rmap.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * mm->mmap_sem
  24. * page->flags PG_locked (lock_page)
  25. * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  26. * mapping->i_mmap_rwsem
  27. * anon_vma->rwsem
  28. * mm->page_table_lock or pte_lock
  29. * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
  34. * mapping->tree_lock (widely used)
  35. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  36. * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  37. * sb_lock (within inode_lock in fs/fs-writeback.c)
  38. * mapping->tree_lock (widely used, in set_page_dirty,
  39. * in arch-dependent flush_dcache_mmap_lock,
  40. * within bdi.wb->list_lock in __sync_single_inode)
  41. *
  42. * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
  43. * ->tasklist_lock
  44. * pte map lock
  45. */
  46. #include <linux/mm.h>
  47. #include <linux/sched/mm.h>
  48. #include <linux/sched/task.h>
  49. #include <linux/pagemap.h>
  50. #include <linux/swap.h>
  51. #include <linux/swapops.h>
  52. #include <linux/slab.h>
  53. #include <linux/init.h>
  54. #include <linux/ksm.h>
  55. #include <linux/rmap.h>
  56. #include <linux/rcupdate.h>
  57. #include <linux/export.h>
  58. #include <linux/memcontrol.h>
  59. #include <linux/mmu_notifier.h>
  60. #include <linux/migrate.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/backing-dev.h>
  63. #include <linux/page_idle.h>
  64. #include <asm/tlbflush.h>
  65. #include <trace/events/tlb.h>
  66. #include "internal.h"
  67. static struct kmem_cache *anon_vma_cachep;
  68. static struct kmem_cache *anon_vma_chain_cachep;
  69. static inline struct anon_vma *anon_vma_alloc(void)
  70. {
  71. struct anon_vma *anon_vma;
  72. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  73. if (anon_vma) {
  74. atomic_set(&anon_vma->refcount, 1);
  75. anon_vma->degree = 1; /* Reference for first vma */
  76. anon_vma->parent = anon_vma;
  77. /*
  78. * Initialise the anon_vma root to point to itself. If called
  79. * from fork, the root will be reset to the parents anon_vma.
  80. */
  81. anon_vma->root = anon_vma;
  82. }
  83. return anon_vma;
  84. }
  85. static inline void anon_vma_free(struct anon_vma *anon_vma)
  86. {
  87. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  88. /*
  89. * Synchronize against page_lock_anon_vma_read() such that
  90. * we can safely hold the lock without the anon_vma getting
  91. * freed.
  92. *
  93. * Relies on the full mb implied by the atomic_dec_and_test() from
  94. * put_anon_vma() against the acquire barrier implied by
  95. * down_read_trylock() from page_lock_anon_vma_read(). This orders:
  96. *
  97. * page_lock_anon_vma_read() VS put_anon_vma()
  98. * down_read_trylock() atomic_dec_and_test()
  99. * LOCK MB
  100. * atomic_read() rwsem_is_locked()
  101. *
  102. * LOCK should suffice since the actual taking of the lock must
  103. * happen _before_ what follows.
  104. */
  105. might_sleep();
  106. if (rwsem_is_locked(&anon_vma->root->rwsem)) {
  107. anon_vma_lock_write(anon_vma);
  108. anon_vma_unlock_write(anon_vma);
  109. }
  110. kmem_cache_free(anon_vma_cachep, anon_vma);
  111. }
  112. static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  113. {
  114. return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  115. }
  116. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  117. {
  118. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  119. }
  120. static void anon_vma_chain_link(struct vm_area_struct *vma,
  121. struct anon_vma_chain *avc,
  122. struct anon_vma *anon_vma)
  123. {
  124. avc->vma = vma;
  125. avc->anon_vma = anon_vma;
  126. list_add(&avc->same_vma, &vma->anon_vma_chain);
  127. anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
  128. }
  129. /**
  130. * __anon_vma_prepare - attach an anon_vma to a memory region
  131. * @vma: the memory region in question
  132. *
  133. * This makes sure the memory mapping described by 'vma' has
  134. * an 'anon_vma' attached to it, so that we can associate the
  135. * anonymous pages mapped into it with that anon_vma.
  136. *
  137. * The common case will be that we already have one, which
  138. * is handled inline by anon_vma_prepare(). But if
  139. * not we either need to find an adjacent mapping that we
  140. * can re-use the anon_vma from (very common when the only
  141. * reason for splitting a vma has been mprotect()), or we
  142. * allocate a new one.
  143. *
  144. * Anon-vma allocations are very subtle, because we may have
  145. * optimistically looked up an anon_vma in page_lock_anon_vma_read()
  146. * and that may actually touch the spinlock even in the newly
  147. * allocated vma (it depends on RCU to make sure that the
  148. * anon_vma isn't actually destroyed).
  149. *
  150. * As a result, we need to do proper anon_vma locking even
  151. * for the new allocation. At the same time, we do not want
  152. * to do any locking for the common case of already having
  153. * an anon_vma.
  154. *
  155. * This must be called with the mmap_sem held for reading.
  156. */
  157. int __anon_vma_prepare(struct vm_area_struct *vma)
  158. {
  159. struct mm_struct *mm = vma->vm_mm;
  160. struct anon_vma *anon_vma, *allocated;
  161. struct anon_vma_chain *avc;
  162. might_sleep();
  163. avc = anon_vma_chain_alloc(GFP_KERNEL);
  164. if (!avc)
  165. goto out_enomem;
  166. anon_vma = find_mergeable_anon_vma(vma);
  167. allocated = NULL;
  168. if (!anon_vma) {
  169. anon_vma = anon_vma_alloc();
  170. if (unlikely(!anon_vma))
  171. goto out_enomem_free_avc;
  172. allocated = anon_vma;
  173. }
  174. anon_vma_lock_write(anon_vma);
  175. /* page_table_lock to protect against threads */
  176. spin_lock(&mm->page_table_lock);
  177. if (likely(!vma->anon_vma)) {
  178. vma->anon_vma = anon_vma;
  179. anon_vma_chain_link(vma, avc, anon_vma);
  180. /* vma reference or self-parent link for new root */
  181. anon_vma->degree++;
  182. allocated = NULL;
  183. avc = NULL;
  184. }
  185. spin_unlock(&mm->page_table_lock);
  186. anon_vma_unlock_write(anon_vma);
  187. if (unlikely(allocated))
  188. put_anon_vma(allocated);
  189. if (unlikely(avc))
  190. anon_vma_chain_free(avc);
  191. return 0;
  192. out_enomem_free_avc:
  193. anon_vma_chain_free(avc);
  194. out_enomem:
  195. return -ENOMEM;
  196. }
  197. /*
  198. * This is a useful helper function for locking the anon_vma root as
  199. * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  200. * have the same vma.
  201. *
  202. * Such anon_vma's should have the same root, so you'd expect to see
  203. * just a single mutex_lock for the whole traversal.
  204. */
  205. static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  206. {
  207. struct anon_vma *new_root = anon_vma->root;
  208. if (new_root != root) {
  209. if (WARN_ON_ONCE(root))
  210. up_write(&root->rwsem);
  211. root = new_root;
  212. down_write(&root->rwsem);
  213. }
  214. return root;
  215. }
  216. static inline void unlock_anon_vma_root(struct anon_vma *root)
  217. {
  218. if (root)
  219. up_write(&root->rwsem);
  220. }
  221. /*
  222. * Attach the anon_vmas from src to dst.
  223. * Returns 0 on success, -ENOMEM on failure.
  224. *
  225. * If dst->anon_vma is NULL this function tries to find and reuse existing
  226. * anon_vma which has no vmas and only one child anon_vma. This prevents
  227. * degradation of anon_vma hierarchy to endless linear chain in case of
  228. * constantly forking task. On the other hand, an anon_vma with more than one
  229. * child isn't reused even if there was no alive vma, thus rmap walker has a
  230. * good chance of avoiding scanning the whole hierarchy when it searches where
  231. * page is mapped.
  232. */
  233. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  234. {
  235. struct anon_vma_chain *avc, *pavc;
  236. struct anon_vma *root = NULL;
  237. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  238. struct anon_vma *anon_vma;
  239. avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  240. if (unlikely(!avc)) {
  241. unlock_anon_vma_root(root);
  242. root = NULL;
  243. avc = anon_vma_chain_alloc(GFP_KERNEL);
  244. if (!avc)
  245. goto enomem_failure;
  246. }
  247. anon_vma = pavc->anon_vma;
  248. root = lock_anon_vma_root(root, anon_vma);
  249. anon_vma_chain_link(dst, avc, anon_vma);
  250. /*
  251. * Reuse existing anon_vma if its degree lower than two,
  252. * that means it has no vma and only one anon_vma child.
  253. *
  254. * Do not chose parent anon_vma, otherwise first child
  255. * will always reuse it. Root anon_vma is never reused:
  256. * it has self-parent reference and at least one child.
  257. */
  258. if (!dst->anon_vma && anon_vma != src->anon_vma &&
  259. anon_vma->degree < 2)
  260. dst->anon_vma = anon_vma;
  261. }
  262. if (dst->anon_vma)
  263. dst->anon_vma->degree++;
  264. unlock_anon_vma_root(root);
  265. return 0;
  266. enomem_failure:
  267. /*
  268. * dst->anon_vma is dropped here otherwise its degree can be incorrectly
  269. * decremented in unlink_anon_vmas().
  270. * We can safely do this because callers of anon_vma_clone() don't care
  271. * about dst->anon_vma if anon_vma_clone() failed.
  272. */
  273. dst->anon_vma = NULL;
  274. unlink_anon_vmas(dst);
  275. return -ENOMEM;
  276. }
  277. /*
  278. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  279. * the corresponding VMA in the parent process is attached to.
  280. * Returns 0 on success, non-zero on failure.
  281. */
  282. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  283. {
  284. struct anon_vma_chain *avc;
  285. struct anon_vma *anon_vma;
  286. int error;
  287. /* Don't bother if the parent process has no anon_vma here. */
  288. if (!pvma->anon_vma)
  289. return 0;
  290. /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
  291. vma->anon_vma = NULL;
  292. /*
  293. * First, attach the new VMA to the parent VMA's anon_vmas,
  294. * so rmap can find non-COWed pages in child processes.
  295. */
  296. error = anon_vma_clone(vma, pvma);
  297. if (error)
  298. return error;
  299. /* An existing anon_vma has been reused, all done then. */
  300. if (vma->anon_vma)
  301. return 0;
  302. /* Then add our own anon_vma. */
  303. anon_vma = anon_vma_alloc();
  304. if (!anon_vma)
  305. goto out_error;
  306. avc = anon_vma_chain_alloc(GFP_KERNEL);
  307. if (!avc)
  308. goto out_error_free_anon_vma;
  309. /*
  310. * The root anon_vma's spinlock is the lock actually used when we
  311. * lock any of the anon_vmas in this anon_vma tree.
  312. */
  313. anon_vma->root = pvma->anon_vma->root;
  314. anon_vma->parent = pvma->anon_vma;
  315. /*
  316. * With refcounts, an anon_vma can stay around longer than the
  317. * process it belongs to. The root anon_vma needs to be pinned until
  318. * this anon_vma is freed, because the lock lives in the root.
  319. */
  320. get_anon_vma(anon_vma->root);
  321. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  322. vma->anon_vma = anon_vma;
  323. anon_vma_lock_write(anon_vma);
  324. anon_vma_chain_link(vma, avc, anon_vma);
  325. anon_vma->parent->degree++;
  326. anon_vma_unlock_write(anon_vma);
  327. return 0;
  328. out_error_free_anon_vma:
  329. put_anon_vma(anon_vma);
  330. out_error:
  331. unlink_anon_vmas(vma);
  332. return -ENOMEM;
  333. }
  334. void unlink_anon_vmas(struct vm_area_struct *vma)
  335. {
  336. struct anon_vma_chain *avc, *next;
  337. struct anon_vma *root = NULL;
  338. /*
  339. * Unlink each anon_vma chained to the VMA. This list is ordered
  340. * from newest to oldest, ensuring the root anon_vma gets freed last.
  341. */
  342. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  343. struct anon_vma *anon_vma = avc->anon_vma;
  344. root = lock_anon_vma_root(root, anon_vma);
  345. anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
  346. /*
  347. * Leave empty anon_vmas on the list - we'll need
  348. * to free them outside the lock.
  349. */
  350. if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
  351. anon_vma->parent->degree--;
  352. continue;
  353. }
  354. list_del(&avc->same_vma);
  355. anon_vma_chain_free(avc);
  356. }
  357. if (vma->anon_vma)
  358. vma->anon_vma->degree--;
  359. unlock_anon_vma_root(root);
  360. /*
  361. * Iterate the list once more, it now only contains empty and unlinked
  362. * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  363. * needing to write-acquire the anon_vma->root->rwsem.
  364. */
  365. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  366. struct anon_vma *anon_vma = avc->anon_vma;
  367. VM_WARN_ON(anon_vma->degree);
  368. put_anon_vma(anon_vma);
  369. list_del(&avc->same_vma);
  370. anon_vma_chain_free(avc);
  371. }
  372. }
  373. static void anon_vma_ctor(void *data)
  374. {
  375. struct anon_vma *anon_vma = data;
  376. init_rwsem(&anon_vma->rwsem);
  377. atomic_set(&anon_vma->refcount, 0);
  378. anon_vma->rb_root = RB_ROOT;
  379. }
  380. void __init anon_vma_init(void)
  381. {
  382. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  383. 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
  384. anon_vma_ctor);
  385. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
  386. SLAB_PANIC|SLAB_ACCOUNT);
  387. }
  388. /*
  389. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  390. *
  391. * Since there is no serialization what so ever against page_remove_rmap()
  392. * the best this function can do is return a locked anon_vma that might
  393. * have been relevant to this page.
  394. *
  395. * The page might have been remapped to a different anon_vma or the anon_vma
  396. * returned may already be freed (and even reused).
  397. *
  398. * In case it was remapped to a different anon_vma, the new anon_vma will be a
  399. * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  400. * ensure that any anon_vma obtained from the page will still be valid for as
  401. * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  402. *
  403. * All users of this function must be very careful when walking the anon_vma
  404. * chain and verify that the page in question is indeed mapped in it
  405. * [ something equivalent to page_mapped_in_vma() ].
  406. *
  407. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  408. * that the anon_vma pointer from page->mapping is valid if there is a
  409. * mapcount, we can dereference the anon_vma after observing those.
  410. */
  411. struct anon_vma *page_get_anon_vma(struct page *page)
  412. {
  413. struct anon_vma *anon_vma = NULL;
  414. unsigned long anon_mapping;
  415. rcu_read_lock();
  416. anon_mapping = (unsigned long)READ_ONCE(page->mapping);
  417. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  418. goto out;
  419. if (!page_mapped(page))
  420. goto out;
  421. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  422. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  423. anon_vma = NULL;
  424. goto out;
  425. }
  426. /*
  427. * If this page is still mapped, then its anon_vma cannot have been
  428. * freed. But if it has been unmapped, we have no security against the
  429. * anon_vma structure being freed and reused (for another anon_vma:
  430. * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
  431. * above cannot corrupt).
  432. */
  433. if (!page_mapped(page)) {
  434. rcu_read_unlock();
  435. put_anon_vma(anon_vma);
  436. return NULL;
  437. }
  438. out:
  439. rcu_read_unlock();
  440. return anon_vma;
  441. }
  442. /*
  443. * Similar to page_get_anon_vma() except it locks the anon_vma.
  444. *
  445. * Its a little more complex as it tries to keep the fast path to a single
  446. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  447. * reference like with page_get_anon_vma() and then block on the mutex.
  448. */
  449. struct anon_vma *page_lock_anon_vma_read(struct page *page)
  450. {
  451. struct anon_vma *anon_vma = NULL;
  452. struct anon_vma *root_anon_vma;
  453. unsigned long anon_mapping;
  454. rcu_read_lock();
  455. anon_mapping = (unsigned long)READ_ONCE(page->mapping);
  456. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  457. goto out;
  458. if (!page_mapped(page))
  459. goto out;
  460. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  461. root_anon_vma = READ_ONCE(anon_vma->root);
  462. if (down_read_trylock(&root_anon_vma->rwsem)) {
  463. /*
  464. * If the page is still mapped, then this anon_vma is still
  465. * its anon_vma, and holding the mutex ensures that it will
  466. * not go away, see anon_vma_free().
  467. */
  468. if (!page_mapped(page)) {
  469. up_read(&root_anon_vma->rwsem);
  470. anon_vma = NULL;
  471. }
  472. goto out;
  473. }
  474. /* trylock failed, we got to sleep */
  475. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  476. anon_vma = NULL;
  477. goto out;
  478. }
  479. if (!page_mapped(page)) {
  480. rcu_read_unlock();
  481. put_anon_vma(anon_vma);
  482. return NULL;
  483. }
  484. /* we pinned the anon_vma, its safe to sleep */
  485. rcu_read_unlock();
  486. anon_vma_lock_read(anon_vma);
  487. if (atomic_dec_and_test(&anon_vma->refcount)) {
  488. /*
  489. * Oops, we held the last refcount, release the lock
  490. * and bail -- can't simply use put_anon_vma() because
  491. * we'll deadlock on the anon_vma_lock_write() recursion.
  492. */
  493. anon_vma_unlock_read(anon_vma);
  494. __put_anon_vma(anon_vma);
  495. anon_vma = NULL;
  496. }
  497. return anon_vma;
  498. out:
  499. rcu_read_unlock();
  500. return anon_vma;
  501. }
  502. void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
  503. {
  504. anon_vma_unlock_read(anon_vma);
  505. }
  506. #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
  507. /*
  508. * Flush TLB entries for recently unmapped pages from remote CPUs. It is
  509. * important if a PTE was dirty when it was unmapped that it's flushed
  510. * before any IO is initiated on the page to prevent lost writes. Similarly,
  511. * it must be flushed before freeing to prevent data leakage.
  512. */
  513. void try_to_unmap_flush(void)
  514. {
  515. struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
  516. if (!tlb_ubc->flush_required)
  517. return;
  518. arch_tlbbatch_flush(&tlb_ubc->arch);
  519. tlb_ubc->flush_required = false;
  520. tlb_ubc->writable = false;
  521. }
  522. /* Flush iff there are potentially writable TLB entries that can race with IO */
  523. void try_to_unmap_flush_dirty(void)
  524. {
  525. struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
  526. if (tlb_ubc->writable)
  527. try_to_unmap_flush();
  528. }
  529. static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
  530. {
  531. struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
  532. arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
  533. tlb_ubc->flush_required = true;
  534. /*
  535. * Ensure compiler does not re-order the setting of tlb_flush_batched
  536. * before the PTE is cleared.
  537. */
  538. barrier();
  539. mm->tlb_flush_batched = true;
  540. /*
  541. * If the PTE was dirty then it's best to assume it's writable. The
  542. * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
  543. * before the page is queued for IO.
  544. */
  545. if (writable)
  546. tlb_ubc->writable = true;
  547. }
  548. /*
  549. * Returns true if the TLB flush should be deferred to the end of a batch of
  550. * unmap operations to reduce IPIs.
  551. */
  552. static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
  553. {
  554. bool should_defer = false;
  555. if (!(flags & TTU_BATCH_FLUSH))
  556. return false;
  557. /* If remote CPUs need to be flushed then defer batch the flush */
  558. if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
  559. should_defer = true;
  560. put_cpu();
  561. return should_defer;
  562. }
  563. /*
  564. * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
  565. * releasing the PTL if TLB flushes are batched. It's possible for a parallel
  566. * operation such as mprotect or munmap to race between reclaim unmapping
  567. * the page and flushing the page. If this race occurs, it potentially allows
  568. * access to data via a stale TLB entry. Tracking all mm's that have TLB
  569. * batching in flight would be expensive during reclaim so instead track
  570. * whether TLB batching occurred in the past and if so then do a flush here
  571. * if required. This will cost one additional flush per reclaim cycle paid
  572. * by the first operation at risk such as mprotect and mumap.
  573. *
  574. * This must be called under the PTL so that an access to tlb_flush_batched
  575. * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
  576. * via the PTL.
  577. */
  578. void flush_tlb_batched_pending(struct mm_struct *mm)
  579. {
  580. if (mm->tlb_flush_batched) {
  581. flush_tlb_mm(mm);
  582. /*
  583. * Do not allow the compiler to re-order the clearing of
  584. * tlb_flush_batched before the tlb is flushed.
  585. */
  586. barrier();
  587. mm->tlb_flush_batched = false;
  588. }
  589. }
  590. #else
  591. static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
  592. {
  593. }
  594. static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
  595. {
  596. return false;
  597. }
  598. #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
  599. /*
  600. * At what user virtual address is page expected in vma?
  601. * Caller should check the page is actually part of the vma.
  602. */
  603. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  604. {
  605. unsigned long address;
  606. if (PageAnon(page)) {
  607. struct anon_vma *page__anon_vma = page_anon_vma(page);
  608. /*
  609. * Note: swapoff's unuse_vma() is more efficient with this
  610. * check, and needs it to match anon_vma when KSM is active.
  611. */
  612. if (!vma->anon_vma || !page__anon_vma ||
  613. vma->anon_vma->root != page__anon_vma->root)
  614. return -EFAULT;
  615. } else if (page->mapping) {
  616. if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
  617. return -EFAULT;
  618. } else
  619. return -EFAULT;
  620. address = __vma_address(page, vma);
  621. if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  622. return -EFAULT;
  623. return address;
  624. }
  625. pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
  626. {
  627. pgd_t *pgd;
  628. p4d_t *p4d;
  629. pud_t *pud;
  630. pmd_t *pmd = NULL;
  631. pmd_t pmde;
  632. pgd = pgd_offset(mm, address);
  633. if (!pgd_present(*pgd))
  634. goto out;
  635. p4d = p4d_offset(pgd, address);
  636. if (!p4d_present(*p4d))
  637. goto out;
  638. pud = pud_offset(p4d, address);
  639. if (!pud_present(*pud))
  640. goto out;
  641. pmd = pmd_offset(pud, address);
  642. /*
  643. * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
  644. * without holding anon_vma lock for write. So when looking for a
  645. * genuine pmde (in which to find pte), test present and !THP together.
  646. */
  647. pmde = *pmd;
  648. barrier();
  649. if (!pmd_present(pmde) || pmd_trans_huge(pmde))
  650. pmd = NULL;
  651. out:
  652. return pmd;
  653. }
  654. struct page_referenced_arg {
  655. int mapcount;
  656. int referenced;
  657. unsigned long vm_flags;
  658. struct mem_cgroup *memcg;
  659. };
  660. /*
  661. * arg: page_referenced_arg will be passed
  662. */
  663. static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
  664. unsigned long address, void *arg)
  665. {
  666. struct page_referenced_arg *pra = arg;
  667. struct page_vma_mapped_walk pvmw = {
  668. .page = page,
  669. .vma = vma,
  670. .address = address,
  671. };
  672. int referenced = 0;
  673. while (page_vma_mapped_walk(&pvmw)) {
  674. address = pvmw.address;
  675. if (vma->vm_flags & VM_LOCKED) {
  676. page_vma_mapped_walk_done(&pvmw);
  677. pra->vm_flags |= VM_LOCKED;
  678. return false; /* To break the loop */
  679. }
  680. if (pvmw.pte) {
  681. if (ptep_clear_flush_young_notify(vma, address,
  682. pvmw.pte)) {
  683. /*
  684. * Don't treat a reference through
  685. * a sequentially read mapping as such.
  686. * If the page has been used in another mapping,
  687. * we will catch it; if this other mapping is
  688. * already gone, the unmap path will have set
  689. * PG_referenced or activated the page.
  690. */
  691. if (likely(!(vma->vm_flags & VM_SEQ_READ)))
  692. referenced++;
  693. }
  694. } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
  695. if (pmdp_clear_flush_young_notify(vma, address,
  696. pvmw.pmd))
  697. referenced++;
  698. } else {
  699. /* unexpected pmd-mapped page? */
  700. WARN_ON_ONCE(1);
  701. }
  702. pra->mapcount--;
  703. }
  704. if (referenced)
  705. clear_page_idle(page);
  706. if (test_and_clear_page_young(page))
  707. referenced++;
  708. if (referenced) {
  709. pra->referenced++;
  710. pra->vm_flags |= vma->vm_flags;
  711. }
  712. if (!pra->mapcount)
  713. return false; /* To break the loop */
  714. return true;
  715. }
  716. static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
  717. {
  718. struct page_referenced_arg *pra = arg;
  719. struct mem_cgroup *memcg = pra->memcg;
  720. if (!mm_match_cgroup(vma->vm_mm, memcg))
  721. return true;
  722. return false;
  723. }
  724. /**
  725. * page_referenced - test if the page was referenced
  726. * @page: the page to test
  727. * @is_locked: caller holds lock on the page
  728. * @memcg: target memory cgroup
  729. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  730. *
  731. * Quick test_and_clear_referenced for all mappings to a page,
  732. * returns the number of ptes which referenced the page.
  733. */
  734. int page_referenced(struct page *page,
  735. int is_locked,
  736. struct mem_cgroup *memcg,
  737. unsigned long *vm_flags)
  738. {
  739. int we_locked = 0;
  740. struct page_referenced_arg pra = {
  741. .mapcount = total_mapcount(page),
  742. .memcg = memcg,
  743. };
  744. struct rmap_walk_control rwc = {
  745. .rmap_one = page_referenced_one,
  746. .arg = (void *)&pra,
  747. .anon_lock = page_lock_anon_vma_read,
  748. };
  749. *vm_flags = 0;
  750. if (!page_mapped(page))
  751. return 0;
  752. if (!page_rmapping(page))
  753. return 0;
  754. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  755. we_locked = trylock_page(page);
  756. if (!we_locked)
  757. return 1;
  758. }
  759. /*
  760. * If we are reclaiming on behalf of a cgroup, skip
  761. * counting on behalf of references from different
  762. * cgroups
  763. */
  764. if (memcg) {
  765. rwc.invalid_vma = invalid_page_referenced_vma;
  766. }
  767. rmap_walk(page, &rwc);
  768. *vm_flags = pra.vm_flags;
  769. if (we_locked)
  770. unlock_page(page);
  771. return pra.referenced;
  772. }
  773. static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  774. unsigned long address, void *arg)
  775. {
  776. struct page_vma_mapped_walk pvmw = {
  777. .page = page,
  778. .vma = vma,
  779. .address = address,
  780. .flags = PVMW_SYNC,
  781. };
  782. int *cleaned = arg;
  783. while (page_vma_mapped_walk(&pvmw)) {
  784. int ret = 0;
  785. address = pvmw.address;
  786. if (pvmw.pte) {
  787. pte_t entry;
  788. pte_t *pte = pvmw.pte;
  789. if (!pte_dirty(*pte) && !pte_write(*pte))
  790. continue;
  791. flush_cache_page(vma, address, pte_pfn(*pte));
  792. entry = ptep_clear_flush(vma, address, pte);
  793. entry = pte_wrprotect(entry);
  794. entry = pte_mkclean(entry);
  795. set_pte_at(vma->vm_mm, address, pte, entry);
  796. ret = 1;
  797. } else {
  798. #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
  799. pmd_t *pmd = pvmw.pmd;
  800. pmd_t entry;
  801. if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
  802. continue;
  803. flush_cache_page(vma, address, page_to_pfn(page));
  804. entry = pmdp_huge_clear_flush(vma, address, pmd);
  805. entry = pmd_wrprotect(entry);
  806. entry = pmd_mkclean(entry);
  807. set_pmd_at(vma->vm_mm, address, pmd, entry);
  808. ret = 1;
  809. #else
  810. /* unexpected pmd-mapped page? */
  811. WARN_ON_ONCE(1);
  812. #endif
  813. }
  814. if (ret) {
  815. mmu_notifier_invalidate_page(vma->vm_mm, address);
  816. (*cleaned)++;
  817. }
  818. }
  819. return true;
  820. }
  821. static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
  822. {
  823. if (vma->vm_flags & VM_SHARED)
  824. return false;
  825. return true;
  826. }
  827. int page_mkclean(struct page *page)
  828. {
  829. int cleaned = 0;
  830. struct address_space *mapping;
  831. struct rmap_walk_control rwc = {
  832. .arg = (void *)&cleaned,
  833. .rmap_one = page_mkclean_one,
  834. .invalid_vma = invalid_mkclean_vma,
  835. };
  836. BUG_ON(!PageLocked(page));
  837. if (!page_mapped(page))
  838. return 0;
  839. mapping = page_mapping(page);
  840. if (!mapping)
  841. return 0;
  842. rmap_walk(page, &rwc);
  843. return cleaned;
  844. }
  845. EXPORT_SYMBOL_GPL(page_mkclean);
  846. /**
  847. * page_move_anon_rmap - move a page to our anon_vma
  848. * @page: the page to move to our anon_vma
  849. * @vma: the vma the page belongs to
  850. *
  851. * When a page belongs exclusively to one process after a COW event,
  852. * that page can be moved into the anon_vma that belongs to just that
  853. * process, so the rmap code will not search the parent or sibling
  854. * processes.
  855. */
  856. void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
  857. {
  858. struct anon_vma *anon_vma = vma->anon_vma;
  859. page = compound_head(page);
  860. VM_BUG_ON_PAGE(!PageLocked(page), page);
  861. VM_BUG_ON_VMA(!anon_vma, vma);
  862. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  863. /*
  864. * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
  865. * simultaneously, so a concurrent reader (eg page_referenced()'s
  866. * PageAnon()) will not see one without the other.
  867. */
  868. WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
  869. }
  870. /**
  871. * __page_set_anon_rmap - set up new anonymous rmap
  872. * @page: Page to add to rmap
  873. * @vma: VM area to add page to.
  874. * @address: User virtual address of the mapping
  875. * @exclusive: the page is exclusively owned by the current process
  876. */
  877. static void __page_set_anon_rmap(struct page *page,
  878. struct vm_area_struct *vma, unsigned long address, int exclusive)
  879. {
  880. struct anon_vma *anon_vma = vma->anon_vma;
  881. BUG_ON(!anon_vma);
  882. if (PageAnon(page))
  883. return;
  884. /*
  885. * If the page isn't exclusively mapped into this vma,
  886. * we must use the _oldest_ possible anon_vma for the
  887. * page mapping!
  888. */
  889. if (!exclusive)
  890. anon_vma = anon_vma->root;
  891. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  892. page->mapping = (struct address_space *) anon_vma;
  893. page->index = linear_page_index(vma, address);
  894. }
  895. /**
  896. * __page_check_anon_rmap - sanity check anonymous rmap addition
  897. * @page: the page to add the mapping to
  898. * @vma: the vm area in which the mapping is added
  899. * @address: the user virtual address mapped
  900. */
  901. static void __page_check_anon_rmap(struct page *page,
  902. struct vm_area_struct *vma, unsigned long address)
  903. {
  904. #ifdef CONFIG_DEBUG_VM
  905. /*
  906. * The page's anon-rmap details (mapping and index) are guaranteed to
  907. * be set up correctly at this point.
  908. *
  909. * We have exclusion against page_add_anon_rmap because the caller
  910. * always holds the page locked, except if called from page_dup_rmap,
  911. * in which case the page is already known to be setup.
  912. *
  913. * We have exclusion against page_add_new_anon_rmap because those pages
  914. * are initially only visible via the pagetables, and the pte is locked
  915. * over the call to page_add_new_anon_rmap.
  916. */
  917. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  918. BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
  919. #endif
  920. }
  921. /**
  922. * page_add_anon_rmap - add pte mapping to an anonymous page
  923. * @page: the page to add the mapping to
  924. * @vma: the vm area in which the mapping is added
  925. * @address: the user virtual address mapped
  926. * @compound: charge the page as compound or small page
  927. *
  928. * The caller needs to hold the pte lock, and the page must be locked in
  929. * the anon_vma case: to serialize mapping,index checking after setting,
  930. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  931. * (but PageKsm is never downgraded to PageAnon).
  932. */
  933. void page_add_anon_rmap(struct page *page,
  934. struct vm_area_struct *vma, unsigned long address, bool compound)
  935. {
  936. do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
  937. }
  938. /*
  939. * Special version of the above for do_swap_page, which often runs
  940. * into pages that are exclusively owned by the current process.
  941. * Everybody else should continue to use page_add_anon_rmap above.
  942. */
  943. void do_page_add_anon_rmap(struct page *page,
  944. struct vm_area_struct *vma, unsigned long address, int flags)
  945. {
  946. bool compound = flags & RMAP_COMPOUND;
  947. bool first;
  948. if (compound) {
  949. atomic_t *mapcount;
  950. VM_BUG_ON_PAGE(!PageLocked(page), page);
  951. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  952. mapcount = compound_mapcount_ptr(page);
  953. first = atomic_inc_and_test(mapcount);
  954. } else {
  955. first = atomic_inc_and_test(&page->_mapcount);
  956. }
  957. if (first) {
  958. int nr = compound ? hpage_nr_pages(page) : 1;
  959. /*
  960. * We use the irq-unsafe __{inc|mod}_zone_page_stat because
  961. * these counters are not modified in interrupt context, and
  962. * pte lock(a spinlock) is held, which implies preemption
  963. * disabled.
  964. */
  965. if (compound)
  966. __inc_node_page_state(page, NR_ANON_THPS);
  967. __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
  968. }
  969. if (unlikely(PageKsm(page)))
  970. return;
  971. VM_BUG_ON_PAGE(!PageLocked(page), page);
  972. /* address might be in next vma when migration races vma_adjust */
  973. if (first)
  974. __page_set_anon_rmap(page, vma, address,
  975. flags & RMAP_EXCLUSIVE);
  976. else
  977. __page_check_anon_rmap(page, vma, address);
  978. }
  979. /**
  980. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  981. * @page: the page to add the mapping to
  982. * @vma: the vm area in which the mapping is added
  983. * @address: the user virtual address mapped
  984. * @compound: charge the page as compound or small page
  985. *
  986. * Same as page_add_anon_rmap but must only be called on *new* pages.
  987. * This means the inc-and-test can be bypassed.
  988. * Page does not have to be locked.
  989. */
  990. void page_add_new_anon_rmap(struct page *page,
  991. struct vm_area_struct *vma, unsigned long address, bool compound)
  992. {
  993. int nr = compound ? hpage_nr_pages(page) : 1;
  994. VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
  995. __SetPageSwapBacked(page);
  996. if (compound) {
  997. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  998. /* increment count (starts at -1) */
  999. atomic_set(compound_mapcount_ptr(page), 0);
  1000. __inc_node_page_state(page, NR_ANON_THPS);
  1001. } else {
  1002. /* Anon THP always mapped first with PMD */
  1003. VM_BUG_ON_PAGE(PageTransCompound(page), page);
  1004. /* increment count (starts at -1) */
  1005. atomic_set(&page->_mapcount, 0);
  1006. }
  1007. __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
  1008. __page_set_anon_rmap(page, vma, address, 1);
  1009. }
  1010. /**
  1011. * page_add_file_rmap - add pte mapping to a file page
  1012. * @page: the page to add the mapping to
  1013. *
  1014. * The caller needs to hold the pte lock.
  1015. */
  1016. void page_add_file_rmap(struct page *page, bool compound)
  1017. {
  1018. int i, nr = 1;
  1019. VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
  1020. lock_page_memcg(page);
  1021. if (compound && PageTransHuge(page)) {
  1022. for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
  1023. if (atomic_inc_and_test(&page[i]._mapcount))
  1024. nr++;
  1025. }
  1026. if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
  1027. goto out;
  1028. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1029. __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
  1030. } else {
  1031. if (PageTransCompound(page) && page_mapping(page)) {
  1032. VM_WARN_ON_ONCE(!PageLocked(page));
  1033. SetPageDoubleMap(compound_head(page));
  1034. if (PageMlocked(page))
  1035. clear_page_mlock(compound_head(page));
  1036. }
  1037. if (!atomic_inc_and_test(&page->_mapcount))
  1038. goto out;
  1039. }
  1040. __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
  1041. out:
  1042. unlock_page_memcg(page);
  1043. }
  1044. static void page_remove_file_rmap(struct page *page, bool compound)
  1045. {
  1046. int i, nr = 1;
  1047. VM_BUG_ON_PAGE(compound && !PageHead(page), page);
  1048. lock_page_memcg(page);
  1049. /* Hugepages are not counted in NR_FILE_MAPPED for now. */
  1050. if (unlikely(PageHuge(page))) {
  1051. /* hugetlb pages are always mapped with pmds */
  1052. atomic_dec(compound_mapcount_ptr(page));
  1053. goto out;
  1054. }
  1055. /* page still mapped by someone else? */
  1056. if (compound && PageTransHuge(page)) {
  1057. for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
  1058. if (atomic_add_negative(-1, &page[i]._mapcount))
  1059. nr++;
  1060. }
  1061. if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
  1062. goto out;
  1063. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1064. __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
  1065. } else {
  1066. if (!atomic_add_negative(-1, &page->_mapcount))
  1067. goto out;
  1068. }
  1069. /*
  1070. * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
  1071. * these counters are not modified in interrupt context, and
  1072. * pte lock(a spinlock) is held, which implies preemption disabled.
  1073. */
  1074. __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
  1075. if (unlikely(PageMlocked(page)))
  1076. clear_page_mlock(page);
  1077. out:
  1078. unlock_page_memcg(page);
  1079. }
  1080. static void page_remove_anon_compound_rmap(struct page *page)
  1081. {
  1082. int i, nr;
  1083. if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
  1084. return;
  1085. /* Hugepages are not counted in NR_ANON_PAGES for now. */
  1086. if (unlikely(PageHuge(page)))
  1087. return;
  1088. if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
  1089. return;
  1090. __dec_node_page_state(page, NR_ANON_THPS);
  1091. if (TestClearPageDoubleMap(page)) {
  1092. /*
  1093. * Subpages can be mapped with PTEs too. Check how many of
  1094. * themi are still mapped.
  1095. */
  1096. for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
  1097. if (atomic_add_negative(-1, &page[i]._mapcount))
  1098. nr++;
  1099. }
  1100. } else {
  1101. nr = HPAGE_PMD_NR;
  1102. }
  1103. if (unlikely(PageMlocked(page)))
  1104. clear_page_mlock(page);
  1105. if (nr) {
  1106. __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
  1107. deferred_split_huge_page(page);
  1108. }
  1109. }
  1110. /**
  1111. * page_remove_rmap - take down pte mapping from a page
  1112. * @page: page to remove mapping from
  1113. * @compound: uncharge the page as compound or small page
  1114. *
  1115. * The caller needs to hold the pte lock.
  1116. */
  1117. void page_remove_rmap(struct page *page, bool compound)
  1118. {
  1119. if (!PageAnon(page))
  1120. return page_remove_file_rmap(page, compound);
  1121. if (compound)
  1122. return page_remove_anon_compound_rmap(page);
  1123. /* page still mapped by someone else? */
  1124. if (!atomic_add_negative(-1, &page->_mapcount))
  1125. return;
  1126. /*
  1127. * We use the irq-unsafe __{inc|mod}_zone_page_stat because
  1128. * these counters are not modified in interrupt context, and
  1129. * pte lock(a spinlock) is held, which implies preemption disabled.
  1130. */
  1131. __dec_node_page_state(page, NR_ANON_MAPPED);
  1132. if (unlikely(PageMlocked(page)))
  1133. clear_page_mlock(page);
  1134. if (PageTransCompound(page))
  1135. deferred_split_huge_page(compound_head(page));
  1136. /*
  1137. * It would be tidy to reset the PageAnon mapping here,
  1138. * but that might overwrite a racing page_add_anon_rmap
  1139. * which increments mapcount after us but sets mapping
  1140. * before us: so leave the reset to free_hot_cold_page,
  1141. * and remember that it's only reliable while mapped.
  1142. * Leaving it set also helps swapoff to reinstate ptes
  1143. * faster for those pages still in swapcache.
  1144. */
  1145. }
  1146. /*
  1147. * @arg: enum ttu_flags will be passed to this argument
  1148. */
  1149. static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  1150. unsigned long address, void *arg)
  1151. {
  1152. struct mm_struct *mm = vma->vm_mm;
  1153. struct page_vma_mapped_walk pvmw = {
  1154. .page = page,
  1155. .vma = vma,
  1156. .address = address,
  1157. };
  1158. pte_t pteval;
  1159. struct page *subpage;
  1160. bool ret = true;
  1161. enum ttu_flags flags = (enum ttu_flags)arg;
  1162. /* munlock has nothing to gain from examining un-locked vmas */
  1163. if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
  1164. return true;
  1165. if (flags & TTU_SPLIT_HUGE_PMD) {
  1166. split_huge_pmd_address(vma, address,
  1167. flags & TTU_MIGRATION, page);
  1168. }
  1169. while (page_vma_mapped_walk(&pvmw)) {
  1170. /*
  1171. * If the page is mlock()d, we cannot swap it out.
  1172. * If it's recently referenced (perhaps page_referenced
  1173. * skipped over this mm) then we should reactivate it.
  1174. */
  1175. if (!(flags & TTU_IGNORE_MLOCK)) {
  1176. if (vma->vm_flags & VM_LOCKED) {
  1177. /* PTE-mapped THP are never mlocked */
  1178. if (!PageTransCompound(page)) {
  1179. /*
  1180. * Holding pte lock, we do *not* need
  1181. * mmap_sem here
  1182. */
  1183. mlock_vma_page(page);
  1184. }
  1185. ret = false;
  1186. page_vma_mapped_walk_done(&pvmw);
  1187. break;
  1188. }
  1189. if (flags & TTU_MUNLOCK)
  1190. continue;
  1191. }
  1192. /* Unexpected PMD-mapped THP? */
  1193. VM_BUG_ON_PAGE(!pvmw.pte, page);
  1194. subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
  1195. address = pvmw.address;
  1196. if (!(flags & TTU_IGNORE_ACCESS)) {
  1197. if (ptep_clear_flush_young_notify(vma, address,
  1198. pvmw.pte)) {
  1199. ret = false;
  1200. page_vma_mapped_walk_done(&pvmw);
  1201. break;
  1202. }
  1203. }
  1204. /* Nuke the page table entry. */
  1205. flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
  1206. if (should_defer_flush(mm, flags)) {
  1207. /*
  1208. * We clear the PTE but do not flush so potentially
  1209. * a remote CPU could still be writing to the page.
  1210. * If the entry was previously clean then the
  1211. * architecture must guarantee that a clear->dirty
  1212. * transition on a cached TLB entry is written through
  1213. * and traps if the PTE is unmapped.
  1214. */
  1215. pteval = ptep_get_and_clear(mm, address, pvmw.pte);
  1216. set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
  1217. } else {
  1218. pteval = ptep_clear_flush(vma, address, pvmw.pte);
  1219. }
  1220. /* Move the dirty bit to the page. Now the pte is gone. */
  1221. if (pte_dirty(pteval))
  1222. set_page_dirty(page);
  1223. /* Update high watermark before we lower rss */
  1224. update_hiwater_rss(mm);
  1225. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1226. pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
  1227. if (PageHuge(page)) {
  1228. int nr = 1 << compound_order(page);
  1229. hugetlb_count_sub(nr, mm);
  1230. set_huge_swap_pte_at(mm, address,
  1231. pvmw.pte, pteval,
  1232. vma_mmu_pagesize(vma));
  1233. } else {
  1234. dec_mm_counter(mm, mm_counter(page));
  1235. set_pte_at(mm, address, pvmw.pte, pteval);
  1236. }
  1237. } else if (pte_unused(pteval)) {
  1238. /*
  1239. * The guest indicated that the page content is of no
  1240. * interest anymore. Simply discard the pte, vmscan
  1241. * will take care of the rest.
  1242. */
  1243. dec_mm_counter(mm, mm_counter(page));
  1244. } else if (IS_ENABLED(CONFIG_MIGRATION) &&
  1245. (flags & TTU_MIGRATION)) {
  1246. swp_entry_t entry;
  1247. pte_t swp_pte;
  1248. /*
  1249. * Store the pfn of the page in a special migration
  1250. * pte. do_swap_page() will wait until the migration
  1251. * pte is removed and then restart fault handling.
  1252. */
  1253. entry = make_migration_entry(subpage,
  1254. pte_write(pteval));
  1255. swp_pte = swp_entry_to_pte(entry);
  1256. if (pte_soft_dirty(pteval))
  1257. swp_pte = pte_swp_mksoft_dirty(swp_pte);
  1258. set_pte_at(mm, address, pvmw.pte, swp_pte);
  1259. } else if (PageAnon(page)) {
  1260. swp_entry_t entry = { .val = page_private(subpage) };
  1261. pte_t swp_pte;
  1262. /*
  1263. * Store the swap location in the pte.
  1264. * See handle_pte_fault() ...
  1265. */
  1266. if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
  1267. WARN_ON_ONCE(1);
  1268. ret = false;
  1269. page_vma_mapped_walk_done(&pvmw);
  1270. break;
  1271. }
  1272. /* MADV_FREE page check */
  1273. if (!PageSwapBacked(page)) {
  1274. if (!PageDirty(page)) {
  1275. dec_mm_counter(mm, MM_ANONPAGES);
  1276. goto discard;
  1277. }
  1278. /*
  1279. * If the page was redirtied, it cannot be
  1280. * discarded. Remap the page to page table.
  1281. */
  1282. set_pte_at(mm, address, pvmw.pte, pteval);
  1283. SetPageSwapBacked(page);
  1284. ret = false;
  1285. page_vma_mapped_walk_done(&pvmw);
  1286. break;
  1287. }
  1288. if (swap_duplicate(entry) < 0) {
  1289. set_pte_at(mm, address, pvmw.pte, pteval);
  1290. ret = false;
  1291. page_vma_mapped_walk_done(&pvmw);
  1292. break;
  1293. }
  1294. if (list_empty(&mm->mmlist)) {
  1295. spin_lock(&mmlist_lock);
  1296. if (list_empty(&mm->mmlist))
  1297. list_add(&mm->mmlist, &init_mm.mmlist);
  1298. spin_unlock(&mmlist_lock);
  1299. }
  1300. dec_mm_counter(mm, MM_ANONPAGES);
  1301. inc_mm_counter(mm, MM_SWAPENTS);
  1302. swp_pte = swp_entry_to_pte(entry);
  1303. if (pte_soft_dirty(pteval))
  1304. swp_pte = pte_swp_mksoft_dirty(swp_pte);
  1305. set_pte_at(mm, address, pvmw.pte, swp_pte);
  1306. } else
  1307. dec_mm_counter(mm, mm_counter_file(page));
  1308. discard:
  1309. page_remove_rmap(subpage, PageHuge(page));
  1310. put_page(page);
  1311. mmu_notifier_invalidate_page(mm, address);
  1312. }
  1313. return ret;
  1314. }
  1315. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1316. {
  1317. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1318. if (!maybe_stack)
  1319. return false;
  1320. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1321. VM_STACK_INCOMPLETE_SETUP)
  1322. return true;
  1323. return false;
  1324. }
  1325. static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
  1326. {
  1327. return is_vma_temporary_stack(vma);
  1328. }
  1329. static int page_mapcount_is_zero(struct page *page)
  1330. {
  1331. return !total_mapcount(page);
  1332. }
  1333. /**
  1334. * try_to_unmap - try to remove all page table mappings to a page
  1335. * @page: the page to get unmapped
  1336. * @flags: action and flags
  1337. *
  1338. * Tries to remove all the page table entries which are mapping this
  1339. * page, used in the pageout path. Caller must hold the page lock.
  1340. *
  1341. * If unmap is successful, return true. Otherwise, false.
  1342. */
  1343. bool try_to_unmap(struct page *page, enum ttu_flags flags)
  1344. {
  1345. struct rmap_walk_control rwc = {
  1346. .rmap_one = try_to_unmap_one,
  1347. .arg = (void *)flags,
  1348. .done = page_mapcount_is_zero,
  1349. .anon_lock = page_lock_anon_vma_read,
  1350. };
  1351. /*
  1352. * During exec, a temporary VMA is setup and later moved.
  1353. * The VMA is moved under the anon_vma lock but not the
  1354. * page tables leading to a race where migration cannot
  1355. * find the migration ptes. Rather than increasing the
  1356. * locking requirements of exec(), migration skips
  1357. * temporary VMAs until after exec() completes.
  1358. */
  1359. if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
  1360. rwc.invalid_vma = invalid_migration_vma;
  1361. if (flags & TTU_RMAP_LOCKED)
  1362. rmap_walk_locked(page, &rwc);
  1363. else
  1364. rmap_walk(page, &rwc);
  1365. return !page_mapcount(page) ? true : false;
  1366. }
  1367. static int page_not_mapped(struct page *page)
  1368. {
  1369. return !page_mapped(page);
  1370. };
  1371. /**
  1372. * try_to_munlock - try to munlock a page
  1373. * @page: the page to be munlocked
  1374. *
  1375. * Called from munlock code. Checks all of the VMAs mapping the page
  1376. * to make sure nobody else has this page mlocked. The page will be
  1377. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1378. */
  1379. void try_to_munlock(struct page *page)
  1380. {
  1381. struct rmap_walk_control rwc = {
  1382. .rmap_one = try_to_unmap_one,
  1383. .arg = (void *)TTU_MUNLOCK,
  1384. .done = page_not_mapped,
  1385. .anon_lock = page_lock_anon_vma_read,
  1386. };
  1387. VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
  1388. VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
  1389. rmap_walk(page, &rwc);
  1390. }
  1391. void __put_anon_vma(struct anon_vma *anon_vma)
  1392. {
  1393. struct anon_vma *root = anon_vma->root;
  1394. anon_vma_free(anon_vma);
  1395. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1396. anon_vma_free(root);
  1397. }
  1398. static struct anon_vma *rmap_walk_anon_lock(struct page *page,
  1399. struct rmap_walk_control *rwc)
  1400. {
  1401. struct anon_vma *anon_vma;
  1402. if (rwc->anon_lock)
  1403. return rwc->anon_lock(page);
  1404. /*
  1405. * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
  1406. * because that depends on page_mapped(); but not all its usages
  1407. * are holding mmap_sem. Users without mmap_sem are required to
  1408. * take a reference count to prevent the anon_vma disappearing
  1409. */
  1410. anon_vma = page_anon_vma(page);
  1411. if (!anon_vma)
  1412. return NULL;
  1413. anon_vma_lock_read(anon_vma);
  1414. return anon_vma;
  1415. }
  1416. /*
  1417. * rmap_walk_anon - do something to anonymous page using the object-based
  1418. * rmap method
  1419. * @page: the page to be handled
  1420. * @rwc: control variable according to each walk type
  1421. *
  1422. * Find all the mappings of a page using the mapping pointer and the vma chains
  1423. * contained in the anon_vma struct it points to.
  1424. *
  1425. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1426. * where the page was found will be held for write. So, we won't recheck
  1427. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1428. * LOCKED.
  1429. */
  1430. static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
  1431. bool locked)
  1432. {
  1433. struct anon_vma *anon_vma;
  1434. pgoff_t pgoff_start, pgoff_end;
  1435. struct anon_vma_chain *avc;
  1436. if (locked) {
  1437. anon_vma = page_anon_vma(page);
  1438. /* anon_vma disappear under us? */
  1439. VM_BUG_ON_PAGE(!anon_vma, page);
  1440. } else {
  1441. anon_vma = rmap_walk_anon_lock(page, rwc);
  1442. }
  1443. if (!anon_vma)
  1444. return;
  1445. pgoff_start = page_to_pgoff(page);
  1446. pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
  1447. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
  1448. pgoff_start, pgoff_end) {
  1449. struct vm_area_struct *vma = avc->vma;
  1450. unsigned long address = vma_address(page, vma);
  1451. cond_resched();
  1452. if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
  1453. continue;
  1454. if (!rwc->rmap_one(page, vma, address, rwc->arg))
  1455. break;
  1456. if (rwc->done && rwc->done(page))
  1457. break;
  1458. }
  1459. if (!locked)
  1460. anon_vma_unlock_read(anon_vma);
  1461. }
  1462. /*
  1463. * rmap_walk_file - do something to file page using the object-based rmap method
  1464. * @page: the page to be handled
  1465. * @rwc: control variable according to each walk type
  1466. *
  1467. * Find all the mappings of a page using the mapping pointer and the vma chains
  1468. * contained in the address_space struct it points to.
  1469. *
  1470. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1471. * where the page was found will be held for write. So, we won't recheck
  1472. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1473. * LOCKED.
  1474. */
  1475. static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
  1476. bool locked)
  1477. {
  1478. struct address_space *mapping = page_mapping(page);
  1479. pgoff_t pgoff_start, pgoff_end;
  1480. struct vm_area_struct *vma;
  1481. /*
  1482. * The page lock not only makes sure that page->mapping cannot
  1483. * suddenly be NULLified by truncation, it makes sure that the
  1484. * structure at mapping cannot be freed and reused yet,
  1485. * so we can safely take mapping->i_mmap_rwsem.
  1486. */
  1487. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1488. if (!mapping)
  1489. return;
  1490. pgoff_start = page_to_pgoff(page);
  1491. pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
  1492. if (!locked)
  1493. i_mmap_lock_read(mapping);
  1494. vma_interval_tree_foreach(vma, &mapping->i_mmap,
  1495. pgoff_start, pgoff_end) {
  1496. unsigned long address = vma_address(page, vma);
  1497. cond_resched();
  1498. if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
  1499. continue;
  1500. if (!rwc->rmap_one(page, vma, address, rwc->arg))
  1501. goto done;
  1502. if (rwc->done && rwc->done(page))
  1503. goto done;
  1504. }
  1505. done:
  1506. if (!locked)
  1507. i_mmap_unlock_read(mapping);
  1508. }
  1509. void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
  1510. {
  1511. if (unlikely(PageKsm(page)))
  1512. rmap_walk_ksm(page, rwc);
  1513. else if (PageAnon(page))
  1514. rmap_walk_anon(page, rwc, false);
  1515. else
  1516. rmap_walk_file(page, rwc, false);
  1517. }
  1518. /* Like rmap_walk, but caller holds relevant rmap lock */
  1519. void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
  1520. {
  1521. /* no ksm support for now */
  1522. VM_BUG_ON_PAGE(PageKsm(page), page);
  1523. if (PageAnon(page))
  1524. rmap_walk_anon(page, rwc, true);
  1525. else
  1526. rmap_walk_file(page, rwc, true);
  1527. }
  1528. #ifdef CONFIG_HUGETLB_PAGE
  1529. /*
  1530. * The following three functions are for anonymous (private mapped) hugepages.
  1531. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1532. * and no lru code, because we handle hugepages differently from common pages.
  1533. */
  1534. static void __hugepage_set_anon_rmap(struct page *page,
  1535. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1536. {
  1537. struct anon_vma *anon_vma = vma->anon_vma;
  1538. BUG_ON(!anon_vma);
  1539. if (PageAnon(page))
  1540. return;
  1541. if (!exclusive)
  1542. anon_vma = anon_vma->root;
  1543. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1544. page->mapping = (struct address_space *) anon_vma;
  1545. page->index = linear_page_index(vma, address);
  1546. }
  1547. void hugepage_add_anon_rmap(struct page *page,
  1548. struct vm_area_struct *vma, unsigned long address)
  1549. {
  1550. struct anon_vma *anon_vma = vma->anon_vma;
  1551. int first;
  1552. BUG_ON(!PageLocked(page));
  1553. BUG_ON(!anon_vma);
  1554. /* address might be in next vma when migration races vma_adjust */
  1555. first = atomic_inc_and_test(compound_mapcount_ptr(page));
  1556. if (first)
  1557. __hugepage_set_anon_rmap(page, vma, address, 0);
  1558. }
  1559. void hugepage_add_new_anon_rmap(struct page *page,
  1560. struct vm_area_struct *vma, unsigned long address)
  1561. {
  1562. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1563. atomic_set(compound_mapcount_ptr(page), 0);
  1564. __hugepage_set_anon_rmap(page, vma, address, 1);
  1565. }
  1566. #endif /* CONFIG_HUGETLB_PAGE */