kmemleak.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119
  1. /*
  2. * mm/kmemleak.c
  3. *
  4. * Copyright (C) 2008 ARM Limited
  5. * Written by Catalin Marinas <catalin.marinas@arm.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. *
  21. * For more information on the algorithm and kmemleak usage, please see
  22. * Documentation/dev-tools/kmemleak.rst.
  23. *
  24. * Notes on locking
  25. * ----------------
  26. *
  27. * The following locks and mutexes are used by kmemleak:
  28. *
  29. * - kmemleak_lock (rwlock): protects the object_list modifications and
  30. * accesses to the object_tree_root. The object_list is the main list
  31. * holding the metadata (struct kmemleak_object) for the allocated memory
  32. * blocks. The object_tree_root is a red black tree used to look-up
  33. * metadata based on a pointer to the corresponding memory block. The
  34. * kmemleak_object structures are added to the object_list and
  35. * object_tree_root in the create_object() function called from the
  36. * kmemleak_alloc() callback and removed in delete_object() called from the
  37. * kmemleak_free() callback
  38. * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
  39. * the metadata (e.g. count) are protected by this lock. Note that some
  40. * members of this structure may be protected by other means (atomic or
  41. * kmemleak_lock). This lock is also held when scanning the corresponding
  42. * memory block to avoid the kernel freeing it via the kmemleak_free()
  43. * callback. This is less heavyweight than holding a global lock like
  44. * kmemleak_lock during scanning
  45. * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  46. * unreferenced objects at a time. The gray_list contains the objects which
  47. * are already referenced or marked as false positives and need to be
  48. * scanned. This list is only modified during a scanning episode when the
  49. * scan_mutex is held. At the end of a scan, the gray_list is always empty.
  50. * Note that the kmemleak_object.use_count is incremented when an object is
  51. * added to the gray_list and therefore cannot be freed. This mutex also
  52. * prevents multiple users of the "kmemleak" debugfs file together with
  53. * modifications to the memory scanning parameters including the scan_thread
  54. * pointer
  55. *
  56. * Locks and mutexes are acquired/nested in the following order:
  57. *
  58. * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
  59. *
  60. * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
  61. * regions.
  62. *
  63. * The kmemleak_object structures have a use_count incremented or decremented
  64. * using the get_object()/put_object() functions. When the use_count becomes
  65. * 0, this count can no longer be incremented and put_object() schedules the
  66. * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  67. * function must be protected by rcu_read_lock() to avoid accessing a freed
  68. * structure.
  69. */
  70. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  71. #include <linux/init.h>
  72. #include <linux/kernel.h>
  73. #include <linux/list.h>
  74. #include <linux/sched/signal.h>
  75. #include <linux/sched/task.h>
  76. #include <linux/sched/task_stack.h>
  77. #include <linux/jiffies.h>
  78. #include <linux/delay.h>
  79. #include <linux/export.h>
  80. #include <linux/kthread.h>
  81. #include <linux/rbtree.h>
  82. #include <linux/fs.h>
  83. #include <linux/debugfs.h>
  84. #include <linux/seq_file.h>
  85. #include <linux/cpumask.h>
  86. #include <linux/spinlock.h>
  87. #include <linux/mutex.h>
  88. #include <linux/rcupdate.h>
  89. #include <linux/stacktrace.h>
  90. #include <linux/cache.h>
  91. #include <linux/percpu.h>
  92. #include <linux/hardirq.h>
  93. #include <linux/bootmem.h>
  94. #include <linux/pfn.h>
  95. #include <linux/mmzone.h>
  96. #include <linux/slab.h>
  97. #include <linux/thread_info.h>
  98. #include <linux/err.h>
  99. #include <linux/uaccess.h>
  100. #include <linux/string.h>
  101. #include <linux/nodemask.h>
  102. #include <linux/mm.h>
  103. #include <linux/workqueue.h>
  104. #include <linux/crc32.h>
  105. #include <asm/sections.h>
  106. #include <asm/processor.h>
  107. #include <linux/atomic.h>
  108. #include <linux/kasan.h>
  109. #include <linux/kmemcheck.h>
  110. #include <linux/kmemleak.h>
  111. #include <linux/memory_hotplug.h>
  112. /*
  113. * Kmemleak configuration and common defines.
  114. */
  115. #define MAX_TRACE 16 /* stack trace length */
  116. #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
  117. #define SECS_FIRST_SCAN 60 /* delay before the first scan */
  118. #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
  119. #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
  120. #define BYTES_PER_POINTER sizeof(void *)
  121. /* GFP bitmask for kmemleak internal allocations */
  122. #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
  123. __GFP_NORETRY | __GFP_NOMEMALLOC | \
  124. __GFP_NOWARN)
  125. /* scanning area inside a memory block */
  126. struct kmemleak_scan_area {
  127. struct hlist_node node;
  128. unsigned long start;
  129. size_t size;
  130. };
  131. #define KMEMLEAK_GREY 0
  132. #define KMEMLEAK_BLACK -1
  133. /*
  134. * Structure holding the metadata for each allocated memory block.
  135. * Modifications to such objects should be made while holding the
  136. * object->lock. Insertions or deletions from object_list, gray_list or
  137. * rb_node are already protected by the corresponding locks or mutex (see
  138. * the notes on locking above). These objects are reference-counted
  139. * (use_count) and freed using the RCU mechanism.
  140. */
  141. struct kmemleak_object {
  142. spinlock_t lock;
  143. unsigned int flags; /* object status flags */
  144. struct list_head object_list;
  145. struct list_head gray_list;
  146. struct rb_node rb_node;
  147. struct rcu_head rcu; /* object_list lockless traversal */
  148. /* object usage count; object freed when use_count == 0 */
  149. atomic_t use_count;
  150. unsigned long pointer;
  151. size_t size;
  152. /* pass surplus references to this pointer */
  153. unsigned long excess_ref;
  154. /* minimum number of a pointers found before it is considered leak */
  155. int min_count;
  156. /* the total number of pointers found pointing to this object */
  157. int count;
  158. /* checksum for detecting modified objects */
  159. u32 checksum;
  160. /* memory ranges to be scanned inside an object (empty for all) */
  161. struct hlist_head area_list;
  162. unsigned long trace[MAX_TRACE];
  163. unsigned int trace_len;
  164. unsigned long jiffies; /* creation timestamp */
  165. pid_t pid; /* pid of the current task */
  166. char comm[TASK_COMM_LEN]; /* executable name */
  167. };
  168. /* flag representing the memory block allocation status */
  169. #define OBJECT_ALLOCATED (1 << 0)
  170. /* flag set after the first reporting of an unreference object */
  171. #define OBJECT_REPORTED (1 << 1)
  172. /* flag set to not scan the object */
  173. #define OBJECT_NO_SCAN (1 << 2)
  174. /* number of bytes to print per line; must be 16 or 32 */
  175. #define HEX_ROW_SIZE 16
  176. /* number of bytes to print at a time (1, 2, 4, 8) */
  177. #define HEX_GROUP_SIZE 1
  178. /* include ASCII after the hex output */
  179. #define HEX_ASCII 1
  180. /* max number of lines to be printed */
  181. #define HEX_MAX_LINES 2
  182. /* the list of all allocated objects */
  183. static LIST_HEAD(object_list);
  184. /* the list of gray-colored objects (see color_gray comment below) */
  185. static LIST_HEAD(gray_list);
  186. /* search tree for object boundaries */
  187. static struct rb_root object_tree_root = RB_ROOT;
  188. /* rw_lock protecting the access to object_list and object_tree_root */
  189. static DEFINE_RWLOCK(kmemleak_lock);
  190. /* allocation caches for kmemleak internal data */
  191. static struct kmem_cache *object_cache;
  192. static struct kmem_cache *scan_area_cache;
  193. /* set if tracing memory operations is enabled */
  194. static int kmemleak_enabled;
  195. /* same as above but only for the kmemleak_free() callback */
  196. static int kmemleak_free_enabled;
  197. /* set in the late_initcall if there were no errors */
  198. static int kmemleak_initialized;
  199. /* enables or disables early logging of the memory operations */
  200. static int kmemleak_early_log = 1;
  201. /* set if a kmemleak warning was issued */
  202. static int kmemleak_warning;
  203. /* set if a fatal kmemleak error has occurred */
  204. static int kmemleak_error;
  205. /* minimum and maximum address that may be valid pointers */
  206. static unsigned long min_addr = ULONG_MAX;
  207. static unsigned long max_addr;
  208. static struct task_struct *scan_thread;
  209. /* used to avoid reporting of recently allocated objects */
  210. static unsigned long jiffies_min_age;
  211. static unsigned long jiffies_last_scan;
  212. /* delay between automatic memory scannings */
  213. static signed long jiffies_scan_wait;
  214. /* enables or disables the task stacks scanning */
  215. static int kmemleak_stack_scan = 1;
  216. /* protects the memory scanning, parameters and debug/kmemleak file access */
  217. static DEFINE_MUTEX(scan_mutex);
  218. /* setting kmemleak=on, will set this var, skipping the disable */
  219. static int kmemleak_skip_disable;
  220. /* If there are leaks that can be reported */
  221. static bool kmemleak_found_leaks;
  222. /*
  223. * Early object allocation/freeing logging. Kmemleak is initialized after the
  224. * kernel allocator. However, both the kernel allocator and kmemleak may
  225. * allocate memory blocks which need to be tracked. Kmemleak defines an
  226. * arbitrary buffer to hold the allocation/freeing information before it is
  227. * fully initialized.
  228. */
  229. /* kmemleak operation type for early logging */
  230. enum {
  231. KMEMLEAK_ALLOC,
  232. KMEMLEAK_ALLOC_PERCPU,
  233. KMEMLEAK_FREE,
  234. KMEMLEAK_FREE_PART,
  235. KMEMLEAK_FREE_PERCPU,
  236. KMEMLEAK_NOT_LEAK,
  237. KMEMLEAK_IGNORE,
  238. KMEMLEAK_SCAN_AREA,
  239. KMEMLEAK_NO_SCAN,
  240. KMEMLEAK_SET_EXCESS_REF
  241. };
  242. /*
  243. * Structure holding the information passed to kmemleak callbacks during the
  244. * early logging.
  245. */
  246. struct early_log {
  247. int op_type; /* kmemleak operation type */
  248. int min_count; /* minimum reference count */
  249. const void *ptr; /* allocated/freed memory block */
  250. union {
  251. size_t size; /* memory block size */
  252. unsigned long excess_ref; /* surplus reference passing */
  253. };
  254. unsigned long trace[MAX_TRACE]; /* stack trace */
  255. unsigned int trace_len; /* stack trace length */
  256. };
  257. /* early logging buffer and current position */
  258. static struct early_log
  259. early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
  260. static int crt_early_log __initdata;
  261. static void kmemleak_disable(void);
  262. /*
  263. * Print a warning and dump the stack trace.
  264. */
  265. #define kmemleak_warn(x...) do { \
  266. pr_warn(x); \
  267. dump_stack(); \
  268. kmemleak_warning = 1; \
  269. } while (0)
  270. /*
  271. * Macro invoked when a serious kmemleak condition occurred and cannot be
  272. * recovered from. Kmemleak will be disabled and further allocation/freeing
  273. * tracing no longer available.
  274. */
  275. #define kmemleak_stop(x...) do { \
  276. kmemleak_warn(x); \
  277. kmemleak_disable(); \
  278. } while (0)
  279. /*
  280. * Printing of the objects hex dump to the seq file. The number of lines to be
  281. * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
  282. * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
  283. * with the object->lock held.
  284. */
  285. static void hex_dump_object(struct seq_file *seq,
  286. struct kmemleak_object *object)
  287. {
  288. const u8 *ptr = (const u8 *)object->pointer;
  289. size_t len;
  290. /* limit the number of lines to HEX_MAX_LINES */
  291. len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
  292. seq_printf(seq, " hex dump (first %zu bytes):\n", len);
  293. kasan_disable_current();
  294. seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
  295. HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
  296. kasan_enable_current();
  297. }
  298. /*
  299. * Object colors, encoded with count and min_count:
  300. * - white - orphan object, not enough references to it (count < min_count)
  301. * - gray - not orphan, not marked as false positive (min_count == 0) or
  302. * sufficient references to it (count >= min_count)
  303. * - black - ignore, it doesn't contain references (e.g. text section)
  304. * (min_count == -1). No function defined for this color.
  305. * Newly created objects don't have any color assigned (object->count == -1)
  306. * before the next memory scan when they become white.
  307. */
  308. static bool color_white(const struct kmemleak_object *object)
  309. {
  310. return object->count != KMEMLEAK_BLACK &&
  311. object->count < object->min_count;
  312. }
  313. static bool color_gray(const struct kmemleak_object *object)
  314. {
  315. return object->min_count != KMEMLEAK_BLACK &&
  316. object->count >= object->min_count;
  317. }
  318. /*
  319. * Objects are considered unreferenced only if their color is white, they have
  320. * not be deleted and have a minimum age to avoid false positives caused by
  321. * pointers temporarily stored in CPU registers.
  322. */
  323. static bool unreferenced_object(struct kmemleak_object *object)
  324. {
  325. return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
  326. time_before_eq(object->jiffies + jiffies_min_age,
  327. jiffies_last_scan);
  328. }
  329. /*
  330. * Printing of the unreferenced objects information to the seq file. The
  331. * print_unreferenced function must be called with the object->lock held.
  332. */
  333. static void print_unreferenced(struct seq_file *seq,
  334. struct kmemleak_object *object)
  335. {
  336. int i;
  337. unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
  338. seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
  339. object->pointer, object->size);
  340. seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
  341. object->comm, object->pid, object->jiffies,
  342. msecs_age / 1000, msecs_age % 1000);
  343. hex_dump_object(seq, object);
  344. seq_printf(seq, " backtrace:\n");
  345. for (i = 0; i < object->trace_len; i++) {
  346. void *ptr = (void *)object->trace[i];
  347. seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
  348. }
  349. }
  350. /*
  351. * Print the kmemleak_object information. This function is used mainly for
  352. * debugging special cases when kmemleak operations. It must be called with
  353. * the object->lock held.
  354. */
  355. static void dump_object_info(struct kmemleak_object *object)
  356. {
  357. struct stack_trace trace;
  358. trace.nr_entries = object->trace_len;
  359. trace.entries = object->trace;
  360. pr_notice("Object 0x%08lx (size %zu):\n",
  361. object->pointer, object->size);
  362. pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
  363. object->comm, object->pid, object->jiffies);
  364. pr_notice(" min_count = %d\n", object->min_count);
  365. pr_notice(" count = %d\n", object->count);
  366. pr_notice(" flags = 0x%x\n", object->flags);
  367. pr_notice(" checksum = %u\n", object->checksum);
  368. pr_notice(" backtrace:\n");
  369. print_stack_trace(&trace, 4);
  370. }
  371. /*
  372. * Look-up a memory block metadata (kmemleak_object) in the object search
  373. * tree based on a pointer value. If alias is 0, only values pointing to the
  374. * beginning of the memory block are allowed. The kmemleak_lock must be held
  375. * when calling this function.
  376. */
  377. static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
  378. {
  379. struct rb_node *rb = object_tree_root.rb_node;
  380. while (rb) {
  381. struct kmemleak_object *object =
  382. rb_entry(rb, struct kmemleak_object, rb_node);
  383. if (ptr < object->pointer)
  384. rb = object->rb_node.rb_left;
  385. else if (object->pointer + object->size <= ptr)
  386. rb = object->rb_node.rb_right;
  387. else if (object->pointer == ptr || alias)
  388. return object;
  389. else {
  390. kmemleak_warn("Found object by alias at 0x%08lx\n",
  391. ptr);
  392. dump_object_info(object);
  393. break;
  394. }
  395. }
  396. return NULL;
  397. }
  398. /*
  399. * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
  400. * that once an object's use_count reached 0, the RCU freeing was already
  401. * registered and the object should no longer be used. This function must be
  402. * called under the protection of rcu_read_lock().
  403. */
  404. static int get_object(struct kmemleak_object *object)
  405. {
  406. return atomic_inc_not_zero(&object->use_count);
  407. }
  408. /*
  409. * RCU callback to free a kmemleak_object.
  410. */
  411. static void free_object_rcu(struct rcu_head *rcu)
  412. {
  413. struct hlist_node *tmp;
  414. struct kmemleak_scan_area *area;
  415. struct kmemleak_object *object =
  416. container_of(rcu, struct kmemleak_object, rcu);
  417. /*
  418. * Once use_count is 0 (guaranteed by put_object), there is no other
  419. * code accessing this object, hence no need for locking.
  420. */
  421. hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
  422. hlist_del(&area->node);
  423. kmem_cache_free(scan_area_cache, area);
  424. }
  425. kmem_cache_free(object_cache, object);
  426. }
  427. /*
  428. * Decrement the object use_count. Once the count is 0, free the object using
  429. * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
  430. * delete_object() path, the delayed RCU freeing ensures that there is no
  431. * recursive call to the kernel allocator. Lock-less RCU object_list traversal
  432. * is also possible.
  433. */
  434. static void put_object(struct kmemleak_object *object)
  435. {
  436. if (!atomic_dec_and_test(&object->use_count))
  437. return;
  438. /* should only get here after delete_object was called */
  439. WARN_ON(object->flags & OBJECT_ALLOCATED);
  440. call_rcu(&object->rcu, free_object_rcu);
  441. }
  442. /*
  443. * Look up an object in the object search tree and increase its use_count.
  444. */
  445. static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
  446. {
  447. unsigned long flags;
  448. struct kmemleak_object *object;
  449. rcu_read_lock();
  450. read_lock_irqsave(&kmemleak_lock, flags);
  451. object = lookup_object(ptr, alias);
  452. read_unlock_irqrestore(&kmemleak_lock, flags);
  453. /* check whether the object is still available */
  454. if (object && !get_object(object))
  455. object = NULL;
  456. rcu_read_unlock();
  457. return object;
  458. }
  459. /*
  460. * Look up an object in the object search tree and remove it from both
  461. * object_tree_root and object_list. The returned object's use_count should be
  462. * at least 1, as initially set by create_object().
  463. */
  464. static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
  465. {
  466. unsigned long flags;
  467. struct kmemleak_object *object;
  468. write_lock_irqsave(&kmemleak_lock, flags);
  469. object = lookup_object(ptr, alias);
  470. if (object) {
  471. rb_erase(&object->rb_node, &object_tree_root);
  472. list_del_rcu(&object->object_list);
  473. }
  474. write_unlock_irqrestore(&kmemleak_lock, flags);
  475. return object;
  476. }
  477. /*
  478. * Save stack trace to the given array of MAX_TRACE size.
  479. */
  480. static int __save_stack_trace(unsigned long *trace)
  481. {
  482. struct stack_trace stack_trace;
  483. stack_trace.max_entries = MAX_TRACE;
  484. stack_trace.nr_entries = 0;
  485. stack_trace.entries = trace;
  486. stack_trace.skip = 2;
  487. save_stack_trace(&stack_trace);
  488. return stack_trace.nr_entries;
  489. }
  490. /*
  491. * Create the metadata (struct kmemleak_object) corresponding to an allocated
  492. * memory block and add it to the object_list and object_tree_root.
  493. */
  494. static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
  495. int min_count, gfp_t gfp)
  496. {
  497. unsigned long flags;
  498. struct kmemleak_object *object, *parent;
  499. struct rb_node **link, *rb_parent;
  500. object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
  501. if (!object) {
  502. pr_warn("Cannot allocate a kmemleak_object structure\n");
  503. kmemleak_disable();
  504. return NULL;
  505. }
  506. INIT_LIST_HEAD(&object->object_list);
  507. INIT_LIST_HEAD(&object->gray_list);
  508. INIT_HLIST_HEAD(&object->area_list);
  509. spin_lock_init(&object->lock);
  510. atomic_set(&object->use_count, 1);
  511. object->flags = OBJECT_ALLOCATED;
  512. object->pointer = ptr;
  513. object->size = size;
  514. object->excess_ref = 0;
  515. object->min_count = min_count;
  516. object->count = 0; /* white color initially */
  517. object->jiffies = jiffies;
  518. object->checksum = 0;
  519. /* task information */
  520. if (in_irq()) {
  521. object->pid = 0;
  522. strncpy(object->comm, "hardirq", sizeof(object->comm));
  523. } else if (in_softirq()) {
  524. object->pid = 0;
  525. strncpy(object->comm, "softirq", sizeof(object->comm));
  526. } else {
  527. object->pid = current->pid;
  528. /*
  529. * There is a small chance of a race with set_task_comm(),
  530. * however using get_task_comm() here may cause locking
  531. * dependency issues with current->alloc_lock. In the worst
  532. * case, the command line is not correct.
  533. */
  534. strncpy(object->comm, current->comm, sizeof(object->comm));
  535. }
  536. /* kernel backtrace */
  537. object->trace_len = __save_stack_trace(object->trace);
  538. write_lock_irqsave(&kmemleak_lock, flags);
  539. min_addr = min(min_addr, ptr);
  540. max_addr = max(max_addr, ptr + size);
  541. link = &object_tree_root.rb_node;
  542. rb_parent = NULL;
  543. while (*link) {
  544. rb_parent = *link;
  545. parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
  546. if (ptr + size <= parent->pointer)
  547. link = &parent->rb_node.rb_left;
  548. else if (parent->pointer + parent->size <= ptr)
  549. link = &parent->rb_node.rb_right;
  550. else {
  551. kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
  552. ptr);
  553. /*
  554. * No need for parent->lock here since "parent" cannot
  555. * be freed while the kmemleak_lock is held.
  556. */
  557. dump_object_info(parent);
  558. kmem_cache_free(object_cache, object);
  559. object = NULL;
  560. goto out;
  561. }
  562. }
  563. rb_link_node(&object->rb_node, rb_parent, link);
  564. rb_insert_color(&object->rb_node, &object_tree_root);
  565. list_add_tail_rcu(&object->object_list, &object_list);
  566. out:
  567. write_unlock_irqrestore(&kmemleak_lock, flags);
  568. return object;
  569. }
  570. /*
  571. * Mark the object as not allocated and schedule RCU freeing via put_object().
  572. */
  573. static void __delete_object(struct kmemleak_object *object)
  574. {
  575. unsigned long flags;
  576. WARN_ON(!(object->flags & OBJECT_ALLOCATED));
  577. WARN_ON(atomic_read(&object->use_count) < 1);
  578. /*
  579. * Locking here also ensures that the corresponding memory block
  580. * cannot be freed when it is being scanned.
  581. */
  582. spin_lock_irqsave(&object->lock, flags);
  583. object->flags &= ~OBJECT_ALLOCATED;
  584. spin_unlock_irqrestore(&object->lock, flags);
  585. put_object(object);
  586. }
  587. /*
  588. * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  589. * delete it.
  590. */
  591. static void delete_object_full(unsigned long ptr)
  592. {
  593. struct kmemleak_object *object;
  594. object = find_and_remove_object(ptr, 0);
  595. if (!object) {
  596. #ifdef DEBUG
  597. kmemleak_warn("Freeing unknown object at 0x%08lx\n",
  598. ptr);
  599. #endif
  600. return;
  601. }
  602. __delete_object(object);
  603. }
  604. /*
  605. * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  606. * delete it. If the memory block is partially freed, the function may create
  607. * additional metadata for the remaining parts of the block.
  608. */
  609. static void delete_object_part(unsigned long ptr, size_t size)
  610. {
  611. struct kmemleak_object *object;
  612. unsigned long start, end;
  613. object = find_and_remove_object(ptr, 1);
  614. if (!object) {
  615. #ifdef DEBUG
  616. kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
  617. ptr, size);
  618. #endif
  619. return;
  620. }
  621. /*
  622. * Create one or two objects that may result from the memory block
  623. * split. Note that partial freeing is only done by free_bootmem() and
  624. * this happens before kmemleak_init() is called. The path below is
  625. * only executed during early log recording in kmemleak_init(), so
  626. * GFP_KERNEL is enough.
  627. */
  628. start = object->pointer;
  629. end = object->pointer + object->size;
  630. if (ptr > start)
  631. create_object(start, ptr - start, object->min_count,
  632. GFP_KERNEL);
  633. if (ptr + size < end)
  634. create_object(ptr + size, end - ptr - size, object->min_count,
  635. GFP_KERNEL);
  636. __delete_object(object);
  637. }
  638. static void __paint_it(struct kmemleak_object *object, int color)
  639. {
  640. object->min_count = color;
  641. if (color == KMEMLEAK_BLACK)
  642. object->flags |= OBJECT_NO_SCAN;
  643. }
  644. static void paint_it(struct kmemleak_object *object, int color)
  645. {
  646. unsigned long flags;
  647. spin_lock_irqsave(&object->lock, flags);
  648. __paint_it(object, color);
  649. spin_unlock_irqrestore(&object->lock, flags);
  650. }
  651. static void paint_ptr(unsigned long ptr, int color)
  652. {
  653. struct kmemleak_object *object;
  654. object = find_and_get_object(ptr, 0);
  655. if (!object) {
  656. kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
  657. ptr,
  658. (color == KMEMLEAK_GREY) ? "Grey" :
  659. (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
  660. return;
  661. }
  662. paint_it(object, color);
  663. put_object(object);
  664. }
  665. /*
  666. * Mark an object permanently as gray-colored so that it can no longer be
  667. * reported as a leak. This is used in general to mark a false positive.
  668. */
  669. static void make_gray_object(unsigned long ptr)
  670. {
  671. paint_ptr(ptr, KMEMLEAK_GREY);
  672. }
  673. /*
  674. * Mark the object as black-colored so that it is ignored from scans and
  675. * reporting.
  676. */
  677. static void make_black_object(unsigned long ptr)
  678. {
  679. paint_ptr(ptr, KMEMLEAK_BLACK);
  680. }
  681. /*
  682. * Add a scanning area to the object. If at least one such area is added,
  683. * kmemleak will only scan these ranges rather than the whole memory block.
  684. */
  685. static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
  686. {
  687. unsigned long flags;
  688. struct kmemleak_object *object;
  689. struct kmemleak_scan_area *area;
  690. object = find_and_get_object(ptr, 1);
  691. if (!object) {
  692. kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
  693. ptr);
  694. return;
  695. }
  696. area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
  697. if (!area) {
  698. pr_warn("Cannot allocate a scan area\n");
  699. goto out;
  700. }
  701. spin_lock_irqsave(&object->lock, flags);
  702. if (size == SIZE_MAX) {
  703. size = object->pointer + object->size - ptr;
  704. } else if (ptr + size > object->pointer + object->size) {
  705. kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
  706. dump_object_info(object);
  707. kmem_cache_free(scan_area_cache, area);
  708. goto out_unlock;
  709. }
  710. INIT_HLIST_NODE(&area->node);
  711. area->start = ptr;
  712. area->size = size;
  713. hlist_add_head(&area->node, &object->area_list);
  714. out_unlock:
  715. spin_unlock_irqrestore(&object->lock, flags);
  716. out:
  717. put_object(object);
  718. }
  719. /*
  720. * Any surplus references (object already gray) to 'ptr' are passed to
  721. * 'excess_ref'. This is used in the vmalloc() case where a pointer to
  722. * vm_struct may be used as an alternative reference to the vmalloc'ed object
  723. * (see free_thread_stack()).
  724. */
  725. static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
  726. {
  727. unsigned long flags;
  728. struct kmemleak_object *object;
  729. object = find_and_get_object(ptr, 0);
  730. if (!object) {
  731. kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
  732. ptr);
  733. return;
  734. }
  735. spin_lock_irqsave(&object->lock, flags);
  736. object->excess_ref = excess_ref;
  737. spin_unlock_irqrestore(&object->lock, flags);
  738. put_object(object);
  739. }
  740. /*
  741. * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
  742. * pointer. Such object will not be scanned by kmemleak but references to it
  743. * are searched.
  744. */
  745. static void object_no_scan(unsigned long ptr)
  746. {
  747. unsigned long flags;
  748. struct kmemleak_object *object;
  749. object = find_and_get_object(ptr, 0);
  750. if (!object) {
  751. kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
  752. return;
  753. }
  754. spin_lock_irqsave(&object->lock, flags);
  755. object->flags |= OBJECT_NO_SCAN;
  756. spin_unlock_irqrestore(&object->lock, flags);
  757. put_object(object);
  758. }
  759. /*
  760. * Log an early kmemleak_* call to the early_log buffer. These calls will be
  761. * processed later once kmemleak is fully initialized.
  762. */
  763. static void __init log_early(int op_type, const void *ptr, size_t size,
  764. int min_count)
  765. {
  766. unsigned long flags;
  767. struct early_log *log;
  768. if (kmemleak_error) {
  769. /* kmemleak stopped recording, just count the requests */
  770. crt_early_log++;
  771. return;
  772. }
  773. if (crt_early_log >= ARRAY_SIZE(early_log)) {
  774. crt_early_log++;
  775. kmemleak_disable();
  776. return;
  777. }
  778. /*
  779. * There is no need for locking since the kernel is still in UP mode
  780. * at this stage. Disabling the IRQs is enough.
  781. */
  782. local_irq_save(flags);
  783. log = &early_log[crt_early_log];
  784. log->op_type = op_type;
  785. log->ptr = ptr;
  786. log->size = size;
  787. log->min_count = min_count;
  788. log->trace_len = __save_stack_trace(log->trace);
  789. crt_early_log++;
  790. local_irq_restore(flags);
  791. }
  792. /*
  793. * Log an early allocated block and populate the stack trace.
  794. */
  795. static void early_alloc(struct early_log *log)
  796. {
  797. struct kmemleak_object *object;
  798. unsigned long flags;
  799. int i;
  800. if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
  801. return;
  802. /*
  803. * RCU locking needed to ensure object is not freed via put_object().
  804. */
  805. rcu_read_lock();
  806. object = create_object((unsigned long)log->ptr, log->size,
  807. log->min_count, GFP_ATOMIC);
  808. if (!object)
  809. goto out;
  810. spin_lock_irqsave(&object->lock, flags);
  811. for (i = 0; i < log->trace_len; i++)
  812. object->trace[i] = log->trace[i];
  813. object->trace_len = log->trace_len;
  814. spin_unlock_irqrestore(&object->lock, flags);
  815. out:
  816. rcu_read_unlock();
  817. }
  818. /*
  819. * Log an early allocated block and populate the stack trace.
  820. */
  821. static void early_alloc_percpu(struct early_log *log)
  822. {
  823. unsigned int cpu;
  824. const void __percpu *ptr = log->ptr;
  825. for_each_possible_cpu(cpu) {
  826. log->ptr = per_cpu_ptr(ptr, cpu);
  827. early_alloc(log);
  828. }
  829. }
  830. /**
  831. * kmemleak_alloc - register a newly allocated object
  832. * @ptr: pointer to beginning of the object
  833. * @size: size of the object
  834. * @min_count: minimum number of references to this object. If during memory
  835. * scanning a number of references less than @min_count is found,
  836. * the object is reported as a memory leak. If @min_count is 0,
  837. * the object is never reported as a leak. If @min_count is -1,
  838. * the object is ignored (not scanned and not reported as a leak)
  839. * @gfp: kmalloc() flags used for kmemleak internal memory allocations
  840. *
  841. * This function is called from the kernel allocators when a new object
  842. * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
  843. */
  844. void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
  845. gfp_t gfp)
  846. {
  847. pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
  848. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  849. create_object((unsigned long)ptr, size, min_count, gfp);
  850. else if (kmemleak_early_log)
  851. log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
  852. }
  853. EXPORT_SYMBOL_GPL(kmemleak_alloc);
  854. /**
  855. * kmemleak_alloc_percpu - register a newly allocated __percpu object
  856. * @ptr: __percpu pointer to beginning of the object
  857. * @size: size of the object
  858. * @gfp: flags used for kmemleak internal memory allocations
  859. *
  860. * This function is called from the kernel percpu allocator when a new object
  861. * (memory block) is allocated (alloc_percpu).
  862. */
  863. void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
  864. gfp_t gfp)
  865. {
  866. unsigned int cpu;
  867. pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
  868. /*
  869. * Percpu allocations are only scanned and not reported as leaks
  870. * (min_count is set to 0).
  871. */
  872. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  873. for_each_possible_cpu(cpu)
  874. create_object((unsigned long)per_cpu_ptr(ptr, cpu),
  875. size, 0, gfp);
  876. else if (kmemleak_early_log)
  877. log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
  878. }
  879. EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
  880. /**
  881. * kmemleak_vmalloc - register a newly vmalloc'ed object
  882. * @area: pointer to vm_struct
  883. * @size: size of the object
  884. * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
  885. *
  886. * This function is called from the vmalloc() kernel allocator when a new
  887. * object (memory block) is allocated.
  888. */
  889. void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
  890. {
  891. pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
  892. /*
  893. * A min_count = 2 is needed because vm_struct contains a reference to
  894. * the virtual address of the vmalloc'ed block.
  895. */
  896. if (kmemleak_enabled) {
  897. create_object((unsigned long)area->addr, size, 2, gfp);
  898. object_set_excess_ref((unsigned long)area,
  899. (unsigned long)area->addr);
  900. } else if (kmemleak_early_log) {
  901. log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
  902. /* reusing early_log.size for storing area->addr */
  903. log_early(KMEMLEAK_SET_EXCESS_REF,
  904. area, (unsigned long)area->addr, 0);
  905. }
  906. }
  907. EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
  908. /**
  909. * kmemleak_free - unregister a previously registered object
  910. * @ptr: pointer to beginning of the object
  911. *
  912. * This function is called from the kernel allocators when an object (memory
  913. * block) is freed (kmem_cache_free, kfree, vfree etc.).
  914. */
  915. void __ref kmemleak_free(const void *ptr)
  916. {
  917. pr_debug("%s(0x%p)\n", __func__, ptr);
  918. if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
  919. delete_object_full((unsigned long)ptr);
  920. else if (kmemleak_early_log)
  921. log_early(KMEMLEAK_FREE, ptr, 0, 0);
  922. }
  923. EXPORT_SYMBOL_GPL(kmemleak_free);
  924. /**
  925. * kmemleak_free_part - partially unregister a previously registered object
  926. * @ptr: pointer to the beginning or inside the object. This also
  927. * represents the start of the range to be freed
  928. * @size: size to be unregistered
  929. *
  930. * This function is called when only a part of a memory block is freed
  931. * (usually from the bootmem allocator).
  932. */
  933. void __ref kmemleak_free_part(const void *ptr, size_t size)
  934. {
  935. pr_debug("%s(0x%p)\n", __func__, ptr);
  936. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  937. delete_object_part((unsigned long)ptr, size);
  938. else if (kmemleak_early_log)
  939. log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
  940. }
  941. EXPORT_SYMBOL_GPL(kmemleak_free_part);
  942. /**
  943. * kmemleak_free_percpu - unregister a previously registered __percpu object
  944. * @ptr: __percpu pointer to beginning of the object
  945. *
  946. * This function is called from the kernel percpu allocator when an object
  947. * (memory block) is freed (free_percpu).
  948. */
  949. void __ref kmemleak_free_percpu(const void __percpu *ptr)
  950. {
  951. unsigned int cpu;
  952. pr_debug("%s(0x%p)\n", __func__, ptr);
  953. if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
  954. for_each_possible_cpu(cpu)
  955. delete_object_full((unsigned long)per_cpu_ptr(ptr,
  956. cpu));
  957. else if (kmemleak_early_log)
  958. log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
  959. }
  960. EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
  961. /**
  962. * kmemleak_update_trace - update object allocation stack trace
  963. * @ptr: pointer to beginning of the object
  964. *
  965. * Override the object allocation stack trace for cases where the actual
  966. * allocation place is not always useful.
  967. */
  968. void __ref kmemleak_update_trace(const void *ptr)
  969. {
  970. struct kmemleak_object *object;
  971. unsigned long flags;
  972. pr_debug("%s(0x%p)\n", __func__, ptr);
  973. if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
  974. return;
  975. object = find_and_get_object((unsigned long)ptr, 1);
  976. if (!object) {
  977. #ifdef DEBUG
  978. kmemleak_warn("Updating stack trace for unknown object at %p\n",
  979. ptr);
  980. #endif
  981. return;
  982. }
  983. spin_lock_irqsave(&object->lock, flags);
  984. object->trace_len = __save_stack_trace(object->trace);
  985. spin_unlock_irqrestore(&object->lock, flags);
  986. put_object(object);
  987. }
  988. EXPORT_SYMBOL(kmemleak_update_trace);
  989. /**
  990. * kmemleak_not_leak - mark an allocated object as false positive
  991. * @ptr: pointer to beginning of the object
  992. *
  993. * Calling this function on an object will cause the memory block to no longer
  994. * be reported as leak and always be scanned.
  995. */
  996. void __ref kmemleak_not_leak(const void *ptr)
  997. {
  998. pr_debug("%s(0x%p)\n", __func__, ptr);
  999. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  1000. make_gray_object((unsigned long)ptr);
  1001. else if (kmemleak_early_log)
  1002. log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
  1003. }
  1004. EXPORT_SYMBOL(kmemleak_not_leak);
  1005. /**
  1006. * kmemleak_ignore - ignore an allocated object
  1007. * @ptr: pointer to beginning of the object
  1008. *
  1009. * Calling this function on an object will cause the memory block to be
  1010. * ignored (not scanned and not reported as a leak). This is usually done when
  1011. * it is known that the corresponding block is not a leak and does not contain
  1012. * any references to other allocated memory blocks.
  1013. */
  1014. void __ref kmemleak_ignore(const void *ptr)
  1015. {
  1016. pr_debug("%s(0x%p)\n", __func__, ptr);
  1017. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  1018. make_black_object((unsigned long)ptr);
  1019. else if (kmemleak_early_log)
  1020. log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
  1021. }
  1022. EXPORT_SYMBOL(kmemleak_ignore);
  1023. /**
  1024. * kmemleak_scan_area - limit the range to be scanned in an allocated object
  1025. * @ptr: pointer to beginning or inside the object. This also
  1026. * represents the start of the scan area
  1027. * @size: size of the scan area
  1028. * @gfp: kmalloc() flags used for kmemleak internal memory allocations
  1029. *
  1030. * This function is used when it is known that only certain parts of an object
  1031. * contain references to other objects. Kmemleak will only scan these areas
  1032. * reducing the number false negatives.
  1033. */
  1034. void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
  1035. {
  1036. pr_debug("%s(0x%p)\n", __func__, ptr);
  1037. if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
  1038. add_scan_area((unsigned long)ptr, size, gfp);
  1039. else if (kmemleak_early_log)
  1040. log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
  1041. }
  1042. EXPORT_SYMBOL(kmemleak_scan_area);
  1043. /**
  1044. * kmemleak_no_scan - do not scan an allocated object
  1045. * @ptr: pointer to beginning of the object
  1046. *
  1047. * This function notifies kmemleak not to scan the given memory block. Useful
  1048. * in situations where it is known that the given object does not contain any
  1049. * references to other objects. Kmemleak will not scan such objects reducing
  1050. * the number of false negatives.
  1051. */
  1052. void __ref kmemleak_no_scan(const void *ptr)
  1053. {
  1054. pr_debug("%s(0x%p)\n", __func__, ptr);
  1055. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  1056. object_no_scan((unsigned long)ptr);
  1057. else if (kmemleak_early_log)
  1058. log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
  1059. }
  1060. EXPORT_SYMBOL(kmemleak_no_scan);
  1061. /**
  1062. * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
  1063. * address argument
  1064. */
  1065. void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
  1066. gfp_t gfp)
  1067. {
  1068. if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
  1069. kmemleak_alloc(__va(phys), size, min_count, gfp);
  1070. }
  1071. EXPORT_SYMBOL(kmemleak_alloc_phys);
  1072. /**
  1073. * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
  1074. * physical address argument
  1075. */
  1076. void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
  1077. {
  1078. if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
  1079. kmemleak_free_part(__va(phys), size);
  1080. }
  1081. EXPORT_SYMBOL(kmemleak_free_part_phys);
  1082. /**
  1083. * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
  1084. * address argument
  1085. */
  1086. void __ref kmemleak_not_leak_phys(phys_addr_t phys)
  1087. {
  1088. if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
  1089. kmemleak_not_leak(__va(phys));
  1090. }
  1091. EXPORT_SYMBOL(kmemleak_not_leak_phys);
  1092. /**
  1093. * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
  1094. * address argument
  1095. */
  1096. void __ref kmemleak_ignore_phys(phys_addr_t phys)
  1097. {
  1098. if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
  1099. kmemleak_ignore(__va(phys));
  1100. }
  1101. EXPORT_SYMBOL(kmemleak_ignore_phys);
  1102. /*
  1103. * Update an object's checksum and return true if it was modified.
  1104. */
  1105. static bool update_checksum(struct kmemleak_object *object)
  1106. {
  1107. u32 old_csum = object->checksum;
  1108. if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
  1109. return false;
  1110. kasan_disable_current();
  1111. object->checksum = crc32(0, (void *)object->pointer, object->size);
  1112. kasan_enable_current();
  1113. return object->checksum != old_csum;
  1114. }
  1115. /*
  1116. * Update an object's references. object->lock must be held by the caller.
  1117. */
  1118. static void update_refs(struct kmemleak_object *object)
  1119. {
  1120. if (!color_white(object)) {
  1121. /* non-orphan, ignored or new */
  1122. return;
  1123. }
  1124. /*
  1125. * Increase the object's reference count (number of pointers to the
  1126. * memory block). If this count reaches the required minimum, the
  1127. * object's color will become gray and it will be added to the
  1128. * gray_list.
  1129. */
  1130. object->count++;
  1131. if (color_gray(object)) {
  1132. /* put_object() called when removing from gray_list */
  1133. WARN_ON(!get_object(object));
  1134. list_add_tail(&object->gray_list, &gray_list);
  1135. }
  1136. }
  1137. /*
  1138. * Memory scanning is a long process and it needs to be interruptable. This
  1139. * function checks whether such interrupt condition occurred.
  1140. */
  1141. static int scan_should_stop(void)
  1142. {
  1143. if (!kmemleak_enabled)
  1144. return 1;
  1145. /*
  1146. * This function may be called from either process or kthread context,
  1147. * hence the need to check for both stop conditions.
  1148. */
  1149. if (current->mm)
  1150. return signal_pending(current);
  1151. else
  1152. return kthread_should_stop();
  1153. return 0;
  1154. }
  1155. /*
  1156. * Scan a memory block (exclusive range) for valid pointers and add those
  1157. * found to the gray list.
  1158. */
  1159. static void scan_block(void *_start, void *_end,
  1160. struct kmemleak_object *scanned)
  1161. {
  1162. unsigned long *ptr;
  1163. unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
  1164. unsigned long *end = _end - (BYTES_PER_POINTER - 1);
  1165. unsigned long flags;
  1166. read_lock_irqsave(&kmemleak_lock, flags);
  1167. for (ptr = start; ptr < end; ptr++) {
  1168. struct kmemleak_object *object;
  1169. unsigned long pointer;
  1170. unsigned long excess_ref;
  1171. if (scan_should_stop())
  1172. break;
  1173. /* don't scan uninitialized memory */
  1174. if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
  1175. BYTES_PER_POINTER))
  1176. continue;
  1177. kasan_disable_current();
  1178. pointer = *ptr;
  1179. kasan_enable_current();
  1180. if (pointer < min_addr || pointer >= max_addr)
  1181. continue;
  1182. /*
  1183. * No need for get_object() here since we hold kmemleak_lock.
  1184. * object->use_count cannot be dropped to 0 while the object
  1185. * is still present in object_tree_root and object_list
  1186. * (with updates protected by kmemleak_lock).
  1187. */
  1188. object = lookup_object(pointer, 1);
  1189. if (!object)
  1190. continue;
  1191. if (object == scanned)
  1192. /* self referenced, ignore */
  1193. continue;
  1194. /*
  1195. * Avoid the lockdep recursive warning on object->lock being
  1196. * previously acquired in scan_object(). These locks are
  1197. * enclosed by scan_mutex.
  1198. */
  1199. spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
  1200. /* only pass surplus references (object already gray) */
  1201. if (color_gray(object)) {
  1202. excess_ref = object->excess_ref;
  1203. /* no need for update_refs() if object already gray */
  1204. } else {
  1205. excess_ref = 0;
  1206. update_refs(object);
  1207. }
  1208. spin_unlock(&object->lock);
  1209. if (excess_ref) {
  1210. object = lookup_object(excess_ref, 0);
  1211. if (!object)
  1212. continue;
  1213. if (object == scanned)
  1214. /* circular reference, ignore */
  1215. continue;
  1216. spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
  1217. update_refs(object);
  1218. spin_unlock(&object->lock);
  1219. }
  1220. }
  1221. read_unlock_irqrestore(&kmemleak_lock, flags);
  1222. }
  1223. /*
  1224. * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
  1225. */
  1226. static void scan_large_block(void *start, void *end)
  1227. {
  1228. void *next;
  1229. while (start < end) {
  1230. next = min(start + MAX_SCAN_SIZE, end);
  1231. scan_block(start, next, NULL);
  1232. start = next;
  1233. cond_resched();
  1234. }
  1235. }
  1236. /*
  1237. * Scan a memory block corresponding to a kmemleak_object. A condition is
  1238. * that object->use_count >= 1.
  1239. */
  1240. static void scan_object(struct kmemleak_object *object)
  1241. {
  1242. struct kmemleak_scan_area *area;
  1243. unsigned long flags;
  1244. /*
  1245. * Once the object->lock is acquired, the corresponding memory block
  1246. * cannot be freed (the same lock is acquired in delete_object).
  1247. */
  1248. spin_lock_irqsave(&object->lock, flags);
  1249. if (object->flags & OBJECT_NO_SCAN)
  1250. goto out;
  1251. if (!(object->flags & OBJECT_ALLOCATED))
  1252. /* already freed object */
  1253. goto out;
  1254. if (hlist_empty(&object->area_list)) {
  1255. void *start = (void *)object->pointer;
  1256. void *end = (void *)(object->pointer + object->size);
  1257. void *next;
  1258. do {
  1259. next = min(start + MAX_SCAN_SIZE, end);
  1260. scan_block(start, next, object);
  1261. start = next;
  1262. if (start >= end)
  1263. break;
  1264. spin_unlock_irqrestore(&object->lock, flags);
  1265. cond_resched();
  1266. spin_lock_irqsave(&object->lock, flags);
  1267. } while (object->flags & OBJECT_ALLOCATED);
  1268. } else
  1269. hlist_for_each_entry(area, &object->area_list, node)
  1270. scan_block((void *)area->start,
  1271. (void *)(area->start + area->size),
  1272. object);
  1273. out:
  1274. spin_unlock_irqrestore(&object->lock, flags);
  1275. }
  1276. /*
  1277. * Scan the objects already referenced (gray objects). More objects will be
  1278. * referenced and, if there are no memory leaks, all the objects are scanned.
  1279. */
  1280. static void scan_gray_list(void)
  1281. {
  1282. struct kmemleak_object *object, *tmp;
  1283. /*
  1284. * The list traversal is safe for both tail additions and removals
  1285. * from inside the loop. The kmemleak objects cannot be freed from
  1286. * outside the loop because their use_count was incremented.
  1287. */
  1288. object = list_entry(gray_list.next, typeof(*object), gray_list);
  1289. while (&object->gray_list != &gray_list) {
  1290. cond_resched();
  1291. /* may add new objects to the list */
  1292. if (!scan_should_stop())
  1293. scan_object(object);
  1294. tmp = list_entry(object->gray_list.next, typeof(*object),
  1295. gray_list);
  1296. /* remove the object from the list and release it */
  1297. list_del(&object->gray_list);
  1298. put_object(object);
  1299. object = tmp;
  1300. }
  1301. WARN_ON(!list_empty(&gray_list));
  1302. }
  1303. /*
  1304. * Scan data sections and all the referenced memory blocks allocated via the
  1305. * kernel's standard allocators. This function must be called with the
  1306. * scan_mutex held.
  1307. */
  1308. static void kmemleak_scan(void)
  1309. {
  1310. unsigned long flags;
  1311. struct kmemleak_object *object;
  1312. int i;
  1313. int new_leaks = 0;
  1314. jiffies_last_scan = jiffies;
  1315. /* prepare the kmemleak_object's */
  1316. rcu_read_lock();
  1317. list_for_each_entry_rcu(object, &object_list, object_list) {
  1318. spin_lock_irqsave(&object->lock, flags);
  1319. #ifdef DEBUG
  1320. /*
  1321. * With a few exceptions there should be a maximum of
  1322. * 1 reference to any object at this point.
  1323. */
  1324. if (atomic_read(&object->use_count) > 1) {
  1325. pr_debug("object->use_count = %d\n",
  1326. atomic_read(&object->use_count));
  1327. dump_object_info(object);
  1328. }
  1329. #endif
  1330. /* reset the reference count (whiten the object) */
  1331. object->count = 0;
  1332. if (color_gray(object) && get_object(object))
  1333. list_add_tail(&object->gray_list, &gray_list);
  1334. spin_unlock_irqrestore(&object->lock, flags);
  1335. }
  1336. rcu_read_unlock();
  1337. /* data/bss scanning */
  1338. scan_large_block(_sdata, _edata);
  1339. scan_large_block(__bss_start, __bss_stop);
  1340. scan_large_block(__start_ro_after_init, __end_ro_after_init);
  1341. #ifdef CONFIG_SMP
  1342. /* per-cpu sections scanning */
  1343. for_each_possible_cpu(i)
  1344. scan_large_block(__per_cpu_start + per_cpu_offset(i),
  1345. __per_cpu_end + per_cpu_offset(i));
  1346. #endif
  1347. /*
  1348. * Struct page scanning for each node.
  1349. */
  1350. get_online_mems();
  1351. for_each_online_node(i) {
  1352. unsigned long start_pfn = node_start_pfn(i);
  1353. unsigned long end_pfn = node_end_pfn(i);
  1354. unsigned long pfn;
  1355. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1356. struct page *page;
  1357. if (!pfn_valid(pfn))
  1358. continue;
  1359. page = pfn_to_page(pfn);
  1360. /* only scan if page is in use */
  1361. if (page_count(page) == 0)
  1362. continue;
  1363. scan_block(page, page + 1, NULL);
  1364. }
  1365. }
  1366. put_online_mems();
  1367. /*
  1368. * Scanning the task stacks (may introduce false negatives).
  1369. */
  1370. if (kmemleak_stack_scan) {
  1371. struct task_struct *p, *g;
  1372. read_lock(&tasklist_lock);
  1373. do_each_thread(g, p) {
  1374. void *stack = try_get_task_stack(p);
  1375. if (stack) {
  1376. scan_block(stack, stack + THREAD_SIZE, NULL);
  1377. put_task_stack(p);
  1378. }
  1379. } while_each_thread(g, p);
  1380. read_unlock(&tasklist_lock);
  1381. }
  1382. /*
  1383. * Scan the objects already referenced from the sections scanned
  1384. * above.
  1385. */
  1386. scan_gray_list();
  1387. /*
  1388. * Check for new or unreferenced objects modified since the previous
  1389. * scan and color them gray until the next scan.
  1390. */
  1391. rcu_read_lock();
  1392. list_for_each_entry_rcu(object, &object_list, object_list) {
  1393. spin_lock_irqsave(&object->lock, flags);
  1394. if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
  1395. && update_checksum(object) && get_object(object)) {
  1396. /* color it gray temporarily */
  1397. object->count = object->min_count;
  1398. list_add_tail(&object->gray_list, &gray_list);
  1399. }
  1400. spin_unlock_irqrestore(&object->lock, flags);
  1401. }
  1402. rcu_read_unlock();
  1403. /*
  1404. * Re-scan the gray list for modified unreferenced objects.
  1405. */
  1406. scan_gray_list();
  1407. /*
  1408. * If scanning was stopped do not report any new unreferenced objects.
  1409. */
  1410. if (scan_should_stop())
  1411. return;
  1412. /*
  1413. * Scanning result reporting.
  1414. */
  1415. rcu_read_lock();
  1416. list_for_each_entry_rcu(object, &object_list, object_list) {
  1417. spin_lock_irqsave(&object->lock, flags);
  1418. if (unreferenced_object(object) &&
  1419. !(object->flags & OBJECT_REPORTED)) {
  1420. object->flags |= OBJECT_REPORTED;
  1421. new_leaks++;
  1422. }
  1423. spin_unlock_irqrestore(&object->lock, flags);
  1424. }
  1425. rcu_read_unlock();
  1426. if (new_leaks) {
  1427. kmemleak_found_leaks = true;
  1428. pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
  1429. new_leaks);
  1430. }
  1431. }
  1432. /*
  1433. * Thread function performing automatic memory scanning. Unreferenced objects
  1434. * at the end of a memory scan are reported but only the first time.
  1435. */
  1436. static int kmemleak_scan_thread(void *arg)
  1437. {
  1438. static int first_run = 1;
  1439. pr_info("Automatic memory scanning thread started\n");
  1440. set_user_nice(current, 10);
  1441. /*
  1442. * Wait before the first scan to allow the system to fully initialize.
  1443. */
  1444. if (first_run) {
  1445. signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
  1446. first_run = 0;
  1447. while (timeout && !kthread_should_stop())
  1448. timeout = schedule_timeout_interruptible(timeout);
  1449. }
  1450. while (!kthread_should_stop()) {
  1451. signed long timeout = jiffies_scan_wait;
  1452. mutex_lock(&scan_mutex);
  1453. kmemleak_scan();
  1454. mutex_unlock(&scan_mutex);
  1455. /* wait before the next scan */
  1456. while (timeout && !kthread_should_stop())
  1457. timeout = schedule_timeout_interruptible(timeout);
  1458. }
  1459. pr_info("Automatic memory scanning thread ended\n");
  1460. return 0;
  1461. }
  1462. /*
  1463. * Start the automatic memory scanning thread. This function must be called
  1464. * with the scan_mutex held.
  1465. */
  1466. static void start_scan_thread(void)
  1467. {
  1468. if (scan_thread)
  1469. return;
  1470. scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
  1471. if (IS_ERR(scan_thread)) {
  1472. pr_warn("Failed to create the scan thread\n");
  1473. scan_thread = NULL;
  1474. }
  1475. }
  1476. /*
  1477. * Stop the automatic memory scanning thread. This function must be called
  1478. * with the scan_mutex held.
  1479. */
  1480. static void stop_scan_thread(void)
  1481. {
  1482. if (scan_thread) {
  1483. kthread_stop(scan_thread);
  1484. scan_thread = NULL;
  1485. }
  1486. }
  1487. /*
  1488. * Iterate over the object_list and return the first valid object at or after
  1489. * the required position with its use_count incremented. The function triggers
  1490. * a memory scanning when the pos argument points to the first position.
  1491. */
  1492. static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
  1493. {
  1494. struct kmemleak_object *object;
  1495. loff_t n = *pos;
  1496. int err;
  1497. err = mutex_lock_interruptible(&scan_mutex);
  1498. if (err < 0)
  1499. return ERR_PTR(err);
  1500. rcu_read_lock();
  1501. list_for_each_entry_rcu(object, &object_list, object_list) {
  1502. if (n-- > 0)
  1503. continue;
  1504. if (get_object(object))
  1505. goto out;
  1506. }
  1507. object = NULL;
  1508. out:
  1509. return object;
  1510. }
  1511. /*
  1512. * Return the next object in the object_list. The function decrements the
  1513. * use_count of the previous object and increases that of the next one.
  1514. */
  1515. static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1516. {
  1517. struct kmemleak_object *prev_obj = v;
  1518. struct kmemleak_object *next_obj = NULL;
  1519. struct kmemleak_object *obj = prev_obj;
  1520. ++(*pos);
  1521. list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
  1522. if (get_object(obj)) {
  1523. next_obj = obj;
  1524. break;
  1525. }
  1526. }
  1527. put_object(prev_obj);
  1528. return next_obj;
  1529. }
  1530. /*
  1531. * Decrement the use_count of the last object required, if any.
  1532. */
  1533. static void kmemleak_seq_stop(struct seq_file *seq, void *v)
  1534. {
  1535. if (!IS_ERR(v)) {
  1536. /*
  1537. * kmemleak_seq_start may return ERR_PTR if the scan_mutex
  1538. * waiting was interrupted, so only release it if !IS_ERR.
  1539. */
  1540. rcu_read_unlock();
  1541. mutex_unlock(&scan_mutex);
  1542. if (v)
  1543. put_object(v);
  1544. }
  1545. }
  1546. /*
  1547. * Print the information for an unreferenced object to the seq file.
  1548. */
  1549. static int kmemleak_seq_show(struct seq_file *seq, void *v)
  1550. {
  1551. struct kmemleak_object *object = v;
  1552. unsigned long flags;
  1553. spin_lock_irqsave(&object->lock, flags);
  1554. if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
  1555. print_unreferenced(seq, object);
  1556. spin_unlock_irqrestore(&object->lock, flags);
  1557. return 0;
  1558. }
  1559. static const struct seq_operations kmemleak_seq_ops = {
  1560. .start = kmemleak_seq_start,
  1561. .next = kmemleak_seq_next,
  1562. .stop = kmemleak_seq_stop,
  1563. .show = kmemleak_seq_show,
  1564. };
  1565. static int kmemleak_open(struct inode *inode, struct file *file)
  1566. {
  1567. return seq_open(file, &kmemleak_seq_ops);
  1568. }
  1569. static int dump_str_object_info(const char *str)
  1570. {
  1571. unsigned long flags;
  1572. struct kmemleak_object *object;
  1573. unsigned long addr;
  1574. if (kstrtoul(str, 0, &addr))
  1575. return -EINVAL;
  1576. object = find_and_get_object(addr, 0);
  1577. if (!object) {
  1578. pr_info("Unknown object at 0x%08lx\n", addr);
  1579. return -EINVAL;
  1580. }
  1581. spin_lock_irqsave(&object->lock, flags);
  1582. dump_object_info(object);
  1583. spin_unlock_irqrestore(&object->lock, flags);
  1584. put_object(object);
  1585. return 0;
  1586. }
  1587. /*
  1588. * We use grey instead of black to ensure we can do future scans on the same
  1589. * objects. If we did not do future scans these black objects could
  1590. * potentially contain references to newly allocated objects in the future and
  1591. * we'd end up with false positives.
  1592. */
  1593. static void kmemleak_clear(void)
  1594. {
  1595. struct kmemleak_object *object;
  1596. unsigned long flags;
  1597. rcu_read_lock();
  1598. list_for_each_entry_rcu(object, &object_list, object_list) {
  1599. spin_lock_irqsave(&object->lock, flags);
  1600. if ((object->flags & OBJECT_REPORTED) &&
  1601. unreferenced_object(object))
  1602. __paint_it(object, KMEMLEAK_GREY);
  1603. spin_unlock_irqrestore(&object->lock, flags);
  1604. }
  1605. rcu_read_unlock();
  1606. kmemleak_found_leaks = false;
  1607. }
  1608. static void __kmemleak_do_cleanup(void);
  1609. /*
  1610. * File write operation to configure kmemleak at run-time. The following
  1611. * commands can be written to the /sys/kernel/debug/kmemleak file:
  1612. * off - disable kmemleak (irreversible)
  1613. * stack=on - enable the task stacks scanning
  1614. * stack=off - disable the tasks stacks scanning
  1615. * scan=on - start the automatic memory scanning thread
  1616. * scan=off - stop the automatic memory scanning thread
  1617. * scan=... - set the automatic memory scanning period in seconds (0 to
  1618. * disable it)
  1619. * scan - trigger a memory scan
  1620. * clear - mark all current reported unreferenced kmemleak objects as
  1621. * grey to ignore printing them, or free all kmemleak objects
  1622. * if kmemleak has been disabled.
  1623. * dump=... - dump information about the object found at the given address
  1624. */
  1625. static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
  1626. size_t size, loff_t *ppos)
  1627. {
  1628. char buf[64];
  1629. int buf_size;
  1630. int ret;
  1631. buf_size = min(size, (sizeof(buf) - 1));
  1632. if (strncpy_from_user(buf, user_buf, buf_size) < 0)
  1633. return -EFAULT;
  1634. buf[buf_size] = 0;
  1635. ret = mutex_lock_interruptible(&scan_mutex);
  1636. if (ret < 0)
  1637. return ret;
  1638. if (strncmp(buf, "clear", 5) == 0) {
  1639. if (kmemleak_enabled)
  1640. kmemleak_clear();
  1641. else
  1642. __kmemleak_do_cleanup();
  1643. goto out;
  1644. }
  1645. if (!kmemleak_enabled) {
  1646. ret = -EBUSY;
  1647. goto out;
  1648. }
  1649. if (strncmp(buf, "off", 3) == 0)
  1650. kmemleak_disable();
  1651. else if (strncmp(buf, "stack=on", 8) == 0)
  1652. kmemleak_stack_scan = 1;
  1653. else if (strncmp(buf, "stack=off", 9) == 0)
  1654. kmemleak_stack_scan = 0;
  1655. else if (strncmp(buf, "scan=on", 7) == 0)
  1656. start_scan_thread();
  1657. else if (strncmp(buf, "scan=off", 8) == 0)
  1658. stop_scan_thread();
  1659. else if (strncmp(buf, "scan=", 5) == 0) {
  1660. unsigned long secs;
  1661. ret = kstrtoul(buf + 5, 0, &secs);
  1662. if (ret < 0)
  1663. goto out;
  1664. stop_scan_thread();
  1665. if (secs) {
  1666. jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
  1667. start_scan_thread();
  1668. }
  1669. } else if (strncmp(buf, "scan", 4) == 0)
  1670. kmemleak_scan();
  1671. else if (strncmp(buf, "dump=", 5) == 0)
  1672. ret = dump_str_object_info(buf + 5);
  1673. else
  1674. ret = -EINVAL;
  1675. out:
  1676. mutex_unlock(&scan_mutex);
  1677. if (ret < 0)
  1678. return ret;
  1679. /* ignore the rest of the buffer, only one command at a time */
  1680. *ppos += size;
  1681. return size;
  1682. }
  1683. static const struct file_operations kmemleak_fops = {
  1684. .owner = THIS_MODULE,
  1685. .open = kmemleak_open,
  1686. .read = seq_read,
  1687. .write = kmemleak_write,
  1688. .llseek = seq_lseek,
  1689. .release = seq_release,
  1690. };
  1691. static void __kmemleak_do_cleanup(void)
  1692. {
  1693. struct kmemleak_object *object;
  1694. rcu_read_lock();
  1695. list_for_each_entry_rcu(object, &object_list, object_list)
  1696. delete_object_full(object->pointer);
  1697. rcu_read_unlock();
  1698. }
  1699. /*
  1700. * Stop the memory scanning thread and free the kmemleak internal objects if
  1701. * no previous scan thread (otherwise, kmemleak may still have some useful
  1702. * information on memory leaks).
  1703. */
  1704. static void kmemleak_do_cleanup(struct work_struct *work)
  1705. {
  1706. stop_scan_thread();
  1707. /*
  1708. * Once the scan thread has stopped, it is safe to no longer track
  1709. * object freeing. Ordering of the scan thread stopping and the memory
  1710. * accesses below is guaranteed by the kthread_stop() function.
  1711. */
  1712. kmemleak_free_enabled = 0;
  1713. if (!kmemleak_found_leaks)
  1714. __kmemleak_do_cleanup();
  1715. else
  1716. pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
  1717. }
  1718. static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
  1719. /*
  1720. * Disable kmemleak. No memory allocation/freeing will be traced once this
  1721. * function is called. Disabling kmemleak is an irreversible operation.
  1722. */
  1723. static void kmemleak_disable(void)
  1724. {
  1725. /* atomically check whether it was already invoked */
  1726. if (cmpxchg(&kmemleak_error, 0, 1))
  1727. return;
  1728. /* stop any memory operation tracing */
  1729. kmemleak_enabled = 0;
  1730. /* check whether it is too early for a kernel thread */
  1731. if (kmemleak_initialized)
  1732. schedule_work(&cleanup_work);
  1733. else
  1734. kmemleak_free_enabled = 0;
  1735. pr_info("Kernel memory leak detector disabled\n");
  1736. }
  1737. /*
  1738. * Allow boot-time kmemleak disabling (enabled by default).
  1739. */
  1740. static int kmemleak_boot_config(char *str)
  1741. {
  1742. if (!str)
  1743. return -EINVAL;
  1744. if (strcmp(str, "off") == 0)
  1745. kmemleak_disable();
  1746. else if (strcmp(str, "on") == 0)
  1747. kmemleak_skip_disable = 1;
  1748. else
  1749. return -EINVAL;
  1750. return 0;
  1751. }
  1752. early_param("kmemleak", kmemleak_boot_config);
  1753. static void __init print_log_trace(struct early_log *log)
  1754. {
  1755. struct stack_trace trace;
  1756. trace.nr_entries = log->trace_len;
  1757. trace.entries = log->trace;
  1758. pr_notice("Early log backtrace:\n");
  1759. print_stack_trace(&trace, 2);
  1760. }
  1761. /*
  1762. * Kmemleak initialization.
  1763. */
  1764. void __init kmemleak_init(void)
  1765. {
  1766. int i;
  1767. unsigned long flags;
  1768. #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
  1769. if (!kmemleak_skip_disable) {
  1770. kmemleak_early_log = 0;
  1771. kmemleak_disable();
  1772. return;
  1773. }
  1774. #endif
  1775. jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
  1776. jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
  1777. object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
  1778. scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
  1779. if (crt_early_log > ARRAY_SIZE(early_log))
  1780. pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
  1781. crt_early_log);
  1782. /* the kernel is still in UP mode, so disabling the IRQs is enough */
  1783. local_irq_save(flags);
  1784. kmemleak_early_log = 0;
  1785. if (kmemleak_error) {
  1786. local_irq_restore(flags);
  1787. return;
  1788. } else {
  1789. kmemleak_enabled = 1;
  1790. kmemleak_free_enabled = 1;
  1791. }
  1792. local_irq_restore(flags);
  1793. /*
  1794. * This is the point where tracking allocations is safe. Automatic
  1795. * scanning is started during the late initcall. Add the early logged
  1796. * callbacks to the kmemleak infrastructure.
  1797. */
  1798. for (i = 0; i < crt_early_log; i++) {
  1799. struct early_log *log = &early_log[i];
  1800. switch (log->op_type) {
  1801. case KMEMLEAK_ALLOC:
  1802. early_alloc(log);
  1803. break;
  1804. case KMEMLEAK_ALLOC_PERCPU:
  1805. early_alloc_percpu(log);
  1806. break;
  1807. case KMEMLEAK_FREE:
  1808. kmemleak_free(log->ptr);
  1809. break;
  1810. case KMEMLEAK_FREE_PART:
  1811. kmemleak_free_part(log->ptr, log->size);
  1812. break;
  1813. case KMEMLEAK_FREE_PERCPU:
  1814. kmemleak_free_percpu(log->ptr);
  1815. break;
  1816. case KMEMLEAK_NOT_LEAK:
  1817. kmemleak_not_leak(log->ptr);
  1818. break;
  1819. case KMEMLEAK_IGNORE:
  1820. kmemleak_ignore(log->ptr);
  1821. break;
  1822. case KMEMLEAK_SCAN_AREA:
  1823. kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
  1824. break;
  1825. case KMEMLEAK_NO_SCAN:
  1826. kmemleak_no_scan(log->ptr);
  1827. break;
  1828. case KMEMLEAK_SET_EXCESS_REF:
  1829. object_set_excess_ref((unsigned long)log->ptr,
  1830. log->excess_ref);
  1831. break;
  1832. default:
  1833. kmemleak_warn("Unknown early log operation: %d\n",
  1834. log->op_type);
  1835. }
  1836. if (kmemleak_warning) {
  1837. print_log_trace(log);
  1838. kmemleak_warning = 0;
  1839. }
  1840. }
  1841. }
  1842. /*
  1843. * Late initialization function.
  1844. */
  1845. static int __init kmemleak_late_init(void)
  1846. {
  1847. struct dentry *dentry;
  1848. kmemleak_initialized = 1;
  1849. if (kmemleak_error) {
  1850. /*
  1851. * Some error occurred and kmemleak was disabled. There is a
  1852. * small chance that kmemleak_disable() was called immediately
  1853. * after setting kmemleak_initialized and we may end up with
  1854. * two clean-up threads but serialized by scan_mutex.
  1855. */
  1856. schedule_work(&cleanup_work);
  1857. return -ENOMEM;
  1858. }
  1859. dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
  1860. &kmemleak_fops);
  1861. if (!dentry)
  1862. pr_warn("Failed to create the debugfs kmemleak file\n");
  1863. mutex_lock(&scan_mutex);
  1864. start_scan_thread();
  1865. mutex_unlock(&scan_mutex);
  1866. pr_info("Kernel memory leak detector initialized\n");
  1867. return 0;
  1868. }
  1869. late_initcall(kmemleak_late_init);