page_io.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
  1. /*
  2. * linux/mm/page_io.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. *
  6. * Swap reorganised 29.12.95,
  7. * Asynchronous swapping added 30.12.95. Stephen Tweedie
  8. * Removed race in async swapping. 14.4.1996. Bruno Haible
  9. * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
  10. * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
  11. */
  12. #include <linux/mm.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/gfp.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/swap.h>
  17. #include <linux/bio.h>
  18. #include <linux/swapops.h>
  19. #include <linux/buffer_head.h>
  20. #include <linux/writeback.h>
  21. #include <linux/frontswap.h>
  22. #include <linux/blkdev.h>
  23. #include <linux/uio.h>
  24. #include <linux/sched/task.h>
  25. #include <asm/pgtable.h>
  26. static struct bio *get_swap_bio(gfp_t gfp_flags,
  27. struct page *page, bio_end_io_t end_io)
  28. {
  29. struct bio *bio;
  30. bio = bio_alloc(gfp_flags, 1);
  31. if (bio) {
  32. bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
  33. bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
  34. bio->bi_end_io = end_io;
  35. bio_add_page(bio, page, PAGE_SIZE, 0);
  36. BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
  37. }
  38. return bio;
  39. }
  40. void end_swap_bio_write(struct bio *bio)
  41. {
  42. struct page *page = bio->bi_io_vec[0].bv_page;
  43. if (bio->bi_status) {
  44. SetPageError(page);
  45. /*
  46. * We failed to write the page out to swap-space.
  47. * Re-dirty the page in order to avoid it being reclaimed.
  48. * Also print a dire warning that things will go BAD (tm)
  49. * very quickly.
  50. *
  51. * Also clear PG_reclaim to avoid rotate_reclaimable_page()
  52. */
  53. set_page_dirty(page);
  54. pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
  55. imajor(bio->bi_bdev->bd_inode),
  56. iminor(bio->bi_bdev->bd_inode),
  57. (unsigned long long)bio->bi_iter.bi_sector);
  58. ClearPageReclaim(page);
  59. }
  60. end_page_writeback(page);
  61. bio_put(bio);
  62. }
  63. static void swap_slot_free_notify(struct page *page)
  64. {
  65. struct swap_info_struct *sis;
  66. struct gendisk *disk;
  67. /*
  68. * There is no guarantee that the page is in swap cache - the software
  69. * suspend code (at least) uses end_swap_bio_read() against a non-
  70. * swapcache page. So we must check PG_swapcache before proceeding with
  71. * this optimization.
  72. */
  73. if (unlikely(!PageSwapCache(page)))
  74. return;
  75. sis = page_swap_info(page);
  76. if (!(sis->flags & SWP_BLKDEV))
  77. return;
  78. /*
  79. * The swap subsystem performs lazy swap slot freeing,
  80. * expecting that the page will be swapped out again.
  81. * So we can avoid an unnecessary write if the page
  82. * isn't redirtied.
  83. * This is good for real swap storage because we can
  84. * reduce unnecessary I/O and enhance wear-leveling
  85. * if an SSD is used as the as swap device.
  86. * But if in-memory swap device (eg zram) is used,
  87. * this causes a duplicated copy between uncompressed
  88. * data in VM-owned memory and compressed data in
  89. * zram-owned memory. So let's free zram-owned memory
  90. * and make the VM-owned decompressed page *dirty*,
  91. * so the page should be swapped out somewhere again if
  92. * we again wish to reclaim it.
  93. */
  94. disk = sis->bdev->bd_disk;
  95. if (disk->fops->swap_slot_free_notify) {
  96. swp_entry_t entry;
  97. unsigned long offset;
  98. entry.val = page_private(page);
  99. offset = swp_offset(entry);
  100. SetPageDirty(page);
  101. disk->fops->swap_slot_free_notify(sis->bdev,
  102. offset);
  103. }
  104. }
  105. static void end_swap_bio_read(struct bio *bio)
  106. {
  107. struct page *page = bio->bi_io_vec[0].bv_page;
  108. struct task_struct *waiter = bio->bi_private;
  109. if (bio->bi_status) {
  110. SetPageError(page);
  111. ClearPageUptodate(page);
  112. pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
  113. imajor(bio->bi_bdev->bd_inode),
  114. iminor(bio->bi_bdev->bd_inode),
  115. (unsigned long long)bio->bi_iter.bi_sector);
  116. goto out;
  117. }
  118. SetPageUptodate(page);
  119. swap_slot_free_notify(page);
  120. out:
  121. unlock_page(page);
  122. WRITE_ONCE(bio->bi_private, NULL);
  123. bio_put(bio);
  124. wake_up_process(waiter);
  125. put_task_struct(waiter);
  126. }
  127. int generic_swapfile_activate(struct swap_info_struct *sis,
  128. struct file *swap_file,
  129. sector_t *span)
  130. {
  131. struct address_space *mapping = swap_file->f_mapping;
  132. struct inode *inode = mapping->host;
  133. unsigned blocks_per_page;
  134. unsigned long page_no;
  135. unsigned blkbits;
  136. sector_t probe_block;
  137. sector_t last_block;
  138. sector_t lowest_block = -1;
  139. sector_t highest_block = 0;
  140. int nr_extents = 0;
  141. int ret;
  142. blkbits = inode->i_blkbits;
  143. blocks_per_page = PAGE_SIZE >> blkbits;
  144. /*
  145. * Map all the blocks into the extent list. This code doesn't try
  146. * to be very smart.
  147. */
  148. probe_block = 0;
  149. page_no = 0;
  150. last_block = i_size_read(inode) >> blkbits;
  151. while ((probe_block + blocks_per_page) <= last_block &&
  152. page_no < sis->max) {
  153. unsigned block_in_page;
  154. sector_t first_block;
  155. cond_resched();
  156. first_block = bmap(inode, probe_block);
  157. if (first_block == 0)
  158. goto bad_bmap;
  159. /*
  160. * It must be PAGE_SIZE aligned on-disk
  161. */
  162. if (first_block & (blocks_per_page - 1)) {
  163. probe_block++;
  164. goto reprobe;
  165. }
  166. for (block_in_page = 1; block_in_page < blocks_per_page;
  167. block_in_page++) {
  168. sector_t block;
  169. block = bmap(inode, probe_block + block_in_page);
  170. if (block == 0)
  171. goto bad_bmap;
  172. if (block != first_block + block_in_page) {
  173. /* Discontiguity */
  174. probe_block++;
  175. goto reprobe;
  176. }
  177. }
  178. first_block >>= (PAGE_SHIFT - blkbits);
  179. if (page_no) { /* exclude the header page */
  180. if (first_block < lowest_block)
  181. lowest_block = first_block;
  182. if (first_block > highest_block)
  183. highest_block = first_block;
  184. }
  185. /*
  186. * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
  187. */
  188. ret = add_swap_extent(sis, page_no, 1, first_block);
  189. if (ret < 0)
  190. goto out;
  191. nr_extents += ret;
  192. page_no++;
  193. probe_block += blocks_per_page;
  194. reprobe:
  195. continue;
  196. }
  197. ret = nr_extents;
  198. *span = 1 + highest_block - lowest_block;
  199. if (page_no == 0)
  200. page_no = 1; /* force Empty message */
  201. sis->max = page_no;
  202. sis->pages = page_no - 1;
  203. sis->highest_bit = page_no - 1;
  204. out:
  205. return ret;
  206. bad_bmap:
  207. pr_err("swapon: swapfile has holes\n");
  208. ret = -EINVAL;
  209. goto out;
  210. }
  211. /*
  212. * We may have stale swap cache pages in memory: notice
  213. * them here and get rid of the unnecessary final write.
  214. */
  215. int swap_writepage(struct page *page, struct writeback_control *wbc)
  216. {
  217. int ret = 0;
  218. if (try_to_free_swap(page)) {
  219. unlock_page(page);
  220. goto out;
  221. }
  222. if (frontswap_store(page) == 0) {
  223. set_page_writeback(page);
  224. unlock_page(page);
  225. end_page_writeback(page);
  226. goto out;
  227. }
  228. ret = __swap_writepage(page, wbc, end_swap_bio_write);
  229. out:
  230. return ret;
  231. }
  232. static sector_t swap_page_sector(struct page *page)
  233. {
  234. return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
  235. }
  236. int __swap_writepage(struct page *page, struct writeback_control *wbc,
  237. bio_end_io_t end_write_func)
  238. {
  239. struct bio *bio;
  240. int ret;
  241. struct swap_info_struct *sis = page_swap_info(page);
  242. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  243. if (sis->flags & SWP_FILE) {
  244. struct kiocb kiocb;
  245. struct file *swap_file = sis->swap_file;
  246. struct address_space *mapping = swap_file->f_mapping;
  247. struct bio_vec bv = {
  248. .bv_page = page,
  249. .bv_len = PAGE_SIZE,
  250. .bv_offset = 0
  251. };
  252. struct iov_iter from;
  253. iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
  254. init_sync_kiocb(&kiocb, swap_file);
  255. kiocb.ki_pos = page_file_offset(page);
  256. set_page_writeback(page);
  257. unlock_page(page);
  258. ret = mapping->a_ops->direct_IO(&kiocb, &from);
  259. if (ret == PAGE_SIZE) {
  260. count_vm_event(PSWPOUT);
  261. ret = 0;
  262. } else {
  263. /*
  264. * In the case of swap-over-nfs, this can be a
  265. * temporary failure if the system has limited
  266. * memory for allocating transmit buffers.
  267. * Mark the page dirty and avoid
  268. * rotate_reclaimable_page but rate-limit the
  269. * messages but do not flag PageError like
  270. * the normal direct-to-bio case as it could
  271. * be temporary.
  272. */
  273. set_page_dirty(page);
  274. ClearPageReclaim(page);
  275. pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
  276. page_file_offset(page));
  277. }
  278. end_page_writeback(page);
  279. return ret;
  280. }
  281. ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
  282. if (!ret) {
  283. count_vm_event(PSWPOUT);
  284. return 0;
  285. }
  286. ret = 0;
  287. bio = get_swap_bio(GFP_NOIO, page, end_write_func);
  288. if (bio == NULL) {
  289. set_page_dirty(page);
  290. unlock_page(page);
  291. ret = -ENOMEM;
  292. goto out;
  293. }
  294. bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
  295. count_vm_event(PSWPOUT);
  296. set_page_writeback(page);
  297. unlock_page(page);
  298. submit_bio(bio);
  299. out:
  300. return ret;
  301. }
  302. int swap_readpage(struct page *page, bool do_poll)
  303. {
  304. struct bio *bio;
  305. int ret = 0;
  306. struct swap_info_struct *sis = page_swap_info(page);
  307. blk_qc_t qc;
  308. struct block_device *bdev;
  309. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  310. VM_BUG_ON_PAGE(!PageLocked(page), page);
  311. VM_BUG_ON_PAGE(PageUptodate(page), page);
  312. if (frontswap_load(page) == 0) {
  313. SetPageUptodate(page);
  314. unlock_page(page);
  315. goto out;
  316. }
  317. if (sis->flags & SWP_FILE) {
  318. struct file *swap_file = sis->swap_file;
  319. struct address_space *mapping = swap_file->f_mapping;
  320. ret = mapping->a_ops->readpage(swap_file, page);
  321. if (!ret)
  322. count_vm_event(PSWPIN);
  323. return ret;
  324. }
  325. ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
  326. if (!ret) {
  327. if (trylock_page(page)) {
  328. swap_slot_free_notify(page);
  329. unlock_page(page);
  330. }
  331. count_vm_event(PSWPIN);
  332. return 0;
  333. }
  334. ret = 0;
  335. bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
  336. if (bio == NULL) {
  337. unlock_page(page);
  338. ret = -ENOMEM;
  339. goto out;
  340. }
  341. bdev = bio->bi_bdev;
  342. /*
  343. * Keep this task valid during swap readpage because the oom killer may
  344. * attempt to access it in the page fault retry time check.
  345. */
  346. get_task_struct(current);
  347. bio->bi_private = current;
  348. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  349. count_vm_event(PSWPIN);
  350. bio_get(bio);
  351. qc = submit_bio(bio);
  352. while (do_poll) {
  353. set_current_state(TASK_UNINTERRUPTIBLE);
  354. if (!READ_ONCE(bio->bi_private))
  355. break;
  356. if (!blk_mq_poll(bdev_get_queue(bdev), qc))
  357. break;
  358. }
  359. __set_current_state(TASK_RUNNING);
  360. bio_put(bio);
  361. out:
  362. return ret;
  363. }
  364. int swap_set_page_dirty(struct page *page)
  365. {
  366. struct swap_info_struct *sis = page_swap_info(page);
  367. if (sis->flags & SWP_FILE) {
  368. struct address_space *mapping = sis->swap_file->f_mapping;
  369. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  370. return mapping->a_ops->set_page_dirty(page);
  371. } else {
  372. return __set_page_dirty_no_writeback(page);
  373. }
  374. }