util.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737
  1. #include <linux/mm.h>
  2. #include <linux/slab.h>
  3. #include <linux/string.h>
  4. #include <linux/compiler.h>
  5. #include <linux/export.h>
  6. #include <linux/err.h>
  7. #include <linux/sched.h>
  8. #include <linux/sched/mm.h>
  9. #include <linux/sched/task_stack.h>
  10. #include <linux/security.h>
  11. #include <linux/swap.h>
  12. #include <linux/swapops.h>
  13. #include <linux/mman.h>
  14. #include <linux/hugetlb.h>
  15. #include <linux/vmalloc.h>
  16. #include <linux/userfaultfd_k.h>
  17. #include <asm/sections.h>
  18. #include <linux/uaccess.h>
  19. #include "internal.h"
  20. static inline int is_kernel_rodata(unsigned long addr)
  21. {
  22. return addr >= (unsigned long)__start_rodata &&
  23. addr < (unsigned long)__end_rodata;
  24. }
  25. /**
  26. * kfree_const - conditionally free memory
  27. * @x: pointer to the memory
  28. *
  29. * Function calls kfree only if @x is not in .rodata section.
  30. */
  31. void kfree_const(const void *x)
  32. {
  33. if (!is_kernel_rodata((unsigned long)x))
  34. kfree(x);
  35. }
  36. EXPORT_SYMBOL(kfree_const);
  37. /**
  38. * kstrdup - allocate space for and copy an existing string
  39. * @s: the string to duplicate
  40. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  41. */
  42. char *kstrdup(const char *s, gfp_t gfp)
  43. {
  44. size_t len;
  45. char *buf;
  46. if (!s)
  47. return NULL;
  48. len = strlen(s) + 1;
  49. buf = kmalloc_track_caller(len, gfp);
  50. if (buf)
  51. memcpy(buf, s, len);
  52. return buf;
  53. }
  54. EXPORT_SYMBOL(kstrdup);
  55. /**
  56. * kstrdup_const - conditionally duplicate an existing const string
  57. * @s: the string to duplicate
  58. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  59. *
  60. * Function returns source string if it is in .rodata section otherwise it
  61. * fallbacks to kstrdup.
  62. * Strings allocated by kstrdup_const should be freed by kfree_const.
  63. */
  64. const char *kstrdup_const(const char *s, gfp_t gfp)
  65. {
  66. if (is_kernel_rodata((unsigned long)s))
  67. return s;
  68. return kstrdup(s, gfp);
  69. }
  70. EXPORT_SYMBOL(kstrdup_const);
  71. /**
  72. * kstrndup - allocate space for and copy an existing string
  73. * @s: the string to duplicate
  74. * @max: read at most @max chars from @s
  75. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  76. *
  77. * Note: Use kmemdup_nul() instead if the size is known exactly.
  78. */
  79. char *kstrndup(const char *s, size_t max, gfp_t gfp)
  80. {
  81. size_t len;
  82. char *buf;
  83. if (!s)
  84. return NULL;
  85. len = strnlen(s, max);
  86. buf = kmalloc_track_caller(len+1, gfp);
  87. if (buf) {
  88. memcpy(buf, s, len);
  89. buf[len] = '\0';
  90. }
  91. return buf;
  92. }
  93. EXPORT_SYMBOL(kstrndup);
  94. /**
  95. * kmemdup - duplicate region of memory
  96. *
  97. * @src: memory region to duplicate
  98. * @len: memory region length
  99. * @gfp: GFP mask to use
  100. */
  101. void *kmemdup(const void *src, size_t len, gfp_t gfp)
  102. {
  103. void *p;
  104. p = kmalloc_track_caller(len, gfp);
  105. if (p)
  106. memcpy(p, src, len);
  107. return p;
  108. }
  109. EXPORT_SYMBOL(kmemdup);
  110. /**
  111. * kmemdup_nul - Create a NUL-terminated string from unterminated data
  112. * @s: The data to stringify
  113. * @len: The size of the data
  114. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  115. */
  116. char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
  117. {
  118. char *buf;
  119. if (!s)
  120. return NULL;
  121. buf = kmalloc_track_caller(len + 1, gfp);
  122. if (buf) {
  123. memcpy(buf, s, len);
  124. buf[len] = '\0';
  125. }
  126. return buf;
  127. }
  128. EXPORT_SYMBOL(kmemdup_nul);
  129. /**
  130. * memdup_user - duplicate memory region from user space
  131. *
  132. * @src: source address in user space
  133. * @len: number of bytes to copy
  134. *
  135. * Returns an ERR_PTR() on failure.
  136. */
  137. void *memdup_user(const void __user *src, size_t len)
  138. {
  139. void *p;
  140. /*
  141. * Always use GFP_KERNEL, since copy_from_user() can sleep and
  142. * cause pagefault, which makes it pointless to use GFP_NOFS
  143. * or GFP_ATOMIC.
  144. */
  145. p = kmalloc_track_caller(len, GFP_KERNEL);
  146. if (!p)
  147. return ERR_PTR(-ENOMEM);
  148. if (copy_from_user(p, src, len)) {
  149. kfree(p);
  150. return ERR_PTR(-EFAULT);
  151. }
  152. return p;
  153. }
  154. EXPORT_SYMBOL(memdup_user);
  155. /*
  156. * strndup_user - duplicate an existing string from user space
  157. * @s: The string to duplicate
  158. * @n: Maximum number of bytes to copy, including the trailing NUL.
  159. */
  160. char *strndup_user(const char __user *s, long n)
  161. {
  162. char *p;
  163. long length;
  164. length = strnlen_user(s, n);
  165. if (!length)
  166. return ERR_PTR(-EFAULT);
  167. if (length > n)
  168. return ERR_PTR(-EINVAL);
  169. p = memdup_user(s, length);
  170. if (IS_ERR(p))
  171. return p;
  172. p[length - 1] = '\0';
  173. return p;
  174. }
  175. EXPORT_SYMBOL(strndup_user);
  176. /**
  177. * memdup_user_nul - duplicate memory region from user space and NUL-terminate
  178. *
  179. * @src: source address in user space
  180. * @len: number of bytes to copy
  181. *
  182. * Returns an ERR_PTR() on failure.
  183. */
  184. void *memdup_user_nul(const void __user *src, size_t len)
  185. {
  186. char *p;
  187. /*
  188. * Always use GFP_KERNEL, since copy_from_user() can sleep and
  189. * cause pagefault, which makes it pointless to use GFP_NOFS
  190. * or GFP_ATOMIC.
  191. */
  192. p = kmalloc_track_caller(len + 1, GFP_KERNEL);
  193. if (!p)
  194. return ERR_PTR(-ENOMEM);
  195. if (copy_from_user(p, src, len)) {
  196. kfree(p);
  197. return ERR_PTR(-EFAULT);
  198. }
  199. p[len] = '\0';
  200. return p;
  201. }
  202. EXPORT_SYMBOL(memdup_user_nul);
  203. void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
  204. struct vm_area_struct *prev, struct rb_node *rb_parent)
  205. {
  206. struct vm_area_struct *next;
  207. vma->vm_prev = prev;
  208. if (prev) {
  209. next = prev->vm_next;
  210. prev->vm_next = vma;
  211. } else {
  212. mm->mmap = vma;
  213. if (rb_parent)
  214. next = rb_entry(rb_parent,
  215. struct vm_area_struct, vm_rb);
  216. else
  217. next = NULL;
  218. }
  219. vma->vm_next = next;
  220. if (next)
  221. next->vm_prev = vma;
  222. }
  223. /* Check if the vma is being used as a stack by this task */
  224. int vma_is_stack_for_current(struct vm_area_struct *vma)
  225. {
  226. struct task_struct * __maybe_unused t = current;
  227. return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
  228. }
  229. #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
  230. void arch_pick_mmap_layout(struct mm_struct *mm)
  231. {
  232. mm->mmap_base = TASK_UNMAPPED_BASE;
  233. mm->get_unmapped_area = arch_get_unmapped_area;
  234. }
  235. #endif
  236. /*
  237. * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
  238. * back to the regular GUP.
  239. * If the architecture not support this function, simply return with no
  240. * page pinned
  241. */
  242. int __weak __get_user_pages_fast(unsigned long start,
  243. int nr_pages, int write, struct page **pages)
  244. {
  245. return 0;
  246. }
  247. EXPORT_SYMBOL_GPL(__get_user_pages_fast);
  248. /**
  249. * get_user_pages_fast() - pin user pages in memory
  250. * @start: starting user address
  251. * @nr_pages: number of pages from start to pin
  252. * @write: whether pages will be written to
  253. * @pages: array that receives pointers to the pages pinned.
  254. * Should be at least nr_pages long.
  255. *
  256. * Returns number of pages pinned. This may be fewer than the number
  257. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  258. * were pinned, returns -errno.
  259. *
  260. * get_user_pages_fast provides equivalent functionality to get_user_pages,
  261. * operating on current and current->mm, with force=0 and vma=NULL. However
  262. * unlike get_user_pages, it must be called without mmap_sem held.
  263. *
  264. * get_user_pages_fast may take mmap_sem and page table locks, so no
  265. * assumptions can be made about lack of locking. get_user_pages_fast is to be
  266. * implemented in a way that is advantageous (vs get_user_pages()) when the
  267. * user memory area is already faulted in and present in ptes. However if the
  268. * pages have to be faulted in, it may turn out to be slightly slower so
  269. * callers need to carefully consider what to use. On many architectures,
  270. * get_user_pages_fast simply falls back to get_user_pages.
  271. */
  272. int __weak get_user_pages_fast(unsigned long start,
  273. int nr_pages, int write, struct page **pages)
  274. {
  275. return get_user_pages_unlocked(start, nr_pages, pages,
  276. write ? FOLL_WRITE : 0);
  277. }
  278. EXPORT_SYMBOL_GPL(get_user_pages_fast);
  279. unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
  280. unsigned long len, unsigned long prot,
  281. unsigned long flag, unsigned long pgoff)
  282. {
  283. unsigned long ret;
  284. struct mm_struct *mm = current->mm;
  285. unsigned long populate;
  286. LIST_HEAD(uf);
  287. ret = security_mmap_file(file, prot, flag);
  288. if (!ret) {
  289. if (down_write_killable(&mm->mmap_sem))
  290. return -EINTR;
  291. ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
  292. &populate, &uf);
  293. up_write(&mm->mmap_sem);
  294. userfaultfd_unmap_complete(mm, &uf);
  295. if (populate)
  296. mm_populate(ret, populate);
  297. }
  298. return ret;
  299. }
  300. unsigned long vm_mmap(struct file *file, unsigned long addr,
  301. unsigned long len, unsigned long prot,
  302. unsigned long flag, unsigned long offset)
  303. {
  304. if (unlikely(offset + PAGE_ALIGN(len) < offset))
  305. return -EINVAL;
  306. if (unlikely(offset_in_page(offset)))
  307. return -EINVAL;
  308. return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  309. }
  310. EXPORT_SYMBOL(vm_mmap);
  311. /**
  312. * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
  313. * failure, fall back to non-contiguous (vmalloc) allocation.
  314. * @size: size of the request.
  315. * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
  316. * @node: numa node to allocate from
  317. *
  318. * Uses kmalloc to get the memory but if the allocation fails then falls back
  319. * to the vmalloc allocator. Use kvfree for freeing the memory.
  320. *
  321. * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
  322. * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
  323. * preferable to the vmalloc fallback, due to visible performance drawbacks.
  324. *
  325. * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
  326. */
  327. void *kvmalloc_node(size_t size, gfp_t flags, int node)
  328. {
  329. gfp_t kmalloc_flags = flags;
  330. void *ret;
  331. /*
  332. * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
  333. * so the given set of flags has to be compatible.
  334. */
  335. WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL);
  336. /*
  337. * We want to attempt a large physically contiguous block first because
  338. * it is less likely to fragment multiple larger blocks and therefore
  339. * contribute to a long term fragmentation less than vmalloc fallback.
  340. * However make sure that larger requests are not too disruptive - no
  341. * OOM killer and no allocation failure warnings as we have a fallback.
  342. */
  343. if (size > PAGE_SIZE) {
  344. kmalloc_flags |= __GFP_NOWARN;
  345. if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
  346. kmalloc_flags |= __GFP_NORETRY;
  347. }
  348. ret = kmalloc_node(size, kmalloc_flags, node);
  349. /*
  350. * It doesn't really make sense to fallback to vmalloc for sub page
  351. * requests
  352. */
  353. if (ret || size <= PAGE_SIZE)
  354. return ret;
  355. return __vmalloc_node_flags_caller(size, node, flags,
  356. __builtin_return_address(0));
  357. }
  358. EXPORT_SYMBOL(kvmalloc_node);
  359. void kvfree(const void *addr)
  360. {
  361. if (is_vmalloc_addr(addr))
  362. vfree(addr);
  363. else
  364. kfree(addr);
  365. }
  366. EXPORT_SYMBOL(kvfree);
  367. static inline void *__page_rmapping(struct page *page)
  368. {
  369. unsigned long mapping;
  370. mapping = (unsigned long)page->mapping;
  371. mapping &= ~PAGE_MAPPING_FLAGS;
  372. return (void *)mapping;
  373. }
  374. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  375. void *page_rmapping(struct page *page)
  376. {
  377. page = compound_head(page);
  378. return __page_rmapping(page);
  379. }
  380. /*
  381. * Return true if this page is mapped into pagetables.
  382. * For compound page it returns true if any subpage of compound page is mapped.
  383. */
  384. bool page_mapped(struct page *page)
  385. {
  386. int i;
  387. if (likely(!PageCompound(page)))
  388. return atomic_read(&page->_mapcount) >= 0;
  389. page = compound_head(page);
  390. if (atomic_read(compound_mapcount_ptr(page)) >= 0)
  391. return true;
  392. if (PageHuge(page))
  393. return false;
  394. for (i = 0; i < hpage_nr_pages(page); i++) {
  395. if (atomic_read(&page[i]._mapcount) >= 0)
  396. return true;
  397. }
  398. return false;
  399. }
  400. EXPORT_SYMBOL(page_mapped);
  401. struct anon_vma *page_anon_vma(struct page *page)
  402. {
  403. unsigned long mapping;
  404. page = compound_head(page);
  405. mapping = (unsigned long)page->mapping;
  406. if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  407. return NULL;
  408. return __page_rmapping(page);
  409. }
  410. struct address_space *page_mapping(struct page *page)
  411. {
  412. struct address_space *mapping;
  413. page = compound_head(page);
  414. /* This happens if someone calls flush_dcache_page on slab page */
  415. if (unlikely(PageSlab(page)))
  416. return NULL;
  417. if (unlikely(PageSwapCache(page))) {
  418. swp_entry_t entry;
  419. entry.val = page_private(page);
  420. return swap_address_space(entry);
  421. }
  422. mapping = page->mapping;
  423. if ((unsigned long)mapping & PAGE_MAPPING_ANON)
  424. return NULL;
  425. return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
  426. }
  427. EXPORT_SYMBOL(page_mapping);
  428. /* Slow path of page_mapcount() for compound pages */
  429. int __page_mapcount(struct page *page)
  430. {
  431. int ret;
  432. ret = atomic_read(&page->_mapcount) + 1;
  433. /*
  434. * For file THP page->_mapcount contains total number of mapping
  435. * of the page: no need to look into compound_mapcount.
  436. */
  437. if (!PageAnon(page) && !PageHuge(page))
  438. return ret;
  439. page = compound_head(page);
  440. ret += atomic_read(compound_mapcount_ptr(page)) + 1;
  441. if (PageDoubleMap(page))
  442. ret--;
  443. return ret;
  444. }
  445. EXPORT_SYMBOL_GPL(__page_mapcount);
  446. int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
  447. int sysctl_overcommit_ratio __read_mostly = 50;
  448. unsigned long sysctl_overcommit_kbytes __read_mostly;
  449. int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  450. unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
  451. unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
  452. int overcommit_ratio_handler(struct ctl_table *table, int write,
  453. void __user *buffer, size_t *lenp,
  454. loff_t *ppos)
  455. {
  456. int ret;
  457. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  458. if (ret == 0 && write)
  459. sysctl_overcommit_kbytes = 0;
  460. return ret;
  461. }
  462. int overcommit_kbytes_handler(struct ctl_table *table, int write,
  463. void __user *buffer, size_t *lenp,
  464. loff_t *ppos)
  465. {
  466. int ret;
  467. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  468. if (ret == 0 && write)
  469. sysctl_overcommit_ratio = 0;
  470. return ret;
  471. }
  472. /*
  473. * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
  474. */
  475. unsigned long vm_commit_limit(void)
  476. {
  477. unsigned long allowed;
  478. if (sysctl_overcommit_kbytes)
  479. allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
  480. else
  481. allowed = ((totalram_pages - hugetlb_total_pages())
  482. * sysctl_overcommit_ratio / 100);
  483. allowed += total_swap_pages;
  484. return allowed;
  485. }
  486. /*
  487. * Make sure vm_committed_as in one cacheline and not cacheline shared with
  488. * other variables. It can be updated by several CPUs frequently.
  489. */
  490. struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
  491. /*
  492. * The global memory commitment made in the system can be a metric
  493. * that can be used to drive ballooning decisions when Linux is hosted
  494. * as a guest. On Hyper-V, the host implements a policy engine for dynamically
  495. * balancing memory across competing virtual machines that are hosted.
  496. * Several metrics drive this policy engine including the guest reported
  497. * memory commitment.
  498. */
  499. unsigned long vm_memory_committed(void)
  500. {
  501. return percpu_counter_read_positive(&vm_committed_as);
  502. }
  503. EXPORT_SYMBOL_GPL(vm_memory_committed);
  504. /*
  505. * Check that a process has enough memory to allocate a new virtual
  506. * mapping. 0 means there is enough memory for the allocation to
  507. * succeed and -ENOMEM implies there is not.
  508. *
  509. * We currently support three overcommit policies, which are set via the
  510. * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
  511. *
  512. * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
  513. * Additional code 2002 Jul 20 by Robert Love.
  514. *
  515. * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
  516. *
  517. * Note this is a helper function intended to be used by LSMs which
  518. * wish to use this logic.
  519. */
  520. int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
  521. {
  522. long free, allowed, reserve;
  523. VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
  524. -(s64)vm_committed_as_batch * num_online_cpus(),
  525. "memory commitment underflow");
  526. vm_acct_memory(pages);
  527. /*
  528. * Sometimes we want to use more memory than we have
  529. */
  530. if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
  531. return 0;
  532. if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
  533. free = global_page_state(NR_FREE_PAGES);
  534. free += global_node_page_state(NR_FILE_PAGES);
  535. /*
  536. * shmem pages shouldn't be counted as free in this
  537. * case, they can't be purged, only swapped out, and
  538. * that won't affect the overall amount of available
  539. * memory in the system.
  540. */
  541. free -= global_node_page_state(NR_SHMEM);
  542. free += get_nr_swap_pages();
  543. /*
  544. * Any slabs which are created with the
  545. * SLAB_RECLAIM_ACCOUNT flag claim to have contents
  546. * which are reclaimable, under pressure. The dentry
  547. * cache and most inode caches should fall into this
  548. */
  549. free += global_page_state(NR_SLAB_RECLAIMABLE);
  550. /*
  551. * Leave reserved pages. The pages are not for anonymous pages.
  552. */
  553. if (free <= totalreserve_pages)
  554. goto error;
  555. else
  556. free -= totalreserve_pages;
  557. /*
  558. * Reserve some for root
  559. */
  560. if (!cap_sys_admin)
  561. free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
  562. if (free > pages)
  563. return 0;
  564. goto error;
  565. }
  566. allowed = vm_commit_limit();
  567. /*
  568. * Reserve some for root
  569. */
  570. if (!cap_sys_admin)
  571. allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
  572. /*
  573. * Don't let a single process grow so big a user can't recover
  574. */
  575. if (mm) {
  576. reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
  577. allowed -= min_t(long, mm->total_vm / 32, reserve);
  578. }
  579. if (percpu_counter_read_positive(&vm_committed_as) < allowed)
  580. return 0;
  581. error:
  582. vm_unacct_memory(pages);
  583. return -ENOMEM;
  584. }
  585. /**
  586. * get_cmdline() - copy the cmdline value to a buffer.
  587. * @task: the task whose cmdline value to copy.
  588. * @buffer: the buffer to copy to.
  589. * @buflen: the length of the buffer. Larger cmdline values are truncated
  590. * to this length.
  591. * Returns the size of the cmdline field copied. Note that the copy does
  592. * not guarantee an ending NULL byte.
  593. */
  594. int get_cmdline(struct task_struct *task, char *buffer, int buflen)
  595. {
  596. int res = 0;
  597. unsigned int len;
  598. struct mm_struct *mm = get_task_mm(task);
  599. unsigned long arg_start, arg_end, env_start, env_end;
  600. if (!mm)
  601. goto out;
  602. if (!mm->arg_end)
  603. goto out_mm; /* Shh! No looking before we're done */
  604. down_read(&mm->mmap_sem);
  605. arg_start = mm->arg_start;
  606. arg_end = mm->arg_end;
  607. env_start = mm->env_start;
  608. env_end = mm->env_end;
  609. up_read(&mm->mmap_sem);
  610. len = arg_end - arg_start;
  611. if (len > buflen)
  612. len = buflen;
  613. res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
  614. /*
  615. * If the nul at the end of args has been overwritten, then
  616. * assume application is using setproctitle(3).
  617. */
  618. if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
  619. len = strnlen(buffer, res);
  620. if (len < res) {
  621. res = len;
  622. } else {
  623. len = env_end - env_start;
  624. if (len > buflen - res)
  625. len = buflen - res;
  626. res += access_process_vm(task, env_start,
  627. buffer+res, len,
  628. FOLL_FORCE);
  629. res = strnlen(buffer, res);
  630. }
  631. }
  632. out_mm:
  633. mmput(mm);
  634. out:
  635. return res;
  636. }