memory-failure.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11. * failure.
  12. *
  13. * In addition there is a "soft offline" entry point that allows stop using
  14. * not-yet-corrupted-by-suspicious pages without killing anything.
  15. *
  16. * Handles page cache pages in various states. The tricky part
  17. * here is that we can access any page asynchronously in respect to
  18. * other VM users, because memory failures could happen anytime and
  19. * anywhere. This could violate some of their assumptions. This is why
  20. * this code has to be extremely careful. Generally it tries to use
  21. * normal locking rules, as in get the standard locks, even if that means
  22. * the error handling takes potentially a long time.
  23. *
  24. * It can be very tempting to add handling for obscure cases here.
  25. * In general any code for handling new cases should only be added iff:
  26. * - You know how to test it.
  27. * - You have a test that can be added to mce-test
  28. * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29. * - The case actually shows up as a frequent (top 10) page state in
  30. * tools/vm/page-types when running a real workload.
  31. *
  32. * There are several operations here with exponential complexity because
  33. * of unsuitable VM data structures. For example the operation to map back
  34. * from RMAP chains to processes has to walk the complete process list and
  35. * has non linear complexity with the number. But since memory corruptions
  36. * are rare we hope to get away with this. This avoids impacting the core
  37. * VM.
  38. */
  39. #include <linux/kernel.h>
  40. #include <linux/mm.h>
  41. #include <linux/page-flags.h>
  42. #include <linux/kernel-page-flags.h>
  43. #include <linux/sched/signal.h>
  44. #include <linux/sched/task.h>
  45. #include <linux/ksm.h>
  46. #include <linux/rmap.h>
  47. #include <linux/export.h>
  48. #include <linux/pagemap.h>
  49. #include <linux/swap.h>
  50. #include <linux/backing-dev.h>
  51. #include <linux/migrate.h>
  52. #include <linux/suspend.h>
  53. #include <linux/slab.h>
  54. #include <linux/swapops.h>
  55. #include <linux/hugetlb.h>
  56. #include <linux/memory_hotplug.h>
  57. #include <linux/mm_inline.h>
  58. #include <linux/kfifo.h>
  59. #include <linux/ratelimit.h>
  60. #include "internal.h"
  61. #include "ras/ras_event.h"
  62. int sysctl_memory_failure_early_kill __read_mostly = 0;
  63. int sysctl_memory_failure_recovery __read_mostly = 1;
  64. atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  65. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  66. u32 hwpoison_filter_enable = 0;
  67. u32 hwpoison_filter_dev_major = ~0U;
  68. u32 hwpoison_filter_dev_minor = ~0U;
  69. u64 hwpoison_filter_flags_mask;
  70. u64 hwpoison_filter_flags_value;
  71. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  72. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  73. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  74. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  75. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  76. static int hwpoison_filter_dev(struct page *p)
  77. {
  78. struct address_space *mapping;
  79. dev_t dev;
  80. if (hwpoison_filter_dev_major == ~0U &&
  81. hwpoison_filter_dev_minor == ~0U)
  82. return 0;
  83. /*
  84. * page_mapping() does not accept slab pages.
  85. */
  86. if (PageSlab(p))
  87. return -EINVAL;
  88. mapping = page_mapping(p);
  89. if (mapping == NULL || mapping->host == NULL)
  90. return -EINVAL;
  91. dev = mapping->host->i_sb->s_dev;
  92. if (hwpoison_filter_dev_major != ~0U &&
  93. hwpoison_filter_dev_major != MAJOR(dev))
  94. return -EINVAL;
  95. if (hwpoison_filter_dev_minor != ~0U &&
  96. hwpoison_filter_dev_minor != MINOR(dev))
  97. return -EINVAL;
  98. return 0;
  99. }
  100. static int hwpoison_filter_flags(struct page *p)
  101. {
  102. if (!hwpoison_filter_flags_mask)
  103. return 0;
  104. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  105. hwpoison_filter_flags_value)
  106. return 0;
  107. else
  108. return -EINVAL;
  109. }
  110. /*
  111. * This allows stress tests to limit test scope to a collection of tasks
  112. * by putting them under some memcg. This prevents killing unrelated/important
  113. * processes such as /sbin/init. Note that the target task may share clean
  114. * pages with init (eg. libc text), which is harmless. If the target task
  115. * share _dirty_ pages with another task B, the test scheme must make sure B
  116. * is also included in the memcg. At last, due to race conditions this filter
  117. * can only guarantee that the page either belongs to the memcg tasks, or is
  118. * a freed page.
  119. */
  120. #ifdef CONFIG_MEMCG
  121. u64 hwpoison_filter_memcg;
  122. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  123. static int hwpoison_filter_task(struct page *p)
  124. {
  125. if (!hwpoison_filter_memcg)
  126. return 0;
  127. if (page_cgroup_ino(p) != hwpoison_filter_memcg)
  128. return -EINVAL;
  129. return 0;
  130. }
  131. #else
  132. static int hwpoison_filter_task(struct page *p) { return 0; }
  133. #endif
  134. int hwpoison_filter(struct page *p)
  135. {
  136. if (!hwpoison_filter_enable)
  137. return 0;
  138. if (hwpoison_filter_dev(p))
  139. return -EINVAL;
  140. if (hwpoison_filter_flags(p))
  141. return -EINVAL;
  142. if (hwpoison_filter_task(p))
  143. return -EINVAL;
  144. return 0;
  145. }
  146. #else
  147. int hwpoison_filter(struct page *p)
  148. {
  149. return 0;
  150. }
  151. #endif
  152. EXPORT_SYMBOL_GPL(hwpoison_filter);
  153. /*
  154. * Send all the processes who have the page mapped a signal.
  155. * ``action optional'' if they are not immediately affected by the error
  156. * ``action required'' if error happened in current execution context
  157. */
  158. static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
  159. unsigned long pfn, struct page *page, int flags)
  160. {
  161. struct siginfo si;
  162. int ret;
  163. pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
  164. pfn, t->comm, t->pid);
  165. si.si_signo = SIGBUS;
  166. si.si_errno = 0;
  167. si.si_addr = (void *)addr;
  168. #ifdef __ARCH_SI_TRAPNO
  169. si.si_trapno = trapno;
  170. #endif
  171. si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
  172. if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
  173. si.si_code = BUS_MCEERR_AR;
  174. ret = force_sig_info(SIGBUS, &si, current);
  175. } else {
  176. /*
  177. * Don't use force here, it's convenient if the signal
  178. * can be temporarily blocked.
  179. * This could cause a loop when the user sets SIGBUS
  180. * to SIG_IGN, but hopefully no one will do that?
  181. */
  182. si.si_code = BUS_MCEERR_AO;
  183. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  184. }
  185. if (ret < 0)
  186. pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
  187. t->comm, t->pid, ret);
  188. return ret;
  189. }
  190. /*
  191. * When a unknown page type is encountered drain as many buffers as possible
  192. * in the hope to turn the page into a LRU or free page, which we can handle.
  193. */
  194. void shake_page(struct page *p, int access)
  195. {
  196. if (PageHuge(p))
  197. return;
  198. if (!PageSlab(p)) {
  199. lru_add_drain_all();
  200. if (PageLRU(p))
  201. return;
  202. drain_all_pages(page_zone(p));
  203. if (PageLRU(p) || is_free_buddy_page(p))
  204. return;
  205. }
  206. /*
  207. * Only call shrink_node_slabs here (which would also shrink
  208. * other caches) if access is not potentially fatal.
  209. */
  210. if (access)
  211. drop_slab_node(page_to_nid(p));
  212. }
  213. EXPORT_SYMBOL_GPL(shake_page);
  214. /*
  215. * Kill all processes that have a poisoned page mapped and then isolate
  216. * the page.
  217. *
  218. * General strategy:
  219. * Find all processes having the page mapped and kill them.
  220. * But we keep a page reference around so that the page is not
  221. * actually freed yet.
  222. * Then stash the page away
  223. *
  224. * There's no convenient way to get back to mapped processes
  225. * from the VMAs. So do a brute-force search over all
  226. * running processes.
  227. *
  228. * Remember that machine checks are not common (or rather
  229. * if they are common you have other problems), so this shouldn't
  230. * be a performance issue.
  231. *
  232. * Also there are some races possible while we get from the
  233. * error detection to actually handle it.
  234. */
  235. struct to_kill {
  236. struct list_head nd;
  237. struct task_struct *tsk;
  238. unsigned long addr;
  239. char addr_valid;
  240. };
  241. /*
  242. * Failure handling: if we can't find or can't kill a process there's
  243. * not much we can do. We just print a message and ignore otherwise.
  244. */
  245. /*
  246. * Schedule a process for later kill.
  247. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  248. * TBD would GFP_NOIO be enough?
  249. */
  250. static void add_to_kill(struct task_struct *tsk, struct page *p,
  251. struct vm_area_struct *vma,
  252. struct list_head *to_kill,
  253. struct to_kill **tkc)
  254. {
  255. struct to_kill *tk;
  256. if (*tkc) {
  257. tk = *tkc;
  258. *tkc = NULL;
  259. } else {
  260. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  261. if (!tk) {
  262. pr_err("Memory failure: Out of memory while machine check handling\n");
  263. return;
  264. }
  265. }
  266. tk->addr = page_address_in_vma(p, vma);
  267. tk->addr_valid = 1;
  268. /*
  269. * In theory we don't have to kill when the page was
  270. * munmaped. But it could be also a mremap. Since that's
  271. * likely very rare kill anyways just out of paranoia, but use
  272. * a SIGKILL because the error is not contained anymore.
  273. */
  274. if (tk->addr == -EFAULT) {
  275. pr_info("Memory failure: Unable to find user space address %lx in %s\n",
  276. page_to_pfn(p), tsk->comm);
  277. tk->addr_valid = 0;
  278. }
  279. get_task_struct(tsk);
  280. tk->tsk = tsk;
  281. list_add_tail(&tk->nd, to_kill);
  282. }
  283. /*
  284. * Kill the processes that have been collected earlier.
  285. *
  286. * Only do anything when DOIT is set, otherwise just free the list
  287. * (this is used for clean pages which do not need killing)
  288. * Also when FAIL is set do a force kill because something went
  289. * wrong earlier.
  290. */
  291. static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
  292. bool fail, struct page *page, unsigned long pfn,
  293. int flags)
  294. {
  295. struct to_kill *tk, *next;
  296. list_for_each_entry_safe (tk, next, to_kill, nd) {
  297. if (forcekill) {
  298. /*
  299. * In case something went wrong with munmapping
  300. * make sure the process doesn't catch the
  301. * signal and then access the memory. Just kill it.
  302. */
  303. if (fail || tk->addr_valid == 0) {
  304. pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  305. pfn, tk->tsk->comm, tk->tsk->pid);
  306. force_sig(SIGKILL, tk->tsk);
  307. }
  308. /*
  309. * In theory the process could have mapped
  310. * something else on the address in-between. We could
  311. * check for that, but we need to tell the
  312. * process anyways.
  313. */
  314. else if (kill_proc(tk->tsk, tk->addr, trapno,
  315. pfn, page, flags) < 0)
  316. pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
  317. pfn, tk->tsk->comm, tk->tsk->pid);
  318. }
  319. put_task_struct(tk->tsk);
  320. kfree(tk);
  321. }
  322. }
  323. /*
  324. * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
  325. * on behalf of the thread group. Return task_struct of the (first found)
  326. * dedicated thread if found, and return NULL otherwise.
  327. *
  328. * We already hold read_lock(&tasklist_lock) in the caller, so we don't
  329. * have to call rcu_read_lock/unlock() in this function.
  330. */
  331. static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
  332. {
  333. struct task_struct *t;
  334. for_each_thread(tsk, t)
  335. if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
  336. return t;
  337. return NULL;
  338. }
  339. /*
  340. * Determine whether a given process is "early kill" process which expects
  341. * to be signaled when some page under the process is hwpoisoned.
  342. * Return task_struct of the dedicated thread (main thread unless explicitly
  343. * specified) if the process is "early kill," and otherwise returns NULL.
  344. */
  345. static struct task_struct *task_early_kill(struct task_struct *tsk,
  346. int force_early)
  347. {
  348. struct task_struct *t;
  349. if (!tsk->mm)
  350. return NULL;
  351. if (force_early)
  352. return tsk;
  353. t = find_early_kill_thread(tsk);
  354. if (t)
  355. return t;
  356. if (sysctl_memory_failure_early_kill)
  357. return tsk;
  358. return NULL;
  359. }
  360. /*
  361. * Collect processes when the error hit an anonymous page.
  362. */
  363. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  364. struct to_kill **tkc, int force_early)
  365. {
  366. struct vm_area_struct *vma;
  367. struct task_struct *tsk;
  368. struct anon_vma *av;
  369. pgoff_t pgoff;
  370. av = page_lock_anon_vma_read(page);
  371. if (av == NULL) /* Not actually mapped anymore */
  372. return;
  373. pgoff = page_to_pgoff(page);
  374. read_lock(&tasklist_lock);
  375. for_each_process (tsk) {
  376. struct anon_vma_chain *vmac;
  377. struct task_struct *t = task_early_kill(tsk, force_early);
  378. if (!t)
  379. continue;
  380. anon_vma_interval_tree_foreach(vmac, &av->rb_root,
  381. pgoff, pgoff) {
  382. vma = vmac->vma;
  383. if (!page_mapped_in_vma(page, vma))
  384. continue;
  385. if (vma->vm_mm == t->mm)
  386. add_to_kill(t, page, vma, to_kill, tkc);
  387. }
  388. }
  389. read_unlock(&tasklist_lock);
  390. page_unlock_anon_vma_read(av);
  391. }
  392. /*
  393. * Collect processes when the error hit a file mapped page.
  394. */
  395. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  396. struct to_kill **tkc, int force_early)
  397. {
  398. struct vm_area_struct *vma;
  399. struct task_struct *tsk;
  400. struct address_space *mapping = page->mapping;
  401. i_mmap_lock_read(mapping);
  402. read_lock(&tasklist_lock);
  403. for_each_process(tsk) {
  404. pgoff_t pgoff = page_to_pgoff(page);
  405. struct task_struct *t = task_early_kill(tsk, force_early);
  406. if (!t)
  407. continue;
  408. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
  409. pgoff) {
  410. /*
  411. * Send early kill signal to tasks where a vma covers
  412. * the page but the corrupted page is not necessarily
  413. * mapped it in its pte.
  414. * Assume applications who requested early kill want
  415. * to be informed of all such data corruptions.
  416. */
  417. if (vma->vm_mm == t->mm)
  418. add_to_kill(t, page, vma, to_kill, tkc);
  419. }
  420. }
  421. read_unlock(&tasklist_lock);
  422. i_mmap_unlock_read(mapping);
  423. }
  424. /*
  425. * Collect the processes who have the corrupted page mapped to kill.
  426. * This is done in two steps for locking reasons.
  427. * First preallocate one tokill structure outside the spin locks,
  428. * so that we can kill at least one process reasonably reliable.
  429. */
  430. static void collect_procs(struct page *page, struct list_head *tokill,
  431. int force_early)
  432. {
  433. struct to_kill *tk;
  434. if (!page->mapping)
  435. return;
  436. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  437. if (!tk)
  438. return;
  439. if (PageAnon(page))
  440. collect_procs_anon(page, tokill, &tk, force_early);
  441. else
  442. collect_procs_file(page, tokill, &tk, force_early);
  443. kfree(tk);
  444. }
  445. static const char *action_name[] = {
  446. [MF_IGNORED] = "Ignored",
  447. [MF_FAILED] = "Failed",
  448. [MF_DELAYED] = "Delayed",
  449. [MF_RECOVERED] = "Recovered",
  450. };
  451. static const char * const action_page_types[] = {
  452. [MF_MSG_KERNEL] = "reserved kernel page",
  453. [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
  454. [MF_MSG_SLAB] = "kernel slab page",
  455. [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
  456. [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
  457. [MF_MSG_HUGE] = "huge page",
  458. [MF_MSG_FREE_HUGE] = "free huge page",
  459. [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
  460. [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
  461. [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
  462. [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
  463. [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
  464. [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
  465. [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
  466. [MF_MSG_DIRTY_LRU] = "dirty LRU page",
  467. [MF_MSG_CLEAN_LRU] = "clean LRU page",
  468. [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
  469. [MF_MSG_BUDDY] = "free buddy page",
  470. [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
  471. [MF_MSG_UNKNOWN] = "unknown page",
  472. };
  473. /*
  474. * XXX: It is possible that a page is isolated from LRU cache,
  475. * and then kept in swap cache or failed to remove from page cache.
  476. * The page count will stop it from being freed by unpoison.
  477. * Stress tests should be aware of this memory leak problem.
  478. */
  479. static int delete_from_lru_cache(struct page *p)
  480. {
  481. if (!isolate_lru_page(p)) {
  482. /*
  483. * Clear sensible page flags, so that the buddy system won't
  484. * complain when the page is unpoison-and-freed.
  485. */
  486. ClearPageActive(p);
  487. ClearPageUnevictable(p);
  488. /*
  489. * Poisoned page might never drop its ref count to 0 so we have
  490. * to uncharge it manually from its memcg.
  491. */
  492. mem_cgroup_uncharge(p);
  493. /*
  494. * drop the page count elevated by isolate_lru_page()
  495. */
  496. put_page(p);
  497. return 0;
  498. }
  499. return -EIO;
  500. }
  501. static int truncate_error_page(struct page *p, unsigned long pfn,
  502. struct address_space *mapping)
  503. {
  504. int ret = MF_FAILED;
  505. if (mapping->a_ops->error_remove_page) {
  506. int err = mapping->a_ops->error_remove_page(mapping, p);
  507. if (err != 0) {
  508. pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
  509. pfn, err);
  510. } else if (page_has_private(p) &&
  511. !try_to_release_page(p, GFP_NOIO)) {
  512. pr_info("Memory failure: %#lx: failed to release buffers\n",
  513. pfn);
  514. } else {
  515. ret = MF_RECOVERED;
  516. }
  517. } else {
  518. /*
  519. * If the file system doesn't support it just invalidate
  520. * This fails on dirty or anything with private pages
  521. */
  522. if (invalidate_inode_page(p))
  523. ret = MF_RECOVERED;
  524. else
  525. pr_info("Memory failure: %#lx: Failed to invalidate\n",
  526. pfn);
  527. }
  528. return ret;
  529. }
  530. /*
  531. * Error hit kernel page.
  532. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  533. * could be more sophisticated.
  534. */
  535. static int me_kernel(struct page *p, unsigned long pfn)
  536. {
  537. return MF_IGNORED;
  538. }
  539. /*
  540. * Page in unknown state. Do nothing.
  541. */
  542. static int me_unknown(struct page *p, unsigned long pfn)
  543. {
  544. pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
  545. return MF_FAILED;
  546. }
  547. /*
  548. * Clean (or cleaned) page cache page.
  549. */
  550. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  551. {
  552. struct address_space *mapping;
  553. delete_from_lru_cache(p);
  554. /*
  555. * For anonymous pages we're done the only reference left
  556. * should be the one m_f() holds.
  557. */
  558. if (PageAnon(p))
  559. return MF_RECOVERED;
  560. /*
  561. * Now truncate the page in the page cache. This is really
  562. * more like a "temporary hole punch"
  563. * Don't do this for block devices when someone else
  564. * has a reference, because it could be file system metadata
  565. * and that's not safe to truncate.
  566. */
  567. mapping = page_mapping(p);
  568. if (!mapping) {
  569. /*
  570. * Page has been teared down in the meanwhile
  571. */
  572. return MF_FAILED;
  573. }
  574. /*
  575. * Truncation is a bit tricky. Enable it per file system for now.
  576. *
  577. * Open: to take i_mutex or not for this? Right now we don't.
  578. */
  579. return truncate_error_page(p, pfn, mapping);
  580. }
  581. /*
  582. * Dirty pagecache page
  583. * Issues: when the error hit a hole page the error is not properly
  584. * propagated.
  585. */
  586. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  587. {
  588. struct address_space *mapping = page_mapping(p);
  589. SetPageError(p);
  590. /* TBD: print more information about the file. */
  591. if (mapping) {
  592. /*
  593. * IO error will be reported by write(), fsync(), etc.
  594. * who check the mapping.
  595. * This way the application knows that something went
  596. * wrong with its dirty file data.
  597. *
  598. * There's one open issue:
  599. *
  600. * The EIO will be only reported on the next IO
  601. * operation and then cleared through the IO map.
  602. * Normally Linux has two mechanisms to pass IO error
  603. * first through the AS_EIO flag in the address space
  604. * and then through the PageError flag in the page.
  605. * Since we drop pages on memory failure handling the
  606. * only mechanism open to use is through AS_AIO.
  607. *
  608. * This has the disadvantage that it gets cleared on
  609. * the first operation that returns an error, while
  610. * the PageError bit is more sticky and only cleared
  611. * when the page is reread or dropped. If an
  612. * application assumes it will always get error on
  613. * fsync, but does other operations on the fd before
  614. * and the page is dropped between then the error
  615. * will not be properly reported.
  616. *
  617. * This can already happen even without hwpoisoned
  618. * pages: first on metadata IO errors (which only
  619. * report through AS_EIO) or when the page is dropped
  620. * at the wrong time.
  621. *
  622. * So right now we assume that the application DTRT on
  623. * the first EIO, but we're not worse than other parts
  624. * of the kernel.
  625. */
  626. mapping_set_error(mapping, -EIO);
  627. }
  628. return me_pagecache_clean(p, pfn);
  629. }
  630. /*
  631. * Clean and dirty swap cache.
  632. *
  633. * Dirty swap cache page is tricky to handle. The page could live both in page
  634. * cache and swap cache(ie. page is freshly swapped in). So it could be
  635. * referenced concurrently by 2 types of PTEs:
  636. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  637. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  638. * and then
  639. * - clear dirty bit to prevent IO
  640. * - remove from LRU
  641. * - but keep in the swap cache, so that when we return to it on
  642. * a later page fault, we know the application is accessing
  643. * corrupted data and shall be killed (we installed simple
  644. * interception code in do_swap_page to catch it).
  645. *
  646. * Clean swap cache pages can be directly isolated. A later page fault will
  647. * bring in the known good data from disk.
  648. */
  649. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  650. {
  651. ClearPageDirty(p);
  652. /* Trigger EIO in shmem: */
  653. ClearPageUptodate(p);
  654. if (!delete_from_lru_cache(p))
  655. return MF_DELAYED;
  656. else
  657. return MF_FAILED;
  658. }
  659. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  660. {
  661. delete_from_swap_cache(p);
  662. if (!delete_from_lru_cache(p))
  663. return MF_RECOVERED;
  664. else
  665. return MF_FAILED;
  666. }
  667. /*
  668. * Huge pages. Needs work.
  669. * Issues:
  670. * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
  671. * To narrow down kill region to one page, we need to break up pmd.
  672. */
  673. static int me_huge_page(struct page *p, unsigned long pfn)
  674. {
  675. int res = 0;
  676. struct page *hpage = compound_head(p);
  677. struct address_space *mapping;
  678. if (!PageHuge(hpage))
  679. return MF_DELAYED;
  680. mapping = page_mapping(hpage);
  681. if (mapping) {
  682. res = truncate_error_page(hpage, pfn, mapping);
  683. } else {
  684. unlock_page(hpage);
  685. /*
  686. * migration entry prevents later access on error anonymous
  687. * hugepage, so we can free and dissolve it into buddy to
  688. * save healthy subpages.
  689. */
  690. if (PageAnon(hpage))
  691. put_page(hpage);
  692. dissolve_free_huge_page(p);
  693. res = MF_RECOVERED;
  694. lock_page(hpage);
  695. }
  696. return res;
  697. }
  698. /*
  699. * Various page states we can handle.
  700. *
  701. * A page state is defined by its current page->flags bits.
  702. * The table matches them in order and calls the right handler.
  703. *
  704. * This is quite tricky because we can access page at any time
  705. * in its live cycle, so all accesses have to be extremely careful.
  706. *
  707. * This is not complete. More states could be added.
  708. * For any missing state don't attempt recovery.
  709. */
  710. #define dirty (1UL << PG_dirty)
  711. #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
  712. #define unevict (1UL << PG_unevictable)
  713. #define mlock (1UL << PG_mlocked)
  714. #define writeback (1UL << PG_writeback)
  715. #define lru (1UL << PG_lru)
  716. #define head (1UL << PG_head)
  717. #define slab (1UL << PG_slab)
  718. #define reserved (1UL << PG_reserved)
  719. static struct page_state {
  720. unsigned long mask;
  721. unsigned long res;
  722. enum mf_action_page_type type;
  723. int (*action)(struct page *p, unsigned long pfn);
  724. } error_states[] = {
  725. { reserved, reserved, MF_MSG_KERNEL, me_kernel },
  726. /*
  727. * free pages are specially detected outside this table:
  728. * PG_buddy pages only make a small fraction of all free pages.
  729. */
  730. /*
  731. * Could in theory check if slab page is free or if we can drop
  732. * currently unused objects without touching them. But just
  733. * treat it as standard kernel for now.
  734. */
  735. { slab, slab, MF_MSG_SLAB, me_kernel },
  736. { head, head, MF_MSG_HUGE, me_huge_page },
  737. { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
  738. { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
  739. { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
  740. { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
  741. { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
  742. { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
  743. { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
  744. { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
  745. /*
  746. * Catchall entry: must be at end.
  747. */
  748. { 0, 0, MF_MSG_UNKNOWN, me_unknown },
  749. };
  750. #undef dirty
  751. #undef sc
  752. #undef unevict
  753. #undef mlock
  754. #undef writeback
  755. #undef lru
  756. #undef head
  757. #undef slab
  758. #undef reserved
  759. /*
  760. * "Dirty/Clean" indication is not 100% accurate due to the possibility of
  761. * setting PG_dirty outside page lock. See also comment above set_page_dirty().
  762. */
  763. static void action_result(unsigned long pfn, enum mf_action_page_type type,
  764. enum mf_result result)
  765. {
  766. trace_memory_failure_event(pfn, type, result);
  767. pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
  768. pfn, action_page_types[type], action_name[result]);
  769. }
  770. static int page_action(struct page_state *ps, struct page *p,
  771. unsigned long pfn)
  772. {
  773. int result;
  774. int count;
  775. result = ps->action(p, pfn);
  776. count = page_count(p) - 1;
  777. if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
  778. count--;
  779. if (count > 0) {
  780. pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
  781. pfn, action_page_types[ps->type], count);
  782. result = MF_FAILED;
  783. }
  784. action_result(pfn, ps->type, result);
  785. /* Could do more checks here if page looks ok */
  786. /*
  787. * Could adjust zone counters here to correct for the missing page.
  788. */
  789. return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
  790. }
  791. /**
  792. * get_hwpoison_page() - Get refcount for memory error handling:
  793. * @page: raw error page (hit by memory error)
  794. *
  795. * Return: return 0 if failed to grab the refcount, otherwise true (some
  796. * non-zero value.)
  797. */
  798. int get_hwpoison_page(struct page *page)
  799. {
  800. struct page *head = compound_head(page);
  801. if (!PageHuge(head) && PageTransHuge(head)) {
  802. /*
  803. * Non anonymous thp exists only in allocation/free time. We
  804. * can't handle such a case correctly, so let's give it up.
  805. * This should be better than triggering BUG_ON when kernel
  806. * tries to touch the "partially handled" page.
  807. */
  808. if (!PageAnon(head)) {
  809. pr_err("Memory failure: %#lx: non anonymous thp\n",
  810. page_to_pfn(page));
  811. return 0;
  812. }
  813. }
  814. if (get_page_unless_zero(head)) {
  815. if (head == compound_head(page))
  816. return 1;
  817. pr_info("Memory failure: %#lx cannot catch tail\n",
  818. page_to_pfn(page));
  819. put_page(head);
  820. }
  821. return 0;
  822. }
  823. EXPORT_SYMBOL_GPL(get_hwpoison_page);
  824. /*
  825. * Do all that is necessary to remove user space mappings. Unmap
  826. * the pages and send SIGBUS to the processes if the data was dirty.
  827. */
  828. static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
  829. int trapno, int flags, struct page **hpagep)
  830. {
  831. enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  832. struct address_space *mapping;
  833. LIST_HEAD(tokill);
  834. bool unmap_success;
  835. int kill = 1, forcekill;
  836. struct page *hpage = *hpagep;
  837. bool mlocked = PageMlocked(hpage);
  838. /*
  839. * Here we are interested only in user-mapped pages, so skip any
  840. * other types of pages.
  841. */
  842. if (PageReserved(p) || PageSlab(p))
  843. return true;
  844. if (!(PageLRU(hpage) || PageHuge(p)))
  845. return true;
  846. /*
  847. * This check implies we don't kill processes if their pages
  848. * are in the swap cache early. Those are always late kills.
  849. */
  850. if (!page_mapped(hpage))
  851. return true;
  852. if (PageKsm(p)) {
  853. pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
  854. return false;
  855. }
  856. if (PageSwapCache(p)) {
  857. pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
  858. pfn);
  859. ttu |= TTU_IGNORE_HWPOISON;
  860. }
  861. /*
  862. * Propagate the dirty bit from PTEs to struct page first, because we
  863. * need this to decide if we should kill or just drop the page.
  864. * XXX: the dirty test could be racy: set_page_dirty() may not always
  865. * be called inside page lock (it's recommended but not enforced).
  866. */
  867. mapping = page_mapping(hpage);
  868. if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
  869. mapping_cap_writeback_dirty(mapping)) {
  870. if (page_mkclean(hpage)) {
  871. SetPageDirty(hpage);
  872. } else {
  873. kill = 0;
  874. ttu |= TTU_IGNORE_HWPOISON;
  875. pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
  876. pfn);
  877. }
  878. }
  879. /*
  880. * First collect all the processes that have the page
  881. * mapped in dirty form. This has to be done before try_to_unmap,
  882. * because ttu takes the rmap data structures down.
  883. *
  884. * Error handling: We ignore errors here because
  885. * there's nothing that can be done.
  886. */
  887. if (kill)
  888. collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
  889. unmap_success = try_to_unmap(hpage, ttu);
  890. if (!unmap_success)
  891. pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
  892. pfn, page_mapcount(hpage));
  893. /*
  894. * try_to_unmap() might put mlocked page in lru cache, so call
  895. * shake_page() again to ensure that it's flushed.
  896. */
  897. if (mlocked)
  898. shake_page(hpage, 0);
  899. /*
  900. * Now that the dirty bit has been propagated to the
  901. * struct page and all unmaps done we can decide if
  902. * killing is needed or not. Only kill when the page
  903. * was dirty or the process is not restartable,
  904. * otherwise the tokill list is merely
  905. * freed. When there was a problem unmapping earlier
  906. * use a more force-full uncatchable kill to prevent
  907. * any accesses to the poisoned memory.
  908. */
  909. forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
  910. kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
  911. return unmap_success;
  912. }
  913. static int identify_page_state(unsigned long pfn, struct page *p,
  914. unsigned long page_flags)
  915. {
  916. struct page_state *ps;
  917. /*
  918. * The first check uses the current page flags which may not have any
  919. * relevant information. The second check with the saved page flags is
  920. * carried out only if the first check can't determine the page status.
  921. */
  922. for (ps = error_states;; ps++)
  923. if ((p->flags & ps->mask) == ps->res)
  924. break;
  925. page_flags |= (p->flags & (1UL << PG_dirty));
  926. if (!ps->mask)
  927. for (ps = error_states;; ps++)
  928. if ((page_flags & ps->mask) == ps->res)
  929. break;
  930. return page_action(ps, p, pfn);
  931. }
  932. static int memory_failure_hugetlb(unsigned long pfn, int trapno, int flags)
  933. {
  934. struct page *p = pfn_to_page(pfn);
  935. struct page *head = compound_head(p);
  936. int res;
  937. unsigned long page_flags;
  938. if (TestSetPageHWPoison(head)) {
  939. pr_err("Memory failure: %#lx: already hardware poisoned\n",
  940. pfn);
  941. return 0;
  942. }
  943. num_poisoned_pages_inc();
  944. if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
  945. /*
  946. * Check "filter hit" and "race with other subpage."
  947. */
  948. lock_page(head);
  949. if (PageHWPoison(head)) {
  950. if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
  951. || (p != head && TestSetPageHWPoison(head))) {
  952. num_poisoned_pages_dec();
  953. unlock_page(head);
  954. return 0;
  955. }
  956. }
  957. unlock_page(head);
  958. dissolve_free_huge_page(p);
  959. action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
  960. return 0;
  961. }
  962. lock_page(head);
  963. page_flags = head->flags;
  964. if (!PageHWPoison(head)) {
  965. pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
  966. num_poisoned_pages_dec();
  967. unlock_page(head);
  968. put_hwpoison_page(head);
  969. return 0;
  970. }
  971. if (!hwpoison_user_mappings(p, pfn, trapno, flags, &head)) {
  972. action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
  973. res = -EBUSY;
  974. goto out;
  975. }
  976. res = identify_page_state(pfn, p, page_flags);
  977. out:
  978. unlock_page(head);
  979. return res;
  980. }
  981. /**
  982. * memory_failure - Handle memory failure of a page.
  983. * @pfn: Page Number of the corrupted page
  984. * @trapno: Trap number reported in the signal to user space.
  985. * @flags: fine tune action taken
  986. *
  987. * This function is called by the low level machine check code
  988. * of an architecture when it detects hardware memory corruption
  989. * of a page. It tries its best to recover, which includes
  990. * dropping pages, killing processes etc.
  991. *
  992. * The function is primarily of use for corruptions that
  993. * happen outside the current execution context (e.g. when
  994. * detected by a background scrubber)
  995. *
  996. * Must run in process context (e.g. a work queue) with interrupts
  997. * enabled and no spinlocks hold.
  998. */
  999. int memory_failure(unsigned long pfn, int trapno, int flags)
  1000. {
  1001. struct page *p;
  1002. struct page *hpage;
  1003. struct page *orig_head;
  1004. int res;
  1005. unsigned long page_flags;
  1006. if (!sysctl_memory_failure_recovery)
  1007. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  1008. if (!pfn_valid(pfn)) {
  1009. pr_err("Memory failure: %#lx: memory outside kernel control\n",
  1010. pfn);
  1011. return -ENXIO;
  1012. }
  1013. p = pfn_to_page(pfn);
  1014. if (PageHuge(p))
  1015. return memory_failure_hugetlb(pfn, trapno, flags);
  1016. if (TestSetPageHWPoison(p)) {
  1017. pr_err("Memory failure: %#lx: already hardware poisoned\n",
  1018. pfn);
  1019. return 0;
  1020. }
  1021. orig_head = hpage = compound_head(p);
  1022. num_poisoned_pages_inc();
  1023. /*
  1024. * We need/can do nothing about count=0 pages.
  1025. * 1) it's a free page, and therefore in safe hand:
  1026. * prep_new_page() will be the gate keeper.
  1027. * 2) it's part of a non-compound high order page.
  1028. * Implies some kernel user: cannot stop them from
  1029. * R/W the page; let's pray that the page has been
  1030. * used and will be freed some time later.
  1031. * In fact it's dangerous to directly bump up page count from 0,
  1032. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  1033. */
  1034. if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
  1035. if (is_free_buddy_page(p)) {
  1036. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  1037. return 0;
  1038. } else {
  1039. action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
  1040. return -EBUSY;
  1041. }
  1042. }
  1043. if (PageTransHuge(hpage)) {
  1044. lock_page(p);
  1045. if (!PageAnon(p) || unlikely(split_huge_page(p))) {
  1046. unlock_page(p);
  1047. if (!PageAnon(p))
  1048. pr_err("Memory failure: %#lx: non anonymous thp\n",
  1049. pfn);
  1050. else
  1051. pr_err("Memory failure: %#lx: thp split failed\n",
  1052. pfn);
  1053. if (TestClearPageHWPoison(p))
  1054. num_poisoned_pages_dec();
  1055. put_hwpoison_page(p);
  1056. return -EBUSY;
  1057. }
  1058. unlock_page(p);
  1059. VM_BUG_ON_PAGE(!page_count(p), p);
  1060. hpage = compound_head(p);
  1061. }
  1062. /*
  1063. * We ignore non-LRU pages for good reasons.
  1064. * - PG_locked is only well defined for LRU pages and a few others
  1065. * - to avoid races with __SetPageLocked()
  1066. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  1067. * The check (unnecessarily) ignores LRU pages being isolated and
  1068. * walked by the page reclaim code, however that's not a big loss.
  1069. */
  1070. shake_page(p, 0);
  1071. /* shake_page could have turned it free. */
  1072. if (!PageLRU(p) && is_free_buddy_page(p)) {
  1073. if (flags & MF_COUNT_INCREASED)
  1074. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  1075. else
  1076. action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
  1077. return 0;
  1078. }
  1079. lock_page(p);
  1080. /*
  1081. * The page could have changed compound pages during the locking.
  1082. * If this happens just bail out.
  1083. */
  1084. if (PageCompound(p) && compound_head(p) != orig_head) {
  1085. action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
  1086. res = -EBUSY;
  1087. goto out;
  1088. }
  1089. /*
  1090. * We use page flags to determine what action should be taken, but
  1091. * the flags can be modified by the error containment action. One
  1092. * example is an mlocked page, where PG_mlocked is cleared by
  1093. * page_remove_rmap() in try_to_unmap_one(). So to determine page status
  1094. * correctly, we save a copy of the page flags at this time.
  1095. */
  1096. if (PageHuge(p))
  1097. page_flags = hpage->flags;
  1098. else
  1099. page_flags = p->flags;
  1100. /*
  1101. * unpoison always clear PG_hwpoison inside page lock
  1102. */
  1103. if (!PageHWPoison(p)) {
  1104. pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
  1105. num_poisoned_pages_dec();
  1106. unlock_page(p);
  1107. put_hwpoison_page(p);
  1108. return 0;
  1109. }
  1110. if (hwpoison_filter(p)) {
  1111. if (TestClearPageHWPoison(p))
  1112. num_poisoned_pages_dec();
  1113. unlock_page(p);
  1114. put_hwpoison_page(p);
  1115. return 0;
  1116. }
  1117. if (!PageTransTail(p) && !PageLRU(p))
  1118. goto identify_page_state;
  1119. /*
  1120. * It's very difficult to mess with pages currently under IO
  1121. * and in many cases impossible, so we just avoid it here.
  1122. */
  1123. wait_on_page_writeback(p);
  1124. /*
  1125. * Now take care of user space mappings.
  1126. * Abort on fail: __delete_from_page_cache() assumes unmapped page.
  1127. *
  1128. * When the raw error page is thp tail page, hpage points to the raw
  1129. * page after thp split.
  1130. */
  1131. if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
  1132. action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
  1133. res = -EBUSY;
  1134. goto out;
  1135. }
  1136. /*
  1137. * Torn down by someone else?
  1138. */
  1139. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  1140. action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
  1141. res = -EBUSY;
  1142. goto out;
  1143. }
  1144. identify_page_state:
  1145. res = identify_page_state(pfn, p, page_flags);
  1146. out:
  1147. unlock_page(p);
  1148. return res;
  1149. }
  1150. EXPORT_SYMBOL_GPL(memory_failure);
  1151. #define MEMORY_FAILURE_FIFO_ORDER 4
  1152. #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
  1153. struct memory_failure_entry {
  1154. unsigned long pfn;
  1155. int trapno;
  1156. int flags;
  1157. };
  1158. struct memory_failure_cpu {
  1159. DECLARE_KFIFO(fifo, struct memory_failure_entry,
  1160. MEMORY_FAILURE_FIFO_SIZE);
  1161. spinlock_t lock;
  1162. struct work_struct work;
  1163. };
  1164. static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
  1165. /**
  1166. * memory_failure_queue - Schedule handling memory failure of a page.
  1167. * @pfn: Page Number of the corrupted page
  1168. * @trapno: Trap number reported in the signal to user space.
  1169. * @flags: Flags for memory failure handling
  1170. *
  1171. * This function is called by the low level hardware error handler
  1172. * when it detects hardware memory corruption of a page. It schedules
  1173. * the recovering of error page, including dropping pages, killing
  1174. * processes etc.
  1175. *
  1176. * The function is primarily of use for corruptions that
  1177. * happen outside the current execution context (e.g. when
  1178. * detected by a background scrubber)
  1179. *
  1180. * Can run in IRQ context.
  1181. */
  1182. void memory_failure_queue(unsigned long pfn, int trapno, int flags)
  1183. {
  1184. struct memory_failure_cpu *mf_cpu;
  1185. unsigned long proc_flags;
  1186. struct memory_failure_entry entry = {
  1187. .pfn = pfn,
  1188. .trapno = trapno,
  1189. .flags = flags,
  1190. };
  1191. mf_cpu = &get_cpu_var(memory_failure_cpu);
  1192. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1193. if (kfifo_put(&mf_cpu->fifo, entry))
  1194. schedule_work_on(smp_processor_id(), &mf_cpu->work);
  1195. else
  1196. pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
  1197. pfn);
  1198. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1199. put_cpu_var(memory_failure_cpu);
  1200. }
  1201. EXPORT_SYMBOL_GPL(memory_failure_queue);
  1202. static void memory_failure_work_func(struct work_struct *work)
  1203. {
  1204. struct memory_failure_cpu *mf_cpu;
  1205. struct memory_failure_entry entry = { 0, };
  1206. unsigned long proc_flags;
  1207. int gotten;
  1208. mf_cpu = this_cpu_ptr(&memory_failure_cpu);
  1209. for (;;) {
  1210. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1211. gotten = kfifo_get(&mf_cpu->fifo, &entry);
  1212. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1213. if (!gotten)
  1214. break;
  1215. if (entry.flags & MF_SOFT_OFFLINE)
  1216. soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
  1217. else
  1218. memory_failure(entry.pfn, entry.trapno, entry.flags);
  1219. }
  1220. }
  1221. static int __init memory_failure_init(void)
  1222. {
  1223. struct memory_failure_cpu *mf_cpu;
  1224. int cpu;
  1225. for_each_possible_cpu(cpu) {
  1226. mf_cpu = &per_cpu(memory_failure_cpu, cpu);
  1227. spin_lock_init(&mf_cpu->lock);
  1228. INIT_KFIFO(mf_cpu->fifo);
  1229. INIT_WORK(&mf_cpu->work, memory_failure_work_func);
  1230. }
  1231. return 0;
  1232. }
  1233. core_initcall(memory_failure_init);
  1234. #define unpoison_pr_info(fmt, pfn, rs) \
  1235. ({ \
  1236. if (__ratelimit(rs)) \
  1237. pr_info(fmt, pfn); \
  1238. })
  1239. /**
  1240. * unpoison_memory - Unpoison a previously poisoned page
  1241. * @pfn: Page number of the to be unpoisoned page
  1242. *
  1243. * Software-unpoison a page that has been poisoned by
  1244. * memory_failure() earlier.
  1245. *
  1246. * This is only done on the software-level, so it only works
  1247. * for linux injected failures, not real hardware failures
  1248. *
  1249. * Returns 0 for success, otherwise -errno.
  1250. */
  1251. int unpoison_memory(unsigned long pfn)
  1252. {
  1253. struct page *page;
  1254. struct page *p;
  1255. int freeit = 0;
  1256. static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
  1257. DEFAULT_RATELIMIT_BURST);
  1258. if (!pfn_valid(pfn))
  1259. return -ENXIO;
  1260. p = pfn_to_page(pfn);
  1261. page = compound_head(p);
  1262. if (!PageHWPoison(p)) {
  1263. unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
  1264. pfn, &unpoison_rs);
  1265. return 0;
  1266. }
  1267. if (page_count(page) > 1) {
  1268. unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
  1269. pfn, &unpoison_rs);
  1270. return 0;
  1271. }
  1272. if (page_mapped(page)) {
  1273. unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
  1274. pfn, &unpoison_rs);
  1275. return 0;
  1276. }
  1277. if (page_mapping(page)) {
  1278. unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
  1279. pfn, &unpoison_rs);
  1280. return 0;
  1281. }
  1282. /*
  1283. * unpoison_memory() can encounter thp only when the thp is being
  1284. * worked by memory_failure() and the page lock is not held yet.
  1285. * In such case, we yield to memory_failure() and make unpoison fail.
  1286. */
  1287. if (!PageHuge(page) && PageTransHuge(page)) {
  1288. unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
  1289. pfn, &unpoison_rs);
  1290. return 0;
  1291. }
  1292. if (!get_hwpoison_page(p)) {
  1293. if (TestClearPageHWPoison(p))
  1294. num_poisoned_pages_dec();
  1295. unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
  1296. pfn, &unpoison_rs);
  1297. return 0;
  1298. }
  1299. lock_page(page);
  1300. /*
  1301. * This test is racy because PG_hwpoison is set outside of page lock.
  1302. * That's acceptable because that won't trigger kernel panic. Instead,
  1303. * the PG_hwpoison page will be caught and isolated on the entrance to
  1304. * the free buddy page pool.
  1305. */
  1306. if (TestClearPageHWPoison(page)) {
  1307. unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
  1308. pfn, &unpoison_rs);
  1309. num_poisoned_pages_dec();
  1310. freeit = 1;
  1311. }
  1312. unlock_page(page);
  1313. put_hwpoison_page(page);
  1314. if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
  1315. put_hwpoison_page(page);
  1316. return 0;
  1317. }
  1318. EXPORT_SYMBOL(unpoison_memory);
  1319. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1320. {
  1321. int nid = page_to_nid(p);
  1322. return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
  1323. }
  1324. /*
  1325. * Safely get reference count of an arbitrary page.
  1326. * Returns 0 for a free page, -EIO for a zero refcount page
  1327. * that is not free, and 1 for any other page type.
  1328. * For 1 the page is returned with increased page count, otherwise not.
  1329. */
  1330. static int __get_any_page(struct page *p, unsigned long pfn, int flags)
  1331. {
  1332. int ret;
  1333. if (flags & MF_COUNT_INCREASED)
  1334. return 1;
  1335. /*
  1336. * When the target page is a free hugepage, just remove it
  1337. * from free hugepage list.
  1338. */
  1339. if (!get_hwpoison_page(p)) {
  1340. if (PageHuge(p)) {
  1341. pr_info("%s: %#lx free huge page\n", __func__, pfn);
  1342. ret = 0;
  1343. } else if (is_free_buddy_page(p)) {
  1344. pr_info("%s: %#lx free buddy page\n", __func__, pfn);
  1345. ret = 0;
  1346. } else {
  1347. pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
  1348. __func__, pfn, p->flags);
  1349. ret = -EIO;
  1350. }
  1351. } else {
  1352. /* Not a free page */
  1353. ret = 1;
  1354. }
  1355. return ret;
  1356. }
  1357. static int get_any_page(struct page *page, unsigned long pfn, int flags)
  1358. {
  1359. int ret = __get_any_page(page, pfn, flags);
  1360. if (ret == 1 && !PageHuge(page) &&
  1361. !PageLRU(page) && !__PageMovable(page)) {
  1362. /*
  1363. * Try to free it.
  1364. */
  1365. put_hwpoison_page(page);
  1366. shake_page(page, 1);
  1367. /*
  1368. * Did it turn free?
  1369. */
  1370. ret = __get_any_page(page, pfn, 0);
  1371. if (ret == 1 && !PageLRU(page)) {
  1372. /* Drop page reference which is from __get_any_page() */
  1373. put_hwpoison_page(page);
  1374. pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
  1375. pfn, page->flags, &page->flags);
  1376. return -EIO;
  1377. }
  1378. }
  1379. return ret;
  1380. }
  1381. static int soft_offline_huge_page(struct page *page, int flags)
  1382. {
  1383. int ret;
  1384. unsigned long pfn = page_to_pfn(page);
  1385. struct page *hpage = compound_head(page);
  1386. LIST_HEAD(pagelist);
  1387. /*
  1388. * This double-check of PageHWPoison is to avoid the race with
  1389. * memory_failure(). See also comment in __soft_offline_page().
  1390. */
  1391. lock_page(hpage);
  1392. if (PageHWPoison(hpage)) {
  1393. unlock_page(hpage);
  1394. put_hwpoison_page(hpage);
  1395. pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
  1396. return -EBUSY;
  1397. }
  1398. unlock_page(hpage);
  1399. ret = isolate_huge_page(hpage, &pagelist);
  1400. /*
  1401. * get_any_page() and isolate_huge_page() takes a refcount each,
  1402. * so need to drop one here.
  1403. */
  1404. put_hwpoison_page(hpage);
  1405. if (!ret) {
  1406. pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
  1407. return -EBUSY;
  1408. }
  1409. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1410. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1411. if (ret) {
  1412. pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
  1413. pfn, ret, page->flags, &page->flags);
  1414. if (!list_empty(&pagelist))
  1415. putback_movable_pages(&pagelist);
  1416. if (ret > 0)
  1417. ret = -EIO;
  1418. } else {
  1419. if (PageHuge(page))
  1420. dissolve_free_huge_page(page);
  1421. }
  1422. return ret;
  1423. }
  1424. static int __soft_offline_page(struct page *page, int flags)
  1425. {
  1426. int ret;
  1427. unsigned long pfn = page_to_pfn(page);
  1428. /*
  1429. * Check PageHWPoison again inside page lock because PageHWPoison
  1430. * is set by memory_failure() outside page lock. Note that
  1431. * memory_failure() also double-checks PageHWPoison inside page lock,
  1432. * so there's no race between soft_offline_page() and memory_failure().
  1433. */
  1434. lock_page(page);
  1435. wait_on_page_writeback(page);
  1436. if (PageHWPoison(page)) {
  1437. unlock_page(page);
  1438. put_hwpoison_page(page);
  1439. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1440. return -EBUSY;
  1441. }
  1442. /*
  1443. * Try to invalidate first. This should work for
  1444. * non dirty unmapped page cache pages.
  1445. */
  1446. ret = invalidate_inode_page(page);
  1447. unlock_page(page);
  1448. /*
  1449. * RED-PEN would be better to keep it isolated here, but we
  1450. * would need to fix isolation locking first.
  1451. */
  1452. if (ret == 1) {
  1453. put_hwpoison_page(page);
  1454. pr_info("soft_offline: %#lx: invalidated\n", pfn);
  1455. SetPageHWPoison(page);
  1456. num_poisoned_pages_inc();
  1457. return 0;
  1458. }
  1459. /*
  1460. * Simple invalidation didn't work.
  1461. * Try to migrate to a new page instead. migrate.c
  1462. * handles a large number of cases for us.
  1463. */
  1464. if (PageLRU(page))
  1465. ret = isolate_lru_page(page);
  1466. else
  1467. ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
  1468. /*
  1469. * Drop page reference which is came from get_any_page()
  1470. * successful isolate_lru_page() already took another one.
  1471. */
  1472. put_hwpoison_page(page);
  1473. if (!ret) {
  1474. LIST_HEAD(pagelist);
  1475. /*
  1476. * After isolated lru page, the PageLRU will be cleared,
  1477. * so use !__PageMovable instead for LRU page's mapping
  1478. * cannot have PAGE_MAPPING_MOVABLE.
  1479. */
  1480. if (!__PageMovable(page))
  1481. inc_node_page_state(page, NR_ISOLATED_ANON +
  1482. page_is_file_cache(page));
  1483. list_add(&page->lru, &pagelist);
  1484. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1485. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1486. if (ret) {
  1487. if (!list_empty(&pagelist))
  1488. putback_movable_pages(&pagelist);
  1489. pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
  1490. pfn, ret, page->flags, &page->flags);
  1491. if (ret > 0)
  1492. ret = -EIO;
  1493. }
  1494. } else {
  1495. pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
  1496. pfn, ret, page_count(page), page->flags, &page->flags);
  1497. }
  1498. return ret;
  1499. }
  1500. static int soft_offline_in_use_page(struct page *page, int flags)
  1501. {
  1502. int ret;
  1503. struct page *hpage = compound_head(page);
  1504. if (!PageHuge(page) && PageTransHuge(hpage)) {
  1505. lock_page(hpage);
  1506. if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
  1507. unlock_page(hpage);
  1508. if (!PageAnon(hpage))
  1509. pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
  1510. else
  1511. pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
  1512. put_hwpoison_page(hpage);
  1513. return -EBUSY;
  1514. }
  1515. unlock_page(hpage);
  1516. get_hwpoison_page(page);
  1517. put_hwpoison_page(hpage);
  1518. }
  1519. if (PageHuge(page))
  1520. ret = soft_offline_huge_page(page, flags);
  1521. else
  1522. ret = __soft_offline_page(page, flags);
  1523. return ret;
  1524. }
  1525. static void soft_offline_free_page(struct page *page)
  1526. {
  1527. struct page *head = compound_head(page);
  1528. if (!TestSetPageHWPoison(head)) {
  1529. num_poisoned_pages_inc();
  1530. if (PageHuge(head))
  1531. dissolve_free_huge_page(page);
  1532. }
  1533. }
  1534. /**
  1535. * soft_offline_page - Soft offline a page.
  1536. * @page: page to offline
  1537. * @flags: flags. Same as memory_failure().
  1538. *
  1539. * Returns 0 on success, otherwise negated errno.
  1540. *
  1541. * Soft offline a page, by migration or invalidation,
  1542. * without killing anything. This is for the case when
  1543. * a page is not corrupted yet (so it's still valid to access),
  1544. * but has had a number of corrected errors and is better taken
  1545. * out.
  1546. *
  1547. * The actual policy on when to do that is maintained by
  1548. * user space.
  1549. *
  1550. * This should never impact any application or cause data loss,
  1551. * however it might take some time.
  1552. *
  1553. * This is not a 100% solution for all memory, but tries to be
  1554. * ``good enough'' for the majority of memory.
  1555. */
  1556. int soft_offline_page(struct page *page, int flags)
  1557. {
  1558. int ret;
  1559. unsigned long pfn = page_to_pfn(page);
  1560. if (PageHWPoison(page)) {
  1561. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1562. if (flags & MF_COUNT_INCREASED)
  1563. put_hwpoison_page(page);
  1564. return -EBUSY;
  1565. }
  1566. get_online_mems();
  1567. ret = get_any_page(page, pfn, flags);
  1568. put_online_mems();
  1569. if (ret > 0)
  1570. ret = soft_offline_in_use_page(page, flags);
  1571. else if (ret == 0)
  1572. soft_offline_free_page(page);
  1573. return ret;
  1574. }