slab.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519
  1. #ifndef MM_SLAB_H
  2. #define MM_SLAB_H
  3. /*
  4. * Internal slab definitions
  5. */
  6. #ifdef CONFIG_SLOB
  7. /*
  8. * Common fields provided in kmem_cache by all slab allocators
  9. * This struct is either used directly by the allocator (SLOB)
  10. * or the allocator must include definitions for all fields
  11. * provided in kmem_cache_common in their definition of kmem_cache.
  12. *
  13. * Once we can do anonymous structs (C11 standard) we could put a
  14. * anonymous struct definition in these allocators so that the
  15. * separate allocations in the kmem_cache structure of SLAB and
  16. * SLUB is no longer needed.
  17. */
  18. struct kmem_cache {
  19. unsigned int object_size;/* The original size of the object */
  20. unsigned int size; /* The aligned/padded/added on size */
  21. unsigned int align; /* Alignment as calculated */
  22. unsigned long flags; /* Active flags on the slab */
  23. const char *name; /* Slab name for sysfs */
  24. int refcount; /* Use counter */
  25. void (*ctor)(void *); /* Called on object slot creation */
  26. struct list_head list; /* List of all slab caches on the system */
  27. };
  28. #endif /* CONFIG_SLOB */
  29. #ifdef CONFIG_SLAB
  30. #include <linux/slab_def.h>
  31. #endif
  32. #ifdef CONFIG_SLUB
  33. #include <linux/slub_def.h>
  34. #endif
  35. #include <linux/memcontrol.h>
  36. #include <linux/fault-inject.h>
  37. #include <linux/kmemcheck.h>
  38. #include <linux/kasan.h>
  39. #include <linux/kmemleak.h>
  40. #include <linux/random.h>
  41. /*
  42. * State of the slab allocator.
  43. *
  44. * This is used to describe the states of the allocator during bootup.
  45. * Allocators use this to gradually bootstrap themselves. Most allocators
  46. * have the problem that the structures used for managing slab caches are
  47. * allocated from slab caches themselves.
  48. */
  49. enum slab_state {
  50. DOWN, /* No slab functionality yet */
  51. PARTIAL, /* SLUB: kmem_cache_node available */
  52. PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
  53. UP, /* Slab caches usable but not all extras yet */
  54. FULL /* Everything is working */
  55. };
  56. extern enum slab_state slab_state;
  57. /* The slab cache mutex protects the management structures during changes */
  58. extern struct mutex slab_mutex;
  59. /* The list of all slab caches on the system */
  60. extern struct list_head slab_caches;
  61. /* The slab cache that manages slab cache information */
  62. extern struct kmem_cache *kmem_cache;
  63. /* A table of kmalloc cache names and sizes */
  64. extern const struct kmalloc_info_struct {
  65. const char *name;
  66. unsigned long size;
  67. } kmalloc_info[];
  68. unsigned long calculate_alignment(unsigned long flags,
  69. unsigned long align, unsigned long size);
  70. #ifndef CONFIG_SLOB
  71. /* Kmalloc array related functions */
  72. void setup_kmalloc_cache_index_table(void);
  73. void create_kmalloc_caches(unsigned long);
  74. /* Find the kmalloc slab corresponding for a certain size */
  75. struct kmem_cache *kmalloc_slab(size_t, gfp_t);
  76. #endif
  77. /* Functions provided by the slab allocators */
  78. extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
  79. extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
  80. unsigned long flags);
  81. extern void create_boot_cache(struct kmem_cache *, const char *name,
  82. size_t size, unsigned long flags);
  83. int slab_unmergeable(struct kmem_cache *s);
  84. struct kmem_cache *find_mergeable(size_t size, size_t align,
  85. unsigned long flags, const char *name, void (*ctor)(void *));
  86. #ifndef CONFIG_SLOB
  87. struct kmem_cache *
  88. __kmem_cache_alias(const char *name, size_t size, size_t align,
  89. unsigned long flags, void (*ctor)(void *));
  90. unsigned long kmem_cache_flags(unsigned long object_size,
  91. unsigned long flags, const char *name,
  92. void (*ctor)(void *));
  93. #else
  94. static inline struct kmem_cache *
  95. __kmem_cache_alias(const char *name, size_t size, size_t align,
  96. unsigned long flags, void (*ctor)(void *))
  97. { return NULL; }
  98. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  99. unsigned long flags, const char *name,
  100. void (*ctor)(void *))
  101. {
  102. return flags;
  103. }
  104. #endif
  105. /* Legal flag mask for kmem_cache_create(), for various configurations */
  106. #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
  107. SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
  108. #if defined(CONFIG_DEBUG_SLAB)
  109. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  110. #elif defined(CONFIG_SLUB_DEBUG)
  111. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  112. SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
  113. #else
  114. #define SLAB_DEBUG_FLAGS (0)
  115. #endif
  116. #if defined(CONFIG_SLAB)
  117. #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
  118. SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
  119. SLAB_NOTRACK | SLAB_ACCOUNT)
  120. #elif defined(CONFIG_SLUB)
  121. #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
  122. SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
  123. #else
  124. #define SLAB_CACHE_FLAGS (0)
  125. #endif
  126. /* Common flags available with current configuration */
  127. #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
  128. /* Common flags permitted for kmem_cache_create */
  129. #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
  130. SLAB_RED_ZONE | \
  131. SLAB_POISON | \
  132. SLAB_STORE_USER | \
  133. SLAB_TRACE | \
  134. SLAB_CONSISTENCY_CHECKS | \
  135. SLAB_MEM_SPREAD | \
  136. SLAB_NOLEAKTRACE | \
  137. SLAB_RECLAIM_ACCOUNT | \
  138. SLAB_TEMPORARY | \
  139. SLAB_NOTRACK | \
  140. SLAB_ACCOUNT)
  141. int __kmem_cache_shutdown(struct kmem_cache *);
  142. void __kmem_cache_release(struct kmem_cache *);
  143. int __kmem_cache_shrink(struct kmem_cache *);
  144. void __kmemcg_cache_deactivate(struct kmem_cache *s);
  145. void slab_kmem_cache_release(struct kmem_cache *);
  146. struct seq_file;
  147. struct file;
  148. struct slabinfo {
  149. unsigned long active_objs;
  150. unsigned long num_objs;
  151. unsigned long active_slabs;
  152. unsigned long num_slabs;
  153. unsigned long shared_avail;
  154. unsigned int limit;
  155. unsigned int batchcount;
  156. unsigned int shared;
  157. unsigned int objects_per_slab;
  158. unsigned int cache_order;
  159. };
  160. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
  161. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
  162. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  163. size_t count, loff_t *ppos);
  164. /*
  165. * Generic implementation of bulk operations
  166. * These are useful for situations in which the allocator cannot
  167. * perform optimizations. In that case segments of the object listed
  168. * may be allocated or freed using these operations.
  169. */
  170. void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
  171. int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
  172. #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
  173. /* List of all root caches. */
  174. extern struct list_head slab_root_caches;
  175. #define root_caches_node memcg_params.__root_caches_node
  176. /*
  177. * Iterate over all memcg caches of the given root cache. The caller must hold
  178. * slab_mutex.
  179. */
  180. #define for_each_memcg_cache(iter, root) \
  181. list_for_each_entry(iter, &(root)->memcg_params.children, \
  182. memcg_params.children_node)
  183. static inline bool is_root_cache(struct kmem_cache *s)
  184. {
  185. return !s->memcg_params.root_cache;
  186. }
  187. static inline bool slab_equal_or_root(struct kmem_cache *s,
  188. struct kmem_cache *p)
  189. {
  190. return p == s || p == s->memcg_params.root_cache;
  191. }
  192. /*
  193. * We use suffixes to the name in memcg because we can't have caches
  194. * created in the system with the same name. But when we print them
  195. * locally, better refer to them with the base name
  196. */
  197. static inline const char *cache_name(struct kmem_cache *s)
  198. {
  199. if (!is_root_cache(s))
  200. s = s->memcg_params.root_cache;
  201. return s->name;
  202. }
  203. /*
  204. * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
  205. * That said the caller must assure the memcg's cache won't go away by either
  206. * taking a css reference to the owner cgroup, or holding the slab_mutex.
  207. */
  208. static inline struct kmem_cache *
  209. cache_from_memcg_idx(struct kmem_cache *s, int idx)
  210. {
  211. struct kmem_cache *cachep;
  212. struct memcg_cache_array *arr;
  213. rcu_read_lock();
  214. arr = rcu_dereference(s->memcg_params.memcg_caches);
  215. /*
  216. * Make sure we will access the up-to-date value. The code updating
  217. * memcg_caches issues a write barrier to match this (see
  218. * memcg_create_kmem_cache()).
  219. */
  220. cachep = lockless_dereference(arr->entries[idx]);
  221. rcu_read_unlock();
  222. return cachep;
  223. }
  224. static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
  225. {
  226. if (is_root_cache(s))
  227. return s;
  228. return s->memcg_params.root_cache;
  229. }
  230. static __always_inline int memcg_charge_slab(struct page *page,
  231. gfp_t gfp, int order,
  232. struct kmem_cache *s)
  233. {
  234. if (!memcg_kmem_enabled())
  235. return 0;
  236. if (is_root_cache(s))
  237. return 0;
  238. return memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
  239. }
  240. static __always_inline void memcg_uncharge_slab(struct page *page, int order,
  241. struct kmem_cache *s)
  242. {
  243. if (!memcg_kmem_enabled())
  244. return;
  245. memcg_kmem_uncharge(page, order);
  246. }
  247. extern void slab_init_memcg_params(struct kmem_cache *);
  248. extern void memcg_link_cache(struct kmem_cache *s);
  249. extern void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
  250. void (*deact_fn)(struct kmem_cache *));
  251. #else /* CONFIG_MEMCG && !CONFIG_SLOB */
  252. /* If !memcg, all caches are root. */
  253. #define slab_root_caches slab_caches
  254. #define root_caches_node list
  255. #define for_each_memcg_cache(iter, root) \
  256. for ((void)(iter), (void)(root); 0; )
  257. static inline bool is_root_cache(struct kmem_cache *s)
  258. {
  259. return true;
  260. }
  261. static inline bool slab_equal_or_root(struct kmem_cache *s,
  262. struct kmem_cache *p)
  263. {
  264. return true;
  265. }
  266. static inline const char *cache_name(struct kmem_cache *s)
  267. {
  268. return s->name;
  269. }
  270. static inline struct kmem_cache *
  271. cache_from_memcg_idx(struct kmem_cache *s, int idx)
  272. {
  273. return NULL;
  274. }
  275. static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
  276. {
  277. return s;
  278. }
  279. static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
  280. struct kmem_cache *s)
  281. {
  282. return 0;
  283. }
  284. static inline void memcg_uncharge_slab(struct page *page, int order,
  285. struct kmem_cache *s)
  286. {
  287. }
  288. static inline void slab_init_memcg_params(struct kmem_cache *s)
  289. {
  290. }
  291. static inline void memcg_link_cache(struct kmem_cache *s)
  292. {
  293. }
  294. #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
  295. static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
  296. {
  297. struct kmem_cache *cachep;
  298. struct page *page;
  299. /*
  300. * When kmemcg is not being used, both assignments should return the
  301. * same value. but we don't want to pay the assignment price in that
  302. * case. If it is not compiled in, the compiler should be smart enough
  303. * to not do even the assignment. In that case, slab_equal_or_root
  304. * will also be a constant.
  305. */
  306. if (!memcg_kmem_enabled() &&
  307. !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
  308. return s;
  309. page = virt_to_head_page(x);
  310. cachep = page->slab_cache;
  311. if (slab_equal_or_root(cachep, s))
  312. return cachep;
  313. pr_err("%s: Wrong slab cache. %s but object is from %s\n",
  314. __func__, s->name, cachep->name);
  315. WARN_ON_ONCE(1);
  316. return s;
  317. }
  318. static inline size_t slab_ksize(const struct kmem_cache *s)
  319. {
  320. #ifndef CONFIG_SLUB
  321. return s->object_size;
  322. #else /* CONFIG_SLUB */
  323. # ifdef CONFIG_SLUB_DEBUG
  324. /*
  325. * Debugging requires use of the padding between object
  326. * and whatever may come after it.
  327. */
  328. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  329. return s->object_size;
  330. # endif
  331. if (s->flags & SLAB_KASAN)
  332. return s->object_size;
  333. /*
  334. * If we have the need to store the freelist pointer
  335. * back there or track user information then we can
  336. * only use the space before that information.
  337. */
  338. if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
  339. return s->inuse;
  340. /*
  341. * Else we can use all the padding etc for the allocation
  342. */
  343. return s->size;
  344. #endif
  345. }
  346. static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
  347. gfp_t flags)
  348. {
  349. flags &= gfp_allowed_mask;
  350. lockdep_trace_alloc(flags);
  351. might_sleep_if(gfpflags_allow_blocking(flags));
  352. if (should_failslab(s, flags))
  353. return NULL;
  354. if (memcg_kmem_enabled() &&
  355. ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
  356. return memcg_kmem_get_cache(s);
  357. return s;
  358. }
  359. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  360. size_t size, void **p)
  361. {
  362. size_t i;
  363. flags &= gfp_allowed_mask;
  364. for (i = 0; i < size; i++) {
  365. void *object = p[i];
  366. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  367. kmemleak_alloc_recursive(object, s->object_size, 1,
  368. s->flags, flags);
  369. kasan_slab_alloc(s, object, flags);
  370. }
  371. if (memcg_kmem_enabled())
  372. memcg_kmem_put_cache(s);
  373. }
  374. #ifndef CONFIG_SLOB
  375. /*
  376. * The slab lists for all objects.
  377. */
  378. struct kmem_cache_node {
  379. spinlock_t list_lock;
  380. #ifdef CONFIG_SLAB
  381. struct list_head slabs_partial; /* partial list first, better asm code */
  382. struct list_head slabs_full;
  383. struct list_head slabs_free;
  384. unsigned long total_slabs; /* length of all slab lists */
  385. unsigned long free_slabs; /* length of free slab list only */
  386. unsigned long free_objects;
  387. unsigned int free_limit;
  388. unsigned int colour_next; /* Per-node cache coloring */
  389. struct array_cache *shared; /* shared per node */
  390. struct alien_cache **alien; /* on other nodes */
  391. unsigned long next_reap; /* updated without locking */
  392. int free_touched; /* updated without locking */
  393. #endif
  394. #ifdef CONFIG_SLUB
  395. unsigned long nr_partial;
  396. struct list_head partial;
  397. #ifdef CONFIG_SLUB_DEBUG
  398. atomic_long_t nr_slabs;
  399. atomic_long_t total_objects;
  400. struct list_head full;
  401. #endif
  402. #endif
  403. };
  404. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  405. {
  406. return s->node[node];
  407. }
  408. /*
  409. * Iterator over all nodes. The body will be executed for each node that has
  410. * a kmem_cache_node structure allocated (which is true for all online nodes)
  411. */
  412. #define for_each_kmem_cache_node(__s, __node, __n) \
  413. for (__node = 0; __node < nr_node_ids; __node++) \
  414. if ((__n = get_node(__s, __node)))
  415. #endif
  416. void *slab_start(struct seq_file *m, loff_t *pos);
  417. void *slab_next(struct seq_file *m, void *p, loff_t *pos);
  418. void slab_stop(struct seq_file *m, void *p);
  419. void *memcg_slab_start(struct seq_file *m, loff_t *pos);
  420. void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
  421. void memcg_slab_stop(struct seq_file *m, void *p);
  422. int memcg_slab_show(struct seq_file *m, void *p);
  423. void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
  424. #ifdef CONFIG_SLAB_FREELIST_RANDOM
  425. int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
  426. gfp_t gfp);
  427. void cache_random_seq_destroy(struct kmem_cache *cachep);
  428. #else
  429. static inline int cache_random_seq_create(struct kmem_cache *cachep,
  430. unsigned int count, gfp_t gfp)
  431. {
  432. return 0;
  433. }
  434. static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
  435. #endif /* CONFIG_SLAB_FREELIST_RANDOM */
  436. #endif /* MM_SLAB_H */