huge_memory.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/sched/coredump.h>
  11. #include <linux/sched/numa_balancing.h>
  12. #include <linux/highmem.h>
  13. #include <linux/hugetlb.h>
  14. #include <linux/mmu_notifier.h>
  15. #include <linux/rmap.h>
  16. #include <linux/swap.h>
  17. #include <linux/shrinker.h>
  18. #include <linux/mm_inline.h>
  19. #include <linux/swapops.h>
  20. #include <linux/dax.h>
  21. #include <linux/khugepaged.h>
  22. #include <linux/freezer.h>
  23. #include <linux/pfn_t.h>
  24. #include <linux/mman.h>
  25. #include <linux/memremap.h>
  26. #include <linux/pagemap.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/migrate.h>
  29. #include <linux/hashtable.h>
  30. #include <linux/userfaultfd_k.h>
  31. #include <linux/page_idle.h>
  32. #include <linux/shmem_fs.h>
  33. #include <asm/tlb.h>
  34. #include <asm/pgalloc.h>
  35. #include "internal.h"
  36. /*
  37. * By default transparent hugepage support is disabled in order that avoid
  38. * to risk increase the memory footprint of applications without a guaranteed
  39. * benefit. When transparent hugepage support is enabled, is for all mappings,
  40. * and khugepaged scans all mappings.
  41. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  42. * for all hugepage allocations.
  43. */
  44. unsigned long transparent_hugepage_flags __read_mostly =
  45. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  46. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  47. #endif
  48. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  49. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  50. #endif
  51. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  52. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  53. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  54. static struct shrinker deferred_split_shrinker;
  55. static atomic_t huge_zero_refcount;
  56. struct page *huge_zero_page __read_mostly;
  57. static struct page *get_huge_zero_page(void)
  58. {
  59. struct page *zero_page;
  60. retry:
  61. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  62. return READ_ONCE(huge_zero_page);
  63. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  64. HPAGE_PMD_ORDER);
  65. if (!zero_page) {
  66. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  67. return NULL;
  68. }
  69. count_vm_event(THP_ZERO_PAGE_ALLOC);
  70. preempt_disable();
  71. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  72. preempt_enable();
  73. __free_pages(zero_page, compound_order(zero_page));
  74. goto retry;
  75. }
  76. /* We take additional reference here. It will be put back by shrinker */
  77. atomic_set(&huge_zero_refcount, 2);
  78. preempt_enable();
  79. return READ_ONCE(huge_zero_page);
  80. }
  81. static void put_huge_zero_page(void)
  82. {
  83. /*
  84. * Counter should never go to zero here. Only shrinker can put
  85. * last reference.
  86. */
  87. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  88. }
  89. struct page *mm_get_huge_zero_page(struct mm_struct *mm)
  90. {
  91. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  92. return READ_ONCE(huge_zero_page);
  93. if (!get_huge_zero_page())
  94. return NULL;
  95. if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  96. put_huge_zero_page();
  97. return READ_ONCE(huge_zero_page);
  98. }
  99. void mm_put_huge_zero_page(struct mm_struct *mm)
  100. {
  101. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  102. put_huge_zero_page();
  103. }
  104. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  105. struct shrink_control *sc)
  106. {
  107. /* we can free zero page only if last reference remains */
  108. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  109. }
  110. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  111. struct shrink_control *sc)
  112. {
  113. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  114. struct page *zero_page = xchg(&huge_zero_page, NULL);
  115. BUG_ON(zero_page == NULL);
  116. __free_pages(zero_page, compound_order(zero_page));
  117. return HPAGE_PMD_NR;
  118. }
  119. return 0;
  120. }
  121. static struct shrinker huge_zero_page_shrinker = {
  122. .count_objects = shrink_huge_zero_page_count,
  123. .scan_objects = shrink_huge_zero_page_scan,
  124. .seeks = DEFAULT_SEEKS,
  125. };
  126. #ifdef CONFIG_SYSFS
  127. static ssize_t enabled_show(struct kobject *kobj,
  128. struct kobj_attribute *attr, char *buf)
  129. {
  130. if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
  131. return sprintf(buf, "[always] madvise never\n");
  132. else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
  133. return sprintf(buf, "always [madvise] never\n");
  134. else
  135. return sprintf(buf, "always madvise [never]\n");
  136. }
  137. static ssize_t enabled_store(struct kobject *kobj,
  138. struct kobj_attribute *attr,
  139. const char *buf, size_t count)
  140. {
  141. ssize_t ret = count;
  142. if (!memcmp("always", buf,
  143. min(sizeof("always")-1, count))) {
  144. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  145. set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  146. } else if (!memcmp("madvise", buf,
  147. min(sizeof("madvise")-1, count))) {
  148. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  149. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  150. } else if (!memcmp("never", buf,
  151. min(sizeof("never")-1, count))) {
  152. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  153. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  154. } else
  155. ret = -EINVAL;
  156. if (ret > 0) {
  157. int err = start_stop_khugepaged();
  158. if (err)
  159. ret = err;
  160. }
  161. return ret;
  162. }
  163. static struct kobj_attribute enabled_attr =
  164. __ATTR(enabled, 0644, enabled_show, enabled_store);
  165. ssize_t single_hugepage_flag_show(struct kobject *kobj,
  166. struct kobj_attribute *attr, char *buf,
  167. enum transparent_hugepage_flag flag)
  168. {
  169. return sprintf(buf, "%d\n",
  170. !!test_bit(flag, &transparent_hugepage_flags));
  171. }
  172. ssize_t single_hugepage_flag_store(struct kobject *kobj,
  173. struct kobj_attribute *attr,
  174. const char *buf, size_t count,
  175. enum transparent_hugepage_flag flag)
  176. {
  177. unsigned long value;
  178. int ret;
  179. ret = kstrtoul(buf, 10, &value);
  180. if (ret < 0)
  181. return ret;
  182. if (value > 1)
  183. return -EINVAL;
  184. if (value)
  185. set_bit(flag, &transparent_hugepage_flags);
  186. else
  187. clear_bit(flag, &transparent_hugepage_flags);
  188. return count;
  189. }
  190. static ssize_t defrag_show(struct kobject *kobj,
  191. struct kobj_attribute *attr, char *buf)
  192. {
  193. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  194. return sprintf(buf, "[always] defer defer+madvise madvise never\n");
  195. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  196. return sprintf(buf, "always [defer] defer+madvise madvise never\n");
  197. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
  198. return sprintf(buf, "always defer [defer+madvise] madvise never\n");
  199. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  200. return sprintf(buf, "always defer defer+madvise [madvise] never\n");
  201. return sprintf(buf, "always defer defer+madvise madvise [never]\n");
  202. }
  203. static ssize_t defrag_store(struct kobject *kobj,
  204. struct kobj_attribute *attr,
  205. const char *buf, size_t count)
  206. {
  207. if (!memcmp("always", buf,
  208. min(sizeof("always")-1, count))) {
  209. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  210. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  211. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  212. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  213. } else if (!memcmp("defer+madvise", buf,
  214. min(sizeof("defer+madvise")-1, count))) {
  215. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  216. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  217. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  218. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  219. } else if (!memcmp("defer", buf,
  220. min(sizeof("defer")-1, count))) {
  221. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  222. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  223. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  224. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  225. } else if (!memcmp("madvise", buf,
  226. min(sizeof("madvise")-1, count))) {
  227. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  228. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  229. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  230. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  231. } else if (!memcmp("never", buf,
  232. min(sizeof("never")-1, count))) {
  233. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  234. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  235. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  236. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  237. } else
  238. return -EINVAL;
  239. return count;
  240. }
  241. static struct kobj_attribute defrag_attr =
  242. __ATTR(defrag, 0644, defrag_show, defrag_store);
  243. static ssize_t use_zero_page_show(struct kobject *kobj,
  244. struct kobj_attribute *attr, char *buf)
  245. {
  246. return single_hugepage_flag_show(kobj, attr, buf,
  247. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  248. }
  249. static ssize_t use_zero_page_store(struct kobject *kobj,
  250. struct kobj_attribute *attr, const char *buf, size_t count)
  251. {
  252. return single_hugepage_flag_store(kobj, attr, buf, count,
  253. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  254. }
  255. static struct kobj_attribute use_zero_page_attr =
  256. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  257. static ssize_t hpage_pmd_size_show(struct kobject *kobj,
  258. struct kobj_attribute *attr, char *buf)
  259. {
  260. return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
  261. }
  262. static struct kobj_attribute hpage_pmd_size_attr =
  263. __ATTR_RO(hpage_pmd_size);
  264. #ifdef CONFIG_DEBUG_VM
  265. static ssize_t debug_cow_show(struct kobject *kobj,
  266. struct kobj_attribute *attr, char *buf)
  267. {
  268. return single_hugepage_flag_show(kobj, attr, buf,
  269. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  270. }
  271. static ssize_t debug_cow_store(struct kobject *kobj,
  272. struct kobj_attribute *attr,
  273. const char *buf, size_t count)
  274. {
  275. return single_hugepage_flag_store(kobj, attr, buf, count,
  276. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  277. }
  278. static struct kobj_attribute debug_cow_attr =
  279. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  280. #endif /* CONFIG_DEBUG_VM */
  281. static struct attribute *hugepage_attr[] = {
  282. &enabled_attr.attr,
  283. &defrag_attr.attr,
  284. &use_zero_page_attr.attr,
  285. &hpage_pmd_size_attr.attr,
  286. #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
  287. &shmem_enabled_attr.attr,
  288. #endif
  289. #ifdef CONFIG_DEBUG_VM
  290. &debug_cow_attr.attr,
  291. #endif
  292. NULL,
  293. };
  294. static struct attribute_group hugepage_attr_group = {
  295. .attrs = hugepage_attr,
  296. };
  297. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  298. {
  299. int err;
  300. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  301. if (unlikely(!*hugepage_kobj)) {
  302. pr_err("failed to create transparent hugepage kobject\n");
  303. return -ENOMEM;
  304. }
  305. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  306. if (err) {
  307. pr_err("failed to register transparent hugepage group\n");
  308. goto delete_obj;
  309. }
  310. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  311. if (err) {
  312. pr_err("failed to register transparent hugepage group\n");
  313. goto remove_hp_group;
  314. }
  315. return 0;
  316. remove_hp_group:
  317. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  318. delete_obj:
  319. kobject_put(*hugepage_kobj);
  320. return err;
  321. }
  322. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  323. {
  324. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  325. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  326. kobject_put(hugepage_kobj);
  327. }
  328. #else
  329. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  330. {
  331. return 0;
  332. }
  333. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  334. {
  335. }
  336. #endif /* CONFIG_SYSFS */
  337. static int __init hugepage_init(void)
  338. {
  339. int err;
  340. struct kobject *hugepage_kobj;
  341. if (!has_transparent_hugepage()) {
  342. transparent_hugepage_flags = 0;
  343. return -EINVAL;
  344. }
  345. /*
  346. * hugepages can't be allocated by the buddy allocator
  347. */
  348. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
  349. /*
  350. * we use page->mapping and page->index in second tail page
  351. * as list_head: assuming THP order >= 2
  352. */
  353. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  354. err = hugepage_init_sysfs(&hugepage_kobj);
  355. if (err)
  356. goto err_sysfs;
  357. err = khugepaged_init();
  358. if (err)
  359. goto err_slab;
  360. err = register_shrinker(&huge_zero_page_shrinker);
  361. if (err)
  362. goto err_hzp_shrinker;
  363. err = register_shrinker(&deferred_split_shrinker);
  364. if (err)
  365. goto err_split_shrinker;
  366. /*
  367. * By default disable transparent hugepages on smaller systems,
  368. * where the extra memory used could hurt more than TLB overhead
  369. * is likely to save. The admin can still enable it through /sys.
  370. */
  371. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  372. transparent_hugepage_flags = 0;
  373. return 0;
  374. }
  375. err = start_stop_khugepaged();
  376. if (err)
  377. goto err_khugepaged;
  378. return 0;
  379. err_khugepaged:
  380. unregister_shrinker(&deferred_split_shrinker);
  381. err_split_shrinker:
  382. unregister_shrinker(&huge_zero_page_shrinker);
  383. err_hzp_shrinker:
  384. khugepaged_destroy();
  385. err_slab:
  386. hugepage_exit_sysfs(hugepage_kobj);
  387. err_sysfs:
  388. return err;
  389. }
  390. subsys_initcall(hugepage_init);
  391. static int __init setup_transparent_hugepage(char *str)
  392. {
  393. int ret = 0;
  394. if (!str)
  395. goto out;
  396. if (!strcmp(str, "always")) {
  397. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  398. &transparent_hugepage_flags);
  399. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  400. &transparent_hugepage_flags);
  401. ret = 1;
  402. } else if (!strcmp(str, "madvise")) {
  403. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  404. &transparent_hugepage_flags);
  405. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  406. &transparent_hugepage_flags);
  407. ret = 1;
  408. } else if (!strcmp(str, "never")) {
  409. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  410. &transparent_hugepage_flags);
  411. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  412. &transparent_hugepage_flags);
  413. ret = 1;
  414. }
  415. out:
  416. if (!ret)
  417. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  418. return ret;
  419. }
  420. __setup("transparent_hugepage=", setup_transparent_hugepage);
  421. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  422. {
  423. if (likely(vma->vm_flags & VM_WRITE))
  424. pmd = pmd_mkwrite(pmd);
  425. return pmd;
  426. }
  427. static inline struct list_head *page_deferred_list(struct page *page)
  428. {
  429. /*
  430. * ->lru in the tail pages is occupied by compound_head.
  431. * Let's use ->mapping + ->index in the second tail page as list_head.
  432. */
  433. return (struct list_head *)&page[2].mapping;
  434. }
  435. void prep_transhuge_page(struct page *page)
  436. {
  437. /*
  438. * we use page->mapping and page->indexlru in second tail page
  439. * as list_head: assuming THP order >= 2
  440. */
  441. INIT_LIST_HEAD(page_deferred_list(page));
  442. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  443. }
  444. unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
  445. loff_t off, unsigned long flags, unsigned long size)
  446. {
  447. unsigned long addr;
  448. loff_t off_end = off + len;
  449. loff_t off_align = round_up(off, size);
  450. unsigned long len_pad;
  451. if (off_end <= off_align || (off_end - off_align) < size)
  452. return 0;
  453. len_pad = len + size;
  454. if (len_pad < len || (off + len_pad) < off)
  455. return 0;
  456. addr = current->mm->get_unmapped_area(filp, 0, len_pad,
  457. off >> PAGE_SHIFT, flags);
  458. if (IS_ERR_VALUE(addr))
  459. return 0;
  460. addr += (off - addr) & (size - 1);
  461. return addr;
  462. }
  463. unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
  464. unsigned long len, unsigned long pgoff, unsigned long flags)
  465. {
  466. loff_t off = (loff_t)pgoff << PAGE_SHIFT;
  467. if (addr)
  468. goto out;
  469. if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
  470. goto out;
  471. addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
  472. if (addr)
  473. return addr;
  474. out:
  475. return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
  476. }
  477. EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
  478. static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
  479. gfp_t gfp)
  480. {
  481. struct vm_area_struct *vma = vmf->vma;
  482. struct mem_cgroup *memcg;
  483. pgtable_t pgtable;
  484. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  485. VM_BUG_ON_PAGE(!PageCompound(page), page);
  486. if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
  487. put_page(page);
  488. count_vm_event(THP_FAULT_FALLBACK);
  489. return VM_FAULT_FALLBACK;
  490. }
  491. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  492. if (unlikely(!pgtable)) {
  493. mem_cgroup_cancel_charge(page, memcg, true);
  494. put_page(page);
  495. return VM_FAULT_OOM;
  496. }
  497. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  498. /*
  499. * The memory barrier inside __SetPageUptodate makes sure that
  500. * clear_huge_page writes become visible before the set_pmd_at()
  501. * write.
  502. */
  503. __SetPageUptodate(page);
  504. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  505. if (unlikely(!pmd_none(*vmf->pmd))) {
  506. spin_unlock(vmf->ptl);
  507. mem_cgroup_cancel_charge(page, memcg, true);
  508. put_page(page);
  509. pte_free(vma->vm_mm, pgtable);
  510. } else {
  511. pmd_t entry;
  512. /* Deliver the page fault to userland */
  513. if (userfaultfd_missing(vma)) {
  514. int ret;
  515. spin_unlock(vmf->ptl);
  516. mem_cgroup_cancel_charge(page, memcg, true);
  517. put_page(page);
  518. pte_free(vma->vm_mm, pgtable);
  519. ret = handle_userfault(vmf, VM_UFFD_MISSING);
  520. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  521. return ret;
  522. }
  523. entry = mk_huge_pmd(page, vma->vm_page_prot);
  524. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  525. page_add_new_anon_rmap(page, vma, haddr, true);
  526. mem_cgroup_commit_charge(page, memcg, false, true);
  527. lru_cache_add_active_or_unevictable(page, vma);
  528. pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
  529. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  530. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  531. atomic_long_inc(&vma->vm_mm->nr_ptes);
  532. spin_unlock(vmf->ptl);
  533. count_vm_event(THP_FAULT_ALLOC);
  534. }
  535. return 0;
  536. }
  537. /*
  538. * always: directly stall for all thp allocations
  539. * defer: wake kswapd and fail if not immediately available
  540. * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
  541. * fail if not immediately available
  542. * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
  543. * available
  544. * never: never stall for any thp allocation
  545. */
  546. static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
  547. {
  548. const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
  549. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  550. return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
  551. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  552. return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
  553. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
  554. return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
  555. __GFP_KSWAPD_RECLAIM);
  556. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  557. return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
  558. 0);
  559. return GFP_TRANSHUGE_LIGHT;
  560. }
  561. /* Caller must hold page table lock. */
  562. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  563. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  564. struct page *zero_page)
  565. {
  566. pmd_t entry;
  567. if (!pmd_none(*pmd))
  568. return false;
  569. entry = mk_pmd(zero_page, vma->vm_page_prot);
  570. entry = pmd_mkhuge(entry);
  571. if (pgtable)
  572. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  573. set_pmd_at(mm, haddr, pmd, entry);
  574. atomic_long_inc(&mm->nr_ptes);
  575. return true;
  576. }
  577. int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
  578. {
  579. struct vm_area_struct *vma = vmf->vma;
  580. gfp_t gfp;
  581. struct page *page;
  582. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  583. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  584. return VM_FAULT_FALLBACK;
  585. if (unlikely(anon_vma_prepare(vma)))
  586. return VM_FAULT_OOM;
  587. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  588. return VM_FAULT_OOM;
  589. if (!(vmf->flags & FAULT_FLAG_WRITE) &&
  590. !mm_forbids_zeropage(vma->vm_mm) &&
  591. transparent_hugepage_use_zero_page()) {
  592. pgtable_t pgtable;
  593. struct page *zero_page;
  594. bool set;
  595. int ret;
  596. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  597. if (unlikely(!pgtable))
  598. return VM_FAULT_OOM;
  599. zero_page = mm_get_huge_zero_page(vma->vm_mm);
  600. if (unlikely(!zero_page)) {
  601. pte_free(vma->vm_mm, pgtable);
  602. count_vm_event(THP_FAULT_FALLBACK);
  603. return VM_FAULT_FALLBACK;
  604. }
  605. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  606. ret = 0;
  607. set = false;
  608. if (pmd_none(*vmf->pmd)) {
  609. if (userfaultfd_missing(vma)) {
  610. spin_unlock(vmf->ptl);
  611. ret = handle_userfault(vmf, VM_UFFD_MISSING);
  612. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  613. } else {
  614. set_huge_zero_page(pgtable, vma->vm_mm, vma,
  615. haddr, vmf->pmd, zero_page);
  616. spin_unlock(vmf->ptl);
  617. set = true;
  618. }
  619. } else
  620. spin_unlock(vmf->ptl);
  621. if (!set)
  622. pte_free(vma->vm_mm, pgtable);
  623. return ret;
  624. }
  625. gfp = alloc_hugepage_direct_gfpmask(vma);
  626. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  627. if (unlikely(!page)) {
  628. count_vm_event(THP_FAULT_FALLBACK);
  629. return VM_FAULT_FALLBACK;
  630. }
  631. prep_transhuge_page(page);
  632. return __do_huge_pmd_anonymous_page(vmf, page, gfp);
  633. }
  634. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  635. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
  636. pgtable_t pgtable)
  637. {
  638. struct mm_struct *mm = vma->vm_mm;
  639. pmd_t entry;
  640. spinlock_t *ptl;
  641. ptl = pmd_lock(mm, pmd);
  642. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  643. if (pfn_t_devmap(pfn))
  644. entry = pmd_mkdevmap(entry);
  645. if (write) {
  646. entry = pmd_mkyoung(pmd_mkdirty(entry));
  647. entry = maybe_pmd_mkwrite(entry, vma);
  648. }
  649. if (pgtable) {
  650. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  651. atomic_long_inc(&mm->nr_ptes);
  652. }
  653. set_pmd_at(mm, addr, pmd, entry);
  654. update_mmu_cache_pmd(vma, addr, pmd);
  655. spin_unlock(ptl);
  656. }
  657. int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  658. pmd_t *pmd, pfn_t pfn, bool write)
  659. {
  660. pgprot_t pgprot = vma->vm_page_prot;
  661. pgtable_t pgtable = NULL;
  662. /*
  663. * If we had pmd_special, we could avoid all these restrictions,
  664. * but we need to be consistent with PTEs and architectures that
  665. * can't support a 'special' bit.
  666. */
  667. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  668. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  669. (VM_PFNMAP|VM_MIXEDMAP));
  670. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  671. BUG_ON(!pfn_t_devmap(pfn));
  672. if (addr < vma->vm_start || addr >= vma->vm_end)
  673. return VM_FAULT_SIGBUS;
  674. if (arch_needs_pgtable_deposit()) {
  675. pgtable = pte_alloc_one(vma->vm_mm, addr);
  676. if (!pgtable)
  677. return VM_FAULT_OOM;
  678. }
  679. track_pfn_insert(vma, &pgprot, pfn);
  680. insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
  681. return VM_FAULT_NOPAGE;
  682. }
  683. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
  684. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  685. static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
  686. {
  687. if (likely(vma->vm_flags & VM_WRITE))
  688. pud = pud_mkwrite(pud);
  689. return pud;
  690. }
  691. static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
  692. pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
  693. {
  694. struct mm_struct *mm = vma->vm_mm;
  695. pud_t entry;
  696. spinlock_t *ptl;
  697. ptl = pud_lock(mm, pud);
  698. entry = pud_mkhuge(pfn_t_pud(pfn, prot));
  699. if (pfn_t_devmap(pfn))
  700. entry = pud_mkdevmap(entry);
  701. if (write) {
  702. entry = pud_mkyoung(pud_mkdirty(entry));
  703. entry = maybe_pud_mkwrite(entry, vma);
  704. }
  705. set_pud_at(mm, addr, pud, entry);
  706. update_mmu_cache_pud(vma, addr, pud);
  707. spin_unlock(ptl);
  708. }
  709. int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
  710. pud_t *pud, pfn_t pfn, bool write)
  711. {
  712. pgprot_t pgprot = vma->vm_page_prot;
  713. /*
  714. * If we had pud_special, we could avoid all these restrictions,
  715. * but we need to be consistent with PTEs and architectures that
  716. * can't support a 'special' bit.
  717. */
  718. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  719. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  720. (VM_PFNMAP|VM_MIXEDMAP));
  721. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  722. BUG_ON(!pfn_t_devmap(pfn));
  723. if (addr < vma->vm_start || addr >= vma->vm_end)
  724. return VM_FAULT_SIGBUS;
  725. track_pfn_insert(vma, &pgprot, pfn);
  726. insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
  727. return VM_FAULT_NOPAGE;
  728. }
  729. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
  730. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  731. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  732. pmd_t *pmd)
  733. {
  734. pmd_t _pmd;
  735. /*
  736. * We should set the dirty bit only for FOLL_WRITE but for now
  737. * the dirty bit in the pmd is meaningless. And if the dirty
  738. * bit will become meaningful and we'll only set it with
  739. * FOLL_WRITE, an atomic set_bit will be required on the pmd to
  740. * set the young bit, instead of the current set_pmd_at.
  741. */
  742. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  743. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  744. pmd, _pmd, 1))
  745. update_mmu_cache_pmd(vma, addr, pmd);
  746. }
  747. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  748. pmd_t *pmd, int flags)
  749. {
  750. unsigned long pfn = pmd_pfn(*pmd);
  751. struct mm_struct *mm = vma->vm_mm;
  752. struct dev_pagemap *pgmap;
  753. struct page *page;
  754. assert_spin_locked(pmd_lockptr(mm, pmd));
  755. /*
  756. * When we COW a devmap PMD entry, we split it into PTEs, so we should
  757. * not be in this function with `flags & FOLL_COW` set.
  758. */
  759. WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
  760. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  761. return NULL;
  762. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  763. /* pass */;
  764. else
  765. return NULL;
  766. if (flags & FOLL_TOUCH)
  767. touch_pmd(vma, addr, pmd);
  768. /*
  769. * device mapped pages can only be returned if the
  770. * caller will manage the page reference count.
  771. */
  772. if (!(flags & FOLL_GET))
  773. return ERR_PTR(-EEXIST);
  774. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  775. pgmap = get_dev_pagemap(pfn, NULL);
  776. if (!pgmap)
  777. return ERR_PTR(-EFAULT);
  778. page = pfn_to_page(pfn);
  779. get_page(page);
  780. put_dev_pagemap(pgmap);
  781. return page;
  782. }
  783. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  784. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  785. struct vm_area_struct *vma)
  786. {
  787. spinlock_t *dst_ptl, *src_ptl;
  788. struct page *src_page;
  789. pmd_t pmd;
  790. pgtable_t pgtable = NULL;
  791. int ret = -ENOMEM;
  792. /* Skip if can be re-fill on fault */
  793. if (!vma_is_anonymous(vma))
  794. return 0;
  795. pgtable = pte_alloc_one(dst_mm, addr);
  796. if (unlikely(!pgtable))
  797. goto out;
  798. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  799. src_ptl = pmd_lockptr(src_mm, src_pmd);
  800. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  801. ret = -EAGAIN;
  802. pmd = *src_pmd;
  803. if (unlikely(!pmd_trans_huge(pmd))) {
  804. pte_free(dst_mm, pgtable);
  805. goto out_unlock;
  806. }
  807. /*
  808. * When page table lock is held, the huge zero pmd should not be
  809. * under splitting since we don't split the page itself, only pmd to
  810. * a page table.
  811. */
  812. if (is_huge_zero_pmd(pmd)) {
  813. struct page *zero_page;
  814. /*
  815. * get_huge_zero_page() will never allocate a new page here,
  816. * since we already have a zero page to copy. It just takes a
  817. * reference.
  818. */
  819. zero_page = mm_get_huge_zero_page(dst_mm);
  820. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  821. zero_page);
  822. ret = 0;
  823. goto out_unlock;
  824. }
  825. src_page = pmd_page(pmd);
  826. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  827. get_page(src_page);
  828. page_dup_rmap(src_page, true);
  829. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  830. atomic_long_inc(&dst_mm->nr_ptes);
  831. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  832. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  833. pmd = pmd_mkold(pmd_wrprotect(pmd));
  834. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  835. ret = 0;
  836. out_unlock:
  837. spin_unlock(src_ptl);
  838. spin_unlock(dst_ptl);
  839. out:
  840. return ret;
  841. }
  842. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  843. static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
  844. pud_t *pud)
  845. {
  846. pud_t _pud;
  847. /*
  848. * We should set the dirty bit only for FOLL_WRITE but for now
  849. * the dirty bit in the pud is meaningless. And if the dirty
  850. * bit will become meaningful and we'll only set it with
  851. * FOLL_WRITE, an atomic set_bit will be required on the pud to
  852. * set the young bit, instead of the current set_pud_at.
  853. */
  854. _pud = pud_mkyoung(pud_mkdirty(*pud));
  855. if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
  856. pud, _pud, 1))
  857. update_mmu_cache_pud(vma, addr, pud);
  858. }
  859. struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
  860. pud_t *pud, int flags)
  861. {
  862. unsigned long pfn = pud_pfn(*pud);
  863. struct mm_struct *mm = vma->vm_mm;
  864. struct dev_pagemap *pgmap;
  865. struct page *page;
  866. assert_spin_locked(pud_lockptr(mm, pud));
  867. if (flags & FOLL_WRITE && !pud_write(*pud))
  868. return NULL;
  869. if (pud_present(*pud) && pud_devmap(*pud))
  870. /* pass */;
  871. else
  872. return NULL;
  873. if (flags & FOLL_TOUCH)
  874. touch_pud(vma, addr, pud);
  875. /*
  876. * device mapped pages can only be returned if the
  877. * caller will manage the page reference count.
  878. */
  879. if (!(flags & FOLL_GET))
  880. return ERR_PTR(-EEXIST);
  881. pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
  882. pgmap = get_dev_pagemap(pfn, NULL);
  883. if (!pgmap)
  884. return ERR_PTR(-EFAULT);
  885. page = pfn_to_page(pfn);
  886. get_page(page);
  887. put_dev_pagemap(pgmap);
  888. return page;
  889. }
  890. int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  891. pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
  892. struct vm_area_struct *vma)
  893. {
  894. spinlock_t *dst_ptl, *src_ptl;
  895. pud_t pud;
  896. int ret;
  897. dst_ptl = pud_lock(dst_mm, dst_pud);
  898. src_ptl = pud_lockptr(src_mm, src_pud);
  899. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  900. ret = -EAGAIN;
  901. pud = *src_pud;
  902. if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
  903. goto out_unlock;
  904. /*
  905. * When page table lock is held, the huge zero pud should not be
  906. * under splitting since we don't split the page itself, only pud to
  907. * a page table.
  908. */
  909. if (is_huge_zero_pud(pud)) {
  910. /* No huge zero pud yet */
  911. }
  912. pudp_set_wrprotect(src_mm, addr, src_pud);
  913. pud = pud_mkold(pud_wrprotect(pud));
  914. set_pud_at(dst_mm, addr, dst_pud, pud);
  915. ret = 0;
  916. out_unlock:
  917. spin_unlock(src_ptl);
  918. spin_unlock(dst_ptl);
  919. return ret;
  920. }
  921. void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
  922. {
  923. pud_t entry;
  924. unsigned long haddr;
  925. bool write = vmf->flags & FAULT_FLAG_WRITE;
  926. vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
  927. if (unlikely(!pud_same(*vmf->pud, orig_pud)))
  928. goto unlock;
  929. entry = pud_mkyoung(orig_pud);
  930. if (write)
  931. entry = pud_mkdirty(entry);
  932. haddr = vmf->address & HPAGE_PUD_MASK;
  933. if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
  934. update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
  935. unlock:
  936. spin_unlock(vmf->ptl);
  937. }
  938. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  939. void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
  940. {
  941. pmd_t entry;
  942. unsigned long haddr;
  943. bool write = vmf->flags & FAULT_FLAG_WRITE;
  944. vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
  945. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  946. goto unlock;
  947. entry = pmd_mkyoung(orig_pmd);
  948. if (write)
  949. entry = pmd_mkdirty(entry);
  950. haddr = vmf->address & HPAGE_PMD_MASK;
  951. if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
  952. update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
  953. unlock:
  954. spin_unlock(vmf->ptl);
  955. }
  956. static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
  957. struct page *page)
  958. {
  959. struct vm_area_struct *vma = vmf->vma;
  960. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  961. struct mem_cgroup *memcg;
  962. pgtable_t pgtable;
  963. pmd_t _pmd;
  964. int ret = 0, i;
  965. struct page **pages;
  966. unsigned long mmun_start; /* For mmu_notifiers */
  967. unsigned long mmun_end; /* For mmu_notifiers */
  968. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  969. GFP_KERNEL);
  970. if (unlikely(!pages)) {
  971. ret |= VM_FAULT_OOM;
  972. goto out;
  973. }
  974. for (i = 0; i < HPAGE_PMD_NR; i++) {
  975. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
  976. vmf->address, page_to_nid(page));
  977. if (unlikely(!pages[i] ||
  978. mem_cgroup_try_charge(pages[i], vma->vm_mm,
  979. GFP_KERNEL, &memcg, false))) {
  980. if (pages[i])
  981. put_page(pages[i]);
  982. while (--i >= 0) {
  983. memcg = (void *)page_private(pages[i]);
  984. set_page_private(pages[i], 0);
  985. mem_cgroup_cancel_charge(pages[i], memcg,
  986. false);
  987. put_page(pages[i]);
  988. }
  989. kfree(pages);
  990. ret |= VM_FAULT_OOM;
  991. goto out;
  992. }
  993. set_page_private(pages[i], (unsigned long)memcg);
  994. }
  995. for (i = 0; i < HPAGE_PMD_NR; i++) {
  996. copy_user_highpage(pages[i], page + i,
  997. haddr + PAGE_SIZE * i, vma);
  998. __SetPageUptodate(pages[i]);
  999. cond_resched();
  1000. }
  1001. mmun_start = haddr;
  1002. mmun_end = haddr + HPAGE_PMD_SIZE;
  1003. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  1004. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1005. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  1006. goto out_free_pages;
  1007. VM_BUG_ON_PAGE(!PageHead(page), page);
  1008. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  1009. /* leave pmd empty until pte is filled */
  1010. pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
  1011. pmd_populate(vma->vm_mm, &_pmd, pgtable);
  1012. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1013. pte_t entry;
  1014. entry = mk_pte(pages[i], vma->vm_page_prot);
  1015. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1016. memcg = (void *)page_private(pages[i]);
  1017. set_page_private(pages[i], 0);
  1018. page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
  1019. mem_cgroup_commit_charge(pages[i], memcg, false, false);
  1020. lru_cache_add_active_or_unevictable(pages[i], vma);
  1021. vmf->pte = pte_offset_map(&_pmd, haddr);
  1022. VM_BUG_ON(!pte_none(*vmf->pte));
  1023. set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
  1024. pte_unmap(vmf->pte);
  1025. }
  1026. kfree(pages);
  1027. smp_wmb(); /* make pte visible before pmd */
  1028. pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
  1029. page_remove_rmap(page, true);
  1030. spin_unlock(vmf->ptl);
  1031. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  1032. ret |= VM_FAULT_WRITE;
  1033. put_page(page);
  1034. out:
  1035. return ret;
  1036. out_free_pages:
  1037. spin_unlock(vmf->ptl);
  1038. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  1039. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1040. memcg = (void *)page_private(pages[i]);
  1041. set_page_private(pages[i], 0);
  1042. mem_cgroup_cancel_charge(pages[i], memcg, false);
  1043. put_page(pages[i]);
  1044. }
  1045. kfree(pages);
  1046. goto out;
  1047. }
  1048. int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
  1049. {
  1050. struct vm_area_struct *vma = vmf->vma;
  1051. struct page *page = NULL, *new_page;
  1052. struct mem_cgroup *memcg;
  1053. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1054. unsigned long mmun_start; /* For mmu_notifiers */
  1055. unsigned long mmun_end; /* For mmu_notifiers */
  1056. gfp_t huge_gfp; /* for allocation and charge */
  1057. int ret = 0;
  1058. vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
  1059. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1060. if (is_huge_zero_pmd(orig_pmd))
  1061. goto alloc;
  1062. spin_lock(vmf->ptl);
  1063. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  1064. goto out_unlock;
  1065. page = pmd_page(orig_pmd);
  1066. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  1067. /*
  1068. * We can only reuse the page if nobody else maps the huge page or it's
  1069. * part.
  1070. */
  1071. if (page_trans_huge_mapcount(page, NULL) == 1) {
  1072. pmd_t entry;
  1073. entry = pmd_mkyoung(orig_pmd);
  1074. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1075. if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
  1076. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1077. ret |= VM_FAULT_WRITE;
  1078. goto out_unlock;
  1079. }
  1080. get_page(page);
  1081. spin_unlock(vmf->ptl);
  1082. alloc:
  1083. if (transparent_hugepage_enabled(vma) &&
  1084. !transparent_hugepage_debug_cow()) {
  1085. huge_gfp = alloc_hugepage_direct_gfpmask(vma);
  1086. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  1087. } else
  1088. new_page = NULL;
  1089. if (likely(new_page)) {
  1090. prep_transhuge_page(new_page);
  1091. } else {
  1092. if (!page) {
  1093. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1094. ret |= VM_FAULT_FALLBACK;
  1095. } else {
  1096. ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
  1097. if (ret & VM_FAULT_OOM) {
  1098. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1099. ret |= VM_FAULT_FALLBACK;
  1100. }
  1101. put_page(page);
  1102. }
  1103. count_vm_event(THP_FAULT_FALLBACK);
  1104. goto out;
  1105. }
  1106. if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
  1107. huge_gfp, &memcg, true))) {
  1108. put_page(new_page);
  1109. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1110. if (page)
  1111. put_page(page);
  1112. ret |= VM_FAULT_FALLBACK;
  1113. count_vm_event(THP_FAULT_FALLBACK);
  1114. goto out;
  1115. }
  1116. count_vm_event(THP_FAULT_ALLOC);
  1117. if (!page)
  1118. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1119. else
  1120. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1121. __SetPageUptodate(new_page);
  1122. mmun_start = haddr;
  1123. mmun_end = haddr + HPAGE_PMD_SIZE;
  1124. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  1125. spin_lock(vmf->ptl);
  1126. if (page)
  1127. put_page(page);
  1128. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
  1129. spin_unlock(vmf->ptl);
  1130. mem_cgroup_cancel_charge(new_page, memcg, true);
  1131. put_page(new_page);
  1132. goto out_mn;
  1133. } else {
  1134. pmd_t entry;
  1135. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1136. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1137. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  1138. page_add_new_anon_rmap(new_page, vma, haddr, true);
  1139. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1140. lru_cache_add_active_or_unevictable(new_page, vma);
  1141. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  1142. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1143. if (!page) {
  1144. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1145. } else {
  1146. VM_BUG_ON_PAGE(!PageHead(page), page);
  1147. page_remove_rmap(page, true);
  1148. put_page(page);
  1149. }
  1150. ret |= VM_FAULT_WRITE;
  1151. }
  1152. spin_unlock(vmf->ptl);
  1153. out_mn:
  1154. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  1155. out:
  1156. return ret;
  1157. out_unlock:
  1158. spin_unlock(vmf->ptl);
  1159. return ret;
  1160. }
  1161. /*
  1162. * FOLL_FORCE can write to even unwritable pmd's, but only
  1163. * after we've gone through a COW cycle and they are dirty.
  1164. */
  1165. static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
  1166. {
  1167. return pmd_write(pmd) ||
  1168. ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
  1169. }
  1170. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1171. unsigned long addr,
  1172. pmd_t *pmd,
  1173. unsigned int flags)
  1174. {
  1175. struct mm_struct *mm = vma->vm_mm;
  1176. struct page *page = NULL;
  1177. assert_spin_locked(pmd_lockptr(mm, pmd));
  1178. if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
  1179. goto out;
  1180. /* Avoid dumping huge zero page */
  1181. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1182. return ERR_PTR(-EFAULT);
  1183. /* Full NUMA hinting faults to serialise migration in fault paths */
  1184. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1185. goto out;
  1186. page = pmd_page(*pmd);
  1187. VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
  1188. if (flags & FOLL_TOUCH)
  1189. touch_pmd(vma, addr, pmd);
  1190. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1191. /*
  1192. * We don't mlock() pte-mapped THPs. This way we can avoid
  1193. * leaking mlocked pages into non-VM_LOCKED VMAs.
  1194. *
  1195. * For anon THP:
  1196. *
  1197. * In most cases the pmd is the only mapping of the page as we
  1198. * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
  1199. * writable private mappings in populate_vma_page_range().
  1200. *
  1201. * The only scenario when we have the page shared here is if we
  1202. * mlocking read-only mapping shared over fork(). We skip
  1203. * mlocking such pages.
  1204. *
  1205. * For file THP:
  1206. *
  1207. * We can expect PageDoubleMap() to be stable under page lock:
  1208. * for file pages we set it in page_add_file_rmap(), which
  1209. * requires page to be locked.
  1210. */
  1211. if (PageAnon(page) && compound_mapcount(page) != 1)
  1212. goto skip_mlock;
  1213. if (PageDoubleMap(page) || !page->mapping)
  1214. goto skip_mlock;
  1215. if (!trylock_page(page))
  1216. goto skip_mlock;
  1217. lru_add_drain();
  1218. if (page->mapping && !PageDoubleMap(page))
  1219. mlock_vma_page(page);
  1220. unlock_page(page);
  1221. }
  1222. skip_mlock:
  1223. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1224. VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
  1225. if (flags & FOLL_GET)
  1226. get_page(page);
  1227. out:
  1228. return page;
  1229. }
  1230. /* NUMA hinting page fault entry point for trans huge pmds */
  1231. int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
  1232. {
  1233. struct vm_area_struct *vma = vmf->vma;
  1234. struct anon_vma *anon_vma = NULL;
  1235. struct page *page;
  1236. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1237. int page_nid = -1, this_nid = numa_node_id();
  1238. int target_nid, last_cpupid = -1;
  1239. bool page_locked;
  1240. bool migrated = false;
  1241. bool was_writable;
  1242. int flags = 0;
  1243. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1244. if (unlikely(!pmd_same(pmd, *vmf->pmd)))
  1245. goto out_unlock;
  1246. /*
  1247. * If there are potential migrations, wait for completion and retry
  1248. * without disrupting NUMA hinting information. Do not relock and
  1249. * check_same as the page may no longer be mapped.
  1250. */
  1251. if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
  1252. page = pmd_page(*vmf->pmd);
  1253. if (!get_page_unless_zero(page))
  1254. goto out_unlock;
  1255. spin_unlock(vmf->ptl);
  1256. wait_on_page_locked(page);
  1257. put_page(page);
  1258. goto out;
  1259. }
  1260. page = pmd_page(pmd);
  1261. BUG_ON(is_huge_zero_page(page));
  1262. page_nid = page_to_nid(page);
  1263. last_cpupid = page_cpupid_last(page);
  1264. count_vm_numa_event(NUMA_HINT_FAULTS);
  1265. if (page_nid == this_nid) {
  1266. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1267. flags |= TNF_FAULT_LOCAL;
  1268. }
  1269. /* See similar comment in do_numa_page for explanation */
  1270. if (!pmd_savedwrite(pmd))
  1271. flags |= TNF_NO_GROUP;
  1272. /*
  1273. * Acquire the page lock to serialise THP migrations but avoid dropping
  1274. * page_table_lock if at all possible
  1275. */
  1276. page_locked = trylock_page(page);
  1277. target_nid = mpol_misplaced(page, vma, haddr);
  1278. if (target_nid == -1) {
  1279. /* If the page was locked, there are no parallel migrations */
  1280. if (page_locked)
  1281. goto clear_pmdnuma;
  1282. }
  1283. /* Migration could have started since the pmd_trans_migrating check */
  1284. if (!page_locked) {
  1285. page_nid = -1;
  1286. if (!get_page_unless_zero(page))
  1287. goto out_unlock;
  1288. spin_unlock(vmf->ptl);
  1289. wait_on_page_locked(page);
  1290. put_page(page);
  1291. goto out;
  1292. }
  1293. /*
  1294. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1295. * to serialises splits
  1296. */
  1297. get_page(page);
  1298. spin_unlock(vmf->ptl);
  1299. anon_vma = page_lock_anon_vma_read(page);
  1300. /* Confirm the PMD did not change while page_table_lock was released */
  1301. spin_lock(vmf->ptl);
  1302. if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
  1303. unlock_page(page);
  1304. put_page(page);
  1305. page_nid = -1;
  1306. goto out_unlock;
  1307. }
  1308. /* Bail if we fail to protect against THP splits for any reason */
  1309. if (unlikely(!anon_vma)) {
  1310. put_page(page);
  1311. page_nid = -1;
  1312. goto clear_pmdnuma;
  1313. }
  1314. /*
  1315. * Migrate the THP to the requested node, returns with page unlocked
  1316. * and access rights restored.
  1317. */
  1318. spin_unlock(vmf->ptl);
  1319. migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
  1320. vmf->pmd, pmd, vmf->address, page, target_nid);
  1321. if (migrated) {
  1322. flags |= TNF_MIGRATED;
  1323. page_nid = target_nid;
  1324. } else
  1325. flags |= TNF_MIGRATE_FAIL;
  1326. goto out;
  1327. clear_pmdnuma:
  1328. BUG_ON(!PageLocked(page));
  1329. was_writable = pmd_savedwrite(pmd);
  1330. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1331. pmd = pmd_mkyoung(pmd);
  1332. if (was_writable)
  1333. pmd = pmd_mkwrite(pmd);
  1334. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
  1335. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1336. unlock_page(page);
  1337. out_unlock:
  1338. spin_unlock(vmf->ptl);
  1339. out:
  1340. if (anon_vma)
  1341. page_unlock_anon_vma_read(anon_vma);
  1342. if (page_nid != -1)
  1343. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
  1344. flags);
  1345. return 0;
  1346. }
  1347. /*
  1348. * Return true if we do MADV_FREE successfully on entire pmd page.
  1349. * Otherwise, return false.
  1350. */
  1351. bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1352. pmd_t *pmd, unsigned long addr, unsigned long next)
  1353. {
  1354. spinlock_t *ptl;
  1355. pmd_t orig_pmd;
  1356. struct page *page;
  1357. struct mm_struct *mm = tlb->mm;
  1358. bool ret = false;
  1359. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1360. ptl = pmd_trans_huge_lock(pmd, vma);
  1361. if (!ptl)
  1362. goto out_unlocked;
  1363. orig_pmd = *pmd;
  1364. if (is_huge_zero_pmd(orig_pmd))
  1365. goto out;
  1366. page = pmd_page(orig_pmd);
  1367. /*
  1368. * If other processes are mapping this page, we couldn't discard
  1369. * the page unless they all do MADV_FREE so let's skip the page.
  1370. */
  1371. if (page_mapcount(page) != 1)
  1372. goto out;
  1373. if (!trylock_page(page))
  1374. goto out;
  1375. /*
  1376. * If user want to discard part-pages of THP, split it so MADV_FREE
  1377. * will deactivate only them.
  1378. */
  1379. if (next - addr != HPAGE_PMD_SIZE) {
  1380. get_page(page);
  1381. spin_unlock(ptl);
  1382. split_huge_page(page);
  1383. unlock_page(page);
  1384. put_page(page);
  1385. goto out_unlocked;
  1386. }
  1387. if (PageDirty(page))
  1388. ClearPageDirty(page);
  1389. unlock_page(page);
  1390. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1391. pmdp_invalidate(vma, addr, pmd);
  1392. orig_pmd = pmd_mkold(orig_pmd);
  1393. orig_pmd = pmd_mkclean(orig_pmd);
  1394. set_pmd_at(mm, addr, pmd, orig_pmd);
  1395. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1396. }
  1397. mark_page_lazyfree(page);
  1398. ret = true;
  1399. out:
  1400. spin_unlock(ptl);
  1401. out_unlocked:
  1402. return ret;
  1403. }
  1404. static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
  1405. {
  1406. pgtable_t pgtable;
  1407. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1408. pte_free(mm, pgtable);
  1409. atomic_long_dec(&mm->nr_ptes);
  1410. }
  1411. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1412. pmd_t *pmd, unsigned long addr)
  1413. {
  1414. pmd_t orig_pmd;
  1415. spinlock_t *ptl;
  1416. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1417. ptl = __pmd_trans_huge_lock(pmd, vma);
  1418. if (!ptl)
  1419. return 0;
  1420. /*
  1421. * For architectures like ppc64 we look at deposited pgtable
  1422. * when calling pmdp_huge_get_and_clear. So do the
  1423. * pgtable_trans_huge_withdraw after finishing pmdp related
  1424. * operations.
  1425. */
  1426. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1427. tlb->fullmm);
  1428. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1429. if (vma_is_dax(vma)) {
  1430. if (arch_needs_pgtable_deposit())
  1431. zap_deposited_table(tlb->mm, pmd);
  1432. spin_unlock(ptl);
  1433. if (is_huge_zero_pmd(orig_pmd))
  1434. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1435. } else if (is_huge_zero_pmd(orig_pmd)) {
  1436. zap_deposited_table(tlb->mm, pmd);
  1437. spin_unlock(ptl);
  1438. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1439. } else {
  1440. struct page *page = pmd_page(orig_pmd);
  1441. page_remove_rmap(page, true);
  1442. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1443. VM_BUG_ON_PAGE(!PageHead(page), page);
  1444. if (PageAnon(page)) {
  1445. zap_deposited_table(tlb->mm, pmd);
  1446. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1447. } else {
  1448. if (arch_needs_pgtable_deposit())
  1449. zap_deposited_table(tlb->mm, pmd);
  1450. add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
  1451. }
  1452. spin_unlock(ptl);
  1453. tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
  1454. }
  1455. return 1;
  1456. }
  1457. #ifndef pmd_move_must_withdraw
  1458. static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
  1459. spinlock_t *old_pmd_ptl,
  1460. struct vm_area_struct *vma)
  1461. {
  1462. /*
  1463. * With split pmd lock we also need to move preallocated
  1464. * PTE page table if new_pmd is on different PMD page table.
  1465. *
  1466. * We also don't deposit and withdraw tables for file pages.
  1467. */
  1468. return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
  1469. }
  1470. #endif
  1471. bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
  1472. unsigned long new_addr, unsigned long old_end,
  1473. pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
  1474. {
  1475. spinlock_t *old_ptl, *new_ptl;
  1476. pmd_t pmd;
  1477. struct mm_struct *mm = vma->vm_mm;
  1478. bool force_flush = false;
  1479. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1480. (new_addr & ~HPAGE_PMD_MASK) ||
  1481. old_end - old_addr < HPAGE_PMD_SIZE)
  1482. return false;
  1483. /*
  1484. * The destination pmd shouldn't be established, free_pgtables()
  1485. * should have release it.
  1486. */
  1487. if (WARN_ON(!pmd_none(*new_pmd))) {
  1488. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1489. return false;
  1490. }
  1491. /*
  1492. * We don't have to worry about the ordering of src and dst
  1493. * ptlocks because exclusive mmap_sem prevents deadlock.
  1494. */
  1495. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1496. if (old_ptl) {
  1497. new_ptl = pmd_lockptr(mm, new_pmd);
  1498. if (new_ptl != old_ptl)
  1499. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1500. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1501. if (pmd_present(pmd) && pmd_dirty(pmd))
  1502. force_flush = true;
  1503. VM_BUG_ON(!pmd_none(*new_pmd));
  1504. if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
  1505. pgtable_t pgtable;
  1506. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1507. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1508. }
  1509. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1510. if (new_ptl != old_ptl)
  1511. spin_unlock(new_ptl);
  1512. if (force_flush)
  1513. flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
  1514. else
  1515. *need_flush = true;
  1516. spin_unlock(old_ptl);
  1517. return true;
  1518. }
  1519. return false;
  1520. }
  1521. /*
  1522. * Returns
  1523. * - 0 if PMD could not be locked
  1524. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1525. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1526. */
  1527. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1528. unsigned long addr, pgprot_t newprot, int prot_numa)
  1529. {
  1530. struct mm_struct *mm = vma->vm_mm;
  1531. spinlock_t *ptl;
  1532. pmd_t entry;
  1533. bool preserve_write;
  1534. int ret;
  1535. ptl = __pmd_trans_huge_lock(pmd, vma);
  1536. if (!ptl)
  1537. return 0;
  1538. preserve_write = prot_numa && pmd_write(*pmd);
  1539. ret = 1;
  1540. /*
  1541. * Avoid trapping faults against the zero page. The read-only
  1542. * data is likely to be read-cached on the local CPU and
  1543. * local/remote hits to the zero page are not interesting.
  1544. */
  1545. if (prot_numa && is_huge_zero_pmd(*pmd))
  1546. goto unlock;
  1547. if (prot_numa && pmd_protnone(*pmd))
  1548. goto unlock;
  1549. /*
  1550. * In case prot_numa, we are under down_read(mmap_sem). It's critical
  1551. * to not clear pmd intermittently to avoid race with MADV_DONTNEED
  1552. * which is also under down_read(mmap_sem):
  1553. *
  1554. * CPU0: CPU1:
  1555. * change_huge_pmd(prot_numa=1)
  1556. * pmdp_huge_get_and_clear_notify()
  1557. * madvise_dontneed()
  1558. * zap_pmd_range()
  1559. * pmd_trans_huge(*pmd) == 0 (without ptl)
  1560. * // skip the pmd
  1561. * set_pmd_at();
  1562. * // pmd is re-established
  1563. *
  1564. * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
  1565. * which may break userspace.
  1566. *
  1567. * pmdp_invalidate() is required to make sure we don't miss
  1568. * dirty/young flags set by hardware.
  1569. */
  1570. entry = *pmd;
  1571. pmdp_invalidate(vma, addr, pmd);
  1572. /*
  1573. * Recover dirty/young flags. It relies on pmdp_invalidate to not
  1574. * corrupt them.
  1575. */
  1576. if (pmd_dirty(*pmd))
  1577. entry = pmd_mkdirty(entry);
  1578. if (pmd_young(*pmd))
  1579. entry = pmd_mkyoung(entry);
  1580. entry = pmd_modify(entry, newprot);
  1581. if (preserve_write)
  1582. entry = pmd_mk_savedwrite(entry);
  1583. ret = HPAGE_PMD_NR;
  1584. set_pmd_at(mm, addr, pmd, entry);
  1585. BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
  1586. unlock:
  1587. spin_unlock(ptl);
  1588. return ret;
  1589. }
  1590. /*
  1591. * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
  1592. *
  1593. * Note that if it returns page table lock pointer, this routine returns without
  1594. * unlocking page table lock. So callers must unlock it.
  1595. */
  1596. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1597. {
  1598. spinlock_t *ptl;
  1599. ptl = pmd_lock(vma->vm_mm, pmd);
  1600. if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
  1601. return ptl;
  1602. spin_unlock(ptl);
  1603. return NULL;
  1604. }
  1605. /*
  1606. * Returns true if a given pud maps a thp, false otherwise.
  1607. *
  1608. * Note that if it returns true, this routine returns without unlocking page
  1609. * table lock. So callers must unlock it.
  1610. */
  1611. spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
  1612. {
  1613. spinlock_t *ptl;
  1614. ptl = pud_lock(vma->vm_mm, pud);
  1615. if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
  1616. return ptl;
  1617. spin_unlock(ptl);
  1618. return NULL;
  1619. }
  1620. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  1621. int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1622. pud_t *pud, unsigned long addr)
  1623. {
  1624. pud_t orig_pud;
  1625. spinlock_t *ptl;
  1626. ptl = __pud_trans_huge_lock(pud, vma);
  1627. if (!ptl)
  1628. return 0;
  1629. /*
  1630. * For architectures like ppc64 we look at deposited pgtable
  1631. * when calling pudp_huge_get_and_clear. So do the
  1632. * pgtable_trans_huge_withdraw after finishing pudp related
  1633. * operations.
  1634. */
  1635. orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
  1636. tlb->fullmm);
  1637. tlb_remove_pud_tlb_entry(tlb, pud, addr);
  1638. if (vma_is_dax(vma)) {
  1639. spin_unlock(ptl);
  1640. /* No zero page support yet */
  1641. } else {
  1642. /* No support for anonymous PUD pages yet */
  1643. BUG();
  1644. }
  1645. return 1;
  1646. }
  1647. static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
  1648. unsigned long haddr)
  1649. {
  1650. VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
  1651. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1652. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
  1653. VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
  1654. count_vm_event(THP_SPLIT_PUD);
  1655. pudp_huge_clear_flush_notify(vma, haddr, pud);
  1656. }
  1657. void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
  1658. unsigned long address)
  1659. {
  1660. spinlock_t *ptl;
  1661. struct mm_struct *mm = vma->vm_mm;
  1662. unsigned long haddr = address & HPAGE_PUD_MASK;
  1663. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
  1664. ptl = pud_lock(mm, pud);
  1665. if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
  1666. goto out;
  1667. __split_huge_pud_locked(vma, pud, haddr);
  1668. out:
  1669. spin_unlock(ptl);
  1670. mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
  1671. }
  1672. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  1673. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  1674. unsigned long haddr, pmd_t *pmd)
  1675. {
  1676. struct mm_struct *mm = vma->vm_mm;
  1677. pgtable_t pgtable;
  1678. pmd_t _pmd;
  1679. int i;
  1680. /* leave pmd empty until pte is filled */
  1681. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1682. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1683. pmd_populate(mm, &_pmd, pgtable);
  1684. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1685. pte_t *pte, entry;
  1686. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  1687. entry = pte_mkspecial(entry);
  1688. pte = pte_offset_map(&_pmd, haddr);
  1689. VM_BUG_ON(!pte_none(*pte));
  1690. set_pte_at(mm, haddr, pte, entry);
  1691. pte_unmap(pte);
  1692. }
  1693. smp_wmb(); /* make pte visible before pmd */
  1694. pmd_populate(mm, pmd, pgtable);
  1695. }
  1696. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  1697. unsigned long haddr, bool freeze)
  1698. {
  1699. struct mm_struct *mm = vma->vm_mm;
  1700. struct page *page;
  1701. pgtable_t pgtable;
  1702. pmd_t _pmd;
  1703. bool young, write, dirty, soft_dirty;
  1704. unsigned long addr;
  1705. int i;
  1706. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  1707. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1708. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  1709. VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
  1710. count_vm_event(THP_SPLIT_PMD);
  1711. if (!vma_is_anonymous(vma)) {
  1712. _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1713. /*
  1714. * We are going to unmap this huge page. So
  1715. * just go ahead and zap it
  1716. */
  1717. if (arch_needs_pgtable_deposit())
  1718. zap_deposited_table(mm, pmd);
  1719. if (vma_is_dax(vma))
  1720. return;
  1721. page = pmd_page(_pmd);
  1722. if (!PageReferenced(page) && pmd_young(_pmd))
  1723. SetPageReferenced(page);
  1724. page_remove_rmap(page, true);
  1725. put_page(page);
  1726. add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
  1727. return;
  1728. } else if (is_huge_zero_pmd(*pmd)) {
  1729. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  1730. }
  1731. page = pmd_page(*pmd);
  1732. VM_BUG_ON_PAGE(!page_count(page), page);
  1733. page_ref_add(page, HPAGE_PMD_NR - 1);
  1734. write = pmd_write(*pmd);
  1735. young = pmd_young(*pmd);
  1736. dirty = pmd_dirty(*pmd);
  1737. soft_dirty = pmd_soft_dirty(*pmd);
  1738. pmdp_huge_split_prepare(vma, haddr, pmd);
  1739. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1740. pmd_populate(mm, &_pmd, pgtable);
  1741. for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
  1742. pte_t entry, *pte;
  1743. /*
  1744. * Note that NUMA hinting access restrictions are not
  1745. * transferred to avoid any possibility of altering
  1746. * permissions across VMAs.
  1747. */
  1748. if (freeze) {
  1749. swp_entry_t swp_entry;
  1750. swp_entry = make_migration_entry(page + i, write);
  1751. entry = swp_entry_to_pte(swp_entry);
  1752. if (soft_dirty)
  1753. entry = pte_swp_mksoft_dirty(entry);
  1754. } else {
  1755. entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
  1756. entry = maybe_mkwrite(entry, vma);
  1757. if (!write)
  1758. entry = pte_wrprotect(entry);
  1759. if (!young)
  1760. entry = pte_mkold(entry);
  1761. if (soft_dirty)
  1762. entry = pte_mksoft_dirty(entry);
  1763. }
  1764. if (dirty)
  1765. SetPageDirty(page + i);
  1766. pte = pte_offset_map(&_pmd, addr);
  1767. BUG_ON(!pte_none(*pte));
  1768. set_pte_at(mm, addr, pte, entry);
  1769. atomic_inc(&page[i]._mapcount);
  1770. pte_unmap(pte);
  1771. }
  1772. /*
  1773. * Set PG_double_map before dropping compound_mapcount to avoid
  1774. * false-negative page_mapped().
  1775. */
  1776. if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
  1777. for (i = 0; i < HPAGE_PMD_NR; i++)
  1778. atomic_inc(&page[i]._mapcount);
  1779. }
  1780. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  1781. /* Last compound_mapcount is gone. */
  1782. __dec_node_page_state(page, NR_ANON_THPS);
  1783. if (TestClearPageDoubleMap(page)) {
  1784. /* No need in mapcount reference anymore */
  1785. for (i = 0; i < HPAGE_PMD_NR; i++)
  1786. atomic_dec(&page[i]._mapcount);
  1787. }
  1788. }
  1789. smp_wmb(); /* make pte visible before pmd */
  1790. /*
  1791. * Up to this point the pmd is present and huge and userland has the
  1792. * whole access to the hugepage during the split (which happens in
  1793. * place). If we overwrite the pmd with the not-huge version pointing
  1794. * to the pte here (which of course we could if all CPUs were bug
  1795. * free), userland could trigger a small page size TLB miss on the
  1796. * small sized TLB while the hugepage TLB entry is still established in
  1797. * the huge TLB. Some CPU doesn't like that.
  1798. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
  1799. * 383 on page 93. Intel should be safe but is also warns that it's
  1800. * only safe if the permission and cache attributes of the two entries
  1801. * loaded in the two TLB is identical (which should be the case here).
  1802. * But it is generally safer to never allow small and huge TLB entries
  1803. * for the same virtual address to be loaded simultaneously. So instead
  1804. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  1805. * current pmd notpresent (atomically because here the pmd_trans_huge
  1806. * and pmd_trans_splitting must remain set at all times on the pmd
  1807. * until the split is complete for this pmd), then we flush the SMP TLB
  1808. * and finally we write the non-huge version of the pmd entry with
  1809. * pmd_populate.
  1810. */
  1811. pmdp_invalidate(vma, haddr, pmd);
  1812. pmd_populate(mm, pmd, pgtable);
  1813. if (freeze) {
  1814. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1815. page_remove_rmap(page + i, false);
  1816. put_page(page + i);
  1817. }
  1818. }
  1819. }
  1820. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1821. unsigned long address, bool freeze, struct page *page)
  1822. {
  1823. spinlock_t *ptl;
  1824. struct mm_struct *mm = vma->vm_mm;
  1825. unsigned long haddr = address & HPAGE_PMD_MASK;
  1826. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
  1827. ptl = pmd_lock(mm, pmd);
  1828. /*
  1829. * If caller asks to setup a migration entries, we need a page to check
  1830. * pmd against. Otherwise we can end up replacing wrong page.
  1831. */
  1832. VM_BUG_ON(freeze && !page);
  1833. if (page && page != pmd_page(*pmd))
  1834. goto out;
  1835. if (pmd_trans_huge(*pmd)) {
  1836. page = pmd_page(*pmd);
  1837. if (PageMlocked(page))
  1838. clear_page_mlock(page);
  1839. } else if (!pmd_devmap(*pmd))
  1840. goto out;
  1841. __split_huge_pmd_locked(vma, pmd, haddr, freeze);
  1842. out:
  1843. spin_unlock(ptl);
  1844. mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
  1845. }
  1846. void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
  1847. bool freeze, struct page *page)
  1848. {
  1849. pgd_t *pgd;
  1850. p4d_t *p4d;
  1851. pud_t *pud;
  1852. pmd_t *pmd;
  1853. pgd = pgd_offset(vma->vm_mm, address);
  1854. if (!pgd_present(*pgd))
  1855. return;
  1856. p4d = p4d_offset(pgd, address);
  1857. if (!p4d_present(*p4d))
  1858. return;
  1859. pud = pud_offset(p4d, address);
  1860. if (!pud_present(*pud))
  1861. return;
  1862. pmd = pmd_offset(pud, address);
  1863. __split_huge_pmd(vma, pmd, address, freeze, page);
  1864. }
  1865. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  1866. unsigned long start,
  1867. unsigned long end,
  1868. long adjust_next)
  1869. {
  1870. /*
  1871. * If the new start address isn't hpage aligned and it could
  1872. * previously contain an hugepage: check if we need to split
  1873. * an huge pmd.
  1874. */
  1875. if (start & ~HPAGE_PMD_MASK &&
  1876. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  1877. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  1878. split_huge_pmd_address(vma, start, false, NULL);
  1879. /*
  1880. * If the new end address isn't hpage aligned and it could
  1881. * previously contain an hugepage: check if we need to split
  1882. * an huge pmd.
  1883. */
  1884. if (end & ~HPAGE_PMD_MASK &&
  1885. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  1886. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  1887. split_huge_pmd_address(vma, end, false, NULL);
  1888. /*
  1889. * If we're also updating the vma->vm_next->vm_start, if the new
  1890. * vm_next->vm_start isn't page aligned and it could previously
  1891. * contain an hugepage: check if we need to split an huge pmd.
  1892. */
  1893. if (adjust_next > 0) {
  1894. struct vm_area_struct *next = vma->vm_next;
  1895. unsigned long nstart = next->vm_start;
  1896. nstart += adjust_next << PAGE_SHIFT;
  1897. if (nstart & ~HPAGE_PMD_MASK &&
  1898. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  1899. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  1900. split_huge_pmd_address(next, nstart, false, NULL);
  1901. }
  1902. }
  1903. static void freeze_page(struct page *page)
  1904. {
  1905. enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
  1906. TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
  1907. bool unmap_success;
  1908. VM_BUG_ON_PAGE(!PageHead(page), page);
  1909. if (PageAnon(page))
  1910. ttu_flags |= TTU_MIGRATION;
  1911. unmap_success = try_to_unmap(page, ttu_flags);
  1912. VM_BUG_ON_PAGE(!unmap_success, page);
  1913. }
  1914. static void unfreeze_page(struct page *page)
  1915. {
  1916. int i;
  1917. if (PageTransHuge(page)) {
  1918. remove_migration_ptes(page, page, true);
  1919. } else {
  1920. for (i = 0; i < HPAGE_PMD_NR; i++)
  1921. remove_migration_ptes(page + i, page + i, true);
  1922. }
  1923. }
  1924. static void __split_huge_page_tail(struct page *head, int tail,
  1925. struct lruvec *lruvec, struct list_head *list)
  1926. {
  1927. struct page *page_tail = head + tail;
  1928. VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
  1929. VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
  1930. /*
  1931. * tail_page->_refcount is zero and not changing from under us. But
  1932. * get_page_unless_zero() may be running from under us on the
  1933. * tail_page. If we used atomic_set() below instead of atomic_inc() or
  1934. * atomic_add(), we would then run atomic_set() concurrently with
  1935. * get_page_unless_zero(), and atomic_set() is implemented in C not
  1936. * using locked ops. spin_unlock on x86 sometime uses locked ops
  1937. * because of PPro errata 66, 92, so unless somebody can guarantee
  1938. * atomic_set() here would be safe on all archs (and not only on x86),
  1939. * it's safer to use atomic_inc()/atomic_add().
  1940. */
  1941. if (PageAnon(head) && !PageSwapCache(head)) {
  1942. page_ref_inc(page_tail);
  1943. } else {
  1944. /* Additional pin to radix tree */
  1945. page_ref_add(page_tail, 2);
  1946. }
  1947. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  1948. page_tail->flags |= (head->flags &
  1949. ((1L << PG_referenced) |
  1950. (1L << PG_swapbacked) |
  1951. (1L << PG_swapcache) |
  1952. (1L << PG_mlocked) |
  1953. (1L << PG_uptodate) |
  1954. (1L << PG_active) |
  1955. (1L << PG_locked) |
  1956. (1L << PG_unevictable) |
  1957. (1L << PG_dirty)));
  1958. /*
  1959. * After clearing PageTail the gup refcount can be released.
  1960. * Page flags also must be visible before we make the page non-compound.
  1961. */
  1962. smp_wmb();
  1963. clear_compound_head(page_tail);
  1964. if (page_is_young(head))
  1965. set_page_young(page_tail);
  1966. if (page_is_idle(head))
  1967. set_page_idle(page_tail);
  1968. /* ->mapping in first tail page is compound_mapcount */
  1969. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  1970. page_tail);
  1971. page_tail->mapping = head->mapping;
  1972. page_tail->index = head->index + tail;
  1973. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  1974. lru_add_page_tail(head, page_tail, lruvec, list);
  1975. }
  1976. static void __split_huge_page(struct page *page, struct list_head *list,
  1977. unsigned long flags)
  1978. {
  1979. struct page *head = compound_head(page);
  1980. struct zone *zone = page_zone(head);
  1981. struct lruvec *lruvec;
  1982. pgoff_t end = -1;
  1983. int i;
  1984. lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
  1985. /* complete memcg works before add pages to LRU */
  1986. mem_cgroup_split_huge_fixup(head);
  1987. if (!PageAnon(page))
  1988. end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
  1989. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1990. __split_huge_page_tail(head, i, lruvec, list);
  1991. /* Some pages can be beyond i_size: drop them from page cache */
  1992. if (head[i].index >= end) {
  1993. __ClearPageDirty(head + i);
  1994. __delete_from_page_cache(head + i, NULL);
  1995. if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
  1996. shmem_uncharge(head->mapping->host, 1);
  1997. put_page(head + i);
  1998. }
  1999. }
  2000. ClearPageCompound(head);
  2001. /* See comment in __split_huge_page_tail() */
  2002. if (PageAnon(head)) {
  2003. /* Additional pin to radix tree of swap cache */
  2004. if (PageSwapCache(head))
  2005. page_ref_add(head, 2);
  2006. else
  2007. page_ref_inc(head);
  2008. } else {
  2009. /* Additional pin to radix tree */
  2010. page_ref_add(head, 2);
  2011. spin_unlock(&head->mapping->tree_lock);
  2012. }
  2013. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  2014. unfreeze_page(head);
  2015. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2016. struct page *subpage = head + i;
  2017. if (subpage == page)
  2018. continue;
  2019. unlock_page(subpage);
  2020. /*
  2021. * Subpages may be freed if there wasn't any mapping
  2022. * like if add_to_swap() is running on a lru page that
  2023. * had its mapping zapped. And freeing these pages
  2024. * requires taking the lru_lock so we do the put_page
  2025. * of the tail pages after the split is complete.
  2026. */
  2027. put_page(subpage);
  2028. }
  2029. }
  2030. int total_mapcount(struct page *page)
  2031. {
  2032. int i, compound, ret;
  2033. VM_BUG_ON_PAGE(PageTail(page), page);
  2034. if (likely(!PageCompound(page)))
  2035. return atomic_read(&page->_mapcount) + 1;
  2036. compound = compound_mapcount(page);
  2037. if (PageHuge(page))
  2038. return compound;
  2039. ret = compound;
  2040. for (i = 0; i < HPAGE_PMD_NR; i++)
  2041. ret += atomic_read(&page[i]._mapcount) + 1;
  2042. /* File pages has compound_mapcount included in _mapcount */
  2043. if (!PageAnon(page))
  2044. return ret - compound * HPAGE_PMD_NR;
  2045. if (PageDoubleMap(page))
  2046. ret -= HPAGE_PMD_NR;
  2047. return ret;
  2048. }
  2049. /*
  2050. * This calculates accurately how many mappings a transparent hugepage
  2051. * has (unlike page_mapcount() which isn't fully accurate). This full
  2052. * accuracy is primarily needed to know if copy-on-write faults can
  2053. * reuse the page and change the mapping to read-write instead of
  2054. * copying them. At the same time this returns the total_mapcount too.
  2055. *
  2056. * The function returns the highest mapcount any one of the subpages
  2057. * has. If the return value is one, even if different processes are
  2058. * mapping different subpages of the transparent hugepage, they can
  2059. * all reuse it, because each process is reusing a different subpage.
  2060. *
  2061. * The total_mapcount is instead counting all virtual mappings of the
  2062. * subpages. If the total_mapcount is equal to "one", it tells the
  2063. * caller all mappings belong to the same "mm" and in turn the
  2064. * anon_vma of the transparent hugepage can become the vma->anon_vma
  2065. * local one as no other process may be mapping any of the subpages.
  2066. *
  2067. * It would be more accurate to replace page_mapcount() with
  2068. * page_trans_huge_mapcount(), however we only use
  2069. * page_trans_huge_mapcount() in the copy-on-write faults where we
  2070. * need full accuracy to avoid breaking page pinning, because
  2071. * page_trans_huge_mapcount() is slower than page_mapcount().
  2072. */
  2073. int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
  2074. {
  2075. int i, ret, _total_mapcount, mapcount;
  2076. /* hugetlbfs shouldn't call it */
  2077. VM_BUG_ON_PAGE(PageHuge(page), page);
  2078. if (likely(!PageTransCompound(page))) {
  2079. mapcount = atomic_read(&page->_mapcount) + 1;
  2080. if (total_mapcount)
  2081. *total_mapcount = mapcount;
  2082. return mapcount;
  2083. }
  2084. page = compound_head(page);
  2085. _total_mapcount = ret = 0;
  2086. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2087. mapcount = atomic_read(&page[i]._mapcount) + 1;
  2088. ret = max(ret, mapcount);
  2089. _total_mapcount += mapcount;
  2090. }
  2091. if (PageDoubleMap(page)) {
  2092. ret -= 1;
  2093. _total_mapcount -= HPAGE_PMD_NR;
  2094. }
  2095. mapcount = compound_mapcount(page);
  2096. ret += mapcount;
  2097. _total_mapcount += mapcount;
  2098. if (total_mapcount)
  2099. *total_mapcount = _total_mapcount;
  2100. return ret;
  2101. }
  2102. /* Racy check whether the huge page can be split */
  2103. bool can_split_huge_page(struct page *page, int *pextra_pins)
  2104. {
  2105. int extra_pins;
  2106. /* Additional pins from radix tree */
  2107. if (PageAnon(page))
  2108. extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
  2109. else
  2110. extra_pins = HPAGE_PMD_NR;
  2111. if (pextra_pins)
  2112. *pextra_pins = extra_pins;
  2113. return total_mapcount(page) == page_count(page) - extra_pins - 1;
  2114. }
  2115. /*
  2116. * This function splits huge page into normal pages. @page can point to any
  2117. * subpage of huge page to split. Split doesn't change the position of @page.
  2118. *
  2119. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  2120. * The huge page must be locked.
  2121. *
  2122. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  2123. *
  2124. * Both head page and tail pages will inherit mapping, flags, and so on from
  2125. * the hugepage.
  2126. *
  2127. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  2128. * they are not mapped.
  2129. *
  2130. * Returns 0 if the hugepage is split successfully.
  2131. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  2132. * us.
  2133. */
  2134. int split_huge_page_to_list(struct page *page, struct list_head *list)
  2135. {
  2136. struct page *head = compound_head(page);
  2137. struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
  2138. struct anon_vma *anon_vma = NULL;
  2139. struct address_space *mapping = NULL;
  2140. int count, mapcount, extra_pins, ret;
  2141. bool mlocked;
  2142. unsigned long flags;
  2143. VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
  2144. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2145. VM_BUG_ON_PAGE(!PageCompound(page), page);
  2146. if (PageAnon(head)) {
  2147. /*
  2148. * The caller does not necessarily hold an mmap_sem that would
  2149. * prevent the anon_vma disappearing so we first we take a
  2150. * reference to it and then lock the anon_vma for write. This
  2151. * is similar to page_lock_anon_vma_read except the write lock
  2152. * is taken to serialise against parallel split or collapse
  2153. * operations.
  2154. */
  2155. anon_vma = page_get_anon_vma(head);
  2156. if (!anon_vma) {
  2157. ret = -EBUSY;
  2158. goto out;
  2159. }
  2160. mapping = NULL;
  2161. anon_vma_lock_write(anon_vma);
  2162. } else {
  2163. mapping = head->mapping;
  2164. /* Truncated ? */
  2165. if (!mapping) {
  2166. ret = -EBUSY;
  2167. goto out;
  2168. }
  2169. anon_vma = NULL;
  2170. i_mmap_lock_read(mapping);
  2171. }
  2172. /*
  2173. * Racy check if we can split the page, before freeze_page() will
  2174. * split PMDs
  2175. */
  2176. if (!can_split_huge_page(head, &extra_pins)) {
  2177. ret = -EBUSY;
  2178. goto out_unlock;
  2179. }
  2180. mlocked = PageMlocked(page);
  2181. freeze_page(head);
  2182. VM_BUG_ON_PAGE(compound_mapcount(head), head);
  2183. /* Make sure the page is not on per-CPU pagevec as it takes pin */
  2184. if (mlocked)
  2185. lru_add_drain();
  2186. /* prevent PageLRU to go away from under us, and freeze lru stats */
  2187. spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
  2188. if (mapping) {
  2189. void **pslot;
  2190. spin_lock(&mapping->tree_lock);
  2191. pslot = radix_tree_lookup_slot(&mapping->page_tree,
  2192. page_index(head));
  2193. /*
  2194. * Check if the head page is present in radix tree.
  2195. * We assume all tail are present too, if head is there.
  2196. */
  2197. if (radix_tree_deref_slot_protected(pslot,
  2198. &mapping->tree_lock) != head)
  2199. goto fail;
  2200. }
  2201. /* Prevent deferred_split_scan() touching ->_refcount */
  2202. spin_lock(&pgdata->split_queue_lock);
  2203. count = page_count(head);
  2204. mapcount = total_mapcount(head);
  2205. if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
  2206. if (!list_empty(page_deferred_list(head))) {
  2207. pgdata->split_queue_len--;
  2208. list_del(page_deferred_list(head));
  2209. }
  2210. if (mapping)
  2211. __dec_node_page_state(page, NR_SHMEM_THPS);
  2212. spin_unlock(&pgdata->split_queue_lock);
  2213. __split_huge_page(page, list, flags);
  2214. ret = 0;
  2215. } else {
  2216. if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
  2217. pr_alert("total_mapcount: %u, page_count(): %u\n",
  2218. mapcount, count);
  2219. if (PageTail(page))
  2220. dump_page(head, NULL);
  2221. dump_page(page, "total_mapcount(head) > 0");
  2222. BUG();
  2223. }
  2224. spin_unlock(&pgdata->split_queue_lock);
  2225. fail: if (mapping)
  2226. spin_unlock(&mapping->tree_lock);
  2227. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  2228. unfreeze_page(head);
  2229. ret = -EBUSY;
  2230. }
  2231. out_unlock:
  2232. if (anon_vma) {
  2233. anon_vma_unlock_write(anon_vma);
  2234. put_anon_vma(anon_vma);
  2235. }
  2236. if (mapping)
  2237. i_mmap_unlock_read(mapping);
  2238. out:
  2239. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  2240. return ret;
  2241. }
  2242. void free_transhuge_page(struct page *page)
  2243. {
  2244. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2245. unsigned long flags;
  2246. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2247. if (!list_empty(page_deferred_list(page))) {
  2248. pgdata->split_queue_len--;
  2249. list_del(page_deferred_list(page));
  2250. }
  2251. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2252. free_compound_page(page);
  2253. }
  2254. void deferred_split_huge_page(struct page *page)
  2255. {
  2256. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2257. unsigned long flags;
  2258. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  2259. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2260. if (list_empty(page_deferred_list(page))) {
  2261. count_vm_event(THP_DEFERRED_SPLIT_PAGE);
  2262. list_add_tail(page_deferred_list(page), &pgdata->split_queue);
  2263. pgdata->split_queue_len++;
  2264. }
  2265. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2266. }
  2267. static unsigned long deferred_split_count(struct shrinker *shrink,
  2268. struct shrink_control *sc)
  2269. {
  2270. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2271. return ACCESS_ONCE(pgdata->split_queue_len);
  2272. }
  2273. static unsigned long deferred_split_scan(struct shrinker *shrink,
  2274. struct shrink_control *sc)
  2275. {
  2276. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2277. unsigned long flags;
  2278. LIST_HEAD(list), *pos, *next;
  2279. struct page *page;
  2280. int split = 0;
  2281. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2282. /* Take pin on all head pages to avoid freeing them under us */
  2283. list_for_each_safe(pos, next, &pgdata->split_queue) {
  2284. page = list_entry((void *)pos, struct page, mapping);
  2285. page = compound_head(page);
  2286. if (get_page_unless_zero(page)) {
  2287. list_move(page_deferred_list(page), &list);
  2288. } else {
  2289. /* We lost race with put_compound_page() */
  2290. list_del_init(page_deferred_list(page));
  2291. pgdata->split_queue_len--;
  2292. }
  2293. if (!--sc->nr_to_scan)
  2294. break;
  2295. }
  2296. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2297. list_for_each_safe(pos, next, &list) {
  2298. page = list_entry((void *)pos, struct page, mapping);
  2299. lock_page(page);
  2300. /* split_huge_page() removes page from list on success */
  2301. if (!split_huge_page(page))
  2302. split++;
  2303. unlock_page(page);
  2304. put_page(page);
  2305. }
  2306. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2307. list_splice_tail(&list, &pgdata->split_queue);
  2308. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2309. /*
  2310. * Stop shrinker if we didn't split any page, but the queue is empty.
  2311. * This can happen if pages were freed under us.
  2312. */
  2313. if (!split && list_empty(&pgdata->split_queue))
  2314. return SHRINK_STOP;
  2315. return split;
  2316. }
  2317. static struct shrinker deferred_split_shrinker = {
  2318. .count_objects = deferred_split_count,
  2319. .scan_objects = deferred_split_scan,
  2320. .seeks = DEFAULT_SEEKS,
  2321. .flags = SHRINKER_NUMA_AWARE,
  2322. };
  2323. #ifdef CONFIG_DEBUG_FS
  2324. static int split_huge_pages_set(void *data, u64 val)
  2325. {
  2326. struct zone *zone;
  2327. struct page *page;
  2328. unsigned long pfn, max_zone_pfn;
  2329. unsigned long total = 0, split = 0;
  2330. if (val != 1)
  2331. return -EINVAL;
  2332. for_each_populated_zone(zone) {
  2333. max_zone_pfn = zone_end_pfn(zone);
  2334. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  2335. if (!pfn_valid(pfn))
  2336. continue;
  2337. page = pfn_to_page(pfn);
  2338. if (!get_page_unless_zero(page))
  2339. continue;
  2340. if (zone != page_zone(page))
  2341. goto next;
  2342. if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
  2343. goto next;
  2344. total++;
  2345. lock_page(page);
  2346. if (!split_huge_page(page))
  2347. split++;
  2348. unlock_page(page);
  2349. next:
  2350. put_page(page);
  2351. }
  2352. }
  2353. pr_info("%lu of %lu THP split\n", split, total);
  2354. return 0;
  2355. }
  2356. DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
  2357. "%llu\n");
  2358. static int __init split_huge_pages_debugfs(void)
  2359. {
  2360. void *ret;
  2361. ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
  2362. &split_huge_pages_fops);
  2363. if (!ret)
  2364. pr_warn("Failed to create split_huge_pages in debugfs");
  2365. return 0;
  2366. }
  2367. late_initcall(split_huge_pages_debugfs);
  2368. #endif