hugetlb.c 127 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728
  1. /*
  2. * Generic hugetlb support.
  3. * (C) Nadia Yvette Chambers, April 2004
  4. */
  5. #include <linux/list.h>
  6. #include <linux/init.h>
  7. #include <linux/mm.h>
  8. #include <linux/seq_file.h>
  9. #include <linux/sysctl.h>
  10. #include <linux/highmem.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/compiler.h>
  16. #include <linux/cpuset.h>
  17. #include <linux/mutex.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/sysfs.h>
  20. #include <linux/slab.h>
  21. #include <linux/sched/signal.h>
  22. #include <linux/rmap.h>
  23. #include <linux/string_helpers.h>
  24. #include <linux/swap.h>
  25. #include <linux/swapops.h>
  26. #include <linux/jhash.h>
  27. #include <asm/page.h>
  28. #include <asm/pgtable.h>
  29. #include <asm/tlb.h>
  30. #include <linux/io.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/hugetlb_cgroup.h>
  33. #include <linux/node.h>
  34. #include <linux/userfaultfd_k.h>
  35. #include "internal.h"
  36. int hugepages_treat_as_movable;
  37. int hugetlb_max_hstate __read_mostly;
  38. unsigned int default_hstate_idx;
  39. struct hstate hstates[HUGE_MAX_HSTATE];
  40. /*
  41. * Minimum page order among possible hugepage sizes, set to a proper value
  42. * at boot time.
  43. */
  44. static unsigned int minimum_order __read_mostly = UINT_MAX;
  45. __initdata LIST_HEAD(huge_boot_pages);
  46. /* for command line parsing */
  47. static struct hstate * __initdata parsed_hstate;
  48. static unsigned long __initdata default_hstate_max_huge_pages;
  49. static unsigned long __initdata default_hstate_size;
  50. static bool __initdata parsed_valid_hugepagesz = true;
  51. /*
  52. * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  53. * free_huge_pages, and surplus_huge_pages.
  54. */
  55. DEFINE_SPINLOCK(hugetlb_lock);
  56. /*
  57. * Serializes faults on the same logical page. This is used to
  58. * prevent spurious OOMs when the hugepage pool is fully utilized.
  59. */
  60. static int num_fault_mutexes;
  61. struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  62. /* Forward declaration */
  63. static int hugetlb_acct_memory(struct hstate *h, long delta);
  64. static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  65. {
  66. bool free = (spool->count == 0) && (spool->used_hpages == 0);
  67. spin_unlock(&spool->lock);
  68. /* If no pages are used, and no other handles to the subpool
  69. * remain, give up any reservations mased on minimum size and
  70. * free the subpool */
  71. if (free) {
  72. if (spool->min_hpages != -1)
  73. hugetlb_acct_memory(spool->hstate,
  74. -spool->min_hpages);
  75. kfree(spool);
  76. }
  77. }
  78. struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  79. long min_hpages)
  80. {
  81. struct hugepage_subpool *spool;
  82. spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  83. if (!spool)
  84. return NULL;
  85. spin_lock_init(&spool->lock);
  86. spool->count = 1;
  87. spool->max_hpages = max_hpages;
  88. spool->hstate = h;
  89. spool->min_hpages = min_hpages;
  90. if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
  91. kfree(spool);
  92. return NULL;
  93. }
  94. spool->rsv_hpages = min_hpages;
  95. return spool;
  96. }
  97. void hugepage_put_subpool(struct hugepage_subpool *spool)
  98. {
  99. spin_lock(&spool->lock);
  100. BUG_ON(!spool->count);
  101. spool->count--;
  102. unlock_or_release_subpool(spool);
  103. }
  104. /*
  105. * Subpool accounting for allocating and reserving pages.
  106. * Return -ENOMEM if there are not enough resources to satisfy the
  107. * the request. Otherwise, return the number of pages by which the
  108. * global pools must be adjusted (upward). The returned value may
  109. * only be different than the passed value (delta) in the case where
  110. * a subpool minimum size must be manitained.
  111. */
  112. static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
  113. long delta)
  114. {
  115. long ret = delta;
  116. if (!spool)
  117. return ret;
  118. spin_lock(&spool->lock);
  119. if (spool->max_hpages != -1) { /* maximum size accounting */
  120. if ((spool->used_hpages + delta) <= spool->max_hpages)
  121. spool->used_hpages += delta;
  122. else {
  123. ret = -ENOMEM;
  124. goto unlock_ret;
  125. }
  126. }
  127. /* minimum size accounting */
  128. if (spool->min_hpages != -1 && spool->rsv_hpages) {
  129. if (delta > spool->rsv_hpages) {
  130. /*
  131. * Asking for more reserves than those already taken on
  132. * behalf of subpool. Return difference.
  133. */
  134. ret = delta - spool->rsv_hpages;
  135. spool->rsv_hpages = 0;
  136. } else {
  137. ret = 0; /* reserves already accounted for */
  138. spool->rsv_hpages -= delta;
  139. }
  140. }
  141. unlock_ret:
  142. spin_unlock(&spool->lock);
  143. return ret;
  144. }
  145. /*
  146. * Subpool accounting for freeing and unreserving pages.
  147. * Return the number of global page reservations that must be dropped.
  148. * The return value may only be different than the passed value (delta)
  149. * in the case where a subpool minimum size must be maintained.
  150. */
  151. static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
  152. long delta)
  153. {
  154. long ret = delta;
  155. if (!spool)
  156. return delta;
  157. spin_lock(&spool->lock);
  158. if (spool->max_hpages != -1) /* maximum size accounting */
  159. spool->used_hpages -= delta;
  160. /* minimum size accounting */
  161. if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
  162. if (spool->rsv_hpages + delta <= spool->min_hpages)
  163. ret = 0;
  164. else
  165. ret = spool->rsv_hpages + delta - spool->min_hpages;
  166. spool->rsv_hpages += delta;
  167. if (spool->rsv_hpages > spool->min_hpages)
  168. spool->rsv_hpages = spool->min_hpages;
  169. }
  170. /*
  171. * If hugetlbfs_put_super couldn't free spool due to an outstanding
  172. * quota reference, free it now.
  173. */
  174. unlock_or_release_subpool(spool);
  175. return ret;
  176. }
  177. static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
  178. {
  179. return HUGETLBFS_SB(inode->i_sb)->spool;
  180. }
  181. static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
  182. {
  183. return subpool_inode(file_inode(vma->vm_file));
  184. }
  185. /*
  186. * Region tracking -- allows tracking of reservations and instantiated pages
  187. * across the pages in a mapping.
  188. *
  189. * The region data structures are embedded into a resv_map and protected
  190. * by a resv_map's lock. The set of regions within the resv_map represent
  191. * reservations for huge pages, or huge pages that have already been
  192. * instantiated within the map. The from and to elements are huge page
  193. * indicies into the associated mapping. from indicates the starting index
  194. * of the region. to represents the first index past the end of the region.
  195. *
  196. * For example, a file region structure with from == 0 and to == 4 represents
  197. * four huge pages in a mapping. It is important to note that the to element
  198. * represents the first element past the end of the region. This is used in
  199. * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
  200. *
  201. * Interval notation of the form [from, to) will be used to indicate that
  202. * the endpoint from is inclusive and to is exclusive.
  203. */
  204. struct file_region {
  205. struct list_head link;
  206. long from;
  207. long to;
  208. };
  209. /*
  210. * Add the huge page range represented by [f, t) to the reserve
  211. * map. In the normal case, existing regions will be expanded
  212. * to accommodate the specified range. Sufficient regions should
  213. * exist for expansion due to the previous call to region_chg
  214. * with the same range. However, it is possible that region_del
  215. * could have been called after region_chg and modifed the map
  216. * in such a way that no region exists to be expanded. In this
  217. * case, pull a region descriptor from the cache associated with
  218. * the map and use that for the new range.
  219. *
  220. * Return the number of new huge pages added to the map. This
  221. * number is greater than or equal to zero.
  222. */
  223. static long region_add(struct resv_map *resv, long f, long t)
  224. {
  225. struct list_head *head = &resv->regions;
  226. struct file_region *rg, *nrg, *trg;
  227. long add = 0;
  228. spin_lock(&resv->lock);
  229. /* Locate the region we are either in or before. */
  230. list_for_each_entry(rg, head, link)
  231. if (f <= rg->to)
  232. break;
  233. /*
  234. * If no region exists which can be expanded to include the
  235. * specified range, the list must have been modified by an
  236. * interleving call to region_del(). Pull a region descriptor
  237. * from the cache and use it for this range.
  238. */
  239. if (&rg->link == head || t < rg->from) {
  240. VM_BUG_ON(resv->region_cache_count <= 0);
  241. resv->region_cache_count--;
  242. nrg = list_first_entry(&resv->region_cache, struct file_region,
  243. link);
  244. list_del(&nrg->link);
  245. nrg->from = f;
  246. nrg->to = t;
  247. list_add(&nrg->link, rg->link.prev);
  248. add += t - f;
  249. goto out_locked;
  250. }
  251. /* Round our left edge to the current segment if it encloses us. */
  252. if (f > rg->from)
  253. f = rg->from;
  254. /* Check for and consume any regions we now overlap with. */
  255. nrg = rg;
  256. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  257. if (&rg->link == head)
  258. break;
  259. if (rg->from > t)
  260. break;
  261. /* If this area reaches higher then extend our area to
  262. * include it completely. If this is not the first area
  263. * which we intend to reuse, free it. */
  264. if (rg->to > t)
  265. t = rg->to;
  266. if (rg != nrg) {
  267. /* Decrement return value by the deleted range.
  268. * Another range will span this area so that by
  269. * end of routine add will be >= zero
  270. */
  271. add -= (rg->to - rg->from);
  272. list_del(&rg->link);
  273. kfree(rg);
  274. }
  275. }
  276. add += (nrg->from - f); /* Added to beginning of region */
  277. nrg->from = f;
  278. add += t - nrg->to; /* Added to end of region */
  279. nrg->to = t;
  280. out_locked:
  281. resv->adds_in_progress--;
  282. spin_unlock(&resv->lock);
  283. VM_BUG_ON(add < 0);
  284. return add;
  285. }
  286. /*
  287. * Examine the existing reserve map and determine how many
  288. * huge pages in the specified range [f, t) are NOT currently
  289. * represented. This routine is called before a subsequent
  290. * call to region_add that will actually modify the reserve
  291. * map to add the specified range [f, t). region_chg does
  292. * not change the number of huge pages represented by the
  293. * map. However, if the existing regions in the map can not
  294. * be expanded to represent the new range, a new file_region
  295. * structure is added to the map as a placeholder. This is
  296. * so that the subsequent region_add call will have all the
  297. * regions it needs and will not fail.
  298. *
  299. * Upon entry, region_chg will also examine the cache of region descriptors
  300. * associated with the map. If there are not enough descriptors cached, one
  301. * will be allocated for the in progress add operation.
  302. *
  303. * Returns the number of huge pages that need to be added to the existing
  304. * reservation map for the range [f, t). This number is greater or equal to
  305. * zero. -ENOMEM is returned if a new file_region structure or cache entry
  306. * is needed and can not be allocated.
  307. */
  308. static long region_chg(struct resv_map *resv, long f, long t)
  309. {
  310. struct list_head *head = &resv->regions;
  311. struct file_region *rg, *nrg = NULL;
  312. long chg = 0;
  313. retry:
  314. spin_lock(&resv->lock);
  315. retry_locked:
  316. resv->adds_in_progress++;
  317. /*
  318. * Check for sufficient descriptors in the cache to accommodate
  319. * the number of in progress add operations.
  320. */
  321. if (resv->adds_in_progress > resv->region_cache_count) {
  322. struct file_region *trg;
  323. VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
  324. /* Must drop lock to allocate a new descriptor. */
  325. resv->adds_in_progress--;
  326. spin_unlock(&resv->lock);
  327. trg = kmalloc(sizeof(*trg), GFP_KERNEL);
  328. if (!trg) {
  329. kfree(nrg);
  330. return -ENOMEM;
  331. }
  332. spin_lock(&resv->lock);
  333. list_add(&trg->link, &resv->region_cache);
  334. resv->region_cache_count++;
  335. goto retry_locked;
  336. }
  337. /* Locate the region we are before or in. */
  338. list_for_each_entry(rg, head, link)
  339. if (f <= rg->to)
  340. break;
  341. /* If we are below the current region then a new region is required.
  342. * Subtle, allocate a new region at the position but make it zero
  343. * size such that we can guarantee to record the reservation. */
  344. if (&rg->link == head || t < rg->from) {
  345. if (!nrg) {
  346. resv->adds_in_progress--;
  347. spin_unlock(&resv->lock);
  348. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  349. if (!nrg)
  350. return -ENOMEM;
  351. nrg->from = f;
  352. nrg->to = f;
  353. INIT_LIST_HEAD(&nrg->link);
  354. goto retry;
  355. }
  356. list_add(&nrg->link, rg->link.prev);
  357. chg = t - f;
  358. goto out_nrg;
  359. }
  360. /* Round our left edge to the current segment if it encloses us. */
  361. if (f > rg->from)
  362. f = rg->from;
  363. chg = t - f;
  364. /* Check for and consume any regions we now overlap with. */
  365. list_for_each_entry(rg, rg->link.prev, link) {
  366. if (&rg->link == head)
  367. break;
  368. if (rg->from > t)
  369. goto out;
  370. /* We overlap with this area, if it extends further than
  371. * us then we must extend ourselves. Account for its
  372. * existing reservation. */
  373. if (rg->to > t) {
  374. chg += rg->to - t;
  375. t = rg->to;
  376. }
  377. chg -= rg->to - rg->from;
  378. }
  379. out:
  380. spin_unlock(&resv->lock);
  381. /* We already know we raced and no longer need the new region */
  382. kfree(nrg);
  383. return chg;
  384. out_nrg:
  385. spin_unlock(&resv->lock);
  386. return chg;
  387. }
  388. /*
  389. * Abort the in progress add operation. The adds_in_progress field
  390. * of the resv_map keeps track of the operations in progress between
  391. * calls to region_chg and region_add. Operations are sometimes
  392. * aborted after the call to region_chg. In such cases, region_abort
  393. * is called to decrement the adds_in_progress counter.
  394. *
  395. * NOTE: The range arguments [f, t) are not needed or used in this
  396. * routine. They are kept to make reading the calling code easier as
  397. * arguments will match the associated region_chg call.
  398. */
  399. static void region_abort(struct resv_map *resv, long f, long t)
  400. {
  401. spin_lock(&resv->lock);
  402. VM_BUG_ON(!resv->region_cache_count);
  403. resv->adds_in_progress--;
  404. spin_unlock(&resv->lock);
  405. }
  406. /*
  407. * Delete the specified range [f, t) from the reserve map. If the
  408. * t parameter is LONG_MAX, this indicates that ALL regions after f
  409. * should be deleted. Locate the regions which intersect [f, t)
  410. * and either trim, delete or split the existing regions.
  411. *
  412. * Returns the number of huge pages deleted from the reserve map.
  413. * In the normal case, the return value is zero or more. In the
  414. * case where a region must be split, a new region descriptor must
  415. * be allocated. If the allocation fails, -ENOMEM will be returned.
  416. * NOTE: If the parameter t == LONG_MAX, then we will never split
  417. * a region and possibly return -ENOMEM. Callers specifying
  418. * t == LONG_MAX do not need to check for -ENOMEM error.
  419. */
  420. static long region_del(struct resv_map *resv, long f, long t)
  421. {
  422. struct list_head *head = &resv->regions;
  423. struct file_region *rg, *trg;
  424. struct file_region *nrg = NULL;
  425. long del = 0;
  426. retry:
  427. spin_lock(&resv->lock);
  428. list_for_each_entry_safe(rg, trg, head, link) {
  429. /*
  430. * Skip regions before the range to be deleted. file_region
  431. * ranges are normally of the form [from, to). However, there
  432. * may be a "placeholder" entry in the map which is of the form
  433. * (from, to) with from == to. Check for placeholder entries
  434. * at the beginning of the range to be deleted.
  435. */
  436. if (rg->to <= f && (rg->to != rg->from || rg->to != f))
  437. continue;
  438. if (rg->from >= t)
  439. break;
  440. if (f > rg->from && t < rg->to) { /* Must split region */
  441. /*
  442. * Check for an entry in the cache before dropping
  443. * lock and attempting allocation.
  444. */
  445. if (!nrg &&
  446. resv->region_cache_count > resv->adds_in_progress) {
  447. nrg = list_first_entry(&resv->region_cache,
  448. struct file_region,
  449. link);
  450. list_del(&nrg->link);
  451. resv->region_cache_count--;
  452. }
  453. if (!nrg) {
  454. spin_unlock(&resv->lock);
  455. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  456. if (!nrg)
  457. return -ENOMEM;
  458. goto retry;
  459. }
  460. del += t - f;
  461. /* New entry for end of split region */
  462. nrg->from = t;
  463. nrg->to = rg->to;
  464. INIT_LIST_HEAD(&nrg->link);
  465. /* Original entry is trimmed */
  466. rg->to = f;
  467. list_add(&nrg->link, &rg->link);
  468. nrg = NULL;
  469. break;
  470. }
  471. if (f <= rg->from && t >= rg->to) { /* Remove entire region */
  472. del += rg->to - rg->from;
  473. list_del(&rg->link);
  474. kfree(rg);
  475. continue;
  476. }
  477. if (f <= rg->from) { /* Trim beginning of region */
  478. del += t - rg->from;
  479. rg->from = t;
  480. } else { /* Trim end of region */
  481. del += rg->to - f;
  482. rg->to = f;
  483. }
  484. }
  485. spin_unlock(&resv->lock);
  486. kfree(nrg);
  487. return del;
  488. }
  489. /*
  490. * A rare out of memory error was encountered which prevented removal of
  491. * the reserve map region for a page. The huge page itself was free'ed
  492. * and removed from the page cache. This routine will adjust the subpool
  493. * usage count, and the global reserve count if needed. By incrementing
  494. * these counts, the reserve map entry which could not be deleted will
  495. * appear as a "reserved" entry instead of simply dangling with incorrect
  496. * counts.
  497. */
  498. void hugetlb_fix_reserve_counts(struct inode *inode)
  499. {
  500. struct hugepage_subpool *spool = subpool_inode(inode);
  501. long rsv_adjust;
  502. rsv_adjust = hugepage_subpool_get_pages(spool, 1);
  503. if (rsv_adjust) {
  504. struct hstate *h = hstate_inode(inode);
  505. hugetlb_acct_memory(h, 1);
  506. }
  507. }
  508. /*
  509. * Count and return the number of huge pages in the reserve map
  510. * that intersect with the range [f, t).
  511. */
  512. static long region_count(struct resv_map *resv, long f, long t)
  513. {
  514. struct list_head *head = &resv->regions;
  515. struct file_region *rg;
  516. long chg = 0;
  517. spin_lock(&resv->lock);
  518. /* Locate each segment we overlap with, and count that overlap. */
  519. list_for_each_entry(rg, head, link) {
  520. long seg_from;
  521. long seg_to;
  522. if (rg->to <= f)
  523. continue;
  524. if (rg->from >= t)
  525. break;
  526. seg_from = max(rg->from, f);
  527. seg_to = min(rg->to, t);
  528. chg += seg_to - seg_from;
  529. }
  530. spin_unlock(&resv->lock);
  531. return chg;
  532. }
  533. /*
  534. * Convert the address within this vma to the page offset within
  535. * the mapping, in pagecache page units; huge pages here.
  536. */
  537. static pgoff_t vma_hugecache_offset(struct hstate *h,
  538. struct vm_area_struct *vma, unsigned long address)
  539. {
  540. return ((address - vma->vm_start) >> huge_page_shift(h)) +
  541. (vma->vm_pgoff >> huge_page_order(h));
  542. }
  543. pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
  544. unsigned long address)
  545. {
  546. return vma_hugecache_offset(hstate_vma(vma), vma, address);
  547. }
  548. EXPORT_SYMBOL_GPL(linear_hugepage_index);
  549. /*
  550. * Return the size of the pages allocated when backing a VMA. In the majority
  551. * cases this will be same size as used by the page table entries.
  552. */
  553. unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
  554. {
  555. struct hstate *hstate;
  556. if (!is_vm_hugetlb_page(vma))
  557. return PAGE_SIZE;
  558. hstate = hstate_vma(vma);
  559. return 1UL << huge_page_shift(hstate);
  560. }
  561. EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
  562. /*
  563. * Return the page size being used by the MMU to back a VMA. In the majority
  564. * of cases, the page size used by the kernel matches the MMU size. On
  565. * architectures where it differs, an architecture-specific version of this
  566. * function is required.
  567. */
  568. #ifndef vma_mmu_pagesize
  569. unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
  570. {
  571. return vma_kernel_pagesize(vma);
  572. }
  573. #endif
  574. /*
  575. * Flags for MAP_PRIVATE reservations. These are stored in the bottom
  576. * bits of the reservation map pointer, which are always clear due to
  577. * alignment.
  578. */
  579. #define HPAGE_RESV_OWNER (1UL << 0)
  580. #define HPAGE_RESV_UNMAPPED (1UL << 1)
  581. #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
  582. /*
  583. * These helpers are used to track how many pages are reserved for
  584. * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
  585. * is guaranteed to have their future faults succeed.
  586. *
  587. * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
  588. * the reserve counters are updated with the hugetlb_lock held. It is safe
  589. * to reset the VMA at fork() time as it is not in use yet and there is no
  590. * chance of the global counters getting corrupted as a result of the values.
  591. *
  592. * The private mapping reservation is represented in a subtly different
  593. * manner to a shared mapping. A shared mapping has a region map associated
  594. * with the underlying file, this region map represents the backing file
  595. * pages which have ever had a reservation assigned which this persists even
  596. * after the page is instantiated. A private mapping has a region map
  597. * associated with the original mmap which is attached to all VMAs which
  598. * reference it, this region map represents those offsets which have consumed
  599. * reservation ie. where pages have been instantiated.
  600. */
  601. static unsigned long get_vma_private_data(struct vm_area_struct *vma)
  602. {
  603. return (unsigned long)vma->vm_private_data;
  604. }
  605. static void set_vma_private_data(struct vm_area_struct *vma,
  606. unsigned long value)
  607. {
  608. vma->vm_private_data = (void *)value;
  609. }
  610. struct resv_map *resv_map_alloc(void)
  611. {
  612. struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
  613. struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
  614. if (!resv_map || !rg) {
  615. kfree(resv_map);
  616. kfree(rg);
  617. return NULL;
  618. }
  619. kref_init(&resv_map->refs);
  620. spin_lock_init(&resv_map->lock);
  621. INIT_LIST_HEAD(&resv_map->regions);
  622. resv_map->adds_in_progress = 0;
  623. INIT_LIST_HEAD(&resv_map->region_cache);
  624. list_add(&rg->link, &resv_map->region_cache);
  625. resv_map->region_cache_count = 1;
  626. return resv_map;
  627. }
  628. void resv_map_release(struct kref *ref)
  629. {
  630. struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
  631. struct list_head *head = &resv_map->region_cache;
  632. struct file_region *rg, *trg;
  633. /* Clear out any active regions before we release the map. */
  634. region_del(resv_map, 0, LONG_MAX);
  635. /* ... and any entries left in the cache */
  636. list_for_each_entry_safe(rg, trg, head, link) {
  637. list_del(&rg->link);
  638. kfree(rg);
  639. }
  640. VM_BUG_ON(resv_map->adds_in_progress);
  641. kfree(resv_map);
  642. }
  643. static inline struct resv_map *inode_resv_map(struct inode *inode)
  644. {
  645. return inode->i_mapping->private_data;
  646. }
  647. static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
  648. {
  649. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  650. if (vma->vm_flags & VM_MAYSHARE) {
  651. struct address_space *mapping = vma->vm_file->f_mapping;
  652. struct inode *inode = mapping->host;
  653. return inode_resv_map(inode);
  654. } else {
  655. return (struct resv_map *)(get_vma_private_data(vma) &
  656. ~HPAGE_RESV_MASK);
  657. }
  658. }
  659. static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
  660. {
  661. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  662. VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
  663. set_vma_private_data(vma, (get_vma_private_data(vma) &
  664. HPAGE_RESV_MASK) | (unsigned long)map);
  665. }
  666. static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
  667. {
  668. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  669. VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
  670. set_vma_private_data(vma, get_vma_private_data(vma) | flags);
  671. }
  672. static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
  673. {
  674. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  675. return (get_vma_private_data(vma) & flag) != 0;
  676. }
  677. /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
  678. void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
  679. {
  680. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  681. if (!(vma->vm_flags & VM_MAYSHARE))
  682. vma->vm_private_data = (void *)0;
  683. }
  684. /* Returns true if the VMA has associated reserve pages */
  685. static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
  686. {
  687. if (vma->vm_flags & VM_NORESERVE) {
  688. /*
  689. * This address is already reserved by other process(chg == 0),
  690. * so, we should decrement reserved count. Without decrementing,
  691. * reserve count remains after releasing inode, because this
  692. * allocated page will go into page cache and is regarded as
  693. * coming from reserved pool in releasing step. Currently, we
  694. * don't have any other solution to deal with this situation
  695. * properly, so add work-around here.
  696. */
  697. if (vma->vm_flags & VM_MAYSHARE && chg == 0)
  698. return true;
  699. else
  700. return false;
  701. }
  702. /* Shared mappings always use reserves */
  703. if (vma->vm_flags & VM_MAYSHARE) {
  704. /*
  705. * We know VM_NORESERVE is not set. Therefore, there SHOULD
  706. * be a region map for all pages. The only situation where
  707. * there is no region map is if a hole was punched via
  708. * fallocate. In this case, there really are no reverves to
  709. * use. This situation is indicated if chg != 0.
  710. */
  711. if (chg)
  712. return false;
  713. else
  714. return true;
  715. }
  716. /*
  717. * Only the process that called mmap() has reserves for
  718. * private mappings.
  719. */
  720. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  721. /*
  722. * Like the shared case above, a hole punch or truncate
  723. * could have been performed on the private mapping.
  724. * Examine the value of chg to determine if reserves
  725. * actually exist or were previously consumed.
  726. * Very Subtle - The value of chg comes from a previous
  727. * call to vma_needs_reserves(). The reserve map for
  728. * private mappings has different (opposite) semantics
  729. * than that of shared mappings. vma_needs_reserves()
  730. * has already taken this difference in semantics into
  731. * account. Therefore, the meaning of chg is the same
  732. * as in the shared case above. Code could easily be
  733. * combined, but keeping it separate draws attention to
  734. * subtle differences.
  735. */
  736. if (chg)
  737. return false;
  738. else
  739. return true;
  740. }
  741. return false;
  742. }
  743. static void enqueue_huge_page(struct hstate *h, struct page *page)
  744. {
  745. int nid = page_to_nid(page);
  746. list_move(&page->lru, &h->hugepage_freelists[nid]);
  747. h->free_huge_pages++;
  748. h->free_huge_pages_node[nid]++;
  749. }
  750. static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
  751. {
  752. struct page *page;
  753. list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
  754. if (!PageHWPoison(page))
  755. break;
  756. /*
  757. * if 'non-isolated free hugepage' not found on the list,
  758. * the allocation fails.
  759. */
  760. if (&h->hugepage_freelists[nid] == &page->lru)
  761. return NULL;
  762. list_move(&page->lru, &h->hugepage_activelist);
  763. set_page_refcounted(page);
  764. h->free_huge_pages--;
  765. h->free_huge_pages_node[nid]--;
  766. return page;
  767. }
  768. static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
  769. nodemask_t *nmask)
  770. {
  771. unsigned int cpuset_mems_cookie;
  772. struct zonelist *zonelist;
  773. struct zone *zone;
  774. struct zoneref *z;
  775. int node = -1;
  776. zonelist = node_zonelist(nid, gfp_mask);
  777. retry_cpuset:
  778. cpuset_mems_cookie = read_mems_allowed_begin();
  779. for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
  780. struct page *page;
  781. if (!cpuset_zone_allowed(zone, gfp_mask))
  782. continue;
  783. /*
  784. * no need to ask again on the same node. Pool is node rather than
  785. * zone aware
  786. */
  787. if (zone_to_nid(zone) == node)
  788. continue;
  789. node = zone_to_nid(zone);
  790. page = dequeue_huge_page_node_exact(h, node);
  791. if (page)
  792. return page;
  793. }
  794. if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
  795. goto retry_cpuset;
  796. return NULL;
  797. }
  798. /* Movability of hugepages depends on migration support. */
  799. static inline gfp_t htlb_alloc_mask(struct hstate *h)
  800. {
  801. if (hugepages_treat_as_movable || hugepage_migration_supported(h))
  802. return GFP_HIGHUSER_MOVABLE;
  803. else
  804. return GFP_HIGHUSER;
  805. }
  806. static struct page *dequeue_huge_page_vma(struct hstate *h,
  807. struct vm_area_struct *vma,
  808. unsigned long address, int avoid_reserve,
  809. long chg)
  810. {
  811. struct page *page;
  812. struct mempolicy *mpol;
  813. gfp_t gfp_mask;
  814. nodemask_t *nodemask;
  815. int nid;
  816. /*
  817. * A child process with MAP_PRIVATE mappings created by their parent
  818. * have no page reserves. This check ensures that reservations are
  819. * not "stolen". The child may still get SIGKILLed
  820. */
  821. if (!vma_has_reserves(vma, chg) &&
  822. h->free_huge_pages - h->resv_huge_pages == 0)
  823. goto err;
  824. /* If reserves cannot be used, ensure enough pages are in the pool */
  825. if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
  826. goto err;
  827. gfp_mask = htlb_alloc_mask(h);
  828. nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
  829. page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
  830. if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
  831. SetPagePrivate(page);
  832. h->resv_huge_pages--;
  833. }
  834. mpol_cond_put(mpol);
  835. return page;
  836. err:
  837. return NULL;
  838. }
  839. /*
  840. * common helper functions for hstate_next_node_to_{alloc|free}.
  841. * We may have allocated or freed a huge page based on a different
  842. * nodes_allowed previously, so h->next_node_to_{alloc|free} might
  843. * be outside of *nodes_allowed. Ensure that we use an allowed
  844. * node for alloc or free.
  845. */
  846. static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
  847. {
  848. nid = next_node_in(nid, *nodes_allowed);
  849. VM_BUG_ON(nid >= MAX_NUMNODES);
  850. return nid;
  851. }
  852. static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
  853. {
  854. if (!node_isset(nid, *nodes_allowed))
  855. nid = next_node_allowed(nid, nodes_allowed);
  856. return nid;
  857. }
  858. /*
  859. * returns the previously saved node ["this node"] from which to
  860. * allocate a persistent huge page for the pool and advance the
  861. * next node from which to allocate, handling wrap at end of node
  862. * mask.
  863. */
  864. static int hstate_next_node_to_alloc(struct hstate *h,
  865. nodemask_t *nodes_allowed)
  866. {
  867. int nid;
  868. VM_BUG_ON(!nodes_allowed);
  869. nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
  870. h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
  871. return nid;
  872. }
  873. /*
  874. * helper for free_pool_huge_page() - return the previously saved
  875. * node ["this node"] from which to free a huge page. Advance the
  876. * next node id whether or not we find a free huge page to free so
  877. * that the next attempt to free addresses the next node.
  878. */
  879. static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
  880. {
  881. int nid;
  882. VM_BUG_ON(!nodes_allowed);
  883. nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
  884. h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
  885. return nid;
  886. }
  887. #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
  888. for (nr_nodes = nodes_weight(*mask); \
  889. nr_nodes > 0 && \
  890. ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
  891. nr_nodes--)
  892. #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
  893. for (nr_nodes = nodes_weight(*mask); \
  894. nr_nodes > 0 && \
  895. ((node = hstate_next_node_to_free(hs, mask)) || 1); \
  896. nr_nodes--)
  897. #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
  898. static void destroy_compound_gigantic_page(struct page *page,
  899. unsigned int order)
  900. {
  901. int i;
  902. int nr_pages = 1 << order;
  903. struct page *p = page + 1;
  904. atomic_set(compound_mapcount_ptr(page), 0);
  905. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  906. clear_compound_head(p);
  907. set_page_refcounted(p);
  908. }
  909. set_compound_order(page, 0);
  910. __ClearPageHead(page);
  911. }
  912. static void free_gigantic_page(struct page *page, unsigned int order)
  913. {
  914. free_contig_range(page_to_pfn(page), 1 << order);
  915. }
  916. static int __alloc_gigantic_page(unsigned long start_pfn,
  917. unsigned long nr_pages)
  918. {
  919. unsigned long end_pfn = start_pfn + nr_pages;
  920. return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
  921. GFP_KERNEL);
  922. }
  923. static bool pfn_range_valid_gigantic(struct zone *z,
  924. unsigned long start_pfn, unsigned long nr_pages)
  925. {
  926. unsigned long i, end_pfn = start_pfn + nr_pages;
  927. struct page *page;
  928. for (i = start_pfn; i < end_pfn; i++) {
  929. if (!pfn_valid(i))
  930. return false;
  931. page = pfn_to_page(i);
  932. if (page_zone(page) != z)
  933. return false;
  934. if (PageReserved(page))
  935. return false;
  936. if (page_count(page) > 0)
  937. return false;
  938. if (PageHuge(page))
  939. return false;
  940. }
  941. return true;
  942. }
  943. static bool zone_spans_last_pfn(const struct zone *zone,
  944. unsigned long start_pfn, unsigned long nr_pages)
  945. {
  946. unsigned long last_pfn = start_pfn + nr_pages - 1;
  947. return zone_spans_pfn(zone, last_pfn);
  948. }
  949. static struct page *alloc_gigantic_page(int nid, unsigned int order)
  950. {
  951. unsigned long nr_pages = 1 << order;
  952. unsigned long ret, pfn, flags;
  953. struct zone *z;
  954. z = NODE_DATA(nid)->node_zones;
  955. for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
  956. spin_lock_irqsave(&z->lock, flags);
  957. pfn = ALIGN(z->zone_start_pfn, nr_pages);
  958. while (zone_spans_last_pfn(z, pfn, nr_pages)) {
  959. if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
  960. /*
  961. * We release the zone lock here because
  962. * alloc_contig_range() will also lock the zone
  963. * at some point. If there's an allocation
  964. * spinning on this lock, it may win the race
  965. * and cause alloc_contig_range() to fail...
  966. */
  967. spin_unlock_irqrestore(&z->lock, flags);
  968. ret = __alloc_gigantic_page(pfn, nr_pages);
  969. if (!ret)
  970. return pfn_to_page(pfn);
  971. spin_lock_irqsave(&z->lock, flags);
  972. }
  973. pfn += nr_pages;
  974. }
  975. spin_unlock_irqrestore(&z->lock, flags);
  976. }
  977. return NULL;
  978. }
  979. static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
  980. static void prep_compound_gigantic_page(struct page *page, unsigned int order);
  981. static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
  982. {
  983. struct page *page;
  984. page = alloc_gigantic_page(nid, huge_page_order(h));
  985. if (page) {
  986. prep_compound_gigantic_page(page, huge_page_order(h));
  987. prep_new_huge_page(h, page, nid);
  988. }
  989. return page;
  990. }
  991. static int alloc_fresh_gigantic_page(struct hstate *h,
  992. nodemask_t *nodes_allowed)
  993. {
  994. struct page *page = NULL;
  995. int nr_nodes, node;
  996. for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
  997. page = alloc_fresh_gigantic_page_node(h, node);
  998. if (page)
  999. return 1;
  1000. }
  1001. return 0;
  1002. }
  1003. #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
  1004. static inline bool gigantic_page_supported(void) { return false; }
  1005. static inline void free_gigantic_page(struct page *page, unsigned int order) { }
  1006. static inline void destroy_compound_gigantic_page(struct page *page,
  1007. unsigned int order) { }
  1008. static inline int alloc_fresh_gigantic_page(struct hstate *h,
  1009. nodemask_t *nodes_allowed) { return 0; }
  1010. #endif
  1011. static void update_and_free_page(struct hstate *h, struct page *page)
  1012. {
  1013. int i;
  1014. if (hstate_is_gigantic(h) && !gigantic_page_supported())
  1015. return;
  1016. h->nr_huge_pages--;
  1017. h->nr_huge_pages_node[page_to_nid(page)]--;
  1018. for (i = 0; i < pages_per_huge_page(h); i++) {
  1019. page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
  1020. 1 << PG_referenced | 1 << PG_dirty |
  1021. 1 << PG_active | 1 << PG_private |
  1022. 1 << PG_writeback);
  1023. }
  1024. VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
  1025. set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
  1026. set_page_refcounted(page);
  1027. if (hstate_is_gigantic(h)) {
  1028. destroy_compound_gigantic_page(page, huge_page_order(h));
  1029. free_gigantic_page(page, huge_page_order(h));
  1030. } else {
  1031. __free_pages(page, huge_page_order(h));
  1032. }
  1033. }
  1034. struct hstate *size_to_hstate(unsigned long size)
  1035. {
  1036. struct hstate *h;
  1037. for_each_hstate(h) {
  1038. if (huge_page_size(h) == size)
  1039. return h;
  1040. }
  1041. return NULL;
  1042. }
  1043. /*
  1044. * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
  1045. * to hstate->hugepage_activelist.)
  1046. *
  1047. * This function can be called for tail pages, but never returns true for them.
  1048. */
  1049. bool page_huge_active(struct page *page)
  1050. {
  1051. VM_BUG_ON_PAGE(!PageHuge(page), page);
  1052. return PageHead(page) && PagePrivate(&page[1]);
  1053. }
  1054. /* never called for tail page */
  1055. static void set_page_huge_active(struct page *page)
  1056. {
  1057. VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
  1058. SetPagePrivate(&page[1]);
  1059. }
  1060. static void clear_page_huge_active(struct page *page)
  1061. {
  1062. VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
  1063. ClearPagePrivate(&page[1]);
  1064. }
  1065. void free_huge_page(struct page *page)
  1066. {
  1067. /*
  1068. * Can't pass hstate in here because it is called from the
  1069. * compound page destructor.
  1070. */
  1071. struct hstate *h = page_hstate(page);
  1072. int nid = page_to_nid(page);
  1073. struct hugepage_subpool *spool =
  1074. (struct hugepage_subpool *)page_private(page);
  1075. bool restore_reserve;
  1076. set_page_private(page, 0);
  1077. page->mapping = NULL;
  1078. VM_BUG_ON_PAGE(page_count(page), page);
  1079. VM_BUG_ON_PAGE(page_mapcount(page), page);
  1080. restore_reserve = PagePrivate(page);
  1081. ClearPagePrivate(page);
  1082. /*
  1083. * A return code of zero implies that the subpool will be under its
  1084. * minimum size if the reservation is not restored after page is free.
  1085. * Therefore, force restore_reserve operation.
  1086. */
  1087. if (hugepage_subpool_put_pages(spool, 1) == 0)
  1088. restore_reserve = true;
  1089. spin_lock(&hugetlb_lock);
  1090. clear_page_huge_active(page);
  1091. hugetlb_cgroup_uncharge_page(hstate_index(h),
  1092. pages_per_huge_page(h), page);
  1093. if (restore_reserve)
  1094. h->resv_huge_pages++;
  1095. if (h->surplus_huge_pages_node[nid]) {
  1096. /* remove the page from active list */
  1097. list_del(&page->lru);
  1098. update_and_free_page(h, page);
  1099. h->surplus_huge_pages--;
  1100. h->surplus_huge_pages_node[nid]--;
  1101. } else {
  1102. arch_clear_hugepage_flags(page);
  1103. enqueue_huge_page(h, page);
  1104. }
  1105. spin_unlock(&hugetlb_lock);
  1106. }
  1107. static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
  1108. {
  1109. INIT_LIST_HEAD(&page->lru);
  1110. set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
  1111. spin_lock(&hugetlb_lock);
  1112. set_hugetlb_cgroup(page, NULL);
  1113. h->nr_huge_pages++;
  1114. h->nr_huge_pages_node[nid]++;
  1115. spin_unlock(&hugetlb_lock);
  1116. put_page(page); /* free it into the hugepage allocator */
  1117. }
  1118. static void prep_compound_gigantic_page(struct page *page, unsigned int order)
  1119. {
  1120. int i;
  1121. int nr_pages = 1 << order;
  1122. struct page *p = page + 1;
  1123. /* we rely on prep_new_huge_page to set the destructor */
  1124. set_compound_order(page, order);
  1125. __ClearPageReserved(page);
  1126. __SetPageHead(page);
  1127. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  1128. /*
  1129. * For gigantic hugepages allocated through bootmem at
  1130. * boot, it's safer to be consistent with the not-gigantic
  1131. * hugepages and clear the PG_reserved bit from all tail pages
  1132. * too. Otherwse drivers using get_user_pages() to access tail
  1133. * pages may get the reference counting wrong if they see
  1134. * PG_reserved set on a tail page (despite the head page not
  1135. * having PG_reserved set). Enforcing this consistency between
  1136. * head and tail pages allows drivers to optimize away a check
  1137. * on the head page when they need know if put_page() is needed
  1138. * after get_user_pages().
  1139. */
  1140. __ClearPageReserved(p);
  1141. set_page_count(p, 0);
  1142. set_compound_head(p, page);
  1143. }
  1144. atomic_set(compound_mapcount_ptr(page), -1);
  1145. }
  1146. /*
  1147. * PageHuge() only returns true for hugetlbfs pages, but not for normal or
  1148. * transparent huge pages. See the PageTransHuge() documentation for more
  1149. * details.
  1150. */
  1151. int PageHuge(struct page *page)
  1152. {
  1153. if (!PageCompound(page))
  1154. return 0;
  1155. page = compound_head(page);
  1156. return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
  1157. }
  1158. EXPORT_SYMBOL_GPL(PageHuge);
  1159. /*
  1160. * PageHeadHuge() only returns true for hugetlbfs head page, but not for
  1161. * normal or transparent huge pages.
  1162. */
  1163. int PageHeadHuge(struct page *page_head)
  1164. {
  1165. if (!PageHead(page_head))
  1166. return 0;
  1167. return get_compound_page_dtor(page_head) == free_huge_page;
  1168. }
  1169. pgoff_t __basepage_index(struct page *page)
  1170. {
  1171. struct page *page_head = compound_head(page);
  1172. pgoff_t index = page_index(page_head);
  1173. unsigned long compound_idx;
  1174. if (!PageHuge(page_head))
  1175. return page_index(page);
  1176. if (compound_order(page_head) >= MAX_ORDER)
  1177. compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
  1178. else
  1179. compound_idx = page - page_head;
  1180. return (index << compound_order(page_head)) + compound_idx;
  1181. }
  1182. static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
  1183. {
  1184. struct page *page;
  1185. page = __alloc_pages_node(nid,
  1186. htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
  1187. __GFP_RETRY_MAYFAIL|__GFP_NOWARN,
  1188. huge_page_order(h));
  1189. if (page) {
  1190. prep_new_huge_page(h, page, nid);
  1191. }
  1192. return page;
  1193. }
  1194. static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
  1195. {
  1196. struct page *page;
  1197. int nr_nodes, node;
  1198. int ret = 0;
  1199. for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
  1200. page = alloc_fresh_huge_page_node(h, node);
  1201. if (page) {
  1202. ret = 1;
  1203. break;
  1204. }
  1205. }
  1206. if (ret)
  1207. count_vm_event(HTLB_BUDDY_PGALLOC);
  1208. else
  1209. count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  1210. return ret;
  1211. }
  1212. /*
  1213. * Free huge page from pool from next node to free.
  1214. * Attempt to keep persistent huge pages more or less
  1215. * balanced over allowed nodes.
  1216. * Called with hugetlb_lock locked.
  1217. */
  1218. static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
  1219. bool acct_surplus)
  1220. {
  1221. int nr_nodes, node;
  1222. int ret = 0;
  1223. for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
  1224. /*
  1225. * If we're returning unused surplus pages, only examine
  1226. * nodes with surplus pages.
  1227. */
  1228. if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
  1229. !list_empty(&h->hugepage_freelists[node])) {
  1230. struct page *page =
  1231. list_entry(h->hugepage_freelists[node].next,
  1232. struct page, lru);
  1233. list_del(&page->lru);
  1234. h->free_huge_pages--;
  1235. h->free_huge_pages_node[node]--;
  1236. if (acct_surplus) {
  1237. h->surplus_huge_pages--;
  1238. h->surplus_huge_pages_node[node]--;
  1239. }
  1240. update_and_free_page(h, page);
  1241. ret = 1;
  1242. break;
  1243. }
  1244. }
  1245. return ret;
  1246. }
  1247. /*
  1248. * Dissolve a given free hugepage into free buddy pages. This function does
  1249. * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
  1250. * number of free hugepages would be reduced below the number of reserved
  1251. * hugepages.
  1252. */
  1253. int dissolve_free_huge_page(struct page *page)
  1254. {
  1255. int rc = 0;
  1256. spin_lock(&hugetlb_lock);
  1257. if (PageHuge(page) && !page_count(page)) {
  1258. struct page *head = compound_head(page);
  1259. struct hstate *h = page_hstate(head);
  1260. int nid = page_to_nid(head);
  1261. if (h->free_huge_pages - h->resv_huge_pages == 0) {
  1262. rc = -EBUSY;
  1263. goto out;
  1264. }
  1265. /*
  1266. * Move PageHWPoison flag from head page to the raw error page,
  1267. * which makes any subpages rather than the error page reusable.
  1268. */
  1269. if (PageHWPoison(head) && page != head) {
  1270. SetPageHWPoison(page);
  1271. ClearPageHWPoison(head);
  1272. }
  1273. list_del(&head->lru);
  1274. h->free_huge_pages--;
  1275. h->free_huge_pages_node[nid]--;
  1276. h->max_huge_pages--;
  1277. update_and_free_page(h, head);
  1278. }
  1279. out:
  1280. spin_unlock(&hugetlb_lock);
  1281. return rc;
  1282. }
  1283. /*
  1284. * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
  1285. * make specified memory blocks removable from the system.
  1286. * Note that this will dissolve a free gigantic hugepage completely, if any
  1287. * part of it lies within the given range.
  1288. * Also note that if dissolve_free_huge_page() returns with an error, all
  1289. * free hugepages that were dissolved before that error are lost.
  1290. */
  1291. int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
  1292. {
  1293. unsigned long pfn;
  1294. struct page *page;
  1295. int rc = 0;
  1296. if (!hugepages_supported())
  1297. return rc;
  1298. for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
  1299. page = pfn_to_page(pfn);
  1300. if (PageHuge(page) && !page_count(page)) {
  1301. rc = dissolve_free_huge_page(page);
  1302. if (rc)
  1303. break;
  1304. }
  1305. }
  1306. return rc;
  1307. }
  1308. static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
  1309. gfp_t gfp_mask, int nid, nodemask_t *nmask)
  1310. {
  1311. int order = huge_page_order(h);
  1312. gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
  1313. if (nid == NUMA_NO_NODE)
  1314. nid = numa_mem_id();
  1315. return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
  1316. }
  1317. static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
  1318. int nid, nodemask_t *nmask)
  1319. {
  1320. struct page *page;
  1321. unsigned int r_nid;
  1322. if (hstate_is_gigantic(h))
  1323. return NULL;
  1324. /*
  1325. * Assume we will successfully allocate the surplus page to
  1326. * prevent racing processes from causing the surplus to exceed
  1327. * overcommit
  1328. *
  1329. * This however introduces a different race, where a process B
  1330. * tries to grow the static hugepage pool while alloc_pages() is
  1331. * called by process A. B will only examine the per-node
  1332. * counters in determining if surplus huge pages can be
  1333. * converted to normal huge pages in adjust_pool_surplus(). A
  1334. * won't be able to increment the per-node counter, until the
  1335. * lock is dropped by B, but B doesn't drop hugetlb_lock until
  1336. * no more huge pages can be converted from surplus to normal
  1337. * state (and doesn't try to convert again). Thus, we have a
  1338. * case where a surplus huge page exists, the pool is grown, and
  1339. * the surplus huge page still exists after, even though it
  1340. * should just have been converted to a normal huge page. This
  1341. * does not leak memory, though, as the hugepage will be freed
  1342. * once it is out of use. It also does not allow the counters to
  1343. * go out of whack in adjust_pool_surplus() as we don't modify
  1344. * the node values until we've gotten the hugepage and only the
  1345. * per-node value is checked there.
  1346. */
  1347. spin_lock(&hugetlb_lock);
  1348. if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
  1349. spin_unlock(&hugetlb_lock);
  1350. return NULL;
  1351. } else {
  1352. h->nr_huge_pages++;
  1353. h->surplus_huge_pages++;
  1354. }
  1355. spin_unlock(&hugetlb_lock);
  1356. page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
  1357. spin_lock(&hugetlb_lock);
  1358. if (page) {
  1359. INIT_LIST_HEAD(&page->lru);
  1360. r_nid = page_to_nid(page);
  1361. set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
  1362. set_hugetlb_cgroup(page, NULL);
  1363. /*
  1364. * We incremented the global counters already
  1365. */
  1366. h->nr_huge_pages_node[r_nid]++;
  1367. h->surplus_huge_pages_node[r_nid]++;
  1368. __count_vm_event(HTLB_BUDDY_PGALLOC);
  1369. } else {
  1370. h->nr_huge_pages--;
  1371. h->surplus_huge_pages--;
  1372. __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  1373. }
  1374. spin_unlock(&hugetlb_lock);
  1375. return page;
  1376. }
  1377. /*
  1378. * Use the VMA's mpolicy to allocate a huge page from the buddy.
  1379. */
  1380. static
  1381. struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
  1382. struct vm_area_struct *vma, unsigned long addr)
  1383. {
  1384. struct page *page;
  1385. struct mempolicy *mpol;
  1386. gfp_t gfp_mask = htlb_alloc_mask(h);
  1387. int nid;
  1388. nodemask_t *nodemask;
  1389. nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
  1390. page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
  1391. mpol_cond_put(mpol);
  1392. return page;
  1393. }
  1394. /*
  1395. * This allocation function is useful in the context where vma is irrelevant.
  1396. * E.g. soft-offlining uses this function because it only cares physical
  1397. * address of error page.
  1398. */
  1399. struct page *alloc_huge_page_node(struct hstate *h, int nid)
  1400. {
  1401. gfp_t gfp_mask = htlb_alloc_mask(h);
  1402. struct page *page = NULL;
  1403. if (nid != NUMA_NO_NODE)
  1404. gfp_mask |= __GFP_THISNODE;
  1405. spin_lock(&hugetlb_lock);
  1406. if (h->free_huge_pages - h->resv_huge_pages > 0)
  1407. page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
  1408. spin_unlock(&hugetlb_lock);
  1409. if (!page)
  1410. page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
  1411. return page;
  1412. }
  1413. struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
  1414. nodemask_t *nmask)
  1415. {
  1416. gfp_t gfp_mask = htlb_alloc_mask(h);
  1417. spin_lock(&hugetlb_lock);
  1418. if (h->free_huge_pages - h->resv_huge_pages > 0) {
  1419. struct page *page;
  1420. page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
  1421. if (page) {
  1422. spin_unlock(&hugetlb_lock);
  1423. return page;
  1424. }
  1425. }
  1426. spin_unlock(&hugetlb_lock);
  1427. /* No reservations, try to overcommit */
  1428. return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
  1429. }
  1430. /*
  1431. * Increase the hugetlb pool such that it can accommodate a reservation
  1432. * of size 'delta'.
  1433. */
  1434. static int gather_surplus_pages(struct hstate *h, int delta)
  1435. {
  1436. struct list_head surplus_list;
  1437. struct page *page, *tmp;
  1438. int ret, i;
  1439. int needed, allocated;
  1440. bool alloc_ok = true;
  1441. needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
  1442. if (needed <= 0) {
  1443. h->resv_huge_pages += delta;
  1444. return 0;
  1445. }
  1446. allocated = 0;
  1447. INIT_LIST_HEAD(&surplus_list);
  1448. ret = -ENOMEM;
  1449. retry:
  1450. spin_unlock(&hugetlb_lock);
  1451. for (i = 0; i < needed; i++) {
  1452. page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
  1453. NUMA_NO_NODE, NULL);
  1454. if (!page) {
  1455. alloc_ok = false;
  1456. break;
  1457. }
  1458. list_add(&page->lru, &surplus_list);
  1459. cond_resched();
  1460. }
  1461. allocated += i;
  1462. /*
  1463. * After retaking hugetlb_lock, we need to recalculate 'needed'
  1464. * because either resv_huge_pages or free_huge_pages may have changed.
  1465. */
  1466. spin_lock(&hugetlb_lock);
  1467. needed = (h->resv_huge_pages + delta) -
  1468. (h->free_huge_pages + allocated);
  1469. if (needed > 0) {
  1470. if (alloc_ok)
  1471. goto retry;
  1472. /*
  1473. * We were not able to allocate enough pages to
  1474. * satisfy the entire reservation so we free what
  1475. * we've allocated so far.
  1476. */
  1477. goto free;
  1478. }
  1479. /*
  1480. * The surplus_list now contains _at_least_ the number of extra pages
  1481. * needed to accommodate the reservation. Add the appropriate number
  1482. * of pages to the hugetlb pool and free the extras back to the buddy
  1483. * allocator. Commit the entire reservation here to prevent another
  1484. * process from stealing the pages as they are added to the pool but
  1485. * before they are reserved.
  1486. */
  1487. needed += allocated;
  1488. h->resv_huge_pages += delta;
  1489. ret = 0;
  1490. /* Free the needed pages to the hugetlb pool */
  1491. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  1492. if ((--needed) < 0)
  1493. break;
  1494. /*
  1495. * This page is now managed by the hugetlb allocator and has
  1496. * no users -- drop the buddy allocator's reference.
  1497. */
  1498. put_page_testzero(page);
  1499. VM_BUG_ON_PAGE(page_count(page), page);
  1500. enqueue_huge_page(h, page);
  1501. }
  1502. free:
  1503. spin_unlock(&hugetlb_lock);
  1504. /* Free unnecessary surplus pages to the buddy allocator */
  1505. list_for_each_entry_safe(page, tmp, &surplus_list, lru)
  1506. put_page(page);
  1507. spin_lock(&hugetlb_lock);
  1508. return ret;
  1509. }
  1510. /*
  1511. * This routine has two main purposes:
  1512. * 1) Decrement the reservation count (resv_huge_pages) by the value passed
  1513. * in unused_resv_pages. This corresponds to the prior adjustments made
  1514. * to the associated reservation map.
  1515. * 2) Free any unused surplus pages that may have been allocated to satisfy
  1516. * the reservation. As many as unused_resv_pages may be freed.
  1517. *
  1518. * Called with hugetlb_lock held. However, the lock could be dropped (and
  1519. * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
  1520. * we must make sure nobody else can claim pages we are in the process of
  1521. * freeing. Do this by ensuring resv_huge_page always is greater than the
  1522. * number of huge pages we plan to free when dropping the lock.
  1523. */
  1524. static void return_unused_surplus_pages(struct hstate *h,
  1525. unsigned long unused_resv_pages)
  1526. {
  1527. unsigned long nr_pages;
  1528. /* Cannot return gigantic pages currently */
  1529. if (hstate_is_gigantic(h))
  1530. goto out;
  1531. /*
  1532. * Part (or even all) of the reservation could have been backed
  1533. * by pre-allocated pages. Only free surplus pages.
  1534. */
  1535. nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
  1536. /*
  1537. * We want to release as many surplus pages as possible, spread
  1538. * evenly across all nodes with memory. Iterate across these nodes
  1539. * until we can no longer free unreserved surplus pages. This occurs
  1540. * when the nodes with surplus pages have no free pages.
  1541. * free_pool_huge_page() will balance the the freed pages across the
  1542. * on-line nodes with memory and will handle the hstate accounting.
  1543. *
  1544. * Note that we decrement resv_huge_pages as we free the pages. If
  1545. * we drop the lock, resv_huge_pages will still be sufficiently large
  1546. * to cover subsequent pages we may free.
  1547. */
  1548. while (nr_pages--) {
  1549. h->resv_huge_pages--;
  1550. unused_resv_pages--;
  1551. if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
  1552. goto out;
  1553. cond_resched_lock(&hugetlb_lock);
  1554. }
  1555. out:
  1556. /* Fully uncommit the reservation */
  1557. h->resv_huge_pages -= unused_resv_pages;
  1558. }
  1559. /*
  1560. * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
  1561. * are used by the huge page allocation routines to manage reservations.
  1562. *
  1563. * vma_needs_reservation is called to determine if the huge page at addr
  1564. * within the vma has an associated reservation. If a reservation is
  1565. * needed, the value 1 is returned. The caller is then responsible for
  1566. * managing the global reservation and subpool usage counts. After
  1567. * the huge page has been allocated, vma_commit_reservation is called
  1568. * to add the page to the reservation map. If the page allocation fails,
  1569. * the reservation must be ended instead of committed. vma_end_reservation
  1570. * is called in such cases.
  1571. *
  1572. * In the normal case, vma_commit_reservation returns the same value
  1573. * as the preceding vma_needs_reservation call. The only time this
  1574. * is not the case is if a reserve map was changed between calls. It
  1575. * is the responsibility of the caller to notice the difference and
  1576. * take appropriate action.
  1577. *
  1578. * vma_add_reservation is used in error paths where a reservation must
  1579. * be restored when a newly allocated huge page must be freed. It is
  1580. * to be called after calling vma_needs_reservation to determine if a
  1581. * reservation exists.
  1582. */
  1583. enum vma_resv_mode {
  1584. VMA_NEEDS_RESV,
  1585. VMA_COMMIT_RESV,
  1586. VMA_END_RESV,
  1587. VMA_ADD_RESV,
  1588. };
  1589. static long __vma_reservation_common(struct hstate *h,
  1590. struct vm_area_struct *vma, unsigned long addr,
  1591. enum vma_resv_mode mode)
  1592. {
  1593. struct resv_map *resv;
  1594. pgoff_t idx;
  1595. long ret;
  1596. resv = vma_resv_map(vma);
  1597. if (!resv)
  1598. return 1;
  1599. idx = vma_hugecache_offset(h, vma, addr);
  1600. switch (mode) {
  1601. case VMA_NEEDS_RESV:
  1602. ret = region_chg(resv, idx, idx + 1);
  1603. break;
  1604. case VMA_COMMIT_RESV:
  1605. ret = region_add(resv, idx, idx + 1);
  1606. break;
  1607. case VMA_END_RESV:
  1608. region_abort(resv, idx, idx + 1);
  1609. ret = 0;
  1610. break;
  1611. case VMA_ADD_RESV:
  1612. if (vma->vm_flags & VM_MAYSHARE)
  1613. ret = region_add(resv, idx, idx + 1);
  1614. else {
  1615. region_abort(resv, idx, idx + 1);
  1616. ret = region_del(resv, idx, idx + 1);
  1617. }
  1618. break;
  1619. default:
  1620. BUG();
  1621. }
  1622. if (vma->vm_flags & VM_MAYSHARE)
  1623. return ret;
  1624. else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
  1625. /*
  1626. * In most cases, reserves always exist for private mappings.
  1627. * However, a file associated with mapping could have been
  1628. * hole punched or truncated after reserves were consumed.
  1629. * As subsequent fault on such a range will not use reserves.
  1630. * Subtle - The reserve map for private mappings has the
  1631. * opposite meaning than that of shared mappings. If NO
  1632. * entry is in the reserve map, it means a reservation exists.
  1633. * If an entry exists in the reserve map, it means the
  1634. * reservation has already been consumed. As a result, the
  1635. * return value of this routine is the opposite of the
  1636. * value returned from reserve map manipulation routines above.
  1637. */
  1638. if (ret)
  1639. return 0;
  1640. else
  1641. return 1;
  1642. }
  1643. else
  1644. return ret < 0 ? ret : 0;
  1645. }
  1646. static long vma_needs_reservation(struct hstate *h,
  1647. struct vm_area_struct *vma, unsigned long addr)
  1648. {
  1649. return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
  1650. }
  1651. static long vma_commit_reservation(struct hstate *h,
  1652. struct vm_area_struct *vma, unsigned long addr)
  1653. {
  1654. return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
  1655. }
  1656. static void vma_end_reservation(struct hstate *h,
  1657. struct vm_area_struct *vma, unsigned long addr)
  1658. {
  1659. (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
  1660. }
  1661. static long vma_add_reservation(struct hstate *h,
  1662. struct vm_area_struct *vma, unsigned long addr)
  1663. {
  1664. return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
  1665. }
  1666. /*
  1667. * This routine is called to restore a reservation on error paths. In the
  1668. * specific error paths, a huge page was allocated (via alloc_huge_page)
  1669. * and is about to be freed. If a reservation for the page existed,
  1670. * alloc_huge_page would have consumed the reservation and set PagePrivate
  1671. * in the newly allocated page. When the page is freed via free_huge_page,
  1672. * the global reservation count will be incremented if PagePrivate is set.
  1673. * However, free_huge_page can not adjust the reserve map. Adjust the
  1674. * reserve map here to be consistent with global reserve count adjustments
  1675. * to be made by free_huge_page.
  1676. */
  1677. static void restore_reserve_on_error(struct hstate *h,
  1678. struct vm_area_struct *vma, unsigned long address,
  1679. struct page *page)
  1680. {
  1681. if (unlikely(PagePrivate(page))) {
  1682. long rc = vma_needs_reservation(h, vma, address);
  1683. if (unlikely(rc < 0)) {
  1684. /*
  1685. * Rare out of memory condition in reserve map
  1686. * manipulation. Clear PagePrivate so that
  1687. * global reserve count will not be incremented
  1688. * by free_huge_page. This will make it appear
  1689. * as though the reservation for this page was
  1690. * consumed. This may prevent the task from
  1691. * faulting in the page at a later time. This
  1692. * is better than inconsistent global huge page
  1693. * accounting of reserve counts.
  1694. */
  1695. ClearPagePrivate(page);
  1696. } else if (rc) {
  1697. rc = vma_add_reservation(h, vma, address);
  1698. if (unlikely(rc < 0))
  1699. /*
  1700. * See above comment about rare out of
  1701. * memory condition.
  1702. */
  1703. ClearPagePrivate(page);
  1704. } else
  1705. vma_end_reservation(h, vma, address);
  1706. }
  1707. }
  1708. struct page *alloc_huge_page(struct vm_area_struct *vma,
  1709. unsigned long addr, int avoid_reserve)
  1710. {
  1711. struct hugepage_subpool *spool = subpool_vma(vma);
  1712. struct hstate *h = hstate_vma(vma);
  1713. struct page *page;
  1714. long map_chg, map_commit;
  1715. long gbl_chg;
  1716. int ret, idx;
  1717. struct hugetlb_cgroup *h_cg;
  1718. idx = hstate_index(h);
  1719. /*
  1720. * Examine the region/reserve map to determine if the process
  1721. * has a reservation for the page to be allocated. A return
  1722. * code of zero indicates a reservation exists (no change).
  1723. */
  1724. map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
  1725. if (map_chg < 0)
  1726. return ERR_PTR(-ENOMEM);
  1727. /*
  1728. * Processes that did not create the mapping will have no
  1729. * reserves as indicated by the region/reserve map. Check
  1730. * that the allocation will not exceed the subpool limit.
  1731. * Allocations for MAP_NORESERVE mappings also need to be
  1732. * checked against any subpool limit.
  1733. */
  1734. if (map_chg || avoid_reserve) {
  1735. gbl_chg = hugepage_subpool_get_pages(spool, 1);
  1736. if (gbl_chg < 0) {
  1737. vma_end_reservation(h, vma, addr);
  1738. return ERR_PTR(-ENOSPC);
  1739. }
  1740. /*
  1741. * Even though there was no reservation in the region/reserve
  1742. * map, there could be reservations associated with the
  1743. * subpool that can be used. This would be indicated if the
  1744. * return value of hugepage_subpool_get_pages() is zero.
  1745. * However, if avoid_reserve is specified we still avoid even
  1746. * the subpool reservations.
  1747. */
  1748. if (avoid_reserve)
  1749. gbl_chg = 1;
  1750. }
  1751. ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
  1752. if (ret)
  1753. goto out_subpool_put;
  1754. spin_lock(&hugetlb_lock);
  1755. /*
  1756. * glb_chg is passed to indicate whether or not a page must be taken
  1757. * from the global free pool (global change). gbl_chg == 0 indicates
  1758. * a reservation exists for the allocation.
  1759. */
  1760. page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
  1761. if (!page) {
  1762. spin_unlock(&hugetlb_lock);
  1763. page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
  1764. if (!page)
  1765. goto out_uncharge_cgroup;
  1766. if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
  1767. SetPagePrivate(page);
  1768. h->resv_huge_pages--;
  1769. }
  1770. spin_lock(&hugetlb_lock);
  1771. list_move(&page->lru, &h->hugepage_activelist);
  1772. /* Fall through */
  1773. }
  1774. hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
  1775. spin_unlock(&hugetlb_lock);
  1776. set_page_private(page, (unsigned long)spool);
  1777. map_commit = vma_commit_reservation(h, vma, addr);
  1778. if (unlikely(map_chg > map_commit)) {
  1779. /*
  1780. * The page was added to the reservation map between
  1781. * vma_needs_reservation and vma_commit_reservation.
  1782. * This indicates a race with hugetlb_reserve_pages.
  1783. * Adjust for the subpool count incremented above AND
  1784. * in hugetlb_reserve_pages for the same page. Also,
  1785. * the reservation count added in hugetlb_reserve_pages
  1786. * no longer applies.
  1787. */
  1788. long rsv_adjust;
  1789. rsv_adjust = hugepage_subpool_put_pages(spool, 1);
  1790. hugetlb_acct_memory(h, -rsv_adjust);
  1791. }
  1792. return page;
  1793. out_uncharge_cgroup:
  1794. hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
  1795. out_subpool_put:
  1796. if (map_chg || avoid_reserve)
  1797. hugepage_subpool_put_pages(spool, 1);
  1798. vma_end_reservation(h, vma, addr);
  1799. return ERR_PTR(-ENOSPC);
  1800. }
  1801. /*
  1802. * alloc_huge_page()'s wrapper which simply returns the page if allocation
  1803. * succeeds, otherwise NULL. This function is called from new_vma_page(),
  1804. * where no ERR_VALUE is expected to be returned.
  1805. */
  1806. struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
  1807. unsigned long addr, int avoid_reserve)
  1808. {
  1809. struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
  1810. if (IS_ERR(page))
  1811. page = NULL;
  1812. return page;
  1813. }
  1814. int __weak alloc_bootmem_huge_page(struct hstate *h)
  1815. {
  1816. struct huge_bootmem_page *m;
  1817. int nr_nodes, node;
  1818. for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
  1819. void *addr;
  1820. addr = memblock_virt_alloc_try_nid_nopanic(
  1821. huge_page_size(h), huge_page_size(h),
  1822. 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
  1823. if (addr) {
  1824. /*
  1825. * Use the beginning of the huge page to store the
  1826. * huge_bootmem_page struct (until gather_bootmem
  1827. * puts them into the mem_map).
  1828. */
  1829. m = addr;
  1830. goto found;
  1831. }
  1832. }
  1833. return 0;
  1834. found:
  1835. BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
  1836. /* Put them into a private list first because mem_map is not up yet */
  1837. list_add(&m->list, &huge_boot_pages);
  1838. m->hstate = h;
  1839. return 1;
  1840. }
  1841. static void __init prep_compound_huge_page(struct page *page,
  1842. unsigned int order)
  1843. {
  1844. if (unlikely(order > (MAX_ORDER - 1)))
  1845. prep_compound_gigantic_page(page, order);
  1846. else
  1847. prep_compound_page(page, order);
  1848. }
  1849. /* Put bootmem huge pages into the standard lists after mem_map is up */
  1850. static void __init gather_bootmem_prealloc(void)
  1851. {
  1852. struct huge_bootmem_page *m;
  1853. list_for_each_entry(m, &huge_boot_pages, list) {
  1854. struct hstate *h = m->hstate;
  1855. struct page *page;
  1856. #ifdef CONFIG_HIGHMEM
  1857. page = pfn_to_page(m->phys >> PAGE_SHIFT);
  1858. memblock_free_late(__pa(m),
  1859. sizeof(struct huge_bootmem_page));
  1860. #else
  1861. page = virt_to_page(m);
  1862. #endif
  1863. WARN_ON(page_count(page) != 1);
  1864. prep_compound_huge_page(page, h->order);
  1865. WARN_ON(PageReserved(page));
  1866. prep_new_huge_page(h, page, page_to_nid(page));
  1867. /*
  1868. * If we had gigantic hugepages allocated at boot time, we need
  1869. * to restore the 'stolen' pages to totalram_pages in order to
  1870. * fix confusing memory reports from free(1) and another
  1871. * side-effects, like CommitLimit going negative.
  1872. */
  1873. if (hstate_is_gigantic(h))
  1874. adjust_managed_page_count(page, 1 << h->order);
  1875. }
  1876. }
  1877. static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
  1878. {
  1879. unsigned long i;
  1880. for (i = 0; i < h->max_huge_pages; ++i) {
  1881. if (hstate_is_gigantic(h)) {
  1882. if (!alloc_bootmem_huge_page(h))
  1883. break;
  1884. } else if (!alloc_fresh_huge_page(h,
  1885. &node_states[N_MEMORY]))
  1886. break;
  1887. cond_resched();
  1888. }
  1889. if (i < h->max_huge_pages) {
  1890. char buf[32];
  1891. string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
  1892. pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
  1893. h->max_huge_pages, buf, i);
  1894. h->max_huge_pages = i;
  1895. }
  1896. }
  1897. static void __init hugetlb_init_hstates(void)
  1898. {
  1899. struct hstate *h;
  1900. for_each_hstate(h) {
  1901. if (minimum_order > huge_page_order(h))
  1902. minimum_order = huge_page_order(h);
  1903. /* oversize hugepages were init'ed in early boot */
  1904. if (!hstate_is_gigantic(h))
  1905. hugetlb_hstate_alloc_pages(h);
  1906. }
  1907. VM_BUG_ON(minimum_order == UINT_MAX);
  1908. }
  1909. static void __init report_hugepages(void)
  1910. {
  1911. struct hstate *h;
  1912. for_each_hstate(h) {
  1913. char buf[32];
  1914. string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
  1915. pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
  1916. buf, h->free_huge_pages);
  1917. }
  1918. }
  1919. #ifdef CONFIG_HIGHMEM
  1920. static void try_to_free_low(struct hstate *h, unsigned long count,
  1921. nodemask_t *nodes_allowed)
  1922. {
  1923. int i;
  1924. if (hstate_is_gigantic(h))
  1925. return;
  1926. for_each_node_mask(i, *nodes_allowed) {
  1927. struct page *page, *next;
  1928. struct list_head *freel = &h->hugepage_freelists[i];
  1929. list_for_each_entry_safe(page, next, freel, lru) {
  1930. if (count >= h->nr_huge_pages)
  1931. return;
  1932. if (PageHighMem(page))
  1933. continue;
  1934. list_del(&page->lru);
  1935. update_and_free_page(h, page);
  1936. h->free_huge_pages--;
  1937. h->free_huge_pages_node[page_to_nid(page)]--;
  1938. }
  1939. }
  1940. }
  1941. #else
  1942. static inline void try_to_free_low(struct hstate *h, unsigned long count,
  1943. nodemask_t *nodes_allowed)
  1944. {
  1945. }
  1946. #endif
  1947. /*
  1948. * Increment or decrement surplus_huge_pages. Keep node-specific counters
  1949. * balanced by operating on them in a round-robin fashion.
  1950. * Returns 1 if an adjustment was made.
  1951. */
  1952. static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
  1953. int delta)
  1954. {
  1955. int nr_nodes, node;
  1956. VM_BUG_ON(delta != -1 && delta != 1);
  1957. if (delta < 0) {
  1958. for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
  1959. if (h->surplus_huge_pages_node[node])
  1960. goto found;
  1961. }
  1962. } else {
  1963. for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
  1964. if (h->surplus_huge_pages_node[node] <
  1965. h->nr_huge_pages_node[node])
  1966. goto found;
  1967. }
  1968. }
  1969. return 0;
  1970. found:
  1971. h->surplus_huge_pages += delta;
  1972. h->surplus_huge_pages_node[node] += delta;
  1973. return 1;
  1974. }
  1975. #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
  1976. static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
  1977. nodemask_t *nodes_allowed)
  1978. {
  1979. unsigned long min_count, ret;
  1980. if (hstate_is_gigantic(h) && !gigantic_page_supported())
  1981. return h->max_huge_pages;
  1982. /*
  1983. * Increase the pool size
  1984. * First take pages out of surplus state. Then make up the
  1985. * remaining difference by allocating fresh huge pages.
  1986. *
  1987. * We might race with __alloc_buddy_huge_page() here and be unable
  1988. * to convert a surplus huge page to a normal huge page. That is
  1989. * not critical, though, it just means the overall size of the
  1990. * pool might be one hugepage larger than it needs to be, but
  1991. * within all the constraints specified by the sysctls.
  1992. */
  1993. spin_lock(&hugetlb_lock);
  1994. while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
  1995. if (!adjust_pool_surplus(h, nodes_allowed, -1))
  1996. break;
  1997. }
  1998. while (count > persistent_huge_pages(h)) {
  1999. /*
  2000. * If this allocation races such that we no longer need the
  2001. * page, free_huge_page will handle it by freeing the page
  2002. * and reducing the surplus.
  2003. */
  2004. spin_unlock(&hugetlb_lock);
  2005. /* yield cpu to avoid soft lockup */
  2006. cond_resched();
  2007. if (hstate_is_gigantic(h))
  2008. ret = alloc_fresh_gigantic_page(h, nodes_allowed);
  2009. else
  2010. ret = alloc_fresh_huge_page(h, nodes_allowed);
  2011. spin_lock(&hugetlb_lock);
  2012. if (!ret)
  2013. goto out;
  2014. /* Bail for signals. Probably ctrl-c from user */
  2015. if (signal_pending(current))
  2016. goto out;
  2017. }
  2018. /*
  2019. * Decrease the pool size
  2020. * First return free pages to the buddy allocator (being careful
  2021. * to keep enough around to satisfy reservations). Then place
  2022. * pages into surplus state as needed so the pool will shrink
  2023. * to the desired size as pages become free.
  2024. *
  2025. * By placing pages into the surplus state independent of the
  2026. * overcommit value, we are allowing the surplus pool size to
  2027. * exceed overcommit. There are few sane options here. Since
  2028. * __alloc_buddy_huge_page() is checking the global counter,
  2029. * though, we'll note that we're not allowed to exceed surplus
  2030. * and won't grow the pool anywhere else. Not until one of the
  2031. * sysctls are changed, or the surplus pages go out of use.
  2032. */
  2033. min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
  2034. min_count = max(count, min_count);
  2035. try_to_free_low(h, min_count, nodes_allowed);
  2036. while (min_count < persistent_huge_pages(h)) {
  2037. if (!free_pool_huge_page(h, nodes_allowed, 0))
  2038. break;
  2039. cond_resched_lock(&hugetlb_lock);
  2040. }
  2041. while (count < persistent_huge_pages(h)) {
  2042. if (!adjust_pool_surplus(h, nodes_allowed, 1))
  2043. break;
  2044. }
  2045. out:
  2046. ret = persistent_huge_pages(h);
  2047. spin_unlock(&hugetlb_lock);
  2048. return ret;
  2049. }
  2050. #define HSTATE_ATTR_RO(_name) \
  2051. static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
  2052. #define HSTATE_ATTR(_name) \
  2053. static struct kobj_attribute _name##_attr = \
  2054. __ATTR(_name, 0644, _name##_show, _name##_store)
  2055. static struct kobject *hugepages_kobj;
  2056. static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  2057. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
  2058. static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
  2059. {
  2060. int i;
  2061. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  2062. if (hstate_kobjs[i] == kobj) {
  2063. if (nidp)
  2064. *nidp = NUMA_NO_NODE;
  2065. return &hstates[i];
  2066. }
  2067. return kobj_to_node_hstate(kobj, nidp);
  2068. }
  2069. static ssize_t nr_hugepages_show_common(struct kobject *kobj,
  2070. struct kobj_attribute *attr, char *buf)
  2071. {
  2072. struct hstate *h;
  2073. unsigned long nr_huge_pages;
  2074. int nid;
  2075. h = kobj_to_hstate(kobj, &nid);
  2076. if (nid == NUMA_NO_NODE)
  2077. nr_huge_pages = h->nr_huge_pages;
  2078. else
  2079. nr_huge_pages = h->nr_huge_pages_node[nid];
  2080. return sprintf(buf, "%lu\n", nr_huge_pages);
  2081. }
  2082. static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
  2083. struct hstate *h, int nid,
  2084. unsigned long count, size_t len)
  2085. {
  2086. int err;
  2087. NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
  2088. if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
  2089. err = -EINVAL;
  2090. goto out;
  2091. }
  2092. if (nid == NUMA_NO_NODE) {
  2093. /*
  2094. * global hstate attribute
  2095. */
  2096. if (!(obey_mempolicy &&
  2097. init_nodemask_of_mempolicy(nodes_allowed))) {
  2098. NODEMASK_FREE(nodes_allowed);
  2099. nodes_allowed = &node_states[N_MEMORY];
  2100. }
  2101. } else if (nodes_allowed) {
  2102. /*
  2103. * per node hstate attribute: adjust count to global,
  2104. * but restrict alloc/free to the specified node.
  2105. */
  2106. count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
  2107. init_nodemask_of_node(nodes_allowed, nid);
  2108. } else
  2109. nodes_allowed = &node_states[N_MEMORY];
  2110. h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
  2111. if (nodes_allowed != &node_states[N_MEMORY])
  2112. NODEMASK_FREE(nodes_allowed);
  2113. return len;
  2114. out:
  2115. NODEMASK_FREE(nodes_allowed);
  2116. return err;
  2117. }
  2118. static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
  2119. struct kobject *kobj, const char *buf,
  2120. size_t len)
  2121. {
  2122. struct hstate *h;
  2123. unsigned long count;
  2124. int nid;
  2125. int err;
  2126. err = kstrtoul(buf, 10, &count);
  2127. if (err)
  2128. return err;
  2129. h = kobj_to_hstate(kobj, &nid);
  2130. return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
  2131. }
  2132. static ssize_t nr_hugepages_show(struct kobject *kobj,
  2133. struct kobj_attribute *attr, char *buf)
  2134. {
  2135. return nr_hugepages_show_common(kobj, attr, buf);
  2136. }
  2137. static ssize_t nr_hugepages_store(struct kobject *kobj,
  2138. struct kobj_attribute *attr, const char *buf, size_t len)
  2139. {
  2140. return nr_hugepages_store_common(false, kobj, buf, len);
  2141. }
  2142. HSTATE_ATTR(nr_hugepages);
  2143. #ifdef CONFIG_NUMA
  2144. /*
  2145. * hstate attribute for optionally mempolicy-based constraint on persistent
  2146. * huge page alloc/free.
  2147. */
  2148. static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
  2149. struct kobj_attribute *attr, char *buf)
  2150. {
  2151. return nr_hugepages_show_common(kobj, attr, buf);
  2152. }
  2153. static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
  2154. struct kobj_attribute *attr, const char *buf, size_t len)
  2155. {
  2156. return nr_hugepages_store_common(true, kobj, buf, len);
  2157. }
  2158. HSTATE_ATTR(nr_hugepages_mempolicy);
  2159. #endif
  2160. static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
  2161. struct kobj_attribute *attr, char *buf)
  2162. {
  2163. struct hstate *h = kobj_to_hstate(kobj, NULL);
  2164. return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
  2165. }
  2166. static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
  2167. struct kobj_attribute *attr, const char *buf, size_t count)
  2168. {
  2169. int err;
  2170. unsigned long input;
  2171. struct hstate *h = kobj_to_hstate(kobj, NULL);
  2172. if (hstate_is_gigantic(h))
  2173. return -EINVAL;
  2174. err = kstrtoul(buf, 10, &input);
  2175. if (err)
  2176. return err;
  2177. spin_lock(&hugetlb_lock);
  2178. h->nr_overcommit_huge_pages = input;
  2179. spin_unlock(&hugetlb_lock);
  2180. return count;
  2181. }
  2182. HSTATE_ATTR(nr_overcommit_hugepages);
  2183. static ssize_t free_hugepages_show(struct kobject *kobj,
  2184. struct kobj_attribute *attr, char *buf)
  2185. {
  2186. struct hstate *h;
  2187. unsigned long free_huge_pages;
  2188. int nid;
  2189. h = kobj_to_hstate(kobj, &nid);
  2190. if (nid == NUMA_NO_NODE)
  2191. free_huge_pages = h->free_huge_pages;
  2192. else
  2193. free_huge_pages = h->free_huge_pages_node[nid];
  2194. return sprintf(buf, "%lu\n", free_huge_pages);
  2195. }
  2196. HSTATE_ATTR_RO(free_hugepages);
  2197. static ssize_t resv_hugepages_show(struct kobject *kobj,
  2198. struct kobj_attribute *attr, char *buf)
  2199. {
  2200. struct hstate *h = kobj_to_hstate(kobj, NULL);
  2201. return sprintf(buf, "%lu\n", h->resv_huge_pages);
  2202. }
  2203. HSTATE_ATTR_RO(resv_hugepages);
  2204. static ssize_t surplus_hugepages_show(struct kobject *kobj,
  2205. struct kobj_attribute *attr, char *buf)
  2206. {
  2207. struct hstate *h;
  2208. unsigned long surplus_huge_pages;
  2209. int nid;
  2210. h = kobj_to_hstate(kobj, &nid);
  2211. if (nid == NUMA_NO_NODE)
  2212. surplus_huge_pages = h->surplus_huge_pages;
  2213. else
  2214. surplus_huge_pages = h->surplus_huge_pages_node[nid];
  2215. return sprintf(buf, "%lu\n", surplus_huge_pages);
  2216. }
  2217. HSTATE_ATTR_RO(surplus_hugepages);
  2218. static struct attribute *hstate_attrs[] = {
  2219. &nr_hugepages_attr.attr,
  2220. &nr_overcommit_hugepages_attr.attr,
  2221. &free_hugepages_attr.attr,
  2222. &resv_hugepages_attr.attr,
  2223. &surplus_hugepages_attr.attr,
  2224. #ifdef CONFIG_NUMA
  2225. &nr_hugepages_mempolicy_attr.attr,
  2226. #endif
  2227. NULL,
  2228. };
  2229. static struct attribute_group hstate_attr_group = {
  2230. .attrs = hstate_attrs,
  2231. };
  2232. static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
  2233. struct kobject **hstate_kobjs,
  2234. struct attribute_group *hstate_attr_group)
  2235. {
  2236. int retval;
  2237. int hi = hstate_index(h);
  2238. hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
  2239. if (!hstate_kobjs[hi])
  2240. return -ENOMEM;
  2241. retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
  2242. if (retval)
  2243. kobject_put(hstate_kobjs[hi]);
  2244. return retval;
  2245. }
  2246. static void __init hugetlb_sysfs_init(void)
  2247. {
  2248. struct hstate *h;
  2249. int err;
  2250. hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
  2251. if (!hugepages_kobj)
  2252. return;
  2253. for_each_hstate(h) {
  2254. err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
  2255. hstate_kobjs, &hstate_attr_group);
  2256. if (err)
  2257. pr_err("Hugetlb: Unable to add hstate %s", h->name);
  2258. }
  2259. }
  2260. #ifdef CONFIG_NUMA
  2261. /*
  2262. * node_hstate/s - associate per node hstate attributes, via their kobjects,
  2263. * with node devices in node_devices[] using a parallel array. The array
  2264. * index of a node device or _hstate == node id.
  2265. * This is here to avoid any static dependency of the node device driver, in
  2266. * the base kernel, on the hugetlb module.
  2267. */
  2268. struct node_hstate {
  2269. struct kobject *hugepages_kobj;
  2270. struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  2271. };
  2272. static struct node_hstate node_hstates[MAX_NUMNODES];
  2273. /*
  2274. * A subset of global hstate attributes for node devices
  2275. */
  2276. static struct attribute *per_node_hstate_attrs[] = {
  2277. &nr_hugepages_attr.attr,
  2278. &free_hugepages_attr.attr,
  2279. &surplus_hugepages_attr.attr,
  2280. NULL,
  2281. };
  2282. static struct attribute_group per_node_hstate_attr_group = {
  2283. .attrs = per_node_hstate_attrs,
  2284. };
  2285. /*
  2286. * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
  2287. * Returns node id via non-NULL nidp.
  2288. */
  2289. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  2290. {
  2291. int nid;
  2292. for (nid = 0; nid < nr_node_ids; nid++) {
  2293. struct node_hstate *nhs = &node_hstates[nid];
  2294. int i;
  2295. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  2296. if (nhs->hstate_kobjs[i] == kobj) {
  2297. if (nidp)
  2298. *nidp = nid;
  2299. return &hstates[i];
  2300. }
  2301. }
  2302. BUG();
  2303. return NULL;
  2304. }
  2305. /*
  2306. * Unregister hstate attributes from a single node device.
  2307. * No-op if no hstate attributes attached.
  2308. */
  2309. static void hugetlb_unregister_node(struct node *node)
  2310. {
  2311. struct hstate *h;
  2312. struct node_hstate *nhs = &node_hstates[node->dev.id];
  2313. if (!nhs->hugepages_kobj)
  2314. return; /* no hstate attributes */
  2315. for_each_hstate(h) {
  2316. int idx = hstate_index(h);
  2317. if (nhs->hstate_kobjs[idx]) {
  2318. kobject_put(nhs->hstate_kobjs[idx]);
  2319. nhs->hstate_kobjs[idx] = NULL;
  2320. }
  2321. }
  2322. kobject_put(nhs->hugepages_kobj);
  2323. nhs->hugepages_kobj = NULL;
  2324. }
  2325. /*
  2326. * Register hstate attributes for a single node device.
  2327. * No-op if attributes already registered.
  2328. */
  2329. static void hugetlb_register_node(struct node *node)
  2330. {
  2331. struct hstate *h;
  2332. struct node_hstate *nhs = &node_hstates[node->dev.id];
  2333. int err;
  2334. if (nhs->hugepages_kobj)
  2335. return; /* already allocated */
  2336. nhs->hugepages_kobj = kobject_create_and_add("hugepages",
  2337. &node->dev.kobj);
  2338. if (!nhs->hugepages_kobj)
  2339. return;
  2340. for_each_hstate(h) {
  2341. err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
  2342. nhs->hstate_kobjs,
  2343. &per_node_hstate_attr_group);
  2344. if (err) {
  2345. pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
  2346. h->name, node->dev.id);
  2347. hugetlb_unregister_node(node);
  2348. break;
  2349. }
  2350. }
  2351. }
  2352. /*
  2353. * hugetlb init time: register hstate attributes for all registered node
  2354. * devices of nodes that have memory. All on-line nodes should have
  2355. * registered their associated device by this time.
  2356. */
  2357. static void __init hugetlb_register_all_nodes(void)
  2358. {
  2359. int nid;
  2360. for_each_node_state(nid, N_MEMORY) {
  2361. struct node *node = node_devices[nid];
  2362. if (node->dev.id == nid)
  2363. hugetlb_register_node(node);
  2364. }
  2365. /*
  2366. * Let the node device driver know we're here so it can
  2367. * [un]register hstate attributes on node hotplug.
  2368. */
  2369. register_hugetlbfs_with_node(hugetlb_register_node,
  2370. hugetlb_unregister_node);
  2371. }
  2372. #else /* !CONFIG_NUMA */
  2373. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  2374. {
  2375. BUG();
  2376. if (nidp)
  2377. *nidp = -1;
  2378. return NULL;
  2379. }
  2380. static void hugetlb_register_all_nodes(void) { }
  2381. #endif
  2382. static int __init hugetlb_init(void)
  2383. {
  2384. int i;
  2385. if (!hugepages_supported())
  2386. return 0;
  2387. if (!size_to_hstate(default_hstate_size)) {
  2388. if (default_hstate_size != 0) {
  2389. pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
  2390. default_hstate_size, HPAGE_SIZE);
  2391. }
  2392. default_hstate_size = HPAGE_SIZE;
  2393. if (!size_to_hstate(default_hstate_size))
  2394. hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
  2395. }
  2396. default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
  2397. if (default_hstate_max_huge_pages) {
  2398. if (!default_hstate.max_huge_pages)
  2399. default_hstate.max_huge_pages = default_hstate_max_huge_pages;
  2400. }
  2401. hugetlb_init_hstates();
  2402. gather_bootmem_prealloc();
  2403. report_hugepages();
  2404. hugetlb_sysfs_init();
  2405. hugetlb_register_all_nodes();
  2406. hugetlb_cgroup_file_init();
  2407. #ifdef CONFIG_SMP
  2408. num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
  2409. #else
  2410. num_fault_mutexes = 1;
  2411. #endif
  2412. hugetlb_fault_mutex_table =
  2413. kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
  2414. BUG_ON(!hugetlb_fault_mutex_table);
  2415. for (i = 0; i < num_fault_mutexes; i++)
  2416. mutex_init(&hugetlb_fault_mutex_table[i]);
  2417. return 0;
  2418. }
  2419. subsys_initcall(hugetlb_init);
  2420. /* Should be called on processing a hugepagesz=... option */
  2421. void __init hugetlb_bad_size(void)
  2422. {
  2423. parsed_valid_hugepagesz = false;
  2424. }
  2425. void __init hugetlb_add_hstate(unsigned int order)
  2426. {
  2427. struct hstate *h;
  2428. unsigned long i;
  2429. if (size_to_hstate(PAGE_SIZE << order)) {
  2430. pr_warn("hugepagesz= specified twice, ignoring\n");
  2431. return;
  2432. }
  2433. BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
  2434. BUG_ON(order == 0);
  2435. h = &hstates[hugetlb_max_hstate++];
  2436. h->order = order;
  2437. h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
  2438. h->nr_huge_pages = 0;
  2439. h->free_huge_pages = 0;
  2440. for (i = 0; i < MAX_NUMNODES; ++i)
  2441. INIT_LIST_HEAD(&h->hugepage_freelists[i]);
  2442. INIT_LIST_HEAD(&h->hugepage_activelist);
  2443. h->next_nid_to_alloc = first_memory_node;
  2444. h->next_nid_to_free = first_memory_node;
  2445. snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
  2446. huge_page_size(h)/1024);
  2447. parsed_hstate = h;
  2448. }
  2449. static int __init hugetlb_nrpages_setup(char *s)
  2450. {
  2451. unsigned long *mhp;
  2452. static unsigned long *last_mhp;
  2453. if (!parsed_valid_hugepagesz) {
  2454. pr_warn("hugepages = %s preceded by "
  2455. "an unsupported hugepagesz, ignoring\n", s);
  2456. parsed_valid_hugepagesz = true;
  2457. return 1;
  2458. }
  2459. /*
  2460. * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
  2461. * so this hugepages= parameter goes to the "default hstate".
  2462. */
  2463. else if (!hugetlb_max_hstate)
  2464. mhp = &default_hstate_max_huge_pages;
  2465. else
  2466. mhp = &parsed_hstate->max_huge_pages;
  2467. if (mhp == last_mhp) {
  2468. pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
  2469. return 1;
  2470. }
  2471. if (sscanf(s, "%lu", mhp) <= 0)
  2472. *mhp = 0;
  2473. /*
  2474. * Global state is always initialized later in hugetlb_init.
  2475. * But we need to allocate >= MAX_ORDER hstates here early to still
  2476. * use the bootmem allocator.
  2477. */
  2478. if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
  2479. hugetlb_hstate_alloc_pages(parsed_hstate);
  2480. last_mhp = mhp;
  2481. return 1;
  2482. }
  2483. __setup("hugepages=", hugetlb_nrpages_setup);
  2484. static int __init hugetlb_default_setup(char *s)
  2485. {
  2486. default_hstate_size = memparse(s, &s);
  2487. return 1;
  2488. }
  2489. __setup("default_hugepagesz=", hugetlb_default_setup);
  2490. static unsigned int cpuset_mems_nr(unsigned int *array)
  2491. {
  2492. int node;
  2493. unsigned int nr = 0;
  2494. for_each_node_mask(node, cpuset_current_mems_allowed)
  2495. nr += array[node];
  2496. return nr;
  2497. }
  2498. #ifdef CONFIG_SYSCTL
  2499. static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
  2500. struct ctl_table *table, int write,
  2501. void __user *buffer, size_t *length, loff_t *ppos)
  2502. {
  2503. struct hstate *h = &default_hstate;
  2504. unsigned long tmp = h->max_huge_pages;
  2505. int ret;
  2506. if (!hugepages_supported())
  2507. return -EOPNOTSUPP;
  2508. table->data = &tmp;
  2509. table->maxlen = sizeof(unsigned long);
  2510. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  2511. if (ret)
  2512. goto out;
  2513. if (write)
  2514. ret = __nr_hugepages_store_common(obey_mempolicy, h,
  2515. NUMA_NO_NODE, tmp, *length);
  2516. out:
  2517. return ret;
  2518. }
  2519. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  2520. void __user *buffer, size_t *length, loff_t *ppos)
  2521. {
  2522. return hugetlb_sysctl_handler_common(false, table, write,
  2523. buffer, length, ppos);
  2524. }
  2525. #ifdef CONFIG_NUMA
  2526. int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
  2527. void __user *buffer, size_t *length, loff_t *ppos)
  2528. {
  2529. return hugetlb_sysctl_handler_common(true, table, write,
  2530. buffer, length, ppos);
  2531. }
  2532. #endif /* CONFIG_NUMA */
  2533. int hugetlb_overcommit_handler(struct ctl_table *table, int write,
  2534. void __user *buffer,
  2535. size_t *length, loff_t *ppos)
  2536. {
  2537. struct hstate *h = &default_hstate;
  2538. unsigned long tmp;
  2539. int ret;
  2540. if (!hugepages_supported())
  2541. return -EOPNOTSUPP;
  2542. tmp = h->nr_overcommit_huge_pages;
  2543. if (write && hstate_is_gigantic(h))
  2544. return -EINVAL;
  2545. table->data = &tmp;
  2546. table->maxlen = sizeof(unsigned long);
  2547. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  2548. if (ret)
  2549. goto out;
  2550. if (write) {
  2551. spin_lock(&hugetlb_lock);
  2552. h->nr_overcommit_huge_pages = tmp;
  2553. spin_unlock(&hugetlb_lock);
  2554. }
  2555. out:
  2556. return ret;
  2557. }
  2558. #endif /* CONFIG_SYSCTL */
  2559. void hugetlb_report_meminfo(struct seq_file *m)
  2560. {
  2561. struct hstate *h = &default_hstate;
  2562. if (!hugepages_supported())
  2563. return;
  2564. seq_printf(m,
  2565. "HugePages_Total: %5lu\n"
  2566. "HugePages_Free: %5lu\n"
  2567. "HugePages_Rsvd: %5lu\n"
  2568. "HugePages_Surp: %5lu\n"
  2569. "Hugepagesize: %8lu kB\n",
  2570. h->nr_huge_pages,
  2571. h->free_huge_pages,
  2572. h->resv_huge_pages,
  2573. h->surplus_huge_pages,
  2574. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  2575. }
  2576. int hugetlb_report_node_meminfo(int nid, char *buf)
  2577. {
  2578. struct hstate *h = &default_hstate;
  2579. if (!hugepages_supported())
  2580. return 0;
  2581. return sprintf(buf,
  2582. "Node %d HugePages_Total: %5u\n"
  2583. "Node %d HugePages_Free: %5u\n"
  2584. "Node %d HugePages_Surp: %5u\n",
  2585. nid, h->nr_huge_pages_node[nid],
  2586. nid, h->free_huge_pages_node[nid],
  2587. nid, h->surplus_huge_pages_node[nid]);
  2588. }
  2589. void hugetlb_show_meminfo(void)
  2590. {
  2591. struct hstate *h;
  2592. int nid;
  2593. if (!hugepages_supported())
  2594. return;
  2595. for_each_node_state(nid, N_MEMORY)
  2596. for_each_hstate(h)
  2597. pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
  2598. nid,
  2599. h->nr_huge_pages_node[nid],
  2600. h->free_huge_pages_node[nid],
  2601. h->surplus_huge_pages_node[nid],
  2602. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  2603. }
  2604. void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
  2605. {
  2606. seq_printf(m, "HugetlbPages:\t%8lu kB\n",
  2607. atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
  2608. }
  2609. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  2610. unsigned long hugetlb_total_pages(void)
  2611. {
  2612. struct hstate *h;
  2613. unsigned long nr_total_pages = 0;
  2614. for_each_hstate(h)
  2615. nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
  2616. return nr_total_pages;
  2617. }
  2618. static int hugetlb_acct_memory(struct hstate *h, long delta)
  2619. {
  2620. int ret = -ENOMEM;
  2621. spin_lock(&hugetlb_lock);
  2622. /*
  2623. * When cpuset is configured, it breaks the strict hugetlb page
  2624. * reservation as the accounting is done on a global variable. Such
  2625. * reservation is completely rubbish in the presence of cpuset because
  2626. * the reservation is not checked against page availability for the
  2627. * current cpuset. Application can still potentially OOM'ed by kernel
  2628. * with lack of free htlb page in cpuset that the task is in.
  2629. * Attempt to enforce strict accounting with cpuset is almost
  2630. * impossible (or too ugly) because cpuset is too fluid that
  2631. * task or memory node can be dynamically moved between cpusets.
  2632. *
  2633. * The change of semantics for shared hugetlb mapping with cpuset is
  2634. * undesirable. However, in order to preserve some of the semantics,
  2635. * we fall back to check against current free page availability as
  2636. * a best attempt and hopefully to minimize the impact of changing
  2637. * semantics that cpuset has.
  2638. */
  2639. if (delta > 0) {
  2640. if (gather_surplus_pages(h, delta) < 0)
  2641. goto out;
  2642. if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
  2643. return_unused_surplus_pages(h, delta);
  2644. goto out;
  2645. }
  2646. }
  2647. ret = 0;
  2648. if (delta < 0)
  2649. return_unused_surplus_pages(h, (unsigned long) -delta);
  2650. out:
  2651. spin_unlock(&hugetlb_lock);
  2652. return ret;
  2653. }
  2654. static void hugetlb_vm_op_open(struct vm_area_struct *vma)
  2655. {
  2656. struct resv_map *resv = vma_resv_map(vma);
  2657. /*
  2658. * This new VMA should share its siblings reservation map if present.
  2659. * The VMA will only ever have a valid reservation map pointer where
  2660. * it is being copied for another still existing VMA. As that VMA
  2661. * has a reference to the reservation map it cannot disappear until
  2662. * after this open call completes. It is therefore safe to take a
  2663. * new reference here without additional locking.
  2664. */
  2665. if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  2666. kref_get(&resv->refs);
  2667. }
  2668. static void hugetlb_vm_op_close(struct vm_area_struct *vma)
  2669. {
  2670. struct hstate *h = hstate_vma(vma);
  2671. struct resv_map *resv = vma_resv_map(vma);
  2672. struct hugepage_subpool *spool = subpool_vma(vma);
  2673. unsigned long reserve, start, end;
  2674. long gbl_reserve;
  2675. if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  2676. return;
  2677. start = vma_hugecache_offset(h, vma, vma->vm_start);
  2678. end = vma_hugecache_offset(h, vma, vma->vm_end);
  2679. reserve = (end - start) - region_count(resv, start, end);
  2680. kref_put(&resv->refs, resv_map_release);
  2681. if (reserve) {
  2682. /*
  2683. * Decrement reserve counts. The global reserve count may be
  2684. * adjusted if the subpool has a minimum size.
  2685. */
  2686. gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
  2687. hugetlb_acct_memory(h, -gbl_reserve);
  2688. }
  2689. }
  2690. /*
  2691. * We cannot handle pagefaults against hugetlb pages at all. They cause
  2692. * handle_mm_fault() to try to instantiate regular-sized pages in the
  2693. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  2694. * this far.
  2695. */
  2696. static int hugetlb_vm_op_fault(struct vm_fault *vmf)
  2697. {
  2698. BUG();
  2699. return 0;
  2700. }
  2701. const struct vm_operations_struct hugetlb_vm_ops = {
  2702. .fault = hugetlb_vm_op_fault,
  2703. .open = hugetlb_vm_op_open,
  2704. .close = hugetlb_vm_op_close,
  2705. };
  2706. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  2707. int writable)
  2708. {
  2709. pte_t entry;
  2710. if (writable) {
  2711. entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
  2712. vma->vm_page_prot)));
  2713. } else {
  2714. entry = huge_pte_wrprotect(mk_huge_pte(page,
  2715. vma->vm_page_prot));
  2716. }
  2717. entry = pte_mkyoung(entry);
  2718. entry = pte_mkhuge(entry);
  2719. entry = arch_make_huge_pte(entry, vma, page, writable);
  2720. return entry;
  2721. }
  2722. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  2723. unsigned long address, pte_t *ptep)
  2724. {
  2725. pte_t entry;
  2726. entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
  2727. if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
  2728. update_mmu_cache(vma, address, ptep);
  2729. }
  2730. bool is_hugetlb_entry_migration(pte_t pte)
  2731. {
  2732. swp_entry_t swp;
  2733. if (huge_pte_none(pte) || pte_present(pte))
  2734. return false;
  2735. swp = pte_to_swp_entry(pte);
  2736. if (non_swap_entry(swp) && is_migration_entry(swp))
  2737. return true;
  2738. else
  2739. return false;
  2740. }
  2741. static int is_hugetlb_entry_hwpoisoned(pte_t pte)
  2742. {
  2743. swp_entry_t swp;
  2744. if (huge_pte_none(pte) || pte_present(pte))
  2745. return 0;
  2746. swp = pte_to_swp_entry(pte);
  2747. if (non_swap_entry(swp) && is_hwpoison_entry(swp))
  2748. return 1;
  2749. else
  2750. return 0;
  2751. }
  2752. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  2753. struct vm_area_struct *vma)
  2754. {
  2755. pte_t *src_pte, *dst_pte, entry;
  2756. struct page *ptepage;
  2757. unsigned long addr;
  2758. int cow;
  2759. struct hstate *h = hstate_vma(vma);
  2760. unsigned long sz = huge_page_size(h);
  2761. unsigned long mmun_start; /* For mmu_notifiers */
  2762. unsigned long mmun_end; /* For mmu_notifiers */
  2763. int ret = 0;
  2764. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  2765. mmun_start = vma->vm_start;
  2766. mmun_end = vma->vm_end;
  2767. if (cow)
  2768. mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
  2769. for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
  2770. spinlock_t *src_ptl, *dst_ptl;
  2771. src_pte = huge_pte_offset(src, addr, sz);
  2772. if (!src_pte)
  2773. continue;
  2774. dst_pte = huge_pte_alloc(dst, addr, sz);
  2775. if (!dst_pte) {
  2776. ret = -ENOMEM;
  2777. break;
  2778. }
  2779. /* If the pagetables are shared don't copy or take references */
  2780. if (dst_pte == src_pte)
  2781. continue;
  2782. dst_ptl = huge_pte_lock(h, dst, dst_pte);
  2783. src_ptl = huge_pte_lockptr(h, src, src_pte);
  2784. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  2785. entry = huge_ptep_get(src_pte);
  2786. if (huge_pte_none(entry)) { /* skip none entry */
  2787. ;
  2788. } else if (unlikely(is_hugetlb_entry_migration(entry) ||
  2789. is_hugetlb_entry_hwpoisoned(entry))) {
  2790. swp_entry_t swp_entry = pte_to_swp_entry(entry);
  2791. if (is_write_migration_entry(swp_entry) && cow) {
  2792. /*
  2793. * COW mappings require pages in both
  2794. * parent and child to be set to read.
  2795. */
  2796. make_migration_entry_read(&swp_entry);
  2797. entry = swp_entry_to_pte(swp_entry);
  2798. set_huge_swap_pte_at(src, addr, src_pte,
  2799. entry, sz);
  2800. }
  2801. set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
  2802. } else {
  2803. if (cow) {
  2804. huge_ptep_set_wrprotect(src, addr, src_pte);
  2805. mmu_notifier_invalidate_range(src, mmun_start,
  2806. mmun_end);
  2807. }
  2808. entry = huge_ptep_get(src_pte);
  2809. ptepage = pte_page(entry);
  2810. get_page(ptepage);
  2811. page_dup_rmap(ptepage, true);
  2812. set_huge_pte_at(dst, addr, dst_pte, entry);
  2813. hugetlb_count_add(pages_per_huge_page(h), dst);
  2814. }
  2815. spin_unlock(src_ptl);
  2816. spin_unlock(dst_ptl);
  2817. }
  2818. if (cow)
  2819. mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
  2820. return ret;
  2821. }
  2822. void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
  2823. unsigned long start, unsigned long end,
  2824. struct page *ref_page)
  2825. {
  2826. struct mm_struct *mm = vma->vm_mm;
  2827. unsigned long address;
  2828. pte_t *ptep;
  2829. pte_t pte;
  2830. spinlock_t *ptl;
  2831. struct page *page;
  2832. struct hstate *h = hstate_vma(vma);
  2833. unsigned long sz = huge_page_size(h);
  2834. const unsigned long mmun_start = start; /* For mmu_notifiers */
  2835. const unsigned long mmun_end = end; /* For mmu_notifiers */
  2836. WARN_ON(!is_vm_hugetlb_page(vma));
  2837. BUG_ON(start & ~huge_page_mask(h));
  2838. BUG_ON(end & ~huge_page_mask(h));
  2839. /*
  2840. * This is a hugetlb vma, all the pte entries should point
  2841. * to huge page.
  2842. */
  2843. tlb_remove_check_page_size_change(tlb, sz);
  2844. tlb_start_vma(tlb, vma);
  2845. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2846. address = start;
  2847. for (; address < end; address += sz) {
  2848. ptep = huge_pte_offset(mm, address, sz);
  2849. if (!ptep)
  2850. continue;
  2851. ptl = huge_pte_lock(h, mm, ptep);
  2852. if (huge_pmd_unshare(mm, &address, ptep)) {
  2853. spin_unlock(ptl);
  2854. continue;
  2855. }
  2856. pte = huge_ptep_get(ptep);
  2857. if (huge_pte_none(pte)) {
  2858. spin_unlock(ptl);
  2859. continue;
  2860. }
  2861. /*
  2862. * Migrating hugepage or HWPoisoned hugepage is already
  2863. * unmapped and its refcount is dropped, so just clear pte here.
  2864. */
  2865. if (unlikely(!pte_present(pte))) {
  2866. huge_pte_clear(mm, address, ptep, sz);
  2867. spin_unlock(ptl);
  2868. continue;
  2869. }
  2870. page = pte_page(pte);
  2871. /*
  2872. * If a reference page is supplied, it is because a specific
  2873. * page is being unmapped, not a range. Ensure the page we
  2874. * are about to unmap is the actual page of interest.
  2875. */
  2876. if (ref_page) {
  2877. if (page != ref_page) {
  2878. spin_unlock(ptl);
  2879. continue;
  2880. }
  2881. /*
  2882. * Mark the VMA as having unmapped its page so that
  2883. * future faults in this VMA will fail rather than
  2884. * looking like data was lost
  2885. */
  2886. set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
  2887. }
  2888. pte = huge_ptep_get_and_clear(mm, address, ptep);
  2889. tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
  2890. if (huge_pte_dirty(pte))
  2891. set_page_dirty(page);
  2892. hugetlb_count_sub(pages_per_huge_page(h), mm);
  2893. page_remove_rmap(page, true);
  2894. spin_unlock(ptl);
  2895. tlb_remove_page_size(tlb, page, huge_page_size(h));
  2896. /*
  2897. * Bail out after unmapping reference page if supplied
  2898. */
  2899. if (ref_page)
  2900. break;
  2901. }
  2902. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2903. tlb_end_vma(tlb, vma);
  2904. }
  2905. void __unmap_hugepage_range_final(struct mmu_gather *tlb,
  2906. struct vm_area_struct *vma, unsigned long start,
  2907. unsigned long end, struct page *ref_page)
  2908. {
  2909. __unmap_hugepage_range(tlb, vma, start, end, ref_page);
  2910. /*
  2911. * Clear this flag so that x86's huge_pmd_share page_table_shareable
  2912. * test will fail on a vma being torn down, and not grab a page table
  2913. * on its way out. We're lucky that the flag has such an appropriate
  2914. * name, and can in fact be safely cleared here. We could clear it
  2915. * before the __unmap_hugepage_range above, but all that's necessary
  2916. * is to clear it before releasing the i_mmap_rwsem. This works
  2917. * because in the context this is called, the VMA is about to be
  2918. * destroyed and the i_mmap_rwsem is held.
  2919. */
  2920. vma->vm_flags &= ~VM_MAYSHARE;
  2921. }
  2922. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  2923. unsigned long end, struct page *ref_page)
  2924. {
  2925. struct mm_struct *mm;
  2926. struct mmu_gather tlb;
  2927. mm = vma->vm_mm;
  2928. tlb_gather_mmu(&tlb, mm, start, end);
  2929. __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
  2930. tlb_finish_mmu(&tlb, start, end);
  2931. }
  2932. /*
  2933. * This is called when the original mapper is failing to COW a MAP_PRIVATE
  2934. * mappping it owns the reserve page for. The intention is to unmap the page
  2935. * from other VMAs and let the children be SIGKILLed if they are faulting the
  2936. * same region.
  2937. */
  2938. static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
  2939. struct page *page, unsigned long address)
  2940. {
  2941. struct hstate *h = hstate_vma(vma);
  2942. struct vm_area_struct *iter_vma;
  2943. struct address_space *mapping;
  2944. pgoff_t pgoff;
  2945. /*
  2946. * vm_pgoff is in PAGE_SIZE units, hence the different calculation
  2947. * from page cache lookup which is in HPAGE_SIZE units.
  2948. */
  2949. address = address & huge_page_mask(h);
  2950. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
  2951. vma->vm_pgoff;
  2952. mapping = vma->vm_file->f_mapping;
  2953. /*
  2954. * Take the mapping lock for the duration of the table walk. As
  2955. * this mapping should be shared between all the VMAs,
  2956. * __unmap_hugepage_range() is called as the lock is already held
  2957. */
  2958. i_mmap_lock_write(mapping);
  2959. vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
  2960. /* Do not unmap the current VMA */
  2961. if (iter_vma == vma)
  2962. continue;
  2963. /*
  2964. * Shared VMAs have their own reserves and do not affect
  2965. * MAP_PRIVATE accounting but it is possible that a shared
  2966. * VMA is using the same page so check and skip such VMAs.
  2967. */
  2968. if (iter_vma->vm_flags & VM_MAYSHARE)
  2969. continue;
  2970. /*
  2971. * Unmap the page from other VMAs without their own reserves.
  2972. * They get marked to be SIGKILLed if they fault in these
  2973. * areas. This is because a future no-page fault on this VMA
  2974. * could insert a zeroed page instead of the data existing
  2975. * from the time of fork. This would look like data corruption
  2976. */
  2977. if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
  2978. unmap_hugepage_range(iter_vma, address,
  2979. address + huge_page_size(h), page);
  2980. }
  2981. i_mmap_unlock_write(mapping);
  2982. }
  2983. /*
  2984. * Hugetlb_cow() should be called with page lock of the original hugepage held.
  2985. * Called with hugetlb_instantiation_mutex held and pte_page locked so we
  2986. * cannot race with other handlers or page migration.
  2987. * Keep the pte_same checks anyway to make transition from the mutex easier.
  2988. */
  2989. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  2990. unsigned long address, pte_t *ptep,
  2991. struct page *pagecache_page, spinlock_t *ptl)
  2992. {
  2993. pte_t pte;
  2994. struct hstate *h = hstate_vma(vma);
  2995. struct page *old_page, *new_page;
  2996. int ret = 0, outside_reserve = 0;
  2997. unsigned long mmun_start; /* For mmu_notifiers */
  2998. unsigned long mmun_end; /* For mmu_notifiers */
  2999. pte = huge_ptep_get(ptep);
  3000. old_page = pte_page(pte);
  3001. retry_avoidcopy:
  3002. /* If no-one else is actually using this page, avoid the copy
  3003. * and just make the page writable */
  3004. if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
  3005. page_move_anon_rmap(old_page, vma);
  3006. set_huge_ptep_writable(vma, address, ptep);
  3007. return 0;
  3008. }
  3009. /*
  3010. * If the process that created a MAP_PRIVATE mapping is about to
  3011. * perform a COW due to a shared page count, attempt to satisfy
  3012. * the allocation without using the existing reserves. The pagecache
  3013. * page is used to determine if the reserve at this address was
  3014. * consumed or not. If reserves were used, a partial faulted mapping
  3015. * at the time of fork() could consume its reserves on COW instead
  3016. * of the full address range.
  3017. */
  3018. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
  3019. old_page != pagecache_page)
  3020. outside_reserve = 1;
  3021. get_page(old_page);
  3022. /*
  3023. * Drop page table lock as buddy allocator may be called. It will
  3024. * be acquired again before returning to the caller, as expected.
  3025. */
  3026. spin_unlock(ptl);
  3027. new_page = alloc_huge_page(vma, address, outside_reserve);
  3028. if (IS_ERR(new_page)) {
  3029. /*
  3030. * If a process owning a MAP_PRIVATE mapping fails to COW,
  3031. * it is due to references held by a child and an insufficient
  3032. * huge page pool. To guarantee the original mappers
  3033. * reliability, unmap the page from child processes. The child
  3034. * may get SIGKILLed if it later faults.
  3035. */
  3036. if (outside_reserve) {
  3037. put_page(old_page);
  3038. BUG_ON(huge_pte_none(pte));
  3039. unmap_ref_private(mm, vma, old_page, address);
  3040. BUG_ON(huge_pte_none(pte));
  3041. spin_lock(ptl);
  3042. ptep = huge_pte_offset(mm, address & huge_page_mask(h),
  3043. huge_page_size(h));
  3044. if (likely(ptep &&
  3045. pte_same(huge_ptep_get(ptep), pte)))
  3046. goto retry_avoidcopy;
  3047. /*
  3048. * race occurs while re-acquiring page table
  3049. * lock, and our job is done.
  3050. */
  3051. return 0;
  3052. }
  3053. ret = (PTR_ERR(new_page) == -ENOMEM) ?
  3054. VM_FAULT_OOM : VM_FAULT_SIGBUS;
  3055. goto out_release_old;
  3056. }
  3057. /*
  3058. * When the original hugepage is shared one, it does not have
  3059. * anon_vma prepared.
  3060. */
  3061. if (unlikely(anon_vma_prepare(vma))) {
  3062. ret = VM_FAULT_OOM;
  3063. goto out_release_all;
  3064. }
  3065. copy_user_huge_page(new_page, old_page, address, vma,
  3066. pages_per_huge_page(h));
  3067. __SetPageUptodate(new_page);
  3068. set_page_huge_active(new_page);
  3069. mmun_start = address & huge_page_mask(h);
  3070. mmun_end = mmun_start + huge_page_size(h);
  3071. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  3072. /*
  3073. * Retake the page table lock to check for racing updates
  3074. * before the page tables are altered
  3075. */
  3076. spin_lock(ptl);
  3077. ptep = huge_pte_offset(mm, address & huge_page_mask(h),
  3078. huge_page_size(h));
  3079. if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
  3080. ClearPagePrivate(new_page);
  3081. /* Break COW */
  3082. huge_ptep_clear_flush(vma, address, ptep);
  3083. mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
  3084. set_huge_pte_at(mm, address, ptep,
  3085. make_huge_pte(vma, new_page, 1));
  3086. page_remove_rmap(old_page, true);
  3087. hugepage_add_new_anon_rmap(new_page, vma, address);
  3088. /* Make the old page be freed below */
  3089. new_page = old_page;
  3090. }
  3091. spin_unlock(ptl);
  3092. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  3093. out_release_all:
  3094. restore_reserve_on_error(h, vma, address, new_page);
  3095. put_page(new_page);
  3096. out_release_old:
  3097. put_page(old_page);
  3098. spin_lock(ptl); /* Caller expects lock to be held */
  3099. return ret;
  3100. }
  3101. /* Return the pagecache page at a given address within a VMA */
  3102. static struct page *hugetlbfs_pagecache_page(struct hstate *h,
  3103. struct vm_area_struct *vma, unsigned long address)
  3104. {
  3105. struct address_space *mapping;
  3106. pgoff_t idx;
  3107. mapping = vma->vm_file->f_mapping;
  3108. idx = vma_hugecache_offset(h, vma, address);
  3109. return find_lock_page(mapping, idx);
  3110. }
  3111. /*
  3112. * Return whether there is a pagecache page to back given address within VMA.
  3113. * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
  3114. */
  3115. static bool hugetlbfs_pagecache_present(struct hstate *h,
  3116. struct vm_area_struct *vma, unsigned long address)
  3117. {
  3118. struct address_space *mapping;
  3119. pgoff_t idx;
  3120. struct page *page;
  3121. mapping = vma->vm_file->f_mapping;
  3122. idx = vma_hugecache_offset(h, vma, address);
  3123. page = find_get_page(mapping, idx);
  3124. if (page)
  3125. put_page(page);
  3126. return page != NULL;
  3127. }
  3128. int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
  3129. pgoff_t idx)
  3130. {
  3131. struct inode *inode = mapping->host;
  3132. struct hstate *h = hstate_inode(inode);
  3133. int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  3134. if (err)
  3135. return err;
  3136. ClearPagePrivate(page);
  3137. spin_lock(&inode->i_lock);
  3138. inode->i_blocks += blocks_per_huge_page(h);
  3139. spin_unlock(&inode->i_lock);
  3140. return 0;
  3141. }
  3142. static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3143. struct address_space *mapping, pgoff_t idx,
  3144. unsigned long address, pte_t *ptep, unsigned int flags)
  3145. {
  3146. struct hstate *h = hstate_vma(vma);
  3147. int ret = VM_FAULT_SIGBUS;
  3148. int anon_rmap = 0;
  3149. unsigned long size;
  3150. struct page *page;
  3151. pte_t new_pte;
  3152. spinlock_t *ptl;
  3153. /*
  3154. * Currently, we are forced to kill the process in the event the
  3155. * original mapper has unmapped pages from the child due to a failed
  3156. * COW. Warn that such a situation has occurred as it may not be obvious
  3157. */
  3158. if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
  3159. pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
  3160. current->pid);
  3161. return ret;
  3162. }
  3163. /*
  3164. * Use page lock to guard against racing truncation
  3165. * before we get page_table_lock.
  3166. */
  3167. retry:
  3168. page = find_lock_page(mapping, idx);
  3169. if (!page) {
  3170. size = i_size_read(mapping->host) >> huge_page_shift(h);
  3171. if (idx >= size)
  3172. goto out;
  3173. /*
  3174. * Check for page in userfault range
  3175. */
  3176. if (userfaultfd_missing(vma)) {
  3177. u32 hash;
  3178. struct vm_fault vmf = {
  3179. .vma = vma,
  3180. .address = address,
  3181. .flags = flags,
  3182. /*
  3183. * Hard to debug if it ends up being
  3184. * used by a callee that assumes
  3185. * something about the other
  3186. * uninitialized fields... same as in
  3187. * memory.c
  3188. */
  3189. };
  3190. /*
  3191. * hugetlb_fault_mutex must be dropped before
  3192. * handling userfault. Reacquire after handling
  3193. * fault to make calling code simpler.
  3194. */
  3195. hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
  3196. idx, address);
  3197. mutex_unlock(&hugetlb_fault_mutex_table[hash]);
  3198. ret = handle_userfault(&vmf, VM_UFFD_MISSING);
  3199. mutex_lock(&hugetlb_fault_mutex_table[hash]);
  3200. goto out;
  3201. }
  3202. page = alloc_huge_page(vma, address, 0);
  3203. if (IS_ERR(page)) {
  3204. ret = PTR_ERR(page);
  3205. if (ret == -ENOMEM)
  3206. ret = VM_FAULT_OOM;
  3207. else
  3208. ret = VM_FAULT_SIGBUS;
  3209. goto out;
  3210. }
  3211. clear_huge_page(page, address, pages_per_huge_page(h));
  3212. __SetPageUptodate(page);
  3213. set_page_huge_active(page);
  3214. if (vma->vm_flags & VM_MAYSHARE) {
  3215. int err = huge_add_to_page_cache(page, mapping, idx);
  3216. if (err) {
  3217. put_page(page);
  3218. if (err == -EEXIST)
  3219. goto retry;
  3220. goto out;
  3221. }
  3222. } else {
  3223. lock_page(page);
  3224. if (unlikely(anon_vma_prepare(vma))) {
  3225. ret = VM_FAULT_OOM;
  3226. goto backout_unlocked;
  3227. }
  3228. anon_rmap = 1;
  3229. }
  3230. } else {
  3231. /*
  3232. * If memory error occurs between mmap() and fault, some process
  3233. * don't have hwpoisoned swap entry for errored virtual address.
  3234. * So we need to block hugepage fault by PG_hwpoison bit check.
  3235. */
  3236. if (unlikely(PageHWPoison(page))) {
  3237. ret = VM_FAULT_HWPOISON |
  3238. VM_FAULT_SET_HINDEX(hstate_index(h));
  3239. goto backout_unlocked;
  3240. }
  3241. }
  3242. /*
  3243. * If we are going to COW a private mapping later, we examine the
  3244. * pending reservations for this page now. This will ensure that
  3245. * any allocations necessary to record that reservation occur outside
  3246. * the spinlock.
  3247. */
  3248. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  3249. if (vma_needs_reservation(h, vma, address) < 0) {
  3250. ret = VM_FAULT_OOM;
  3251. goto backout_unlocked;
  3252. }
  3253. /* Just decrements count, does not deallocate */
  3254. vma_end_reservation(h, vma, address);
  3255. }
  3256. ptl = huge_pte_lock(h, mm, ptep);
  3257. size = i_size_read(mapping->host) >> huge_page_shift(h);
  3258. if (idx >= size)
  3259. goto backout;
  3260. ret = 0;
  3261. if (!huge_pte_none(huge_ptep_get(ptep)))
  3262. goto backout;
  3263. if (anon_rmap) {
  3264. ClearPagePrivate(page);
  3265. hugepage_add_new_anon_rmap(page, vma, address);
  3266. } else
  3267. page_dup_rmap(page, true);
  3268. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  3269. && (vma->vm_flags & VM_SHARED)));
  3270. set_huge_pte_at(mm, address, ptep, new_pte);
  3271. hugetlb_count_add(pages_per_huge_page(h), mm);
  3272. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  3273. /* Optimization, do the COW without a second fault */
  3274. ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
  3275. }
  3276. spin_unlock(ptl);
  3277. unlock_page(page);
  3278. out:
  3279. return ret;
  3280. backout:
  3281. spin_unlock(ptl);
  3282. backout_unlocked:
  3283. unlock_page(page);
  3284. restore_reserve_on_error(h, vma, address, page);
  3285. put_page(page);
  3286. goto out;
  3287. }
  3288. #ifdef CONFIG_SMP
  3289. u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
  3290. struct vm_area_struct *vma,
  3291. struct address_space *mapping,
  3292. pgoff_t idx, unsigned long address)
  3293. {
  3294. unsigned long key[2];
  3295. u32 hash;
  3296. if (vma->vm_flags & VM_SHARED) {
  3297. key[0] = (unsigned long) mapping;
  3298. key[1] = idx;
  3299. } else {
  3300. key[0] = (unsigned long) mm;
  3301. key[1] = address >> huge_page_shift(h);
  3302. }
  3303. hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
  3304. return hash & (num_fault_mutexes - 1);
  3305. }
  3306. #else
  3307. /*
  3308. * For uniprocesor systems we always use a single mutex, so just
  3309. * return 0 and avoid the hashing overhead.
  3310. */
  3311. u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
  3312. struct vm_area_struct *vma,
  3313. struct address_space *mapping,
  3314. pgoff_t idx, unsigned long address)
  3315. {
  3316. return 0;
  3317. }
  3318. #endif
  3319. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3320. unsigned long address, unsigned int flags)
  3321. {
  3322. pte_t *ptep, entry;
  3323. spinlock_t *ptl;
  3324. int ret;
  3325. u32 hash;
  3326. pgoff_t idx;
  3327. struct page *page = NULL;
  3328. struct page *pagecache_page = NULL;
  3329. struct hstate *h = hstate_vma(vma);
  3330. struct address_space *mapping;
  3331. int need_wait_lock = 0;
  3332. address &= huge_page_mask(h);
  3333. ptep = huge_pte_offset(mm, address, huge_page_size(h));
  3334. if (ptep) {
  3335. entry = huge_ptep_get(ptep);
  3336. if (unlikely(is_hugetlb_entry_migration(entry))) {
  3337. migration_entry_wait_huge(vma, mm, ptep);
  3338. return 0;
  3339. } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
  3340. return VM_FAULT_HWPOISON_LARGE |
  3341. VM_FAULT_SET_HINDEX(hstate_index(h));
  3342. } else {
  3343. ptep = huge_pte_alloc(mm, address, huge_page_size(h));
  3344. if (!ptep)
  3345. return VM_FAULT_OOM;
  3346. }
  3347. mapping = vma->vm_file->f_mapping;
  3348. idx = vma_hugecache_offset(h, vma, address);
  3349. /*
  3350. * Serialize hugepage allocation and instantiation, so that we don't
  3351. * get spurious allocation failures if two CPUs race to instantiate
  3352. * the same page in the page cache.
  3353. */
  3354. hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
  3355. mutex_lock(&hugetlb_fault_mutex_table[hash]);
  3356. entry = huge_ptep_get(ptep);
  3357. if (huge_pte_none(entry)) {
  3358. ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
  3359. goto out_mutex;
  3360. }
  3361. ret = 0;
  3362. /*
  3363. * entry could be a migration/hwpoison entry at this point, so this
  3364. * check prevents the kernel from going below assuming that we have
  3365. * a active hugepage in pagecache. This goto expects the 2nd page fault,
  3366. * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
  3367. * handle it.
  3368. */
  3369. if (!pte_present(entry))
  3370. goto out_mutex;
  3371. /*
  3372. * If we are going to COW the mapping later, we examine the pending
  3373. * reservations for this page now. This will ensure that any
  3374. * allocations necessary to record that reservation occur outside the
  3375. * spinlock. For private mappings, we also lookup the pagecache
  3376. * page now as it is used to determine if a reservation has been
  3377. * consumed.
  3378. */
  3379. if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
  3380. if (vma_needs_reservation(h, vma, address) < 0) {
  3381. ret = VM_FAULT_OOM;
  3382. goto out_mutex;
  3383. }
  3384. /* Just decrements count, does not deallocate */
  3385. vma_end_reservation(h, vma, address);
  3386. if (!(vma->vm_flags & VM_MAYSHARE))
  3387. pagecache_page = hugetlbfs_pagecache_page(h,
  3388. vma, address);
  3389. }
  3390. ptl = huge_pte_lock(h, mm, ptep);
  3391. /* Check for a racing update before calling hugetlb_cow */
  3392. if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
  3393. goto out_ptl;
  3394. /*
  3395. * hugetlb_cow() requires page locks of pte_page(entry) and
  3396. * pagecache_page, so here we need take the former one
  3397. * when page != pagecache_page or !pagecache_page.
  3398. */
  3399. page = pte_page(entry);
  3400. if (page != pagecache_page)
  3401. if (!trylock_page(page)) {
  3402. need_wait_lock = 1;
  3403. goto out_ptl;
  3404. }
  3405. get_page(page);
  3406. if (flags & FAULT_FLAG_WRITE) {
  3407. if (!huge_pte_write(entry)) {
  3408. ret = hugetlb_cow(mm, vma, address, ptep,
  3409. pagecache_page, ptl);
  3410. goto out_put_page;
  3411. }
  3412. entry = huge_pte_mkdirty(entry);
  3413. }
  3414. entry = pte_mkyoung(entry);
  3415. if (huge_ptep_set_access_flags(vma, address, ptep, entry,
  3416. flags & FAULT_FLAG_WRITE))
  3417. update_mmu_cache(vma, address, ptep);
  3418. out_put_page:
  3419. if (page != pagecache_page)
  3420. unlock_page(page);
  3421. put_page(page);
  3422. out_ptl:
  3423. spin_unlock(ptl);
  3424. if (pagecache_page) {
  3425. unlock_page(pagecache_page);
  3426. put_page(pagecache_page);
  3427. }
  3428. out_mutex:
  3429. mutex_unlock(&hugetlb_fault_mutex_table[hash]);
  3430. /*
  3431. * Generally it's safe to hold refcount during waiting page lock. But
  3432. * here we just wait to defer the next page fault to avoid busy loop and
  3433. * the page is not used after unlocked before returning from the current
  3434. * page fault. So we are safe from accessing freed page, even if we wait
  3435. * here without taking refcount.
  3436. */
  3437. if (need_wait_lock)
  3438. wait_on_page_locked(page);
  3439. return ret;
  3440. }
  3441. /*
  3442. * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
  3443. * modifications for huge pages.
  3444. */
  3445. int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
  3446. pte_t *dst_pte,
  3447. struct vm_area_struct *dst_vma,
  3448. unsigned long dst_addr,
  3449. unsigned long src_addr,
  3450. struct page **pagep)
  3451. {
  3452. int vm_shared = dst_vma->vm_flags & VM_SHARED;
  3453. struct hstate *h = hstate_vma(dst_vma);
  3454. pte_t _dst_pte;
  3455. spinlock_t *ptl;
  3456. int ret;
  3457. struct page *page;
  3458. if (!*pagep) {
  3459. ret = -ENOMEM;
  3460. page = alloc_huge_page(dst_vma, dst_addr, 0);
  3461. if (IS_ERR(page))
  3462. goto out;
  3463. ret = copy_huge_page_from_user(page,
  3464. (const void __user *) src_addr,
  3465. pages_per_huge_page(h), false);
  3466. /* fallback to copy_from_user outside mmap_sem */
  3467. if (unlikely(ret)) {
  3468. ret = -EFAULT;
  3469. *pagep = page;
  3470. /* don't free the page */
  3471. goto out;
  3472. }
  3473. } else {
  3474. page = *pagep;
  3475. *pagep = NULL;
  3476. }
  3477. /*
  3478. * The memory barrier inside __SetPageUptodate makes sure that
  3479. * preceding stores to the page contents become visible before
  3480. * the set_pte_at() write.
  3481. */
  3482. __SetPageUptodate(page);
  3483. set_page_huge_active(page);
  3484. /*
  3485. * If shared, add to page cache
  3486. */
  3487. if (vm_shared) {
  3488. struct address_space *mapping = dst_vma->vm_file->f_mapping;
  3489. pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
  3490. ret = huge_add_to_page_cache(page, mapping, idx);
  3491. if (ret)
  3492. goto out_release_nounlock;
  3493. }
  3494. ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
  3495. spin_lock(ptl);
  3496. ret = -EEXIST;
  3497. if (!huge_pte_none(huge_ptep_get(dst_pte)))
  3498. goto out_release_unlock;
  3499. if (vm_shared) {
  3500. page_dup_rmap(page, true);
  3501. } else {
  3502. ClearPagePrivate(page);
  3503. hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
  3504. }
  3505. _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
  3506. if (dst_vma->vm_flags & VM_WRITE)
  3507. _dst_pte = huge_pte_mkdirty(_dst_pte);
  3508. _dst_pte = pte_mkyoung(_dst_pte);
  3509. set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
  3510. (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
  3511. dst_vma->vm_flags & VM_WRITE);
  3512. hugetlb_count_add(pages_per_huge_page(h), dst_mm);
  3513. /* No need to invalidate - it was non-present before */
  3514. update_mmu_cache(dst_vma, dst_addr, dst_pte);
  3515. spin_unlock(ptl);
  3516. if (vm_shared)
  3517. unlock_page(page);
  3518. ret = 0;
  3519. out:
  3520. return ret;
  3521. out_release_unlock:
  3522. spin_unlock(ptl);
  3523. out_release_nounlock:
  3524. if (vm_shared)
  3525. unlock_page(page);
  3526. put_page(page);
  3527. goto out;
  3528. }
  3529. long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3530. struct page **pages, struct vm_area_struct **vmas,
  3531. unsigned long *position, unsigned long *nr_pages,
  3532. long i, unsigned int flags, int *nonblocking)
  3533. {
  3534. unsigned long pfn_offset;
  3535. unsigned long vaddr = *position;
  3536. unsigned long remainder = *nr_pages;
  3537. struct hstate *h = hstate_vma(vma);
  3538. int err = -EFAULT;
  3539. while (vaddr < vma->vm_end && remainder) {
  3540. pte_t *pte;
  3541. spinlock_t *ptl = NULL;
  3542. int absent;
  3543. struct page *page;
  3544. /*
  3545. * If we have a pending SIGKILL, don't keep faulting pages and
  3546. * potentially allocating memory.
  3547. */
  3548. if (unlikely(fatal_signal_pending(current))) {
  3549. remainder = 0;
  3550. break;
  3551. }
  3552. /*
  3553. * Some archs (sparc64, sh*) have multiple pte_ts to
  3554. * each hugepage. We have to make sure we get the
  3555. * first, for the page indexing below to work.
  3556. *
  3557. * Note that page table lock is not held when pte is null.
  3558. */
  3559. pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
  3560. huge_page_size(h));
  3561. if (pte)
  3562. ptl = huge_pte_lock(h, mm, pte);
  3563. absent = !pte || huge_pte_none(huge_ptep_get(pte));
  3564. /*
  3565. * When coredumping, it suits get_dump_page if we just return
  3566. * an error where there's an empty slot with no huge pagecache
  3567. * to back it. This way, we avoid allocating a hugepage, and
  3568. * the sparse dumpfile avoids allocating disk blocks, but its
  3569. * huge holes still show up with zeroes where they need to be.
  3570. */
  3571. if (absent && (flags & FOLL_DUMP) &&
  3572. !hugetlbfs_pagecache_present(h, vma, vaddr)) {
  3573. if (pte)
  3574. spin_unlock(ptl);
  3575. remainder = 0;
  3576. break;
  3577. }
  3578. /*
  3579. * We need call hugetlb_fault for both hugepages under migration
  3580. * (in which case hugetlb_fault waits for the migration,) and
  3581. * hwpoisoned hugepages (in which case we need to prevent the
  3582. * caller from accessing to them.) In order to do this, we use
  3583. * here is_swap_pte instead of is_hugetlb_entry_migration and
  3584. * is_hugetlb_entry_hwpoisoned. This is because it simply covers
  3585. * both cases, and because we can't follow correct pages
  3586. * directly from any kind of swap entries.
  3587. */
  3588. if (absent || is_swap_pte(huge_ptep_get(pte)) ||
  3589. ((flags & FOLL_WRITE) &&
  3590. !huge_pte_write(huge_ptep_get(pte)))) {
  3591. int ret;
  3592. unsigned int fault_flags = 0;
  3593. if (pte)
  3594. spin_unlock(ptl);
  3595. if (flags & FOLL_WRITE)
  3596. fault_flags |= FAULT_FLAG_WRITE;
  3597. if (nonblocking)
  3598. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  3599. if (flags & FOLL_NOWAIT)
  3600. fault_flags |= FAULT_FLAG_ALLOW_RETRY |
  3601. FAULT_FLAG_RETRY_NOWAIT;
  3602. if (flags & FOLL_TRIED) {
  3603. VM_WARN_ON_ONCE(fault_flags &
  3604. FAULT_FLAG_ALLOW_RETRY);
  3605. fault_flags |= FAULT_FLAG_TRIED;
  3606. }
  3607. ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
  3608. if (ret & VM_FAULT_ERROR) {
  3609. err = vm_fault_to_errno(ret, flags);
  3610. remainder = 0;
  3611. break;
  3612. }
  3613. if (ret & VM_FAULT_RETRY) {
  3614. if (nonblocking)
  3615. *nonblocking = 0;
  3616. *nr_pages = 0;
  3617. /*
  3618. * VM_FAULT_RETRY must not return an
  3619. * error, it will return zero
  3620. * instead.
  3621. *
  3622. * No need to update "position" as the
  3623. * caller will not check it after
  3624. * *nr_pages is set to 0.
  3625. */
  3626. return i;
  3627. }
  3628. continue;
  3629. }
  3630. pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
  3631. page = pte_page(huge_ptep_get(pte));
  3632. same_page:
  3633. if (pages) {
  3634. pages[i] = mem_map_offset(page, pfn_offset);
  3635. get_page(pages[i]);
  3636. }
  3637. if (vmas)
  3638. vmas[i] = vma;
  3639. vaddr += PAGE_SIZE;
  3640. ++pfn_offset;
  3641. --remainder;
  3642. ++i;
  3643. if (vaddr < vma->vm_end && remainder &&
  3644. pfn_offset < pages_per_huge_page(h)) {
  3645. /*
  3646. * We use pfn_offset to avoid touching the pageframes
  3647. * of this compound page.
  3648. */
  3649. goto same_page;
  3650. }
  3651. spin_unlock(ptl);
  3652. }
  3653. *nr_pages = remainder;
  3654. /*
  3655. * setting position is actually required only if remainder is
  3656. * not zero but it's faster not to add a "if (remainder)"
  3657. * branch.
  3658. */
  3659. *position = vaddr;
  3660. return i ? i : err;
  3661. }
  3662. #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
  3663. /*
  3664. * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
  3665. * implement this.
  3666. */
  3667. #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
  3668. #endif
  3669. unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
  3670. unsigned long address, unsigned long end, pgprot_t newprot)
  3671. {
  3672. struct mm_struct *mm = vma->vm_mm;
  3673. unsigned long start = address;
  3674. pte_t *ptep;
  3675. pte_t pte;
  3676. struct hstate *h = hstate_vma(vma);
  3677. unsigned long pages = 0;
  3678. BUG_ON(address >= end);
  3679. flush_cache_range(vma, address, end);
  3680. mmu_notifier_invalidate_range_start(mm, start, end);
  3681. i_mmap_lock_write(vma->vm_file->f_mapping);
  3682. for (; address < end; address += huge_page_size(h)) {
  3683. spinlock_t *ptl;
  3684. ptep = huge_pte_offset(mm, address, huge_page_size(h));
  3685. if (!ptep)
  3686. continue;
  3687. ptl = huge_pte_lock(h, mm, ptep);
  3688. if (huge_pmd_unshare(mm, &address, ptep)) {
  3689. pages++;
  3690. spin_unlock(ptl);
  3691. continue;
  3692. }
  3693. pte = huge_ptep_get(ptep);
  3694. if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
  3695. spin_unlock(ptl);
  3696. continue;
  3697. }
  3698. if (unlikely(is_hugetlb_entry_migration(pte))) {
  3699. swp_entry_t entry = pte_to_swp_entry(pte);
  3700. if (is_write_migration_entry(entry)) {
  3701. pte_t newpte;
  3702. make_migration_entry_read(&entry);
  3703. newpte = swp_entry_to_pte(entry);
  3704. set_huge_swap_pte_at(mm, address, ptep,
  3705. newpte, huge_page_size(h));
  3706. pages++;
  3707. }
  3708. spin_unlock(ptl);
  3709. continue;
  3710. }
  3711. if (!huge_pte_none(pte)) {
  3712. pte = huge_ptep_get_and_clear(mm, address, ptep);
  3713. pte = pte_mkhuge(huge_pte_modify(pte, newprot));
  3714. pte = arch_make_huge_pte(pte, vma, NULL, 0);
  3715. set_huge_pte_at(mm, address, ptep, pte);
  3716. pages++;
  3717. }
  3718. spin_unlock(ptl);
  3719. }
  3720. /*
  3721. * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
  3722. * may have cleared our pud entry and done put_page on the page table:
  3723. * once we release i_mmap_rwsem, another task can do the final put_page
  3724. * and that page table be reused and filled with junk.
  3725. */
  3726. flush_hugetlb_tlb_range(vma, start, end);
  3727. mmu_notifier_invalidate_range(mm, start, end);
  3728. i_mmap_unlock_write(vma->vm_file->f_mapping);
  3729. mmu_notifier_invalidate_range_end(mm, start, end);
  3730. return pages << h->order;
  3731. }
  3732. int hugetlb_reserve_pages(struct inode *inode,
  3733. long from, long to,
  3734. struct vm_area_struct *vma,
  3735. vm_flags_t vm_flags)
  3736. {
  3737. long ret, chg;
  3738. struct hstate *h = hstate_inode(inode);
  3739. struct hugepage_subpool *spool = subpool_inode(inode);
  3740. struct resv_map *resv_map;
  3741. long gbl_reserve;
  3742. /*
  3743. * Only apply hugepage reservation if asked. At fault time, an
  3744. * attempt will be made for VM_NORESERVE to allocate a page
  3745. * without using reserves
  3746. */
  3747. if (vm_flags & VM_NORESERVE)
  3748. return 0;
  3749. /*
  3750. * Shared mappings base their reservation on the number of pages that
  3751. * are already allocated on behalf of the file. Private mappings need
  3752. * to reserve the full area even if read-only as mprotect() may be
  3753. * called to make the mapping read-write. Assume !vma is a shm mapping
  3754. */
  3755. if (!vma || vma->vm_flags & VM_MAYSHARE) {
  3756. resv_map = inode_resv_map(inode);
  3757. chg = region_chg(resv_map, from, to);
  3758. } else {
  3759. resv_map = resv_map_alloc();
  3760. if (!resv_map)
  3761. return -ENOMEM;
  3762. chg = to - from;
  3763. set_vma_resv_map(vma, resv_map);
  3764. set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
  3765. }
  3766. if (chg < 0) {
  3767. ret = chg;
  3768. goto out_err;
  3769. }
  3770. /*
  3771. * There must be enough pages in the subpool for the mapping. If
  3772. * the subpool has a minimum size, there may be some global
  3773. * reservations already in place (gbl_reserve).
  3774. */
  3775. gbl_reserve = hugepage_subpool_get_pages(spool, chg);
  3776. if (gbl_reserve < 0) {
  3777. ret = -ENOSPC;
  3778. goto out_err;
  3779. }
  3780. /*
  3781. * Check enough hugepages are available for the reservation.
  3782. * Hand the pages back to the subpool if there are not
  3783. */
  3784. ret = hugetlb_acct_memory(h, gbl_reserve);
  3785. if (ret < 0) {
  3786. /* put back original number of pages, chg */
  3787. (void)hugepage_subpool_put_pages(spool, chg);
  3788. goto out_err;
  3789. }
  3790. /*
  3791. * Account for the reservations made. Shared mappings record regions
  3792. * that have reservations as they are shared by multiple VMAs.
  3793. * When the last VMA disappears, the region map says how much
  3794. * the reservation was and the page cache tells how much of
  3795. * the reservation was consumed. Private mappings are per-VMA and
  3796. * only the consumed reservations are tracked. When the VMA
  3797. * disappears, the original reservation is the VMA size and the
  3798. * consumed reservations are stored in the map. Hence, nothing
  3799. * else has to be done for private mappings here
  3800. */
  3801. if (!vma || vma->vm_flags & VM_MAYSHARE) {
  3802. long add = region_add(resv_map, from, to);
  3803. if (unlikely(chg > add)) {
  3804. /*
  3805. * pages in this range were added to the reserve
  3806. * map between region_chg and region_add. This
  3807. * indicates a race with alloc_huge_page. Adjust
  3808. * the subpool and reserve counts modified above
  3809. * based on the difference.
  3810. */
  3811. long rsv_adjust;
  3812. rsv_adjust = hugepage_subpool_put_pages(spool,
  3813. chg - add);
  3814. hugetlb_acct_memory(h, -rsv_adjust);
  3815. }
  3816. }
  3817. return 0;
  3818. out_err:
  3819. if (!vma || vma->vm_flags & VM_MAYSHARE)
  3820. /* Don't call region_abort if region_chg failed */
  3821. if (chg >= 0)
  3822. region_abort(resv_map, from, to);
  3823. if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  3824. kref_put(&resv_map->refs, resv_map_release);
  3825. return ret;
  3826. }
  3827. long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
  3828. long freed)
  3829. {
  3830. struct hstate *h = hstate_inode(inode);
  3831. struct resv_map *resv_map = inode_resv_map(inode);
  3832. long chg = 0;
  3833. struct hugepage_subpool *spool = subpool_inode(inode);
  3834. long gbl_reserve;
  3835. if (resv_map) {
  3836. chg = region_del(resv_map, start, end);
  3837. /*
  3838. * region_del() can fail in the rare case where a region
  3839. * must be split and another region descriptor can not be
  3840. * allocated. If end == LONG_MAX, it will not fail.
  3841. */
  3842. if (chg < 0)
  3843. return chg;
  3844. }
  3845. spin_lock(&inode->i_lock);
  3846. inode->i_blocks -= (blocks_per_huge_page(h) * freed);
  3847. spin_unlock(&inode->i_lock);
  3848. /*
  3849. * If the subpool has a minimum size, the number of global
  3850. * reservations to be released may be adjusted.
  3851. */
  3852. gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
  3853. hugetlb_acct_memory(h, -gbl_reserve);
  3854. return 0;
  3855. }
  3856. #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
  3857. static unsigned long page_table_shareable(struct vm_area_struct *svma,
  3858. struct vm_area_struct *vma,
  3859. unsigned long addr, pgoff_t idx)
  3860. {
  3861. unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
  3862. svma->vm_start;
  3863. unsigned long sbase = saddr & PUD_MASK;
  3864. unsigned long s_end = sbase + PUD_SIZE;
  3865. /* Allow segments to share if only one is marked locked */
  3866. unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
  3867. unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
  3868. /*
  3869. * match the virtual addresses, permission and the alignment of the
  3870. * page table page.
  3871. */
  3872. if (pmd_index(addr) != pmd_index(saddr) ||
  3873. vm_flags != svm_flags ||
  3874. sbase < svma->vm_start || svma->vm_end < s_end)
  3875. return 0;
  3876. return saddr;
  3877. }
  3878. static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
  3879. {
  3880. unsigned long base = addr & PUD_MASK;
  3881. unsigned long end = base + PUD_SIZE;
  3882. /*
  3883. * check on proper vm_flags and page table alignment
  3884. */
  3885. if (vma->vm_flags & VM_MAYSHARE &&
  3886. vma->vm_start <= base && end <= vma->vm_end)
  3887. return true;
  3888. return false;
  3889. }
  3890. /*
  3891. * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
  3892. * and returns the corresponding pte. While this is not necessary for the
  3893. * !shared pmd case because we can allocate the pmd later as well, it makes the
  3894. * code much cleaner. pmd allocation is essential for the shared case because
  3895. * pud has to be populated inside the same i_mmap_rwsem section - otherwise
  3896. * racing tasks could either miss the sharing (see huge_pte_offset) or select a
  3897. * bad pmd for sharing.
  3898. */
  3899. pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  3900. {
  3901. struct vm_area_struct *vma = find_vma(mm, addr);
  3902. struct address_space *mapping = vma->vm_file->f_mapping;
  3903. pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  3904. vma->vm_pgoff;
  3905. struct vm_area_struct *svma;
  3906. unsigned long saddr;
  3907. pte_t *spte = NULL;
  3908. pte_t *pte;
  3909. spinlock_t *ptl;
  3910. if (!vma_shareable(vma, addr))
  3911. return (pte_t *)pmd_alloc(mm, pud, addr);
  3912. i_mmap_lock_write(mapping);
  3913. vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
  3914. if (svma == vma)
  3915. continue;
  3916. saddr = page_table_shareable(svma, vma, addr, idx);
  3917. if (saddr) {
  3918. spte = huge_pte_offset(svma->vm_mm, saddr,
  3919. vma_mmu_pagesize(svma));
  3920. if (spte) {
  3921. get_page(virt_to_page(spte));
  3922. break;
  3923. }
  3924. }
  3925. }
  3926. if (!spte)
  3927. goto out;
  3928. ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
  3929. if (pud_none(*pud)) {
  3930. pud_populate(mm, pud,
  3931. (pmd_t *)((unsigned long)spte & PAGE_MASK));
  3932. mm_inc_nr_pmds(mm);
  3933. } else {
  3934. put_page(virt_to_page(spte));
  3935. }
  3936. spin_unlock(ptl);
  3937. out:
  3938. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  3939. i_mmap_unlock_write(mapping);
  3940. return pte;
  3941. }
  3942. /*
  3943. * unmap huge page backed by shared pte.
  3944. *
  3945. * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
  3946. * indicated by page_count > 1, unmap is achieved by clearing pud and
  3947. * decrementing the ref count. If count == 1, the pte page is not shared.
  3948. *
  3949. * called with page table lock held.
  3950. *
  3951. * returns: 1 successfully unmapped a shared pte page
  3952. * 0 the underlying pte page is not shared, or it is the last user
  3953. */
  3954. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  3955. {
  3956. pgd_t *pgd = pgd_offset(mm, *addr);
  3957. p4d_t *p4d = p4d_offset(pgd, *addr);
  3958. pud_t *pud = pud_offset(p4d, *addr);
  3959. BUG_ON(page_count(virt_to_page(ptep)) == 0);
  3960. if (page_count(virt_to_page(ptep)) == 1)
  3961. return 0;
  3962. pud_clear(pud);
  3963. put_page(virt_to_page(ptep));
  3964. mm_dec_nr_pmds(mm);
  3965. *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
  3966. return 1;
  3967. }
  3968. #define want_pmd_share() (1)
  3969. #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
  3970. pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  3971. {
  3972. return NULL;
  3973. }
  3974. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  3975. {
  3976. return 0;
  3977. }
  3978. #define want_pmd_share() (0)
  3979. #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
  3980. #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
  3981. pte_t *huge_pte_alloc(struct mm_struct *mm,
  3982. unsigned long addr, unsigned long sz)
  3983. {
  3984. pgd_t *pgd;
  3985. p4d_t *p4d;
  3986. pud_t *pud;
  3987. pte_t *pte = NULL;
  3988. pgd = pgd_offset(mm, addr);
  3989. p4d = p4d_offset(pgd, addr);
  3990. pud = pud_alloc(mm, p4d, addr);
  3991. if (pud) {
  3992. if (sz == PUD_SIZE) {
  3993. pte = (pte_t *)pud;
  3994. } else {
  3995. BUG_ON(sz != PMD_SIZE);
  3996. if (want_pmd_share() && pud_none(*pud))
  3997. pte = huge_pmd_share(mm, addr, pud);
  3998. else
  3999. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  4000. }
  4001. }
  4002. BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
  4003. return pte;
  4004. }
  4005. pte_t *huge_pte_offset(struct mm_struct *mm,
  4006. unsigned long addr, unsigned long sz)
  4007. {
  4008. pgd_t *pgd;
  4009. p4d_t *p4d;
  4010. pud_t *pud;
  4011. pmd_t *pmd;
  4012. pgd = pgd_offset(mm, addr);
  4013. if (!pgd_present(*pgd))
  4014. return NULL;
  4015. p4d = p4d_offset(pgd, addr);
  4016. if (!p4d_present(*p4d))
  4017. return NULL;
  4018. pud = pud_offset(p4d, addr);
  4019. if (!pud_present(*pud))
  4020. return NULL;
  4021. if (pud_huge(*pud))
  4022. return (pte_t *)pud;
  4023. pmd = pmd_offset(pud, addr);
  4024. return (pte_t *) pmd;
  4025. }
  4026. #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
  4027. /*
  4028. * These functions are overwritable if your architecture needs its own
  4029. * behavior.
  4030. */
  4031. struct page * __weak
  4032. follow_huge_addr(struct mm_struct *mm, unsigned long address,
  4033. int write)
  4034. {
  4035. return ERR_PTR(-EINVAL);
  4036. }
  4037. struct page * __weak
  4038. follow_huge_pd(struct vm_area_struct *vma,
  4039. unsigned long address, hugepd_t hpd, int flags, int pdshift)
  4040. {
  4041. WARN(1, "hugepd follow called with no support for hugepage directory format\n");
  4042. return NULL;
  4043. }
  4044. struct page * __weak
  4045. follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  4046. pmd_t *pmd, int flags)
  4047. {
  4048. struct page *page = NULL;
  4049. spinlock_t *ptl;
  4050. pte_t pte;
  4051. retry:
  4052. ptl = pmd_lockptr(mm, pmd);
  4053. spin_lock(ptl);
  4054. /*
  4055. * make sure that the address range covered by this pmd is not
  4056. * unmapped from other threads.
  4057. */
  4058. if (!pmd_huge(*pmd))
  4059. goto out;
  4060. pte = huge_ptep_get((pte_t *)pmd);
  4061. if (pte_present(pte)) {
  4062. page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
  4063. if (flags & FOLL_GET)
  4064. get_page(page);
  4065. } else {
  4066. if (is_hugetlb_entry_migration(pte)) {
  4067. spin_unlock(ptl);
  4068. __migration_entry_wait(mm, (pte_t *)pmd, ptl);
  4069. goto retry;
  4070. }
  4071. /*
  4072. * hwpoisoned entry is treated as no_page_table in
  4073. * follow_page_mask().
  4074. */
  4075. }
  4076. out:
  4077. spin_unlock(ptl);
  4078. return page;
  4079. }
  4080. struct page * __weak
  4081. follow_huge_pud(struct mm_struct *mm, unsigned long address,
  4082. pud_t *pud, int flags)
  4083. {
  4084. if (flags & FOLL_GET)
  4085. return NULL;
  4086. return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
  4087. }
  4088. struct page * __weak
  4089. follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
  4090. {
  4091. if (flags & FOLL_GET)
  4092. return NULL;
  4093. return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
  4094. }
  4095. bool isolate_huge_page(struct page *page, struct list_head *list)
  4096. {
  4097. bool ret = true;
  4098. VM_BUG_ON_PAGE(!PageHead(page), page);
  4099. spin_lock(&hugetlb_lock);
  4100. if (!page_huge_active(page) || !get_page_unless_zero(page)) {
  4101. ret = false;
  4102. goto unlock;
  4103. }
  4104. clear_page_huge_active(page);
  4105. list_move_tail(&page->lru, list);
  4106. unlock:
  4107. spin_unlock(&hugetlb_lock);
  4108. return ret;
  4109. }
  4110. void putback_active_hugepage(struct page *page)
  4111. {
  4112. VM_BUG_ON_PAGE(!PageHead(page), page);
  4113. spin_lock(&hugetlb_lock);
  4114. set_page_huge_active(page);
  4115. list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
  4116. spin_unlock(&hugetlb_lock);
  4117. put_page(page);
  4118. }