oom_kill.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. * Copyright (C) 2010 Google, Inc.
  8. * Rewritten by David Rientjes
  9. *
  10. * The routines in this file are used to kill a process when
  11. * we're seriously out of memory. This gets called from __alloc_pages()
  12. * in mm/page_alloc.c when we really run out of memory.
  13. *
  14. * Since we won't call these routines often (on a well-configured
  15. * machine) this file will double as a 'coding guide' and a signpost
  16. * for newbie kernel hackers. It features several pointers to major
  17. * kernel subsystems and hints as to where to find out what things do.
  18. */
  19. #include <linux/oom.h>
  20. #include <linux/mm.h>
  21. #include <linux/err.h>
  22. #include <linux/gfp.h>
  23. #include <linux/sched.h>
  24. #include <linux/sched/mm.h>
  25. #include <linux/sched/coredump.h>
  26. #include <linux/sched/task.h>
  27. #include <linux/swap.h>
  28. #include <linux/timex.h>
  29. #include <linux/jiffies.h>
  30. #include <linux/cpuset.h>
  31. #include <linux/export.h>
  32. #include <linux/notifier.h>
  33. #include <linux/memcontrol.h>
  34. #include <linux/mempolicy.h>
  35. #include <linux/security.h>
  36. #include <linux/ptrace.h>
  37. #include <linux/freezer.h>
  38. #include <linux/ftrace.h>
  39. #include <linux/ratelimit.h>
  40. #include <linux/kthread.h>
  41. #include <linux/init.h>
  42. #include <asm/tlb.h>
  43. #include "internal.h"
  44. #define CREATE_TRACE_POINTS
  45. #include <trace/events/oom.h>
  46. int sysctl_panic_on_oom;
  47. int sysctl_oom_kill_allocating_task;
  48. int sysctl_oom_dump_tasks = 1;
  49. DEFINE_MUTEX(oom_lock);
  50. #ifdef CONFIG_NUMA
  51. /**
  52. * has_intersects_mems_allowed() - check task eligiblity for kill
  53. * @start: task struct of which task to consider
  54. * @mask: nodemask passed to page allocator for mempolicy ooms
  55. *
  56. * Task eligibility is determined by whether or not a candidate task, @tsk,
  57. * shares the same mempolicy nodes as current if it is bound by such a policy
  58. * and whether or not it has the same set of allowed cpuset nodes.
  59. */
  60. static bool has_intersects_mems_allowed(struct task_struct *start,
  61. const nodemask_t *mask)
  62. {
  63. struct task_struct *tsk;
  64. bool ret = false;
  65. rcu_read_lock();
  66. for_each_thread(start, tsk) {
  67. if (mask) {
  68. /*
  69. * If this is a mempolicy constrained oom, tsk's
  70. * cpuset is irrelevant. Only return true if its
  71. * mempolicy intersects current, otherwise it may be
  72. * needlessly killed.
  73. */
  74. ret = mempolicy_nodemask_intersects(tsk, mask);
  75. } else {
  76. /*
  77. * This is not a mempolicy constrained oom, so only
  78. * check the mems of tsk's cpuset.
  79. */
  80. ret = cpuset_mems_allowed_intersects(current, tsk);
  81. }
  82. if (ret)
  83. break;
  84. }
  85. rcu_read_unlock();
  86. return ret;
  87. }
  88. #else
  89. static bool has_intersects_mems_allowed(struct task_struct *tsk,
  90. const nodemask_t *mask)
  91. {
  92. return true;
  93. }
  94. #endif /* CONFIG_NUMA */
  95. /*
  96. * The process p may have detached its own ->mm while exiting or through
  97. * use_mm(), but one or more of its subthreads may still have a valid
  98. * pointer. Return p, or any of its subthreads with a valid ->mm, with
  99. * task_lock() held.
  100. */
  101. struct task_struct *find_lock_task_mm(struct task_struct *p)
  102. {
  103. struct task_struct *t;
  104. rcu_read_lock();
  105. for_each_thread(p, t) {
  106. task_lock(t);
  107. if (likely(t->mm))
  108. goto found;
  109. task_unlock(t);
  110. }
  111. t = NULL;
  112. found:
  113. rcu_read_unlock();
  114. return t;
  115. }
  116. /*
  117. * order == -1 means the oom kill is required by sysrq, otherwise only
  118. * for display purposes.
  119. */
  120. static inline bool is_sysrq_oom(struct oom_control *oc)
  121. {
  122. return oc->order == -1;
  123. }
  124. static inline bool is_memcg_oom(struct oom_control *oc)
  125. {
  126. return oc->memcg != NULL;
  127. }
  128. /* return true if the task is not adequate as candidate victim task. */
  129. static bool oom_unkillable_task(struct task_struct *p,
  130. struct mem_cgroup *memcg, const nodemask_t *nodemask)
  131. {
  132. if (is_global_init(p))
  133. return true;
  134. if (p->flags & PF_KTHREAD)
  135. return true;
  136. /* When mem_cgroup_out_of_memory() and p is not member of the group */
  137. if (memcg && !task_in_mem_cgroup(p, memcg))
  138. return true;
  139. /* p may not have freeable memory in nodemask */
  140. if (!has_intersects_mems_allowed(p, nodemask))
  141. return true;
  142. return false;
  143. }
  144. /**
  145. * oom_badness - heuristic function to determine which candidate task to kill
  146. * @p: task struct of which task we should calculate
  147. * @totalpages: total present RAM allowed for page allocation
  148. *
  149. * The heuristic for determining which task to kill is made to be as simple and
  150. * predictable as possible. The goal is to return the highest value for the
  151. * task consuming the most memory to avoid subsequent oom failures.
  152. */
  153. unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
  154. const nodemask_t *nodemask, unsigned long totalpages)
  155. {
  156. long points;
  157. long adj;
  158. if (oom_unkillable_task(p, memcg, nodemask))
  159. return 0;
  160. p = find_lock_task_mm(p);
  161. if (!p)
  162. return 0;
  163. /*
  164. * Do not even consider tasks which are explicitly marked oom
  165. * unkillable or have been already oom reaped or the are in
  166. * the middle of vfork
  167. */
  168. adj = (long)p->signal->oom_score_adj;
  169. if (adj == OOM_SCORE_ADJ_MIN ||
  170. test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
  171. in_vfork(p)) {
  172. task_unlock(p);
  173. return 0;
  174. }
  175. /*
  176. * The baseline for the badness score is the proportion of RAM that each
  177. * task's rss, pagetable and swap space use.
  178. */
  179. points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
  180. atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
  181. task_unlock(p);
  182. /*
  183. * Root processes get 3% bonus, just like the __vm_enough_memory()
  184. * implementation used by LSMs.
  185. */
  186. if (has_capability_noaudit(p, CAP_SYS_ADMIN))
  187. points -= (points * 3) / 100;
  188. /* Normalize to oom_score_adj units */
  189. adj *= totalpages / 1000;
  190. points += adj;
  191. /*
  192. * Never return 0 for an eligible task regardless of the root bonus and
  193. * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
  194. */
  195. return points > 0 ? points : 1;
  196. }
  197. enum oom_constraint {
  198. CONSTRAINT_NONE,
  199. CONSTRAINT_CPUSET,
  200. CONSTRAINT_MEMORY_POLICY,
  201. CONSTRAINT_MEMCG,
  202. };
  203. /*
  204. * Determine the type of allocation constraint.
  205. */
  206. static enum oom_constraint constrained_alloc(struct oom_control *oc)
  207. {
  208. struct zone *zone;
  209. struct zoneref *z;
  210. enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
  211. bool cpuset_limited = false;
  212. int nid;
  213. if (is_memcg_oom(oc)) {
  214. oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
  215. return CONSTRAINT_MEMCG;
  216. }
  217. /* Default to all available memory */
  218. oc->totalpages = totalram_pages + total_swap_pages;
  219. if (!IS_ENABLED(CONFIG_NUMA))
  220. return CONSTRAINT_NONE;
  221. if (!oc->zonelist)
  222. return CONSTRAINT_NONE;
  223. /*
  224. * Reach here only when __GFP_NOFAIL is used. So, we should avoid
  225. * to kill current.We have to random task kill in this case.
  226. * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
  227. */
  228. if (oc->gfp_mask & __GFP_THISNODE)
  229. return CONSTRAINT_NONE;
  230. /*
  231. * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
  232. * the page allocator means a mempolicy is in effect. Cpuset policy
  233. * is enforced in get_page_from_freelist().
  234. */
  235. if (oc->nodemask &&
  236. !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
  237. oc->totalpages = total_swap_pages;
  238. for_each_node_mask(nid, *oc->nodemask)
  239. oc->totalpages += node_spanned_pages(nid);
  240. return CONSTRAINT_MEMORY_POLICY;
  241. }
  242. /* Check this allocation failure is caused by cpuset's wall function */
  243. for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
  244. high_zoneidx, oc->nodemask)
  245. if (!cpuset_zone_allowed(zone, oc->gfp_mask))
  246. cpuset_limited = true;
  247. if (cpuset_limited) {
  248. oc->totalpages = total_swap_pages;
  249. for_each_node_mask(nid, cpuset_current_mems_allowed)
  250. oc->totalpages += node_spanned_pages(nid);
  251. return CONSTRAINT_CPUSET;
  252. }
  253. return CONSTRAINT_NONE;
  254. }
  255. static int oom_evaluate_task(struct task_struct *task, void *arg)
  256. {
  257. struct oom_control *oc = arg;
  258. unsigned long points;
  259. if (oom_unkillable_task(task, NULL, oc->nodemask))
  260. goto next;
  261. /*
  262. * This task already has access to memory reserves and is being killed.
  263. * Don't allow any other task to have access to the reserves unless
  264. * the task has MMF_OOM_SKIP because chances that it would release
  265. * any memory is quite low.
  266. */
  267. if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
  268. if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
  269. goto next;
  270. goto abort;
  271. }
  272. /*
  273. * If task is allocating a lot of memory and has been marked to be
  274. * killed first if it triggers an oom, then select it.
  275. */
  276. if (oom_task_origin(task)) {
  277. points = ULONG_MAX;
  278. goto select;
  279. }
  280. points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
  281. if (!points || points < oc->chosen_points)
  282. goto next;
  283. /* Prefer thread group leaders for display purposes */
  284. if (points == oc->chosen_points && thread_group_leader(oc->chosen))
  285. goto next;
  286. select:
  287. if (oc->chosen)
  288. put_task_struct(oc->chosen);
  289. get_task_struct(task);
  290. oc->chosen = task;
  291. oc->chosen_points = points;
  292. next:
  293. return 0;
  294. abort:
  295. if (oc->chosen)
  296. put_task_struct(oc->chosen);
  297. oc->chosen = (void *)-1UL;
  298. return 1;
  299. }
  300. /*
  301. * Simple selection loop. We choose the process with the highest number of
  302. * 'points'. In case scan was aborted, oc->chosen is set to -1.
  303. */
  304. static void select_bad_process(struct oom_control *oc)
  305. {
  306. if (is_memcg_oom(oc))
  307. mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
  308. else {
  309. struct task_struct *p;
  310. rcu_read_lock();
  311. for_each_process(p)
  312. if (oom_evaluate_task(p, oc))
  313. break;
  314. rcu_read_unlock();
  315. }
  316. oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
  317. }
  318. /**
  319. * dump_tasks - dump current memory state of all system tasks
  320. * @memcg: current's memory controller, if constrained
  321. * @nodemask: nodemask passed to page allocator for mempolicy ooms
  322. *
  323. * Dumps the current memory state of all eligible tasks. Tasks not in the same
  324. * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
  325. * are not shown.
  326. * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
  327. * swapents, oom_score_adj value, and name.
  328. */
  329. static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
  330. {
  331. struct task_struct *p;
  332. struct task_struct *task;
  333. pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
  334. rcu_read_lock();
  335. for_each_process(p) {
  336. if (oom_unkillable_task(p, memcg, nodemask))
  337. continue;
  338. task = find_lock_task_mm(p);
  339. if (!task) {
  340. /*
  341. * This is a kthread or all of p's threads have already
  342. * detached their mm's. There's no need to report
  343. * them; they can't be oom killed anyway.
  344. */
  345. continue;
  346. }
  347. pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
  348. task->pid, from_kuid(&init_user_ns, task_uid(task)),
  349. task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
  350. atomic_long_read(&task->mm->nr_ptes),
  351. mm_nr_pmds(task->mm),
  352. get_mm_counter(task->mm, MM_SWAPENTS),
  353. task->signal->oom_score_adj, task->comm);
  354. task_unlock(task);
  355. }
  356. rcu_read_unlock();
  357. }
  358. static void dump_header(struct oom_control *oc, struct task_struct *p)
  359. {
  360. pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=",
  361. current->comm, oc->gfp_mask, &oc->gfp_mask);
  362. if (oc->nodemask)
  363. pr_cont("%*pbl", nodemask_pr_args(oc->nodemask));
  364. else
  365. pr_cont("(null)");
  366. pr_cont(", order=%d, oom_score_adj=%hd\n",
  367. oc->order, current->signal->oom_score_adj);
  368. if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
  369. pr_warn("COMPACTION is disabled!!!\n");
  370. cpuset_print_current_mems_allowed();
  371. dump_stack();
  372. if (oc->memcg)
  373. mem_cgroup_print_oom_info(oc->memcg, p);
  374. else
  375. show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
  376. if (sysctl_oom_dump_tasks)
  377. dump_tasks(oc->memcg, oc->nodemask);
  378. }
  379. /*
  380. * Number of OOM victims in flight
  381. */
  382. static atomic_t oom_victims = ATOMIC_INIT(0);
  383. static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
  384. static bool oom_killer_disabled __read_mostly;
  385. #define K(x) ((x) << (PAGE_SHIFT-10))
  386. /*
  387. * task->mm can be NULL if the task is the exited group leader. So to
  388. * determine whether the task is using a particular mm, we examine all the
  389. * task's threads: if one of those is using this mm then this task was also
  390. * using it.
  391. */
  392. bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
  393. {
  394. struct task_struct *t;
  395. for_each_thread(p, t) {
  396. struct mm_struct *t_mm = READ_ONCE(t->mm);
  397. if (t_mm)
  398. return t_mm == mm;
  399. }
  400. return false;
  401. }
  402. #ifdef CONFIG_MMU
  403. /*
  404. * OOM Reaper kernel thread which tries to reap the memory used by the OOM
  405. * victim (if that is possible) to help the OOM killer to move on.
  406. */
  407. static struct task_struct *oom_reaper_th;
  408. static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
  409. static struct task_struct *oom_reaper_list;
  410. static DEFINE_SPINLOCK(oom_reaper_lock);
  411. static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
  412. {
  413. struct mmu_gather tlb;
  414. struct vm_area_struct *vma;
  415. bool ret = true;
  416. /*
  417. * We have to make sure to not race with the victim exit path
  418. * and cause premature new oom victim selection:
  419. * __oom_reap_task_mm exit_mm
  420. * mmget_not_zero
  421. * mmput
  422. * atomic_dec_and_test
  423. * exit_oom_victim
  424. * [...]
  425. * out_of_memory
  426. * select_bad_process
  427. * # no TIF_MEMDIE task selects new victim
  428. * unmap_page_range # frees some memory
  429. */
  430. mutex_lock(&oom_lock);
  431. if (!down_read_trylock(&mm->mmap_sem)) {
  432. ret = false;
  433. trace_skip_task_reaping(tsk->pid);
  434. goto unlock_oom;
  435. }
  436. /*
  437. * increase mm_users only after we know we will reap something so
  438. * that the mmput_async is called only when we have reaped something
  439. * and delayed __mmput doesn't matter that much
  440. */
  441. if (!mmget_not_zero(mm)) {
  442. up_read(&mm->mmap_sem);
  443. trace_skip_task_reaping(tsk->pid);
  444. goto unlock_oom;
  445. }
  446. trace_start_task_reaping(tsk->pid);
  447. /*
  448. * Tell all users of get_user/copy_from_user etc... that the content
  449. * is no longer stable. No barriers really needed because unmapping
  450. * should imply barriers already and the reader would hit a page fault
  451. * if it stumbled over a reaped memory.
  452. */
  453. set_bit(MMF_UNSTABLE, &mm->flags);
  454. tlb_gather_mmu(&tlb, mm, 0, -1);
  455. for (vma = mm->mmap ; vma; vma = vma->vm_next) {
  456. if (!can_madv_dontneed_vma(vma))
  457. continue;
  458. /*
  459. * Only anonymous pages have a good chance to be dropped
  460. * without additional steps which we cannot afford as we
  461. * are OOM already.
  462. *
  463. * We do not even care about fs backed pages because all
  464. * which are reclaimable have already been reclaimed and
  465. * we do not want to block exit_mmap by keeping mm ref
  466. * count elevated without a good reason.
  467. */
  468. if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
  469. unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
  470. NULL);
  471. }
  472. tlb_finish_mmu(&tlb, 0, -1);
  473. pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
  474. task_pid_nr(tsk), tsk->comm,
  475. K(get_mm_counter(mm, MM_ANONPAGES)),
  476. K(get_mm_counter(mm, MM_FILEPAGES)),
  477. K(get_mm_counter(mm, MM_SHMEMPAGES)));
  478. up_read(&mm->mmap_sem);
  479. /*
  480. * Drop our reference but make sure the mmput slow path is called from a
  481. * different context because we shouldn't risk we get stuck there and
  482. * put the oom_reaper out of the way.
  483. */
  484. mmput_async(mm);
  485. trace_finish_task_reaping(tsk->pid);
  486. unlock_oom:
  487. mutex_unlock(&oom_lock);
  488. return ret;
  489. }
  490. #define MAX_OOM_REAP_RETRIES 10
  491. static void oom_reap_task(struct task_struct *tsk)
  492. {
  493. int attempts = 0;
  494. struct mm_struct *mm = tsk->signal->oom_mm;
  495. /* Retry the down_read_trylock(mmap_sem) a few times */
  496. while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
  497. schedule_timeout_idle(HZ/10);
  498. if (attempts <= MAX_OOM_REAP_RETRIES)
  499. goto done;
  500. pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
  501. task_pid_nr(tsk), tsk->comm);
  502. debug_show_all_locks();
  503. done:
  504. tsk->oom_reaper_list = NULL;
  505. /*
  506. * Hide this mm from OOM killer because it has been either reaped or
  507. * somebody can't call up_write(mmap_sem).
  508. */
  509. set_bit(MMF_OOM_SKIP, &mm->flags);
  510. /* Drop a reference taken by wake_oom_reaper */
  511. put_task_struct(tsk);
  512. }
  513. static int oom_reaper(void *unused)
  514. {
  515. while (true) {
  516. struct task_struct *tsk = NULL;
  517. wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
  518. spin_lock(&oom_reaper_lock);
  519. if (oom_reaper_list != NULL) {
  520. tsk = oom_reaper_list;
  521. oom_reaper_list = tsk->oom_reaper_list;
  522. }
  523. spin_unlock(&oom_reaper_lock);
  524. if (tsk)
  525. oom_reap_task(tsk);
  526. }
  527. return 0;
  528. }
  529. static void wake_oom_reaper(struct task_struct *tsk)
  530. {
  531. if (!oom_reaper_th)
  532. return;
  533. /* tsk is already queued? */
  534. if (tsk == oom_reaper_list || tsk->oom_reaper_list)
  535. return;
  536. get_task_struct(tsk);
  537. spin_lock(&oom_reaper_lock);
  538. tsk->oom_reaper_list = oom_reaper_list;
  539. oom_reaper_list = tsk;
  540. spin_unlock(&oom_reaper_lock);
  541. trace_wake_reaper(tsk->pid);
  542. wake_up(&oom_reaper_wait);
  543. }
  544. static int __init oom_init(void)
  545. {
  546. oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
  547. if (IS_ERR(oom_reaper_th)) {
  548. pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
  549. PTR_ERR(oom_reaper_th));
  550. oom_reaper_th = NULL;
  551. }
  552. return 0;
  553. }
  554. subsys_initcall(oom_init)
  555. #else
  556. static inline void wake_oom_reaper(struct task_struct *tsk)
  557. {
  558. }
  559. #endif /* CONFIG_MMU */
  560. /**
  561. * mark_oom_victim - mark the given task as OOM victim
  562. * @tsk: task to mark
  563. *
  564. * Has to be called with oom_lock held and never after
  565. * oom has been disabled already.
  566. *
  567. * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
  568. * under task_lock or operate on the current).
  569. */
  570. static void mark_oom_victim(struct task_struct *tsk)
  571. {
  572. struct mm_struct *mm = tsk->mm;
  573. WARN_ON(oom_killer_disabled);
  574. /* OOM killer might race with memcg OOM */
  575. if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
  576. return;
  577. /* oom_mm is bound to the signal struct life time. */
  578. if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
  579. mmgrab(tsk->signal->oom_mm);
  580. /*
  581. * Make sure that the task is woken up from uninterruptible sleep
  582. * if it is frozen because OOM killer wouldn't be able to free
  583. * any memory and livelock. freezing_slow_path will tell the freezer
  584. * that TIF_MEMDIE tasks should be ignored.
  585. */
  586. __thaw_task(tsk);
  587. atomic_inc(&oom_victims);
  588. trace_mark_victim(tsk->pid);
  589. }
  590. /**
  591. * exit_oom_victim - note the exit of an OOM victim
  592. */
  593. void exit_oom_victim(void)
  594. {
  595. clear_thread_flag(TIF_MEMDIE);
  596. if (!atomic_dec_return(&oom_victims))
  597. wake_up_all(&oom_victims_wait);
  598. }
  599. /**
  600. * oom_killer_enable - enable OOM killer
  601. */
  602. void oom_killer_enable(void)
  603. {
  604. oom_killer_disabled = false;
  605. pr_info("OOM killer enabled.\n");
  606. }
  607. /**
  608. * oom_killer_disable - disable OOM killer
  609. * @timeout: maximum timeout to wait for oom victims in jiffies
  610. *
  611. * Forces all page allocations to fail rather than trigger OOM killer.
  612. * Will block and wait until all OOM victims are killed or the given
  613. * timeout expires.
  614. *
  615. * The function cannot be called when there are runnable user tasks because
  616. * the userspace would see unexpected allocation failures as a result. Any
  617. * new usage of this function should be consulted with MM people.
  618. *
  619. * Returns true if successful and false if the OOM killer cannot be
  620. * disabled.
  621. */
  622. bool oom_killer_disable(signed long timeout)
  623. {
  624. signed long ret;
  625. /*
  626. * Make sure to not race with an ongoing OOM killer. Check that the
  627. * current is not killed (possibly due to sharing the victim's memory).
  628. */
  629. if (mutex_lock_killable(&oom_lock))
  630. return false;
  631. oom_killer_disabled = true;
  632. mutex_unlock(&oom_lock);
  633. ret = wait_event_interruptible_timeout(oom_victims_wait,
  634. !atomic_read(&oom_victims), timeout);
  635. if (ret <= 0) {
  636. oom_killer_enable();
  637. return false;
  638. }
  639. pr_info("OOM killer disabled.\n");
  640. return true;
  641. }
  642. static inline bool __task_will_free_mem(struct task_struct *task)
  643. {
  644. struct signal_struct *sig = task->signal;
  645. /*
  646. * A coredumping process may sleep for an extended period in exit_mm(),
  647. * so the oom killer cannot assume that the process will promptly exit
  648. * and release memory.
  649. */
  650. if (sig->flags & SIGNAL_GROUP_COREDUMP)
  651. return false;
  652. if (sig->flags & SIGNAL_GROUP_EXIT)
  653. return true;
  654. if (thread_group_empty(task) && (task->flags & PF_EXITING))
  655. return true;
  656. return false;
  657. }
  658. /*
  659. * Checks whether the given task is dying or exiting and likely to
  660. * release its address space. This means that all threads and processes
  661. * sharing the same mm have to be killed or exiting.
  662. * Caller has to make sure that task->mm is stable (hold task_lock or
  663. * it operates on the current).
  664. */
  665. static bool task_will_free_mem(struct task_struct *task)
  666. {
  667. struct mm_struct *mm = task->mm;
  668. struct task_struct *p;
  669. bool ret = true;
  670. /*
  671. * Skip tasks without mm because it might have passed its exit_mm and
  672. * exit_oom_victim. oom_reaper could have rescued that but do not rely
  673. * on that for now. We can consider find_lock_task_mm in future.
  674. */
  675. if (!mm)
  676. return false;
  677. if (!__task_will_free_mem(task))
  678. return false;
  679. /*
  680. * This task has already been drained by the oom reaper so there are
  681. * only small chances it will free some more
  682. */
  683. if (test_bit(MMF_OOM_SKIP, &mm->flags))
  684. return false;
  685. if (atomic_read(&mm->mm_users) <= 1)
  686. return true;
  687. /*
  688. * Make sure that all tasks which share the mm with the given tasks
  689. * are dying as well to make sure that a) nobody pins its mm and
  690. * b) the task is also reapable by the oom reaper.
  691. */
  692. rcu_read_lock();
  693. for_each_process(p) {
  694. if (!process_shares_mm(p, mm))
  695. continue;
  696. if (same_thread_group(task, p))
  697. continue;
  698. ret = __task_will_free_mem(p);
  699. if (!ret)
  700. break;
  701. }
  702. rcu_read_unlock();
  703. return ret;
  704. }
  705. static void oom_kill_process(struct oom_control *oc, const char *message)
  706. {
  707. struct task_struct *p = oc->chosen;
  708. unsigned int points = oc->chosen_points;
  709. struct task_struct *victim = p;
  710. struct task_struct *child;
  711. struct task_struct *t;
  712. struct mm_struct *mm;
  713. unsigned int victim_points = 0;
  714. static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  715. DEFAULT_RATELIMIT_BURST);
  716. bool can_oom_reap = true;
  717. /*
  718. * If the task is already exiting, don't alarm the sysadmin or kill
  719. * its children or threads, just set TIF_MEMDIE so it can die quickly
  720. */
  721. task_lock(p);
  722. if (task_will_free_mem(p)) {
  723. mark_oom_victim(p);
  724. wake_oom_reaper(p);
  725. task_unlock(p);
  726. put_task_struct(p);
  727. return;
  728. }
  729. task_unlock(p);
  730. if (__ratelimit(&oom_rs))
  731. dump_header(oc, p);
  732. pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
  733. message, task_pid_nr(p), p->comm, points);
  734. /*
  735. * If any of p's children has a different mm and is eligible for kill,
  736. * the one with the highest oom_badness() score is sacrificed for its
  737. * parent. This attempts to lose the minimal amount of work done while
  738. * still freeing memory.
  739. */
  740. read_lock(&tasklist_lock);
  741. for_each_thread(p, t) {
  742. list_for_each_entry(child, &t->children, sibling) {
  743. unsigned int child_points;
  744. if (process_shares_mm(child, p->mm))
  745. continue;
  746. /*
  747. * oom_badness() returns 0 if the thread is unkillable
  748. */
  749. child_points = oom_badness(child,
  750. oc->memcg, oc->nodemask, oc->totalpages);
  751. if (child_points > victim_points) {
  752. put_task_struct(victim);
  753. victim = child;
  754. victim_points = child_points;
  755. get_task_struct(victim);
  756. }
  757. }
  758. }
  759. read_unlock(&tasklist_lock);
  760. p = find_lock_task_mm(victim);
  761. if (!p) {
  762. put_task_struct(victim);
  763. return;
  764. } else if (victim != p) {
  765. get_task_struct(p);
  766. put_task_struct(victim);
  767. victim = p;
  768. }
  769. /* Get a reference to safely compare mm after task_unlock(victim) */
  770. mm = victim->mm;
  771. mmgrab(mm);
  772. /* Raise event before sending signal: task reaper must see this */
  773. count_vm_event(OOM_KILL);
  774. count_memcg_event_mm(mm, OOM_KILL);
  775. /*
  776. * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
  777. * the OOM victim from depleting the memory reserves from the user
  778. * space under its control.
  779. */
  780. do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
  781. mark_oom_victim(victim);
  782. pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
  783. task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
  784. K(get_mm_counter(victim->mm, MM_ANONPAGES)),
  785. K(get_mm_counter(victim->mm, MM_FILEPAGES)),
  786. K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
  787. task_unlock(victim);
  788. /*
  789. * Kill all user processes sharing victim->mm in other thread groups, if
  790. * any. They don't get access to memory reserves, though, to avoid
  791. * depletion of all memory. This prevents mm->mmap_sem livelock when an
  792. * oom killed thread cannot exit because it requires the semaphore and
  793. * its contended by another thread trying to allocate memory itself.
  794. * That thread will now get access to memory reserves since it has a
  795. * pending fatal signal.
  796. */
  797. rcu_read_lock();
  798. for_each_process(p) {
  799. if (!process_shares_mm(p, mm))
  800. continue;
  801. if (same_thread_group(p, victim))
  802. continue;
  803. if (is_global_init(p)) {
  804. can_oom_reap = false;
  805. set_bit(MMF_OOM_SKIP, &mm->flags);
  806. pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
  807. task_pid_nr(victim), victim->comm,
  808. task_pid_nr(p), p->comm);
  809. continue;
  810. }
  811. /*
  812. * No use_mm() user needs to read from the userspace so we are
  813. * ok to reap it.
  814. */
  815. if (unlikely(p->flags & PF_KTHREAD))
  816. continue;
  817. do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
  818. }
  819. rcu_read_unlock();
  820. if (can_oom_reap)
  821. wake_oom_reaper(victim);
  822. mmdrop(mm);
  823. put_task_struct(victim);
  824. }
  825. #undef K
  826. /*
  827. * Determines whether the kernel must panic because of the panic_on_oom sysctl.
  828. */
  829. static void check_panic_on_oom(struct oom_control *oc,
  830. enum oom_constraint constraint)
  831. {
  832. if (likely(!sysctl_panic_on_oom))
  833. return;
  834. if (sysctl_panic_on_oom != 2) {
  835. /*
  836. * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
  837. * does not panic for cpuset, mempolicy, or memcg allocation
  838. * failures.
  839. */
  840. if (constraint != CONSTRAINT_NONE)
  841. return;
  842. }
  843. /* Do not panic for oom kills triggered by sysrq */
  844. if (is_sysrq_oom(oc))
  845. return;
  846. dump_header(oc, NULL);
  847. panic("Out of memory: %s panic_on_oom is enabled\n",
  848. sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
  849. }
  850. static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
  851. int register_oom_notifier(struct notifier_block *nb)
  852. {
  853. return blocking_notifier_chain_register(&oom_notify_list, nb);
  854. }
  855. EXPORT_SYMBOL_GPL(register_oom_notifier);
  856. int unregister_oom_notifier(struct notifier_block *nb)
  857. {
  858. return blocking_notifier_chain_unregister(&oom_notify_list, nb);
  859. }
  860. EXPORT_SYMBOL_GPL(unregister_oom_notifier);
  861. /**
  862. * out_of_memory - kill the "best" process when we run out of memory
  863. * @oc: pointer to struct oom_control
  864. *
  865. * If we run out of memory, we have the choice between either
  866. * killing a random task (bad), letting the system crash (worse)
  867. * OR try to be smart about which process to kill. Note that we
  868. * don't have to be perfect here, we just have to be good.
  869. */
  870. bool out_of_memory(struct oom_control *oc)
  871. {
  872. unsigned long freed = 0;
  873. enum oom_constraint constraint = CONSTRAINT_NONE;
  874. if (oom_killer_disabled)
  875. return false;
  876. if (!is_memcg_oom(oc)) {
  877. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  878. if (freed > 0)
  879. /* Got some memory back in the last second. */
  880. return true;
  881. }
  882. /*
  883. * If current has a pending SIGKILL or is exiting, then automatically
  884. * select it. The goal is to allow it to allocate so that it may
  885. * quickly exit and free its memory.
  886. */
  887. if (task_will_free_mem(current)) {
  888. mark_oom_victim(current);
  889. wake_oom_reaper(current);
  890. return true;
  891. }
  892. /*
  893. * The OOM killer does not compensate for IO-less reclaim.
  894. * pagefault_out_of_memory lost its gfp context so we have to
  895. * make sure exclude 0 mask - all other users should have at least
  896. * ___GFP_DIRECT_RECLAIM to get here.
  897. */
  898. if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
  899. return true;
  900. /*
  901. * Check if there were limitations on the allocation (only relevant for
  902. * NUMA and memcg) that may require different handling.
  903. */
  904. constraint = constrained_alloc(oc);
  905. if (constraint != CONSTRAINT_MEMORY_POLICY)
  906. oc->nodemask = NULL;
  907. check_panic_on_oom(oc, constraint);
  908. if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
  909. current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
  910. current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
  911. get_task_struct(current);
  912. oc->chosen = current;
  913. oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
  914. return true;
  915. }
  916. select_bad_process(oc);
  917. /* Found nothing?!?! Either we hang forever, or we panic. */
  918. if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
  919. dump_header(oc, NULL);
  920. panic("Out of memory and no killable processes...\n");
  921. }
  922. if (oc->chosen && oc->chosen != (void *)-1UL) {
  923. oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
  924. "Memory cgroup out of memory");
  925. /*
  926. * Give the killed process a good chance to exit before trying
  927. * to allocate memory again.
  928. */
  929. schedule_timeout_killable(1);
  930. }
  931. return !!oc->chosen;
  932. }
  933. /*
  934. * The pagefault handler calls here because it is out of memory, so kill a
  935. * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
  936. * killing is already in progress so do nothing.
  937. */
  938. void pagefault_out_of_memory(void)
  939. {
  940. struct oom_control oc = {
  941. .zonelist = NULL,
  942. .nodemask = NULL,
  943. .memcg = NULL,
  944. .gfp_mask = 0,
  945. .order = 0,
  946. };
  947. if (mem_cgroup_oom_synchronize(true))
  948. return;
  949. if (!mutex_trylock(&oom_lock))
  950. return;
  951. out_of_memory(&oc);
  952. mutex_unlock(&oom_lock);
  953. }