo(skb);
  1154. for (i = 0; i < shinfo->nr_frags; i++) {
  1155. int size = skb_frag_size(&shinfo->frags[i]);
  1156. if (size <= eat) {
  1157. skb_frag_unref(skb, i);
  1158. eat -= size;
  1159. } else {
  1160. shinfo->frags[k] = shinfo->frags[i];
  1161. if (eat) {
  1162. shinfo->frags[k].page_offset += eat;
  1163. skb_frag_size_sub(&shinfo->frags[k], eat);
  1164. eat = 0;
  1165. }
  1166. k++;
  1167. }
  1168. }
  1169. shinfo->nr_frags = k;
  1170. skb->data_len -= len;
  1171. skb->len = skb->data_len;
  1172. return len;
  1173. }
  1174. /* Remove acked data from a packet in the transmit queue. */
  1175. int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
  1176. {
  1177. u32 delta_truesize;
  1178. if (skb_unclone(skb, GFP_ATOMIC))
  1179. return -ENOMEM;
  1180. delta_truesize = __pskb_trim_head(skb, len);
  1181. TCP_SKB_CB(skb)->seq += len;
  1182. skb->ip_summed = CHECKSUM_PARTIAL;
  1183. if (delta_truesize) {
  1184. skb->truesize -= delta_truesize;
  1185. sk->sk_wmem_queued -= delta_truesize;
  1186. sk_mem_uncharge(sk, delta_truesize);
  1187. sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
  1188. }
  1189. /* Any change of skb->len requires recalculation of tso factor. */
  1190. if (tcp_skb_pcount(skb) > 1)
  1191. tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
  1192. return 0;
  1193. }
  1194. /* Calculate MSS not accounting any TCP options. */
  1195. static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1196. {
  1197. const struct tcp_sock *tp = tcp_sk(sk);
  1198. const struct inet_connection_sock *icsk = inet_csk(sk);
  1199. int mss_now;
  1200. /* Calculate base mss without TCP options:
  1201. It is MMS_S - sizeof(tcphdr) of rfc1122
  1202. */
  1203. mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
  1204. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1205. if (icsk->icsk_af_ops->net_frag_header_len) {
  1206. const struct dst_entry *dst = __sk_dst_get(sk);
  1207. if (dst && dst_allfrag(dst))
  1208. mss_now -= icsk->icsk_af_ops->net_frag_header_len;
  1209. }
  1210. /* Clamp it (mss_clamp does not include tcp options) */
  1211. if (mss_now > tp->rx_opt.mss_clamp)
  1212. mss_now = tp->rx_opt.mss_clamp;
  1213. /* Now subtract optional transport overhead */
  1214. mss_now -= icsk->icsk_ext_hdr_len;
  1215. /* Then reserve room for full set of TCP options and 8 bytes of data */
  1216. if (mss_now < 48)
  1217. mss_now = 48;
  1218. return mss_now;
  1219. }
  1220. /* Calculate MSS. Not accounting for SACKs here. */
  1221. int tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1222. {
  1223. /* Subtract TCP options size, not including SACKs */
  1224. return __tcp_mtu_to_mss(sk, pmtu) -
  1225. (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
  1226. }
  1227. /* Inverse of above */
  1228. int tcp_mss_to_mtu(struct sock *sk, int mss)
  1229. {
  1230. const struct tcp_sock *tp = tcp_sk(sk);
  1231. const struct inet_connection_sock *icsk = inet_csk(sk);
  1232. int mtu;
  1233. mtu = mss +
  1234. tp->tcp_header_len +
  1235. icsk->icsk_ext_hdr_len +
  1236. icsk->icsk_af_ops->net_header_len;
  1237. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1238. if (icsk->icsk_af_ops->net_frag_header_len) {
  1239. const struct dst_entry *dst = __sk_dst_get(sk);
  1240. if (dst && dst_allfrag(dst))
  1241. mtu += icsk->icsk_af_ops->net_frag_header_len;
  1242. }
  1243. return mtu;
  1244. }
  1245. EXPORT_SYMBOL(tcp_mss_to_mtu);
  1246. /* MTU probing init per socket */
  1247. void tcp_mtup_init(struct sock *sk)
  1248. {
  1249. struct tcp_sock *tp = tcp_sk(sk);
  1250. struct inet_connection_sock *icsk = inet_csk(sk);
  1251. struct net *net = sock_net(sk);
  1252. icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
  1253. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
  1254. icsk->icsk_af_ops->net_header_len;
  1255. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
  1256. icsk->icsk_mtup.probe_size = 0;
  1257. if (icsk->icsk_mtup.enabled)
  1258. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1259. }
  1260. EXPORT_SYMBOL(tcp_mtup_init);
  1261. /* This function synchronize snd mss to current pmtu/exthdr set.
  1262. tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
  1263. for TCP options, but includes only bare TCP header.
  1264. tp->rx_opt.mss_clamp is mss negotiated at connection setup.
  1265. It is minimum of user_mss and mss received with SYN.
  1266. It also does not include TCP options.
  1267. inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
  1268. tp->mss_cache is current effective sending mss, including
  1269. all tcp options except for SACKs. It is evaluated,
  1270. taking into account current pmtu, but never exceeds
  1271. tp->rx_opt.mss_clamp.
  1272. NOTE1. rfc1122 clearly states that advertised MSS
  1273. DOES NOT include either tcp or ip options.
  1274. NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
  1275. are READ ONLY outside this function. --ANK (980731)
  1276. */
  1277. unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
  1278. {
  1279. struct tcp_sock *tp = tcp_sk(sk);
  1280. struct inet_connection_sock *icsk = inet_csk(sk);
  1281. int mss_now;
  1282. if (icsk->icsk_mtup.search_high > pmtu)
  1283. icsk->icsk_mtup.search_high = pmtu;
  1284. mss_now = tcp_mtu_to_mss(sk, pmtu);
  1285. mss_now = tcp_bound_to_half_wnd(tp, mss_now);
  1286. /* And store cached results */
  1287. icsk->icsk_pmtu_cookie = pmtu;
  1288. if (icsk->icsk_mtup.enabled)
  1289. mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
  1290. tp->mss_cache = mss_now;
  1291. return mss_now;
  1292. }
  1293. EXPORT_SYMBOL(tcp_sync_mss);
  1294. /* Compute the current effective MSS, taking SACKs and IP options,
  1295. * and even PMTU discovery events into account.
  1296. */
  1297. unsigned int tcp_current_mss(struct sock *sk)
  1298. {
  1299. const struct tcp_sock *tp = tcp_sk(sk);
  1300. const struct dst_entry *dst = __sk_dst_get(sk);
  1301. u32 mss_now;
  1302. unsigned int header_len;
  1303. struct tcp_out_options opts;
  1304. struct tcp_md5sig_key *md5;
  1305. mss_now = tp->mss_cache;
  1306. if (dst) {
  1307. u32 mtu = dst_mtu(dst);
  1308. if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
  1309. mss_now = tcp_sync_mss(sk, mtu);
  1310. }
  1311. header_len = tcp_established_options(sk, NULL, &opts, &md5) +
  1312. sizeof(struct tcphdr);
  1313. /* The mss_cache is sized based on tp->tcp_header_len, which assumes
  1314. * some common options. If this is an odd packet (because we have SACK
  1315. * blocks etc) then our calculated header_len will be different, and
  1316. * we have to adjust mss_now correspondingly */
  1317. if (header_len != tp->tcp_header_len) {
  1318. int delta = (int) header_len - tp->tcp_header_len;
  1319. mss_now -= delta;
  1320. }
  1321. return mss_now;
  1322. }
  1323. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  1324. * As additional protections, we do not touch cwnd in retransmission phases,
  1325. * and if application hit its sndbuf limit recently.
  1326. */
  1327. static void tcp_cwnd_application_limited(struct sock *sk)
  1328. {
  1329. struct tcp_sock *tp = tcp_sk(sk);
  1330. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  1331. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  1332. /* Limited by application or receiver window. */
  1333. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  1334. u32 win_used = max(tp->snd_cwnd_used, init_win);
  1335. if (win_used < tp->snd_cwnd) {
  1336. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  1337. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  1338. }
  1339. tp->snd_cwnd_used = 0;
  1340. }
  1341. tp->snd_cwnd_stamp = tcp_jiffies32;
  1342. }
  1343. static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
  1344. {
  1345. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1346. struct tcp_sock *tp = tcp_sk(sk);
  1347. /* Track the maximum number of outstanding packets in each
  1348. * window, and remember whether we were cwnd-limited then.
  1349. */
  1350. if (!before(tp->snd_una, tp->max_packets_seq) ||
  1351. tp->packets_out > tp->max_packets_out) {
  1352. tp->max_packets_out = tp->packets_out;
  1353. tp->max_packets_seq = tp->snd_nxt;
  1354. tp->is_cwnd_limited = is_cwnd_limited;
  1355. }
  1356. if (tcp_is_cwnd_limited(sk)) {
  1357. /* Network is feed fully. */
  1358. tp->snd_cwnd_used = 0;
  1359. tp->snd_cwnd_stamp = tcp_jiffies32;
  1360. } else {
  1361. /* Network starves. */
  1362. if (tp->packets_out > tp->snd_cwnd_used)
  1363. tp->snd_cwnd_used = tp->packets_out;
  1364. if (sysctl_tcp_slow_start_after_idle &&
  1365. (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
  1366. !ca_ops->cong_control)
  1367. tcp_cwnd_application_limited(sk);
  1368. /* The following conditions together indicate the starvation
  1369. * is caused by insufficient sender buffer:
  1370. * 1) just sent some data (see tcp_write_xmit)
  1371. * 2) not cwnd limited (this else condition)
  1372. * 3) no more data to send (null tcp_send_head )
  1373. * 4) application is hitting buffer limit (SOCK_NOSPACE)
  1374. */
  1375. if (!tcp_send_head(sk) && sk->sk_socket &&
  1376. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
  1377. (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  1378. tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
  1379. }
  1380. }
  1381. /* Minshall's variant of the Nagle send check. */
  1382. static bool tcp_minshall_check(const struct tcp_sock *tp)
  1383. {
  1384. return after(tp->snd_sml, tp->snd_una) &&
  1385. !after(tp->snd_sml, tp->snd_nxt);
  1386. }
  1387. /* Update snd_sml if this skb is under mss
  1388. * Note that a TSO packet might end with a sub-mss segment
  1389. * The test is really :
  1390. * if ((skb->len % mss) != 0)
  1391. * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1392. * But we can avoid doing the divide again given we already have
  1393. * skb_pcount = skb->len / mss_now
  1394. */
  1395. static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
  1396. const struct sk_buff *skb)
  1397. {
  1398. if (skb->len < tcp_skb_pcount(skb) * mss_now)
  1399. tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1400. }
  1401. /* Return false, if packet can be sent now without violation Nagle's rules:
  1402. * 1. It is full sized. (provided by caller in %partial bool)
  1403. * 2. Or it contains FIN. (already checked by caller)
  1404. * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
  1405. * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
  1406. * With Minshall's modification: all sent small packets are ACKed.
  1407. */
  1408. static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
  1409. int nonagle)
  1410. {
  1411. return partial &&
  1412. ((nonagle & TCP_NAGLE_CORK) ||
  1413. (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
  1414. }
  1415. /* Return how many segs we'd like on a TSO packet,
  1416. * to send one TSO packet per ms
  1417. */
  1418. u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
  1419. int min_tso_segs)
  1420. {
  1421. u32 bytes, segs;
  1422. bytes = min(sk->sk_pacing_rate >> 10,
  1423. sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
  1424. /* Goal is to send at least one packet per ms,
  1425. * not one big TSO packet every 100 ms.
  1426. * This preserves ACK clocking and is consistent
  1427. * with tcp_tso_should_defer() heuristic.
  1428. */
  1429. segs = max_t(u32, bytes / mss_now, min_tso_segs);
  1430. return min_t(u32, segs, sk->sk_gso_max_segs);
  1431. }
  1432. EXPORT_SYMBOL(tcp_tso_autosize);
  1433. /* Return the number of segments we want in the skb we are transmitting.
  1434. * See if congestion control module wants to decide; otherwise, autosize.
  1435. */
  1436. static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
  1437. {
  1438. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1439. u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
  1440. return tso_segs ? :
  1441. tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
  1442. }
  1443. /* Returns the portion of skb which can be sent right away */
  1444. static unsigned int tcp_mss_split_point(const struct sock *sk,
  1445. const struct sk_buff *skb,
  1446. unsigned int mss_now,
  1447. unsigned int max_segs,
  1448. int nonagle)
  1449. {
  1450. const struct tcp_sock *tp = tcp_sk(sk);
  1451. u32 partial, needed, window, max_len;
  1452. window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1453. max_len = mss_now * max_segs;
  1454. if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
  1455. return max_len;
  1456. needed = min(skb->len, window);
  1457. if (max_len <= needed)
  1458. return max_len;
  1459. partial = needed % mss_now;
  1460. /* If last segment is not a full MSS, check if Nagle rules allow us
  1461. * to include this last segment in this skb.
  1462. * Otherwise, we'll split the skb at last MSS boundary
  1463. */
  1464. if (tcp_nagle_check(partial != 0, tp, nonagle))
  1465. return needed - partial;
  1466. return needed;
  1467. }
  1468. /* Can at least one segment of SKB be sent right now, according to the
  1469. * congestion window rules? If so, return how many segments are allowed.
  1470. */
  1471. static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
  1472. const struct sk_buff *skb)
  1473. {
  1474. u32 in_flight, cwnd, halfcwnd;
  1475. /* Don't be strict about the congestion window for the final FIN. */
  1476. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
  1477. tcp_skb_pcount(skb) == 1)
  1478. return 1;
  1479. in_flight = tcp_packets_in_flight(tp);
  1480. cwnd = tp->snd_cwnd;
  1481. if (in_flight >= cwnd)
  1482. return 0;
  1483. /* For better scheduling, ensure we have at least
  1484. * 2 GSO packets in flight.
  1485. */
  1486. halfcwnd = max(cwnd >> 1, 1U);
  1487. return min(halfcwnd, cwnd - in_flight);
  1488. }
  1489. /* Initialize TSO state of a skb.
  1490. * This must be invoked the first time we consider transmitting
  1491. * SKB onto the wire.
  1492. */
  1493. static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1494. {
  1495. int tso_segs = tcp_skb_pcount(skb);
  1496. if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
  1497. tcp_set_skb_tso_segs(skb, mss_now);
  1498. tso_segs = tcp_skb_pcount(skb);
  1499. }
  1500. return tso_segs;
  1501. }
  1502. /* Return true if the Nagle test allows this packet to be
  1503. * sent now.
  1504. */
  1505. static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
  1506. unsigned int cur_mss, int nonagle)
  1507. {
  1508. /* Nagle rule does not apply to frames, which sit in the middle of the
  1509. * write_queue (they have no chances to get new data).
  1510. *
  1511. * This is implemented in the callers, where they modify the 'nonagle'
  1512. * argument based upon the location of SKB in the send queue.
  1513. */
  1514. if (nonagle & TCP_NAGLE_PUSH)
  1515. return true;
  1516. /* Don't use the nagle rule for urgent data (or for the final FIN). */
  1517. if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
  1518. return true;
  1519. if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
  1520. return true;
  1521. return false;
  1522. }
  1523. /* Does at least the first segment of SKB fit into the send window? */
  1524. static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
  1525. const struct sk_buff *skb,
  1526. unsigned int cur_mss)
  1527. {
  1528. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  1529. if (skb->len > cur_mss)
  1530. end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
  1531. return !after(end_seq, tcp_wnd_end(tp));
  1532. }
  1533. /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
  1534. * should be put on the wire right now. If so, it returns the number of
  1535. * packets allowed by the congestion window.
  1536. */
  1537. static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
  1538. unsigned int cur_mss, int nonagle)
  1539. {
  1540. const struct tcp_sock *tp = tcp_sk(sk);
  1541. unsigned int cwnd_quota;
  1542. tcp_init_tso_segs(skb, cur_mss);
  1543. if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
  1544. return 0;
  1545. cwnd_quota = tcp_cwnd_test(tp, skb);
  1546. if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
  1547. cwnd_quota = 0;
  1548. return cwnd_quota;
  1549. }
  1550. /* Test if sending is allowed right now. */
  1551. bool tcp_may_send_now(struct sock *sk)
  1552. {
  1553. const struct tcp_sock *tp = tcp_sk(sk);
  1554. struct sk_buff *skb = tcp_send_head(sk);
  1555. return skb &&
  1556. tcp_snd_test(sk, skb, tcp_current_mss(sk),
  1557. (tcp_skb_is_last(sk, skb) ?
  1558. tp->nonagle : TCP_NAGLE_PUSH));
  1559. }
  1560. /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
  1561. * which is put after SKB on the list. It is very much like
  1562. * tcp_fragment() except that it may make several kinds of assumptions
  1563. * in order to speed up the splitting operation. In particular, we
  1564. * know that all the data is in scatter-gather pages, and that the
  1565. * packet has never been sent out before (and thus is not cloned).
  1566. */
  1567. static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
  1568. unsigned int mss_now, gfp_t gfp)
  1569. {
  1570. struct sk_buff *buff;
  1571. int nlen = skb->len - len;
  1572. u8 flags;
  1573. /* All of a TSO frame must be composed of paged data. */
  1574. if (skb->len != skb->data_len)
  1575. return tcp_fragment(sk, skb, len, mss_now, gfp);
  1576. buff = sk_stream_alloc_skb(sk, 0, gfp, true);
  1577. if (unlikely(!buff))
  1578. return -ENOMEM;
  1579. sk->sk_wmem_queued += buff->truesize;
  1580. sk_mem_charge(sk, buff->truesize);
  1581. buff->truesize += nlen;
  1582. skb->truesize -= nlen;
  1583. /* Correct the sequence numbers. */
  1584. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1585. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1586. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1587. /* PSH and FIN should only be set in the second packet. */
  1588. flags = TCP_SKB_CB(skb)->tcp_flags;
  1589. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1590. TCP_SKB_CB(buff)->tcp_flags = flags;
  1591. /* This packet was never sent out yet, so no SACK bits. */
  1592. TCP_SKB_CB(buff)->sacked = 0;
  1593. tcp_skb_fragment_eor(skb, buff);
  1594. buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
  1595. skb_split(skb, buff, len);
  1596. tcp_fragment_tstamp(skb, buff);
  1597. /* Fix up tso_factor for both original and new SKB. */
  1598. tcp_set_skb_tso_segs(skb, mss_now);
  1599. tcp_set_skb_tso_segs(buff, mss_now);
  1600. /* Link BUFF into the send queue. */
  1601. __skb_header_release(buff);
  1602. tcp_insert_write_queue_after(skb, buff, sk);
  1603. return 0;
  1604. }
  1605. /* Try to defer sending, if possible, in order to minimize the amount
  1606. * of TSO splitting we do. View it as a kind of TSO Nagle test.
  1607. *
  1608. * This algorithm is from John Heffner.
  1609. */
  1610. static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
  1611. bool *is_cwnd_limited, u32 max_segs)
  1612. {
  1613. const struct inet_connection_sock *icsk = inet_csk(sk);
  1614. u32 age, send_win, cong_win, limit, in_flight;
  1615. struct tcp_sock *tp = tcp_sk(sk);
  1616. struct sk_buff *head;
  1617. int win_divisor;
  1618. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1619. goto send_now;
  1620. if (icsk->icsk_ca_state >= TCP_CA_Recovery)
  1621. goto send_now;
  1622. /* Avoid bursty behavior by allowing defer
  1623. * only if the last write was recent.
  1624. */
  1625. if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
  1626. goto send_now;
  1627. in_flight = tcp_packets_in_flight(tp);
  1628. BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
  1629. send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1630. /* From in_flight test above, we know that cwnd > in_flight. */
  1631. cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
  1632. limit = min(send_win, cong_win);
  1633. /* If a full-sized TSO skb can be sent, do it. */
  1634. if (limit >= max_segs * tp->mss_cache)
  1635. goto send_now;
  1636. /* Middle in queue won't get any more data, full sendable already? */
  1637. if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
  1638. goto send_now;
  1639. win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
  1640. if (win_divisor) {
  1641. u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
  1642. /* If at least some fraction of a window is available,
  1643. * just use it.
  1644. */
  1645. chunk /= win_divisor;
  1646. if (limit >= chunk)
  1647. goto send_now;
  1648. } else {
  1649. /* Different approach, try not to defer past a single
  1650. * ACK. Receiver should ACK every other full sized
  1651. * frame, so if we have space for more than 3 frames
  1652. * then send now.
  1653. */
  1654. if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
  1655. goto send_now;
  1656. }
  1657. head = tcp_write_queue_head(sk);
  1658. age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
  1659. /* If next ACK is likely to come too late (half srtt), do not defer */
  1660. if (age < (tp->srtt_us >> 4))
  1661. goto send_now;
  1662. /* Ok, it looks like it is advisable to defer. */
  1663. if (cong_win < send_win && cong_win <= skb->len)
  1664. *is_cwnd_limited = true;
  1665. return true;
  1666. send_now:
  1667. return false;
  1668. }
  1669. static inline void tcp_mtu_check_reprobe(struct sock *sk)
  1670. {
  1671. struct inet_connection_sock *icsk = inet_csk(sk);
  1672. struct tcp_sock *tp = tcp_sk(sk);
  1673. struct net *net = sock_net(sk);
  1674. u32 interval;
  1675. s32 delta;
  1676. interval = net->ipv4.sysctl_tcp_probe_interval;
  1677. delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
  1678. if (unlikely(delta >= interval * HZ)) {
  1679. int mss = tcp_current_mss(sk);
  1680. /* Update current search range */
  1681. icsk->icsk_mtup.probe_size = 0;
  1682. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
  1683. sizeof(struct tcphdr) +
  1684. icsk->icsk_af_ops->net_header_len;
  1685. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
  1686. /* Update probe time stamp */
  1687. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1688. }
  1689. }
  1690. /* Create a new MTU probe if we are ready.
  1691. * MTU probe is regularly attempting to increase the path MTU by
  1692. * deliberately sending larger packets. This discovers routing
  1693. * changes resulting in larger path MTUs.
  1694. *
  1695. * Returns 0 if we should wait to probe (no cwnd available),
  1696. * 1 if a probe was sent,
  1697. * -1 otherwise
  1698. */
  1699. static int tcp_mtu_probe(struct sock *sk)
  1700. {
  1701. struct inet_connection_sock *icsk = inet_csk(sk);
  1702. struct tcp_sock *tp = tcp_sk(sk);
  1703. struct sk_buff *skb, *nskb, *next;
  1704. struct net *net = sock_net(sk);
  1705. int probe_size;
  1706. int size_needed;
  1707. int copy, len;
  1708. int mss_now;
  1709. int interval;
  1710. /* Not currently probing/verifying,
  1711. * not in recovery,
  1712. * have enough cwnd, and
  1713. * not SACKing (the variable headers throw things off)
  1714. */
  1715. if (likely(!icsk->icsk_mtup.enabled ||
  1716. icsk->icsk_mtup.probe_size ||
  1717. inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
  1718. tp->snd_cwnd < 11 ||
  1719. tp->rx_opt.num_sacks || tp->rx_opt.dsack))
  1720. return -1;
  1721. /* Use binary search for probe_size between tcp_mss_base,
  1722. * and current mss_clamp. if (search_high - search_low)
  1723. * smaller than a threshold, backoff from probing.
  1724. */
  1725. mss_now = tcp_current_mss(sk);
  1726. probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
  1727. icsk->icsk_mtup.search_low) >> 1);
  1728. size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
  1729. interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
  1730. /* When misfortune happens, we are reprobing actively,
  1731. * and then reprobe timer has expired. We stick with current
  1732. * probing process by not resetting search range to its orignal.
  1733. */
  1734. if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
  1735. interval < net->ipv4.sysctl_tcp_probe_threshold) {
  1736. /* Check whether enough time has elaplased for
  1737. * another round of probing.
  1738. */
  1739. tcp_mtu_check_reprobe(sk);
  1740. return -1;
  1741. }
  1742. /* Have enough data in the send queue to probe? */
  1743. if (tp->write_seq - tp->snd_nxt < size_needed)
  1744. return -1;
  1745. if (tp->snd_wnd < size_needed)
  1746. return -1;
  1747. if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
  1748. return 0;
  1749. /* Do we need to wait to drain cwnd? With none in flight, don't stall */
  1750. if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
  1751. if (!tcp_packets_in_flight(tp))
  1752. return -1;
  1753. else
  1754. return 0;
  1755. }
  1756. /* We're allowed to probe. Build it now. */
  1757. nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
  1758. if (!nskb)
  1759. return -1;
  1760. sk->sk_wmem_queued += nskb->truesize;
  1761. sk_mem_charge(sk, nskb->truesize);
  1762. skb = tcp_send_head(sk);
  1763. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
  1764. TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
  1765. TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
  1766. TCP_SKB_CB(nskb)->sacked = 0;
  1767. nskb->csum = 0;
  1768. nskb->ip_summed = skb->ip_summed;
  1769. tcp_insert_write_queue_before(nskb, skb, sk);
  1770. len = 0;
  1771. tcp_for_write_queue_from_safe(skb, next, sk) {
  1772. copy = min_t(int, skb->len, probe_size - len);
  1773. if (nskb->ip_summed) {
  1774. skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
  1775. } else {
  1776. __wsum csum = skb_copy_and_csum_bits(skb, 0,
  1777. skb_put(nskb, copy),
  1778. copy, 0);
  1779. nskb->csum = csum_block_add(nskb->csum, csum, len);
  1780. }
  1781. if (skb->len <= copy) {
  1782. /* We've eaten all the data from this skb.
  1783. * Throw it away. */
  1784. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1785. tcp_unlink_write_queue(skb, sk);
  1786. sk_wmem_free_skb(sk, skb);
  1787. } else {
  1788. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
  1789. ~(TCPHDR_FIN|TCPHDR_PSH);
  1790. if (!skb_shinfo(skb)->nr_frags) {
  1791. skb_pull(skb, copy);
  1792. if (skb->ip_summed != CHECKSUM_PARTIAL)
  1793. skb->csum = csum_partial(skb->data,
  1794. skb->len, 0);
  1795. } else {
  1796. __pskb_trim_head(skb, copy);
  1797. tcp_set_skb_tso_segs(skb, mss_now);
  1798. }
  1799. TCP_SKB_CB(skb)->seq += copy;
  1800. }
  1801. len += copy;
  1802. if (len >= probe_size)
  1803. break;
  1804. }
  1805. tcp_init_tso_segs(nskb, nskb->len);
  1806. /* We're ready to send. If this fails, the probe will
  1807. * be resegmented into mss-sized pieces by tcp_write_xmit().
  1808. */
  1809. if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
  1810. /* Decrement cwnd here because we are sending
  1811. * effectively two packets. */
  1812. tp->snd_cwnd--;
  1813. tcp_event_new_data_sent(sk, nskb);
  1814. icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
  1815. tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
  1816. tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
  1817. return 1;
  1818. }
  1819. return -1;
  1820. }
  1821. static bool tcp_pacing_check(const struct sock *sk)
  1822. {
  1823. return tcp_needs_internal_pacing(sk) &&
  1824. hrtimer_active(&tcp_sk(sk)->pacing_timer);
  1825. }
  1826. /* TCP Small Queues :
  1827. * Control number of packets in qdisc/devices to two packets / or ~1 ms.
  1828. * (These limits are doubled for retransmits)
  1829. * This allows for :
  1830. * - better RTT estimation and ACK scheduling
  1831. * - faster recovery
  1832. * - high rates
  1833. * Alas, some drivers / subsystems require a fair amount
  1834. * of queued bytes to ensure line rate.
  1835. * One example is wifi aggregation (802.11 AMPDU)
  1836. */
  1837. static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
  1838. unsigned int factor)
  1839. {
  1840. unsigned int limit;
  1841. limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
  1842. limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
  1843. limit <<= factor;
  1844. if (refcount_read(&sk->sk_wmem_alloc) > limit) {
  1845. /* Always send the 1st or 2nd skb in write queue.
  1846. * No need to wait for TX completion to call us back,
  1847. * after softirq/tasklet schedule.
  1848. * This helps when TX completions are delayed too much.
  1849. */
  1850. if (skb == sk->sk_write_queue.next ||
  1851. skb->prev == sk->sk_write_queue.next)
  1852. return false;
  1853. set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
  1854. /* It is possible TX completion already happened
  1855. * before we set TSQ_THROTTLED, so we must
  1856. * test again the condition.
  1857. */
  1858. smp_mb__after_atomic();
  1859. if (refcount_read(&sk->sk_wmem_alloc) > limit)
  1860. return true;
  1861. }
  1862. return false;
  1863. }
  1864. static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
  1865. {
  1866. const u32 now = tcp_jiffies32;
  1867. enum tcp_chrono old = tp->chrono_type;
  1868. if (old > TCP_CHRONO_UNSPEC)
  1869. tp->chrono_stat[old - 1] += now - tp->chrono_start;
  1870. tp->chrono_start = now;
  1871. tp->chrono_type = new;
  1872. }
  1873. void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
  1874. {
  1875. struct tcp_sock *tp = tcp_sk(sk);
  1876. /* If there are multiple conditions worthy of tracking in a
  1877. * chronograph then the highest priority enum takes precedence
  1878. * over the other conditions. So that if something "more interesting"
  1879. * starts happening, stop the previous chrono and start a new one.
  1880. */
  1881. if (type > tp->chrono_type)
  1882. tcp_chrono_set(tp, type);
  1883. }
  1884. void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
  1885. {
  1886. struct tcp_sock *tp = tcp_sk(sk);
  1887. /* There are multiple conditions worthy of tracking in a
  1888. * chronograph, so that the highest priority enum takes
  1889. * precedence over the other conditions (see tcp_chrono_start).
  1890. * If a condition stops, we only stop chrono tracking if
  1891. * it's the "most interesting" or current chrono we are
  1892. * tracking and starts busy chrono if we have pending data.
  1893. */
  1894. if (tcp_write_queue_empty(sk))
  1895. tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
  1896. else if (type == tp->chrono_type)
  1897. tcp_chrono_set(tp, TCP_CHRONO_BUSY);
  1898. }
  1899. /* This routine writes packets to the network. It advances the
  1900. * send_head. This happens as incoming acks open up the remote
  1901. * window for us.
  1902. *
  1903. * LARGESEND note: !tcp_urg_mode is overkill, only frames between
  1904. * snd_up-64k-mss .. snd_up cannot be large. However, taking into
  1905. * account rare use of URG, this is not a big flaw.
  1906. *
  1907. * Send at most one packet when push_one > 0. Temporarily ignore
  1908. * cwnd limit to force at most one packet out when push_one == 2.
  1909. * Returns true, if no segments are in flight and we have queued segments,
  1910. * but cannot send anything now because of SWS or another problem.
  1911. */
  1912. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  1913. int push_one, gfp_t gfp)
  1914. {
  1915. struct tcp_sock *tp = tcp_sk(sk);
  1916. struct sk_buff *skb;
  1917. unsigned int tso_segs, sent_pkts;
  1918. int cwnd_quota;
  1919. int result;
  1920. bool is_cwnd_limited = false, is_rwnd_limited = false;
  1921. u32 max_segs;
  1922. sent_pkts = 0;
  1923. if (!push_one) {
  1924. /* Do MTU probing. */
  1925. result = tcp_mtu_probe(sk);
  1926. if (!result) {
  1927. return false;
  1928. } else if (result > 0) {
  1929. sent_pkts = 1;
  1930. }
  1931. }
  1932. max_segs = tcp_tso_segs(sk, mss_now);
  1933. tcp_mstamp_refresh(tp);
  1934. while ((skb = tcp_send_head(sk))) {
  1935. unsigned int limit;
  1936. if (tcp_pacing_check(sk))
  1937. break;
  1938. tso_segs = tcp_init_tso_segs(skb, mss_now);
  1939. BUG_ON(!tso_segs);
  1940. if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
  1941. /* "skb_mstamp" is used as a start point for the retransmit timer */
  1942. skb->skb_mstamp = tp->tcp_mstamp;
  1943. goto repair; /* Skip network transmission */
  1944. }
  1945. cwnd_quota = tcp_cwnd_test(tp, skb);
  1946. if (!cwnd_quota) {
  1947. if (push_one == 2)
  1948. /* Force out a loss probe pkt. */
  1949. cwnd_quota = 1;
  1950. else
  1951. break;
  1952. }
  1953. if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
  1954. is_rwnd_limited = true;
  1955. break;
  1956. }
  1957. if (tso_segs == 1) {
  1958. if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
  1959. (tcp_skb_is_last(sk, skb) ?
  1960. nonagle : TCP_NAGLE_PUSH))))
  1961. break;
  1962. } else {
  1963. if (!push_one &&
  1964. tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
  1965. max_segs))
  1966. break;
  1967. }
  1968. limit = mss_now;
  1969. if (tso_segs > 1 && !tcp_urg_mode(tp))
  1970. limit = tcp_mss_split_point(sk, skb, mss_now,
  1971. min_t(unsigned int,
  1972. cwnd_quota,
  1973. max_segs),
  1974. nonagle);
  1975. if (skb->len > limit &&
  1976. unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
  1977. break;
  1978. if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
  1979. clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
  1980. if (tcp_small_queue_check(sk, skb, 0))
  1981. break;
  1982. if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
  1983. break;
  1984. repair:
  1985. /* Advance the send_head. This one is sent out.
  1986. * This call will increment packets_out.
  1987. */
  1988. tcp_event_new_data_sent(sk, skb);
  1989. tcp_minshall_update(tp, mss_now, skb);
  1990. sent_pkts += tcp_skb_pcount(skb);
  1991. if (push_one)
  1992. break;
  1993. }
  1994. if (is_rwnd_limited)
  1995. tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
  1996. else
  1997. tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
  1998. if (likely(sent_pkts)) {
  1999. if (tcp_in_cwnd_reduction(sk))
  2000. tp->prr_out += sent_pkts;
  2001. /* Send one loss probe per tail loss episode. */
  2002. if (push_one != 2)
  2003. tcp_schedule_loss_probe(sk);
  2004. is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
  2005. tcp_cwnd_validate(sk, is_cwnd_limited);
  2006. return false;
  2007. }
  2008. return !tp->packets_out && tcp_send_head(sk);
  2009. }
  2010. bool tcp_schedule_loss_probe(struct sock *sk)
  2011. {
  2012. struct inet_connection_sock *icsk = inet_csk(sk);
  2013. struct tcp_sock *tp = tcp_sk(sk);
  2014. u32 timeout, tlp_time_stamp, rto_time_stamp;
  2015. u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
  2016. /* No consecutive loss probes. */
  2017. if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
  2018. tcp_rearm_rto(sk);
  2019. return false;
  2020. }
  2021. /* Don't do any loss probe on a Fast Open connection before 3WHS
  2022. * finishes.
  2023. */
  2024. if (tp->fastopen_rsk)
  2025. return false;
  2026. /* TLP is only scheduled when next timer event is RTO. */
  2027. if (icsk->icsk_pending != ICSK_TIME_RETRANS)
  2028. return false;
  2029. /* Schedule a loss probe in 2*RTT for SACK capable connections
  2030. * in Open state, that are either limited by cwnd or application.
  2031. */
  2032. if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
  2033. !tp->packets_out || !tcp_is_sack(tp) ||
  2034. icsk->icsk_ca_state != TCP_CA_Open)
  2035. return false;
  2036. if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
  2037. tcp_send_head(sk))
  2038. return false;
  2039. /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
  2040. * for delayed ack when there's one outstanding packet. If no RTT
  2041. * sample is available then probe after TCP_TIMEOUT_INIT.
  2042. */
  2043. timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
  2044. if (tp->packets_out == 1)
  2045. timeout = max_t(u32, timeout,
  2046. (rtt + (rtt >> 1) + TCP_DELACK_MAX));
  2047. timeout = max_t(u32, timeout, msecs_to_jiffies(10));
  2048. /* If RTO is shorter, just schedule TLP in its place. */
  2049. tlp_time_stamp = tcp_jiffies32 + timeout;
  2050. rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
  2051. if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
  2052. s32 delta = rto_time_stamp - tcp_jiffies32;
  2053. if (delta > 0)
  2054. timeout = delta;
  2055. }
  2056. inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
  2057. TCP_RTO_MAX);
  2058. return true;
  2059. }
  2060. /* Thanks to skb fast clones, we can detect if a prior transmit of
  2061. * a packet is still in a qdisc or driver queue.
  2062. * In this case, there is very little point doing a retransmit !
  2063. */
  2064. static bool skb_still_in_host_queue(const struct sock *sk,
  2065. const struct sk_buff *skb)
  2066. {
  2067. if (unlikely(skb_fclone_busy(sk, skb))) {
  2068. NET_INC_STATS(sock_net(sk),
  2069. LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
  2070. return true;
  2071. }
  2072. return false;
  2073. }
  2074. /* When probe timeout (PTO) fires, try send a new segment if possible, else
  2075. * retransmit the last segment.
  2076. */
  2077. void tcp_send_loss_probe(struct sock *sk)
  2078. {
  2079. struct tcp_sock *tp = tcp_sk(sk);
  2080. struct sk_buff *skb;
  2081. int pcount;
  2082. int mss = tcp_current_mss(sk);
  2083. skb = tcp_send_head(sk);
  2084. if (skb) {
  2085. if (tcp_snd_wnd_test(tp, skb, mss)) {
  2086. pcount = tp->packets_out;
  2087. tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
  2088. if (tp->packets_out > pcount)
  2089. goto probe_sent;
  2090. goto rearm_timer;
  2091. }
  2092. skb = tcp_write_queue_prev(sk, skb);
  2093. } else {
  2094. skb = tcp_write_queue_tail(sk);
  2095. }
  2096. /* At most one outstanding TLP retransmission. */
  2097. if (tp->tlp_high_seq)
  2098. goto rearm_timer;
  2099. /* Retransmit last segment. */
  2100. if (WARN_ON(!skb))
  2101. goto rearm_timer;
  2102. if (skb_still_in_host_queue(sk, skb))
  2103. goto rearm_timer;
  2104. pcount = tcp_skb_pcount(skb);
  2105. if (WARN_ON(!pcount))
  2106. goto rearm_timer;
  2107. if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
  2108. if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
  2109. GFP_ATOMIC)))
  2110. goto rearm_timer;
  2111. skb = tcp_write_queue_next(sk, skb);
  2112. }
  2113. if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
  2114. goto rearm_timer;
  2115. if (__tcp_retransmit_skb(sk, skb, 1))
  2116. goto rearm_timer;
  2117. /* Record snd_nxt for loss detection. */
  2118. tp->tlp_high_seq = tp->snd_nxt;
  2119. probe_sent:
  2120. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
  2121. /* Reset s.t. tcp_rearm_rto will restart timer from now */
  2122. inet_csk(sk)->icsk_pending = 0;
  2123. rearm_timer:
  2124. tcp_rearm_rto(sk);
  2125. }
  2126. /* Push out any pending frames which were held back due to
  2127. * TCP_CORK or attempt at coalescing tiny packets.
  2128. * The socket must be locked by the caller.
  2129. */
  2130. void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
  2131. int nonagle)
  2132. {
  2133. /* If we are closed, the bytes will have to remain here.
  2134. * In time closedown will finish, we empty the write queue and
  2135. * all will be happy.
  2136. */
  2137. if (unlikely(sk->sk_state == TCP_CLOSE))
  2138. return;
  2139. if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
  2140. sk_gfp_mask(sk, GFP_ATOMIC)))
  2141. tcp_check_probe_timer(sk);
  2142. }
  2143. /* Send _single_ skb sitting at the send head. This function requires
  2144. * true push pending frames to setup probe timer etc.
  2145. */
  2146. void tcp_push_one(struct sock *sk, unsigned int mss_now)
  2147. {
  2148. struct sk_buff *skb = tcp_send_head(sk);
  2149. BUG_ON(!skb || skb->len < mss_now);
  2150. tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
  2151. }
  2152. /* This function returns the amount that we can raise the
  2153. * usable window based on the following constraints
  2154. *
  2155. * 1. The window can never be shrunk once it is offered (RFC 793)
  2156. * 2. We limit memory per socket
  2157. *
  2158. * RFC 1122:
  2159. * "the suggested [SWS] avoidance algorithm for the receiver is to keep
  2160. * RECV.NEXT + RCV.WIN fixed until:
  2161. * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
  2162. *
  2163. * i.e. don't raise the right edge of the window until you can raise
  2164. * it at least MSS bytes.
  2165. *
  2166. * Unfortunately, the recommended algorithm breaks header prediction,
  2167. * since header prediction assumes th->window stays fixed.
  2168. *
  2169. * Strictly speaking, keeping th->window fixed violates the receiver
  2170. * side SWS prevention criteria. The problem is that under this rule
  2171. * a stream of single byte packets will cause the right side of the
  2172. * window to always advance by a single byte.
  2173. *
  2174. * Of course, if the sender implements sender side SWS prevention
  2175. * then this will not be a problem.
  2176. *
  2177. * BSD seems to make the following compromise:
  2178. *
  2179. * If the free space is less than the 1/4 of the maximum
  2180. * space available and the free space is less than 1/2 mss,
  2181. * then set the window to 0.
  2182. * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
  2183. * Otherwise, just prevent the window from shrinking
  2184. * and from being larger than the largest representable value.
  2185. *
  2186. * This prevents incremental opening of the window in the regime
  2187. * where TCP is limited by the speed of the reader side taking
  2188. * data out of the TCP receive queue. It does nothing about
  2189. * those cases where the window is constrained on the sender side
  2190. * because the pipeline is full.
  2191. *
  2192. * BSD also seems to "accidentally" limit itself to windows that are a
  2193. * multiple of MSS, at least until the free space gets quite small.
  2194. * This would appear to be a side effect of the mbuf implementation.
  2195. * Combining these two algorithms results in the observed behavior
  2196. * of having a fixed window size at almost all times.
  2197. *
  2198. * Below we obtain similar behavior by forcing the offered window to
  2199. * a multiple of the mss when it is feasible to do so.
  2200. *
  2201. * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
  2202. * Regular options like TIMESTAMP are taken into account.
  2203. */
  2204. u32 __tcp_select_window(struct sock *sk)
  2205. {
  2206. struct inet_connection_sock *icsk = inet_csk(sk);
  2207. struct tcp_sock *tp = tcp_sk(sk);
  2208. /* MSS for the peer's data. Previous versions used mss_clamp
  2209. * here. I don't know if the value based on our guesses
  2210. * of peer's MSS is better for the performance. It's more correct
  2211. * but may be worse for the performance because of rcv_mss
  2212. * fluctuations. --SAW 1998/11/1
  2213. */
  2214. int mss = icsk->icsk_ack.rcv_mss;
  2215. int free_space = tcp_space(sk);
  2216. int allowed_space = tcp_full_space(sk);
  2217. int full_space = min_t(int, tp->window_clamp, allowed_space);
  2218. int window;
  2219. if (unlikely(mss > full_space)) {
  2220. mss = full_space;
  2221. if (mss <= 0)
  2222. return 0;
  2223. }
  2224. if (free_space < (full_space >> 1)) {
  2225. icsk->icsk_ack.quick = 0;
  2226. if (tcp_under_memory_pressure(sk))
  2227. tp->rcv_ssthresh = min(tp->rcv_ssthresh,
  2228. 4U * tp->advmss);
  2229. /* free_space might become our new window, make sure we don't
  2230. * increase it due to wscale.
  2231. */
  2232. free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
  2233. /* if free space is less than mss estimate, or is below 1/16th
  2234. * of the maximum allowed, try to move to zero-window, else
  2235. * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
  2236. * new incoming data is dropped due to memory limits.
  2237. * With large window, mss test triggers way too late in order
  2238. * to announce zero window in time before rmem limit kicks in.
  2239. */
  2240. if (free_space < (allowed_space >> 4) || free_space < mss)
  2241. return 0;
  2242. }
  2243. if (free_space > tp->rcv_ssthresh)
  2244. free_space = tp->rcv_ssthresh;
  2245. /* Don't do rounding if we are using window scaling, since the
  2246. * scaled window will not line up with the MSS boundary anyway.
  2247. */
  2248. if (tp->rx_opt.rcv_wscale) {
  2249. window = free_space;
  2250. /* Advertise enough space so that it won't get scaled away.
  2251. * Import case: prevent zero window announcement if
  2252. * 1<<rcv_wscale > mss.
  2253. */
  2254. window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
  2255. } else {
  2256. window = tp->rcv_wnd;
  2257. /* Get the largest window that is a nice multiple of mss.
  2258. * Window clamp already applied above.
  2259. * If our current window offering is within 1 mss of the
  2260. * free space we just keep it. This prevents the divide
  2261. * and multiply from happening most of the time.
  2262. * We also don't do any window rounding when the free space
  2263. * is too small.
  2264. */
  2265. if (window <= free_space - mss || window > free_space)
  2266. window = rounddown(free_space, mss);
  2267. else if (mss == full_space &&
  2268. free_space > window + (full_space >> 1))
  2269. window = free_space;
  2270. }
  2271. return window;
  2272. }
  2273. void tcp_skb_collapse_tstamp(struct sk_buff *skb,
  2274. const struct sk_buff *next_skb)
  2275. {
  2276. if (unlikely(tcp_has_tx_tstamp(next_skb))) {
  2277. const struct skb_shared_info *next_shinfo =
  2278. skb_shinfo(next_skb);
  2279. struct skb_shared_info *shinfo = skb_shinfo(skb);
  2280. shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  2281. shinfo->tskey = next_shinfo->tskey;
  2282. TCP_SKB_CB(skb)->txstamp_ack |=
  2283. TCP_SKB_CB(next_skb)->txstamp_ack;
  2284. }
  2285. }
  2286. /* Collapses two adjacent SKB's during retransmission. */
  2287. static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
  2288. {
  2289. struct tcp_sock *tp = tcp_sk(sk);
  2290. struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
  2291. int skb_size, next_skb_size;
  2292. skb_size = skb->len;
  2293. next_skb_size = next_skb->len;
  2294. BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
  2295. if (next_skb_size) {
  2296. if (next_skb_size <= skb_availroom(skb))
  2297. skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
  2298. next_skb_size);
  2299. else if (!skb_shift(skb, next_skb, next_skb_size))
  2300. return false;
  2301. }
  2302. tcp_highest_sack_combine(sk, next_skb, skb);
  2303. tcp_unlink_write_queue(next_skb, sk);
  2304. if (next_skb->ip_summed == CHECKSUM_PARTIAL)
  2305. skb->ip_summed = CHECKSUM_PARTIAL;
  2306. if (skb->ip_summed != CHECKSUM_PARTIAL)
  2307. skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
  2308. /* Update sequence range on original skb. */
  2309. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
  2310. /* Merge over control information. This moves PSH/FIN etc. over */
  2311. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
  2312. /* All done, get rid of second SKB and account for it so
  2313. * packet counting does not break.
  2314. */
  2315. TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
  2316. TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
  2317. /* changed transmit queue under us so clear hints */
  2318. tcp_clear_retrans_hints_partial(tp);
  2319. if (next_skb == tp->retransmit_skb_hint)
  2320. tp->retransmit_skb_hint = skb;
  2321. tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
  2322. tcp_skb_collapse_tstamp(skb, next_skb);
  2323. sk_wmem_free_skb(sk, next_skb);
  2324. return true;
  2325. }
  2326. /* Check if coalescing SKBs is legal. */
  2327. static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
  2328. {
  2329. if (tcp_skb_pcount(skb) > 1)
  2330. return false;
  2331. if (skb_cloned(skb))
  2332. return false;
  2333. if (skb == tcp_send_head(sk))
  2334. return false;
  2335. /* Some heuristics for collapsing over SACK'd could be invented */
  2336. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  2337. return false;
  2338. return true;
  2339. }
  2340. /* Collapse packets in the retransmit queue to make to create
  2341. * less packets on the wire. This is only done on retransmission.
  2342. */
  2343. static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
  2344. int space)
  2345. {
  2346. struct tcp_sock *tp = tcp_sk(sk);
  2347. struct sk_buff *skb = to, *tmp;
  2348. bool first = true;
  2349. if (!sysctl_tcp_retrans_collapse)
  2350. return;
  2351. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2352. return;
  2353. tcp_for_write_queue_from_safe(skb, tmp, sk) {
  2354. if (!tcp_can_collapse(sk, skb))
  2355. break;
  2356. if (!tcp_skb_can_collapse_to(to))
  2357. break;
  2358. space -= skb->len;
  2359. if (first) {
  2360. first = false;
  2361. continue;
  2362. }
  2363. if (space < 0)
  2364. break;
  2365. if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
  2366. break;
  2367. if (!tcp_collapse_retrans(sk, to))
  2368. break;
  2369. }
  2370. }
  2371. /* This retransmits one SKB. Policy decisions and retransmit queue
  2372. * state updates are done by the caller. Returns non-zero if an
  2373. * error occurred which prevented the send.
  2374. */
  2375. int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2376. {
  2377. struct inet_connection_sock *icsk = inet_csk(sk);
  2378. struct tcp_sock *tp = tcp_sk(sk);
  2379. unsigned int cur_mss;
  2380. int diff, len, err;
  2381. /* Inconclusive MTU probe */
  2382. if (icsk->icsk_mtup.probe_size)
  2383. icsk->icsk_mtup.probe_size = 0;
  2384. /* Do not sent more than we queued. 1/4 is reserved for possible
  2385. * copying overhead: fragmentation, tunneling, mangling etc.
  2386. */
  2387. if (refcount_read(&sk->sk_wmem_alloc) >
  2388. min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
  2389. sk->sk_sndbuf))
  2390. return -EAGAIN;
  2391. if (skb_still_in_host_queue(sk, skb))
  2392. return -EBUSY;
  2393. if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
  2394. if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  2395. BUG();
  2396. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2397. return -ENOMEM;
  2398. }
  2399. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2400. return -EHOSTUNREACH; /* Routing failure or similar. */
  2401. cur_mss = tcp_current_mss(sk);
  2402. /* If receiver has shrunk his window, and skb is out of
  2403. * new window, do not retransmit it. The exception is the
  2404. * case, when window is shrunk to zero. In this case
  2405. * our retransmit serves as a zero window probe.
  2406. */
  2407. if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
  2408. TCP_SKB_CB(skb)->seq != tp->snd_una)
  2409. return -EAGAIN;
  2410. len = cur_mss * segs;
  2411. if (skb->len > len) {
  2412. if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
  2413. return -ENOMEM; /* We'll try again later. */
  2414. } else {
  2415. if (skb_unclone(skb, GFP_ATOMIC))
  2416. return -ENOMEM;
  2417. diff = tcp_skb_pcount(skb);
  2418. tcp_set_skb_tso_segs(skb, cur_mss);
  2419. diff -= tcp_skb_pcount(skb);
  2420. if (diff)
  2421. tcp_adjust_pcount(sk, skb, diff);
  2422. if (skb->len < cur_mss)
  2423. tcp_retrans_try_collapse(sk, skb, cur_mss);
  2424. }
  2425. /* RFC3168, section 6.1.1.1. ECN fallback */
  2426. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
  2427. tcp_ecn_clear_syn(sk, skb);
  2428. /* Update global and local TCP statistics. */
  2429. segs = tcp_skb_pcount(skb);
  2430. TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
  2431. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2432. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  2433. tp->total_retrans += segs;
  2434. /* make sure skb->data is aligned on arches that require it
  2435. * and check if ack-trimming & collapsing extended the headroom
  2436. * beyond what csum_start can cover.
  2437. */
  2438. if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
  2439. skb_headroom(skb) >= 0xFFFF)) {
  2440. struct sk_buff *nskb;
  2441. skb->skb_mstamp = tp->tcp_mstamp;
  2442. nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
  2443. err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
  2444. -ENOBUFS;
  2445. } else {
  2446. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2447. }
  2448. if (likely(!err)) {
  2449. TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
  2450. } else if (err != -EBUSY) {
  2451. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
  2452. }
  2453. return err;
  2454. }
  2455. int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2456. {
  2457. struct tcp_sock *tp = tcp_sk(sk);
  2458. int err = __tcp_retransmit_skb(sk, skb, segs);
  2459. if (err == 0) {
  2460. #if FASTRETRANS_DEBUG > 0
  2461. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2462. net_dbg_ratelimited("retrans_out leaked\n");
  2463. }
  2464. #endif
  2465. TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
  2466. tp->retrans_out += tcp_skb_pcount(skb);
  2467. /* Save stamp of the first retransmit. */
  2468. if (!tp->retrans_stamp)
  2469. tp->retrans_stamp = tcp_skb_timestamp(skb);
  2470. }
  2471. if (tp->undo_retrans < 0)
  2472. tp->undo_retrans = 0;
  2473. tp->undo_retrans += tcp_skb_pcount(skb);
  2474. return err;
  2475. }
  2476. /* This gets called after a retransmit timeout, and the initially
  2477. * retransmitted data is acknowledged. It tries to continue
  2478. * resending the rest of the retransmit queue, until either
  2479. * we've sent it all or the congestion window limit is reached.
  2480. * If doing SACK, the first ACK which comes back for a timeout
  2481. * based retransmit packet might feed us FACK information again.
  2482. * If so, we use it to avoid unnecessarily retransmissions.
  2483. */
  2484. void tcp_xmit_retransmit_queue(struct sock *sk)
  2485. {
  2486. const struct inet_connection_sock *icsk = inet_csk(sk);
  2487. struct tcp_sock *tp = tcp_sk(sk);
  2488. struct sk_buff *skb;
  2489. struct sk_buff *hole = NULL;
  2490. u32 max_segs;
  2491. int mib_idx;
  2492. if (!tp->packets_out)
  2493. return;
  2494. if (tp->retransmit_skb_hint) {
  2495. skb = tp->retransmit_skb_hint;
  2496. } else {
  2497. skb = tcp_write_queue_head(sk);
  2498. }
  2499. max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
  2500. tcp_for_write_queue_from(skb, sk) {
  2501. __u8 sacked;
  2502. int segs;
  2503. if (skb == tcp_send_head(sk))
  2504. break;
  2505. if (tcp_pacing_check(sk))
  2506. break;
  2507. /* we could do better than to assign each time */
  2508. if (!hole)
  2509. tp->retransmit_skb_hint = skb;
  2510. segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
  2511. if (segs <= 0)
  2512. return;
  2513. sacked = TCP_SKB_CB(skb)->sacked;
  2514. /* In case tcp_shift_skb_data() have aggregated large skbs,
  2515. * we need to make sure not sending too bigs TSO packets
  2516. */
  2517. segs = min_t(int, segs, max_segs);
  2518. if (tp->retrans_out >= tp->lost_out) {
  2519. break;
  2520. } else if (!(sacked & TCPCB_LOST)) {
  2521. if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
  2522. hole = skb;
  2523. continue;
  2524. } else {
  2525. if (icsk->icsk_ca_state != TCP_CA_Loss)
  2526. mib_idx = LINUX_MIB_TCPFASTRETRANS;
  2527. else
  2528. mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
  2529. }
  2530. if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
  2531. continue;
  2532. if (tcp_small_queue_check(sk, skb, 1))
  2533. return;
  2534. if (tcp_retransmit_skb(sk, skb, segs))
  2535. return;
  2536. NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
  2537. if (tcp_in_cwnd_reduction(sk))
  2538. tp->prr_out += tcp_skb_pcount(skb);
  2539. if (skb == tcp_write_queue_head(sk) &&
  2540. icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
  2541. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2542. inet_csk(sk)->icsk_rto,
  2543. TCP_RTO_MAX);
  2544. }
  2545. }
  2546. /* We allow to exceed memory limits for FIN packets to expedite
  2547. * connection tear down and (memory) recovery.
  2548. * Otherwise tcp_send_fin() could be tempted to either delay FIN
  2549. * or even be forced to close flow without any FIN.
  2550. * In general, we want to allow one skb per socket to avoid hangs
  2551. * with edge trigger epoll()
  2552. */
  2553. void sk_forced_mem_schedule(struct sock *sk, int size)
  2554. {
  2555. int amt;
  2556. if (size <= sk->sk_forward_alloc)
  2557. return;
  2558. amt = sk_mem_pages(size);
  2559. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  2560. sk_memory_allocated_add(sk, amt);
  2561. if (mem_cgroup_sockets_enabled && sk->sk_memcg)
  2562. mem_cgroup_charge_skmem(sk->sk_memcg, amt);
  2563. }
  2564. /* Send a FIN. The caller locks the socket for us.
  2565. * We should try to send a FIN packet really hard, but eventually give up.
  2566. */
  2567. void tcp_send_fin(struct sock *sk)
  2568. {
  2569. struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
  2570. struct tcp_sock *tp = tcp_sk(sk);
  2571. /* Optimization, tack on the FIN if we have one skb in write queue and
  2572. * this skb was not yet sent, or we are under memory pressure.
  2573. * Note: in the latter case, FIN packet will be sent after a timeout,
  2574. * as TCP stack thinks it has already been transmitted.
  2575. */
  2576. if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
  2577. coalesce:
  2578. TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
  2579. TCP_SKB_CB(tskb)->end_seq++;
  2580. tp->write_seq++;
  2581. if (!tcp_send_head(sk)) {
  2582. /* This means tskb was already sent.
  2583. * Pretend we included the FIN on previous transmit.
  2584. * We need to set tp->snd_nxt to the value it would have
  2585. * if FIN had been sent. This is because retransmit path
  2586. * does not change tp->snd_nxt.
  2587. */
  2588. tp->snd_nxt++;
  2589. return;
  2590. }
  2591. } else {
  2592. skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
  2593. if (unlikely(!skb)) {
  2594. if (tskb)
  2595. goto coalesce;
  2596. return;
  2597. }
  2598. skb_reserve(skb, MAX_TCP_HEADER);
  2599. sk_forced_mem_schedule(sk, skb->truesize);
  2600. /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
  2601. tcp_init_nondata_skb(skb, tp->write_seq,
  2602. TCPHDR_ACK | TCPHDR_FIN);
  2603. tcp_queue_skb(sk, skb);
  2604. }
  2605. __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
  2606. }
  2607. /* We get here when a process closes a file descriptor (either due to
  2608. * an explicit close() or as a byproduct of exit()'ing) and there
  2609. * was unread data in the receive queue. This behavior is recommended
  2610. * by RFC 2525, section 2.17. -DaveM
  2611. */
  2612. void tcp_send_active_reset(struct sock *sk, gfp_t priority)
  2613. {
  2614. struct sk_buff *skb;
  2615. TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
  2616. /* NOTE: No TCP options attached and we never retransmit this. */
  2617. skb = alloc_skb(MAX_TCP_HEADER, priority);
  2618. if (!skb) {
  2619. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2620. return;
  2621. }
  2622. /* Reserve space for headers and prepare control bits. */
  2623. skb_reserve(skb, MAX_TCP_HEADER);
  2624. tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
  2625. TCPHDR_ACK | TCPHDR_RST);
  2626. tcp_mstamp_refresh(tcp_sk(sk));
  2627. /* Send it off. */
  2628. if (tcp_transmit_skb(sk, skb, 0, priority))
  2629. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2630. }
  2631. /* Send a crossed SYN-ACK during socket establishment.
  2632. * WARNING: This routine must only be called when we have already sent
  2633. * a SYN packet that crossed the incoming SYN that caused this routine
  2634. * to get called. If this assumption fails then the initial rcv_wnd
  2635. * and rcv_wscale values will not be correct.
  2636. */
  2637. int tcp_send_synack(struct sock *sk)
  2638. {
  2639. struct sk_buff *skb;
  2640. skb = tcp_write_queue_head(sk);
  2641. if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
  2642. pr_debug("%s: wrong queue state\n", __func__);
  2643. return -EFAULT;
  2644. }
  2645. if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
  2646. if (skb_cloned(skb)) {
  2647. struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
  2648. if (!nskb)
  2649. return -ENOMEM;
  2650. tcp_unlink_write_queue(skb, sk);
  2651. __skb_header_release(nskb);
  2652. __tcp_add_write_queue_head(sk, nskb);
  2653. sk_wmem_free_skb(sk, skb);
  2654. sk->sk_wmem_queued += nskb->truesize;
  2655. sk_mem_charge(sk, nskb->truesize);
  2656. skb = nskb;
  2657. }
  2658. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
  2659. tcp_ecn_send_synack(sk, skb);
  2660. }
  2661. return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2662. }
  2663. /**
  2664. * tcp_make_synack - Prepare a SYN-ACK.
  2665. * sk: listener socket
  2666. * dst: dst entry attached to the SYNACK
  2667. * req: request_sock pointer
  2668. *
  2669. * Allocate one skb and build a SYNACK packet.
  2670. * @dst is consumed : Caller should not use it again.
  2671. */
  2672. struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
  2673. struct request_sock *req,
  2674. struct tcp_fastopen_cookie *foc,
  2675. enum tcp_synack_type synack_type)
  2676. {
  2677. struct inet_request_sock *ireq = inet_rsk(req);
  2678. const struct tcp_sock *tp = tcp_sk(sk);
  2679. struct tcp_md5sig_key *md5 = NULL;
  2680. struct tcp_out_options opts;
  2681. struct sk_buff *skb;
  2682. int tcp_header_size;
  2683. struct tcphdr *th;
  2684. int mss;
  2685. skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
  2686. if (unlikely(!skb)) {
  2687. dst_release(dst);
  2688. return NULL;
  2689. }
  2690. /* Reserve space for headers. */
  2691. skb_reserve(skb, MAX_TCP_HEADER);
  2692. switch (synack_type) {
  2693. case TCP_SYNACK_NORMAL:
  2694. skb_set_owner_w(skb, req_to_sk(req));
  2695. break;
  2696. case TCP_SYNACK_COOKIE:
  2697. /* Under synflood, we do not attach skb to a socket,
  2698. * to avoid false sharing.
  2699. */
  2700. break;
  2701. case TCP_SYNACK_FASTOPEN:
  2702. /* sk is a const pointer, because we want to express multiple
  2703. * cpu might call us concurrently.
  2704. * sk->sk_wmem_alloc in an atomic, we can promote to rw.
  2705. */
  2706. skb_set_owner_w(skb, (struct sock *)sk);
  2707. break;
  2708. }
  2709. skb_dst_set(skb, dst);
  2710. mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2711. memset(&opts, 0, sizeof(opts));
  2712. #ifdef CONFIG_SYN_COOKIES
  2713. if (unlikely(req->cookie_ts))
  2714. skb->skb_mstamp = cookie_init_timestamp(req);
  2715. else
  2716. #endif
  2717. skb->skb_mstamp = tcp_clock_us();
  2718. #ifdef CONFIG_TCP_MD5SIG
  2719. rcu_read_lock();
  2720. md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
  2721. #endif
  2722. skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
  2723. tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
  2724. sizeof(*th);
  2725. skb_push(skb, tcp_header_size);
  2726. skb_reset_transport_header(skb);
  2727. th = (struct tcphdr *)skb->data;
  2728. memset(th, 0, sizeof(struct tcphdr));
  2729. th->syn = 1;
  2730. th->ack = 1;
  2731. tcp_ecn_make_synack(req, th);
  2732. th->source = htons(ireq->ir_num);
  2733. th->dest = ireq->ir_rmt_port;
  2734. skb->mark = ireq->ir_mark;
  2735. /* Setting of flags are superfluous here for callers (and ECE is
  2736. * not even correctly set)
  2737. */
  2738. tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
  2739. TCPHDR_SYN | TCPHDR_ACK);
  2740. th->seq = htonl(TCP_SKB_CB(skb)->seq);
  2741. /* XXX data is queued and acked as is. No buffer/window check */
  2742. th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
  2743. /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
  2744. th->window = htons(min(req->rsk_rcv_wnd, 65535U));
  2745. tcp_options_write((__be32 *)(th + 1), NULL, &opts);
  2746. th->doff = (tcp_header_size >> 2);
  2747. __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
  2748. #ifdef CONFIG_TCP_MD5SIG
  2749. /* Okay, we have all we need - do the md5 hash if needed */
  2750. if (md5)
  2751. tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
  2752. md5, req_to_sk(req), skb);
  2753. rcu_read_unlock();
  2754. #endif
  2755. /* Do not fool tcpdump (if any), clean our debris */
  2756. skb->tstamp = 0;
  2757. return skb;
  2758. }
  2759. EXPORT_SYMBOL(tcp_make_synack);
  2760. static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
  2761. {
  2762. struct inet_connection_sock *icsk = inet_csk(sk);
  2763. const struct tcp_congestion_ops *ca;
  2764. u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
  2765. if (ca_key == TCP_CA_UNSPEC)
  2766. return;
  2767. rcu_read_lock();
  2768. ca = tcp_ca_find_key(ca_key);
  2769. if (likely(ca && try_module_get(ca->owner))) {
  2770. module_put(icsk->icsk_ca_ops->owner);
  2771. icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
  2772. icsk->icsk_ca_ops = ca;
  2773. }
  2774. rcu_read_unlock();
  2775. }
  2776. /* Do all connect socket setups that can be done AF independent. */
  2777. static void tcp_connect_init(struct sock *sk)
  2778. {
  2779. const struct dst_entry *dst = __sk_dst_get(sk);
  2780. struct tcp_sock *tp = tcp_sk(sk);
  2781. __u8 rcv_wscale;
  2782. u32 rcv_wnd;
  2783. /* We'll fix this up when we get a response from the other end.
  2784. * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
  2785. */
  2786. tp->tcp_header_len = sizeof(struct tcphdr);
  2787. if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
  2788. tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
  2789. #ifdef CONFIG_TCP_MD5SIG
  2790. if (tp->af_specific->md5_lookup(sk, sk))
  2791. tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
  2792. #endif
  2793. /* If user gave his TCP_MAXSEG, record it to clamp */
  2794. if (tp->rx_opt.user_mss)
  2795. tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
  2796. tp->max_window = 0;
  2797. tcp_mtup_init(sk);
  2798. tcp_sync_mss(sk, dst_mtu(dst));
  2799. tcp_ca_dst_init(sk, dst);
  2800. if (!tp->window_clamp)
  2801. tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
  2802. tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2803. tcp_initialize_rcv_mss(sk);
  2804. /* limit the window selection if the user enforce a smaller rx buffer */
  2805. if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
  2806. (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
  2807. tp->window_clamp = tcp_full_space(sk);
  2808. rcv_wnd = tcp_rwnd_init_bpf(sk);
  2809. if (rcv_wnd == 0)
  2810. rcv_wnd = dst_metric(dst, RTAX_INITRWND);
  2811. tcp_select_initial_window(tcp_full_space(sk),
  2812. tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
  2813. &tp->rcv_wnd,
  2814. &tp->window_clamp,
  2815. sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
  2816. &rcv_wscale,
  2817. rcv_wnd);
  2818. tp->rx_opt.rcv_wscale = rcv_wscale;
  2819. tp->rcv_ssthresh = tp->rcv_wnd;
  2820. sk->sk_err = 0;
  2821. sock_reset_flag(sk, SOCK_DONE);
  2822. tp->snd_wnd = 0;
  2823. tcp_init_wl(tp, 0);
  2824. tp->snd_una = tp->write_seq;
  2825. tp->snd_sml = tp->write_seq;
  2826. tp->snd_up = tp->write_seq;
  2827. tp->snd_nxt = tp->write_seq;
  2828. if (likely(!tp->repair))
  2829. tp->rcv_nxt = 0;
  2830. else
  2831. tp->rcv_tstamp = tcp_jiffies32;
  2832. tp->rcv_wup = tp->rcv_nxt;
  2833. tp->copied_seq = tp->rcv_nxt;
  2834. inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
  2835. inet_csk(sk)->icsk_retransmits = 0;
  2836. tcp_clear_retrans(tp);
  2837. }
  2838. static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
  2839. {
  2840. struct tcp_sock *tp = tcp_sk(sk);
  2841. struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
  2842. tcb->end_seq += skb->len;
  2843. __skb_header_release(skb);
  2844. __tcp_add_write_queue_tail(sk, skb);
  2845. sk->sk_wmem_queued += skb->truesize;
  2846. sk_mem_charge(sk, skb->truesize);
  2847. tp->write_seq = tcb->end_seq;
  2848. tp->packets_out += tcp_skb_pcount(skb);
  2849. }
  2850. /* Build and send a SYN with data and (cached) Fast Open cookie. However,
  2851. * queue a data-only packet after the regular SYN, such that regular SYNs
  2852. * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
  2853. * only the SYN sequence, the data are retransmitted in the first ACK.
  2854. * If cookie is not cached or other error occurs, falls back to send a
  2855. * regular SYN with Fast Open cookie request option.
  2856. */
  2857. static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
  2858. {
  2859. struct tcp_sock *tp = tcp_sk(sk);
  2860. struct tcp_fastopen_request *fo = tp->fastopen_req;
  2861. int space, err = 0;
  2862. struct sk_buff *syn_data;
  2863. tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
  2864. if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
  2865. goto fallback;
  2866. /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
  2867. * user-MSS. Reserve maximum option space for middleboxes that add
  2868. * private TCP options. The cost is reduced data space in SYN :(
  2869. */
  2870. tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
  2871. space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
  2872. MAX_TCP_OPTION_SPACE;
  2873. space = min_t(size_t, space, fo->size);
  2874. /* limit to order-0 allocations */
  2875. space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
  2876. syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
  2877. if (!syn_data)
  2878. goto fallback;
  2879. syn_data->ip_summed = CHECKSUM_PARTIAL;
  2880. memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
  2881. if (space) {
  2882. int copied = copy_from_iter(skb_put(syn_data, space), space,
  2883. &fo->data->msg_iter);
  2884. if (unlikely(!copied)) {
  2885. kfree_skb(syn_data);
  2886. goto fallback;
  2887. }
  2888. if (copied != space) {
  2889. skb_trim(syn_data, copied);
  2890. space = copied;
  2891. }
  2892. }
  2893. /* No more data pending in inet_wait_for_connect() */
  2894. if (space == fo->size)
  2895. fo->data = NULL;
  2896. fo->copied = space;
  2897. tcp_connect_queue_skb(sk, syn_data);
  2898. if (syn_data->len)
  2899. tcp_chrono_start(sk, TCP_CHRONO_BUSY);
  2900. err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
  2901. syn->skb_mstamp = syn_data->skb_mstamp;
  2902. /* Now full SYN+DATA was cloned and sent (or not),
  2903. * remove the SYN from the original skb (syn_data)
  2904. * we keep in write queue in case of a retransmit, as we
  2905. * also have the SYN packet (with no data) in the same queue.
  2906. */
  2907. TCP_SKB_CB(syn_data)->seq++;
  2908. TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
  2909. if (!err) {
  2910. tp->syn_data = (fo->copied > 0);
  2911. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
  2912. goto done;
  2913. }
  2914. fallback:
  2915. /* Send a regular SYN with Fast Open cookie request option */
  2916. if (fo->cookie.len > 0)
  2917. fo->cookie.len = 0;
  2918. err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
  2919. if (err)
  2920. tp->syn_fastopen = 0;
  2921. done:
  2922. fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
  2923. return err;
  2924. }
  2925. /* Build a SYN and send it off. */
  2926. int tcp_connect(struct sock *sk)
  2927. {
  2928. struct tcp_sock *tp = tcp_sk(sk);
  2929. struct sk_buff *buff;
  2930. int err;
  2931. tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
  2932. tcp_connect_init(sk);
  2933. if (unlikely(tp->repair)) {
  2934. tcp_finish_connect(sk, NULL);
  2935. return 0;
  2936. }
  2937. buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
  2938. if (unlikely(!buff))
  2939. return -ENOBUFS;
  2940. tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
  2941. tcp_mstamp_refresh(tp);
  2942. tp->retrans_stamp = tcp_time_stamp(tp);
  2943. tcp_connect_queue_skb(sk, buff);
  2944. tcp_ecn_send_syn(sk, buff);
  2945. /* Send off SYN; include data in Fast Open. */
  2946. err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
  2947. tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
  2948. if (err == -ECONNREFUSED)
  2949. return err;
  2950. /* We change tp->snd_nxt after the tcp_transmit_skb() call
  2951. * in order to make this packet get counted in tcpOutSegs.
  2952. */
  2953. tp->snd_nxt = tp->write_seq;
  2954. tp->pushed_seq = tp->write_seq;
  2955. TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
  2956. /* Timer for repeating the SYN until an answer. */
  2957. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2958. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2959. return 0;
  2960. }
  2961. EXPORT_SYMBOL(tcp_connect);
  2962. /* Send out a delayed ack, the caller does the policy checking
  2963. * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
  2964. * for details.
  2965. */
  2966. void tcp_send_delayed_ack(struct sock *sk)
  2967. {
  2968. struct inet_connection_sock *icsk = inet_csk(sk);
  2969. int ato = icsk->icsk_ack.ato;
  2970. unsigned long timeout;
  2971. tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
  2972. if (ato > TCP_DELACK_MIN) {
  2973. const struct tcp_sock *tp = tcp_sk(sk);
  2974. int max_ato = HZ / 2;
  2975. if (icsk->icsk_ack.pingpong ||
  2976. (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
  2977. max_ato = TCP_DELACK_MAX;
  2978. /* Slow path, intersegment interval is "high". */
  2979. /* If some rtt estimate is known, use it to bound delayed ack.
  2980. * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
  2981. * directly.
  2982. */
  2983. if (tp->srtt_us) {
  2984. int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
  2985. TCP_DELACK_MIN);
  2986. if (rtt < max_ato)
  2987. max_ato = rtt;
  2988. }
  2989. ato = min(ato, max_ato);
  2990. }
  2991. /* Stay within the limit we were given */
  2992. timeout = jiffies + ato;
  2993. /* Use new timeout only if there wasn't a older one earlier. */
  2994. if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
  2995. /* If delack timer was blocked or is about to expire,
  2996. * send ACK now.
  2997. */
  2998. if (icsk->icsk_ack.blocked ||
  2999. time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
  3000. tcp_send_ack(sk);
  3001. return;
  3002. }
  3003. if (!time_before(timeout, icsk->icsk_ack.timeout))
  3004. timeout = icsk->icsk_ack.timeout;
  3005. }
  3006. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  3007. icsk->icsk_ack.timeout = timeout;
  3008. sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
  3009. }
  3010. /* This routine sends an ack and also updates the window. */
  3011. void tcp_send_ack(struct sock *sk)
  3012. {
  3013. struct sk_buff *buff;
  3014. /* If we have been reset, we may not send again. */
  3015. if (sk->sk_state == TCP_CLOSE)
  3016. return;
  3017. tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
  3018. /* We are not putting this on the write queue, so
  3019. * tcp_transmit_skb() will set the ownership to this
  3020. * sock.
  3021. */
  3022. buff = alloc_skb(MAX_TCP_HEADER,
  3023. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3024. if (unlikely(!buff)) {
  3025. inet_csk_schedule_ack(sk);
  3026. inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
  3027. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  3028. TCP_DELACK_MAX, TCP_RTO_MAX);
  3029. return;
  3030. }
  3031. /* Reserve space for headers and prepare control bits. */
  3032. skb_reserve(buff, MAX_TCP_HEADER);
  3033. tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
  3034. /* We do not want pure acks influencing TCP Small Queues or fq/pacing
  3035. * too much.
  3036. * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
  3037. */
  3038. skb_set_tcp_pure_ack(buff);
  3039. /* Send it off, this clears delayed acks for us. */
  3040. tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
  3041. }
  3042. EXPORT_SYMBOL_GPL(tcp_send_ack);
  3043. /* This routine sends a packet with an out of date sequence
  3044. * number. It assumes the other end will try to ack it.
  3045. *
  3046. * Question: what should we make while urgent mode?
  3047. * 4.4BSD forces sending single byte of data. We cannot send
  3048. * out of window data, because we have SND.NXT==SND.MAX...
  3049. *
  3050. * Current solution: to send TWO zero-length segments in urgent mode:
  3051. * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
  3052. * out-of-date with SND.UNA-1 to probe window.
  3053. */
  3054. static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
  3055. {
  3056. struct tcp_sock *tp = tcp_sk(sk);
  3057. struct sk_buff *skb;
  3058. /* We don't queue it, tcp_transmit_skb() sets ownership. */
  3059. skb = alloc_skb(MAX_TCP_HEADER,
  3060. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3061. if (!skb)
  3062. return -1;
  3063. /* Reserve space for headers and set control bits. */
  3064. skb_reserve(skb, MAX_TCP_HEADER);
  3065. /* Use a previous sequence. This should cause the other
  3066. * end to send an ack. Don't queue or clone SKB, just
  3067. * send it.
  3068. */
  3069. tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
  3070. NET_INC_STATS(sock_net(sk), mib);
  3071. return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
  3072. }
  3073. /* Called from setsockopt( ... TCP_REPAIR ) */
  3074. void tcp_send_window_probe(struct sock *sk)
  3075. {
  3076. if (sk->sk_state == TCP_ESTABLISHED) {
  3077. tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
  3078. tcp_mstamp_refresh(tcp_sk(sk));
  3079. tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
  3080. }
  3081. }
  3082. /* Initiate keepalive or window probe from timer. */
  3083. int tcp_write_wakeup(struct sock *sk, int mib)
  3084. {
  3085. struct tcp_sock *tp = tcp_sk(sk);
  3086. struct sk_buff *skb;
  3087. if (sk->sk_state == TCP_CLOSE)
  3088. return -1;
  3089. skb = tcp_send_head(sk);
  3090. if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
  3091. int err;
  3092. unsigned int mss = tcp_current_mss(sk);
  3093. unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  3094. if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
  3095. tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
  3096. /* We are probing the opening of a window
  3097. * but the window size is != 0
  3098. * must have been a result SWS avoidance ( sender )
  3099. */
  3100. if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
  3101. skb->len > mss) {
  3102. seg_size = min(seg_size, mss);
  3103. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3104. if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
  3105. return -1;
  3106. } else if (!tcp_skb_pcount(skb))
  3107. tcp_set_skb_tso_segs(skb, mss);
  3108. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3109. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  3110. if (!err)
  3111. tcp_event_new_data_sent(sk, skb);
  3112. return err;
  3113. } else {
  3114. if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
  3115. tcp_xmit_probe_skb(sk, 1, mib);
  3116. return tcp_xmit_probe_skb(sk, 0, mib);
  3117. }
  3118. }
  3119. /* A window probe timeout has occurred. If window is not closed send
  3120. * a partial packet else a zero probe.
  3121. */
  3122. void tcp_send_probe0(struct sock *sk)
  3123. {
  3124. struct inet_connection_sock *icsk = inet_csk(sk);
  3125. struct tcp_sock *tp = tcp_sk(sk);
  3126. struct net *net = sock_net(sk);
  3127. unsigned long probe_max;
  3128. int err;
  3129. err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
  3130. if (tp->packets_out || !tcp_send_head(sk)) {
  3131. /* Cancel probe timer, if it is not required. */
  3132. icsk->icsk_probes_out = 0;
  3133. icsk->icsk_backoff = 0;
  3134. return;
  3135. }
  3136. if (err <= 0) {
  3137. if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
  3138. icsk->icsk_backoff++;
  3139. icsk->icsk_probes_out++;
  3140. probe_max = TCP_RTO_MAX;
  3141. } else {
  3142. /* If packet was not sent due to local congestion,
  3143. * do not backoff and do not remember icsk_probes_out.
  3144. * Let local senders to fight for local resources.
  3145. *
  3146. * Use accumulated backoff yet.
  3147. */
  3148. if (!icsk->icsk_probes_out)
  3149. icsk->icsk_probes_out = 1;
  3150. probe_max = TCP_RESOURCE_PROBE_INTERVAL;
  3151. }
  3152. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3153. tcp_probe0_when(sk, probe_max),
  3154. TCP_RTO_MAX);
  3155. }
  3156. int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
  3157. {
  3158. const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
  3159. struct flowi fl;
  3160. int res;
  3161. tcp_rsk(req)->txhash = net_tx_rndhash();
  3162. res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
  3163. if (!res) {
  3164. __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
  3165. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  3166. if (unlikely(tcp_passive_fastopen(sk)))
  3167. tcp_sk(sk)->total_retrans++;
  3168. }
  3169. return res;
  3170. }
  3171. EXPORT_SYMBOL(tcp_rtx_synack);