tree_plugin.h 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion (tree-based version)
  3. * Internal non-public definitions that provide either classic
  4. * or preemptible semantics.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, you can access it online at
  18. * http://www.gnu.org/licenses/gpl-2.0.html.
  19. *
  20. * Copyright Red Hat, 2009
  21. * Copyright IBM Corporation, 2009
  22. *
  23. * Author: Ingo Molnar <mingo@elte.hu>
  24. * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/gfp.h>
  28. #include <linux/oom.h>
  29. #include <linux/sched/debug.h>
  30. #include <linux/smpboot.h>
  31. #include <uapi/linux/sched/types.h>
  32. #include "../time/tick-internal.h"
  33. #ifdef CONFIG_RCU_BOOST
  34. #include "../locking/rtmutex_common.h"
  35. /*
  36. * Control variables for per-CPU and per-rcu_node kthreads. These
  37. * handle all flavors of RCU.
  38. */
  39. static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  40. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  41. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  42. DEFINE_PER_CPU(char, rcu_cpu_has_work);
  43. #else /* #ifdef CONFIG_RCU_BOOST */
  44. /*
  45. * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
  46. * all uses are in dead code. Provide a definition to keep the compiler
  47. * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
  48. * This probably needs to be excluded from -rt builds.
  49. */
  50. #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
  51. #endif /* #else #ifdef CONFIG_RCU_BOOST */
  52. #ifdef CONFIG_RCU_NOCB_CPU
  53. static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  54. static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
  55. static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
  56. #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  57. /*
  58. * Check the RCU kernel configuration parameters and print informative
  59. * messages about anything out of the ordinary.
  60. */
  61. static void __init rcu_bootup_announce_oddness(void)
  62. {
  63. if (IS_ENABLED(CONFIG_RCU_TRACE))
  64. pr_info("\tRCU event tracing is enabled.\n");
  65. if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  66. (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  67. pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  68. RCU_FANOUT);
  69. if (rcu_fanout_exact)
  70. pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  71. if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  72. pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  73. if (IS_ENABLED(CONFIG_PROVE_RCU))
  74. pr_info("\tRCU lockdep checking is enabled.\n");
  75. if (RCU_NUM_LVLS >= 4)
  76. pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  77. if (RCU_FANOUT_LEAF != 16)
  78. pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  79. RCU_FANOUT_LEAF);
  80. if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  81. pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  82. if (nr_cpu_ids != NR_CPUS)
  83. pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  84. #ifdef CONFIG_RCU_BOOST
  85. pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
  86. #endif
  87. if (blimit != DEFAULT_RCU_BLIMIT)
  88. pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
  89. if (qhimark != DEFAULT_RCU_QHIMARK)
  90. pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
  91. if (qlowmark != DEFAULT_RCU_QLOMARK)
  92. pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
  93. if (jiffies_till_first_fqs != ULONG_MAX)
  94. pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
  95. if (jiffies_till_next_fqs != ULONG_MAX)
  96. pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
  97. if (rcu_kick_kthreads)
  98. pr_info("\tKick kthreads if too-long grace period.\n");
  99. if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
  100. pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
  101. if (gp_preinit_delay)
  102. pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
  103. if (gp_init_delay)
  104. pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
  105. if (gp_cleanup_delay)
  106. pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
  107. if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
  108. pr_info("\tRCU debug extended QS entry/exit.\n");
  109. rcupdate_announce_bootup_oddness();
  110. }
  111. #ifdef CONFIG_PREEMPT_RCU
  112. RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
  113. static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
  114. static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
  115. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  116. bool wake);
  117. /*
  118. * Tell them what RCU they are running.
  119. */
  120. static void __init rcu_bootup_announce(void)
  121. {
  122. pr_info("Preemptible hierarchical RCU implementation.\n");
  123. rcu_bootup_announce_oddness();
  124. }
  125. /* Flags for rcu_preempt_ctxt_queue() decision table. */
  126. #define RCU_GP_TASKS 0x8
  127. #define RCU_EXP_TASKS 0x4
  128. #define RCU_GP_BLKD 0x2
  129. #define RCU_EXP_BLKD 0x1
  130. /*
  131. * Queues a task preempted within an RCU-preempt read-side critical
  132. * section into the appropriate location within the ->blkd_tasks list,
  133. * depending on the states of any ongoing normal and expedited grace
  134. * periods. The ->gp_tasks pointer indicates which element the normal
  135. * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
  136. * indicates which element the expedited grace period is waiting on (again,
  137. * NULL if none). If a grace period is waiting on a given element in the
  138. * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
  139. * adding a task to the tail of the list blocks any grace period that is
  140. * already waiting on one of the elements. In contrast, adding a task
  141. * to the head of the list won't block any grace period that is already
  142. * waiting on one of the elements.
  143. *
  144. * This queuing is imprecise, and can sometimes make an ongoing grace
  145. * period wait for a task that is not strictly speaking blocking it.
  146. * Given the choice, we needlessly block a normal grace period rather than
  147. * blocking an expedited grace period.
  148. *
  149. * Note that an endless sequence of expedited grace periods still cannot
  150. * indefinitely postpone a normal grace period. Eventually, all of the
  151. * fixed number of preempted tasks blocking the normal grace period that are
  152. * not also blocking the expedited grace period will resume and complete
  153. * their RCU read-side critical sections. At that point, the ->gp_tasks
  154. * pointer will equal the ->exp_tasks pointer, at which point the end of
  155. * the corresponding expedited grace period will also be the end of the
  156. * normal grace period.
  157. */
  158. static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
  159. __releases(rnp->lock) /* But leaves rrupts disabled. */
  160. {
  161. int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
  162. (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
  163. (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
  164. (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
  165. struct task_struct *t = current;
  166. lockdep_assert_held(&rnp->lock);
  167. /*
  168. * Decide where to queue the newly blocked task. In theory,
  169. * this could be an if-statement. In practice, when I tried
  170. * that, it was quite messy.
  171. */
  172. switch (blkd_state) {
  173. case 0:
  174. case RCU_EXP_TASKS:
  175. case RCU_EXP_TASKS + RCU_GP_BLKD:
  176. case RCU_GP_TASKS:
  177. case RCU_GP_TASKS + RCU_EXP_TASKS:
  178. /*
  179. * Blocking neither GP, or first task blocking the normal
  180. * GP but not blocking the already-waiting expedited GP.
  181. * Queue at the head of the list to avoid unnecessarily
  182. * blocking the already-waiting GPs.
  183. */
  184. list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
  185. break;
  186. case RCU_EXP_BLKD:
  187. case RCU_GP_BLKD:
  188. case RCU_GP_BLKD + RCU_EXP_BLKD:
  189. case RCU_GP_TASKS + RCU_EXP_BLKD:
  190. case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
  191. case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
  192. /*
  193. * First task arriving that blocks either GP, or first task
  194. * arriving that blocks the expedited GP (with the normal
  195. * GP already waiting), or a task arriving that blocks
  196. * both GPs with both GPs already waiting. Queue at the
  197. * tail of the list to avoid any GP waiting on any of the
  198. * already queued tasks that are not blocking it.
  199. */
  200. list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
  201. break;
  202. case RCU_EXP_TASKS + RCU_EXP_BLKD:
  203. case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
  204. case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
  205. /*
  206. * Second or subsequent task blocking the expedited GP.
  207. * The task either does not block the normal GP, or is the
  208. * first task blocking the normal GP. Queue just after
  209. * the first task blocking the expedited GP.
  210. */
  211. list_add(&t->rcu_node_entry, rnp->exp_tasks);
  212. break;
  213. case RCU_GP_TASKS + RCU_GP_BLKD:
  214. case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
  215. /*
  216. * Second or subsequent task blocking the normal GP.
  217. * The task does not block the expedited GP. Queue just
  218. * after the first task blocking the normal GP.
  219. */
  220. list_add(&t->rcu_node_entry, rnp->gp_tasks);
  221. break;
  222. default:
  223. /* Yet another exercise in excessive paranoia. */
  224. WARN_ON_ONCE(1);
  225. break;
  226. }
  227. /*
  228. * We have now queued the task. If it was the first one to
  229. * block either grace period, update the ->gp_tasks and/or
  230. * ->exp_tasks pointers, respectively, to reference the newly
  231. * blocked tasks.
  232. */
  233. if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
  234. rnp->gp_tasks = &t->rcu_node_entry;
  235. if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
  236. rnp->exp_tasks = &t->rcu_node_entry;
  237. raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
  238. /*
  239. * Report the quiescent state for the expedited GP. This expedited
  240. * GP should not be able to end until we report, so there should be
  241. * no need to check for a subsequent expedited GP. (Though we are
  242. * still in a quiescent state in any case.)
  243. */
  244. if (blkd_state & RCU_EXP_BLKD &&
  245. t->rcu_read_unlock_special.b.exp_need_qs) {
  246. t->rcu_read_unlock_special.b.exp_need_qs = false;
  247. rcu_report_exp_rdp(rdp->rsp, rdp, true);
  248. } else {
  249. WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
  250. }
  251. }
  252. /*
  253. * Record a preemptible-RCU quiescent state for the specified CPU. Note
  254. * that this just means that the task currently running on the CPU is
  255. * not in a quiescent state. There might be any number of tasks blocked
  256. * while in an RCU read-side critical section.
  257. *
  258. * As with the other rcu_*_qs() functions, callers to this function
  259. * must disable preemption.
  260. */
  261. static void rcu_preempt_qs(void)
  262. {
  263. RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
  264. if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
  265. trace_rcu_grace_period(TPS("rcu_preempt"),
  266. __this_cpu_read(rcu_data_p->gpnum),
  267. TPS("cpuqs"));
  268. __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
  269. barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
  270. current->rcu_read_unlock_special.b.need_qs = false;
  271. }
  272. }
  273. /*
  274. * We have entered the scheduler, and the current task might soon be
  275. * context-switched away from. If this task is in an RCU read-side
  276. * critical section, we will no longer be able to rely on the CPU to
  277. * record that fact, so we enqueue the task on the blkd_tasks list.
  278. * The task will dequeue itself when it exits the outermost enclosing
  279. * RCU read-side critical section. Therefore, the current grace period
  280. * cannot be permitted to complete until the blkd_tasks list entries
  281. * predating the current grace period drain, in other words, until
  282. * rnp->gp_tasks becomes NULL.
  283. *
  284. * Caller must disable interrupts.
  285. */
  286. static void rcu_preempt_note_context_switch(bool preempt)
  287. {
  288. struct task_struct *t = current;
  289. struct rcu_data *rdp;
  290. struct rcu_node *rnp;
  291. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_preempt_note_context_switch() invoked with interrupts enabled!!!\n");
  292. WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
  293. if (t->rcu_read_lock_nesting > 0 &&
  294. !t->rcu_read_unlock_special.b.blocked) {
  295. /* Possibly blocking in an RCU read-side critical section. */
  296. rdp = this_cpu_ptr(rcu_state_p->rda);
  297. rnp = rdp->mynode;
  298. raw_spin_lock_rcu_node(rnp);
  299. t->rcu_read_unlock_special.b.blocked = true;
  300. t->rcu_blocked_node = rnp;
  301. /*
  302. * Verify the CPU's sanity, trace the preemption, and
  303. * then queue the task as required based on the states
  304. * of any ongoing and expedited grace periods.
  305. */
  306. WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
  307. WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
  308. trace_rcu_preempt_task(rdp->rsp->name,
  309. t->pid,
  310. (rnp->qsmask & rdp->grpmask)
  311. ? rnp->gpnum
  312. : rnp->gpnum + 1);
  313. rcu_preempt_ctxt_queue(rnp, rdp);
  314. } else if (t->rcu_read_lock_nesting < 0 &&
  315. t->rcu_read_unlock_special.s) {
  316. /*
  317. * Complete exit from RCU read-side critical section on
  318. * behalf of preempted instance of __rcu_read_unlock().
  319. */
  320. rcu_read_unlock_special(t);
  321. }
  322. /*
  323. * Either we were not in an RCU read-side critical section to
  324. * begin with, or we have now recorded that critical section
  325. * globally. Either way, we can now note a quiescent state
  326. * for this CPU. Again, if we were in an RCU read-side critical
  327. * section, and if that critical section was blocking the current
  328. * grace period, then the fact that the task has been enqueued
  329. * means that we continue to block the current grace period.
  330. */
  331. rcu_preempt_qs();
  332. }
  333. /*
  334. * Check for preempted RCU readers blocking the current grace period
  335. * for the specified rcu_node structure. If the caller needs a reliable
  336. * answer, it must hold the rcu_node's ->lock.
  337. */
  338. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  339. {
  340. return rnp->gp_tasks != NULL;
  341. }
  342. /*
  343. * Advance a ->blkd_tasks-list pointer to the next entry, instead
  344. * returning NULL if at the end of the list.
  345. */
  346. static struct list_head *rcu_next_node_entry(struct task_struct *t,
  347. struct rcu_node *rnp)
  348. {
  349. struct list_head *np;
  350. np = t->rcu_node_entry.next;
  351. if (np == &rnp->blkd_tasks)
  352. np = NULL;
  353. return np;
  354. }
  355. /*
  356. * Return true if the specified rcu_node structure has tasks that were
  357. * preempted within an RCU read-side critical section.
  358. */
  359. static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
  360. {
  361. return !list_empty(&rnp->blkd_tasks);
  362. }
  363. /*
  364. * Handle special cases during rcu_read_unlock(), such as needing to
  365. * notify RCU core processing or task having blocked during the RCU
  366. * read-side critical section.
  367. */
  368. void rcu_read_unlock_special(struct task_struct *t)
  369. {
  370. bool empty_exp;
  371. bool empty_norm;
  372. bool empty_exp_now;
  373. unsigned long flags;
  374. struct list_head *np;
  375. bool drop_boost_mutex = false;
  376. struct rcu_data *rdp;
  377. struct rcu_node *rnp;
  378. union rcu_special special;
  379. /* NMI handlers cannot block and cannot safely manipulate state. */
  380. if (in_nmi())
  381. return;
  382. local_irq_save(flags);
  383. /*
  384. * If RCU core is waiting for this CPU to exit its critical section,
  385. * report the fact that it has exited. Because irqs are disabled,
  386. * t->rcu_read_unlock_special cannot change.
  387. */
  388. special = t->rcu_read_unlock_special;
  389. if (special.b.need_qs) {
  390. rcu_preempt_qs();
  391. t->rcu_read_unlock_special.b.need_qs = false;
  392. if (!t->rcu_read_unlock_special.s) {
  393. local_irq_restore(flags);
  394. return;
  395. }
  396. }
  397. /*
  398. * Respond to a request for an expedited grace period, but only if
  399. * we were not preempted, meaning that we were running on the same
  400. * CPU throughout. If we were preempted, the exp_need_qs flag
  401. * would have been cleared at the time of the first preemption,
  402. * and the quiescent state would be reported when we were dequeued.
  403. */
  404. if (special.b.exp_need_qs) {
  405. WARN_ON_ONCE(special.b.blocked);
  406. t->rcu_read_unlock_special.b.exp_need_qs = false;
  407. rdp = this_cpu_ptr(rcu_state_p->rda);
  408. rcu_report_exp_rdp(rcu_state_p, rdp, true);
  409. if (!t->rcu_read_unlock_special.s) {
  410. local_irq_restore(flags);
  411. return;
  412. }
  413. }
  414. /* Hardware IRQ handlers cannot block, complain if they get here. */
  415. if (in_irq() || in_serving_softirq()) {
  416. lockdep_rcu_suspicious(__FILE__, __LINE__,
  417. "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
  418. pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
  419. t->rcu_read_unlock_special.s,
  420. t->rcu_read_unlock_special.b.blocked,
  421. t->rcu_read_unlock_special.b.exp_need_qs,
  422. t->rcu_read_unlock_special.b.need_qs);
  423. local_irq_restore(flags);
  424. return;
  425. }
  426. /* Clean up if blocked during RCU read-side critical section. */
  427. if (special.b.blocked) {
  428. t->rcu_read_unlock_special.b.blocked = false;
  429. /*
  430. * Remove this task from the list it blocked on. The task
  431. * now remains queued on the rcu_node corresponding to the
  432. * CPU it first blocked on, so there is no longer any need
  433. * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
  434. */
  435. rnp = t->rcu_blocked_node;
  436. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  437. WARN_ON_ONCE(rnp != t->rcu_blocked_node);
  438. empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
  439. empty_exp = sync_rcu_preempt_exp_done(rnp);
  440. smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
  441. np = rcu_next_node_entry(t, rnp);
  442. list_del_init(&t->rcu_node_entry);
  443. t->rcu_blocked_node = NULL;
  444. trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
  445. rnp->gpnum, t->pid);
  446. if (&t->rcu_node_entry == rnp->gp_tasks)
  447. rnp->gp_tasks = np;
  448. if (&t->rcu_node_entry == rnp->exp_tasks)
  449. rnp->exp_tasks = np;
  450. if (IS_ENABLED(CONFIG_RCU_BOOST)) {
  451. if (&t->rcu_node_entry == rnp->boost_tasks)
  452. rnp->boost_tasks = np;
  453. /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
  454. drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
  455. }
  456. /*
  457. * If this was the last task on the current list, and if
  458. * we aren't waiting on any CPUs, report the quiescent state.
  459. * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
  460. * so we must take a snapshot of the expedited state.
  461. */
  462. empty_exp_now = sync_rcu_preempt_exp_done(rnp);
  463. if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
  464. trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
  465. rnp->gpnum,
  466. 0, rnp->qsmask,
  467. rnp->level,
  468. rnp->grplo,
  469. rnp->grphi,
  470. !!rnp->gp_tasks);
  471. rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
  472. } else {
  473. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  474. }
  475. /* Unboost if we were boosted. */
  476. if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
  477. rt_mutex_unlock(&rnp->boost_mtx);
  478. /*
  479. * If this was the last task on the expedited lists,
  480. * then we need to report up the rcu_node hierarchy.
  481. */
  482. if (!empty_exp && empty_exp_now)
  483. rcu_report_exp_rnp(rcu_state_p, rnp, true);
  484. } else {
  485. local_irq_restore(flags);
  486. }
  487. }
  488. /*
  489. * Dump detailed information for all tasks blocking the current RCU
  490. * grace period on the specified rcu_node structure.
  491. */
  492. static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
  493. {
  494. unsigned long flags;
  495. struct task_struct *t;
  496. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  497. if (!rcu_preempt_blocked_readers_cgp(rnp)) {
  498. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  499. return;
  500. }
  501. t = list_entry(rnp->gp_tasks->prev,
  502. struct task_struct, rcu_node_entry);
  503. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
  504. sched_show_task(t);
  505. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  506. }
  507. /*
  508. * Dump detailed information for all tasks blocking the current RCU
  509. * grace period.
  510. */
  511. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  512. {
  513. struct rcu_node *rnp = rcu_get_root(rsp);
  514. rcu_print_detail_task_stall_rnp(rnp);
  515. rcu_for_each_leaf_node(rsp, rnp)
  516. rcu_print_detail_task_stall_rnp(rnp);
  517. }
  518. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  519. {
  520. pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
  521. rnp->level, rnp->grplo, rnp->grphi);
  522. }
  523. static void rcu_print_task_stall_end(void)
  524. {
  525. pr_cont("\n");
  526. }
  527. /*
  528. * Scan the current list of tasks blocked within RCU read-side critical
  529. * sections, printing out the tid of each.
  530. */
  531. static int rcu_print_task_stall(struct rcu_node *rnp)
  532. {
  533. struct task_struct *t;
  534. int ndetected = 0;
  535. if (!rcu_preempt_blocked_readers_cgp(rnp))
  536. return 0;
  537. rcu_print_task_stall_begin(rnp);
  538. t = list_entry(rnp->gp_tasks->prev,
  539. struct task_struct, rcu_node_entry);
  540. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
  541. pr_cont(" P%d", t->pid);
  542. ndetected++;
  543. }
  544. rcu_print_task_stall_end();
  545. return ndetected;
  546. }
  547. /*
  548. * Scan the current list of tasks blocked within RCU read-side critical
  549. * sections, printing out the tid of each that is blocking the current
  550. * expedited grace period.
  551. */
  552. static int rcu_print_task_exp_stall(struct rcu_node *rnp)
  553. {
  554. struct task_struct *t;
  555. int ndetected = 0;
  556. if (!rnp->exp_tasks)
  557. return 0;
  558. t = list_entry(rnp->exp_tasks->prev,
  559. struct task_struct, rcu_node_entry);
  560. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
  561. pr_cont(" P%d", t->pid);
  562. ndetected++;
  563. }
  564. return ndetected;
  565. }
  566. /*
  567. * Check that the list of blocked tasks for the newly completed grace
  568. * period is in fact empty. It is a serious bug to complete a grace
  569. * period that still has RCU readers blocked! This function must be
  570. * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
  571. * must be held by the caller.
  572. *
  573. * Also, if there are blocked tasks on the list, they automatically
  574. * block the newly created grace period, so set up ->gp_tasks accordingly.
  575. */
  576. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  577. {
  578. RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
  579. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  580. if (rcu_preempt_has_tasks(rnp))
  581. rnp->gp_tasks = rnp->blkd_tasks.next;
  582. WARN_ON_ONCE(rnp->qsmask);
  583. }
  584. /*
  585. * Check for a quiescent state from the current CPU. When a task blocks,
  586. * the task is recorded in the corresponding CPU's rcu_node structure,
  587. * which is checked elsewhere.
  588. *
  589. * Caller must disable hard irqs.
  590. */
  591. static void rcu_preempt_check_callbacks(void)
  592. {
  593. struct task_struct *t = current;
  594. if (t->rcu_read_lock_nesting == 0) {
  595. rcu_preempt_qs();
  596. return;
  597. }
  598. if (t->rcu_read_lock_nesting > 0 &&
  599. __this_cpu_read(rcu_data_p->core_needs_qs) &&
  600. __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
  601. t->rcu_read_unlock_special.b.need_qs = true;
  602. }
  603. #ifdef CONFIG_RCU_BOOST
  604. static void rcu_preempt_do_callbacks(void)
  605. {
  606. rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
  607. }
  608. #endif /* #ifdef CONFIG_RCU_BOOST */
  609. /**
  610. * call_rcu() - Queue an RCU callback for invocation after a grace period.
  611. * @head: structure to be used for queueing the RCU updates.
  612. * @func: actual callback function to be invoked after the grace period
  613. *
  614. * The callback function will be invoked some time after a full grace
  615. * period elapses, in other words after all pre-existing RCU read-side
  616. * critical sections have completed. However, the callback function
  617. * might well execute concurrently with RCU read-side critical sections
  618. * that started after call_rcu() was invoked. RCU read-side critical
  619. * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
  620. * and may be nested.
  621. *
  622. * Note that all CPUs must agree that the grace period extended beyond
  623. * all pre-existing RCU read-side critical section. On systems with more
  624. * than one CPU, this means that when "func()" is invoked, each CPU is
  625. * guaranteed to have executed a full memory barrier since the end of its
  626. * last RCU read-side critical section whose beginning preceded the call
  627. * to call_rcu(). It also means that each CPU executing an RCU read-side
  628. * critical section that continues beyond the start of "func()" must have
  629. * executed a memory barrier after the call_rcu() but before the beginning
  630. * of that RCU read-side critical section. Note that these guarantees
  631. * include CPUs that are offline, idle, or executing in user mode, as
  632. * well as CPUs that are executing in the kernel.
  633. *
  634. * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
  635. * resulting RCU callback function "func()", then both CPU A and CPU B are
  636. * guaranteed to execute a full memory barrier during the time interval
  637. * between the call to call_rcu() and the invocation of "func()" -- even
  638. * if CPU A and CPU B are the same CPU (but again only if the system has
  639. * more than one CPU).
  640. */
  641. void call_rcu(struct rcu_head *head, rcu_callback_t func)
  642. {
  643. __call_rcu(head, func, rcu_state_p, -1, 0);
  644. }
  645. EXPORT_SYMBOL_GPL(call_rcu);
  646. /**
  647. * synchronize_rcu - wait until a grace period has elapsed.
  648. *
  649. * Control will return to the caller some time after a full grace
  650. * period has elapsed, in other words after all currently executing RCU
  651. * read-side critical sections have completed. Note, however, that
  652. * upon return from synchronize_rcu(), the caller might well be executing
  653. * concurrently with new RCU read-side critical sections that began while
  654. * synchronize_rcu() was waiting. RCU read-side critical sections are
  655. * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
  656. *
  657. * See the description of synchronize_sched() for more detailed
  658. * information on memory-ordering guarantees. However, please note
  659. * that -only- the memory-ordering guarantees apply. For example,
  660. * synchronize_rcu() is -not- guaranteed to wait on things like code
  661. * protected by preempt_disable(), instead, synchronize_rcu() is -only-
  662. * guaranteed to wait on RCU read-side critical sections, that is, sections
  663. * of code protected by rcu_read_lock().
  664. */
  665. void synchronize_rcu(void)
  666. {
  667. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  668. lock_is_held(&rcu_lock_map) ||
  669. lock_is_held(&rcu_sched_lock_map),
  670. "Illegal synchronize_rcu() in RCU read-side critical section");
  671. if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
  672. return;
  673. if (rcu_gp_is_expedited())
  674. synchronize_rcu_expedited();
  675. else
  676. wait_rcu_gp(call_rcu);
  677. }
  678. EXPORT_SYMBOL_GPL(synchronize_rcu);
  679. /**
  680. * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
  681. *
  682. * Note that this primitive does not necessarily wait for an RCU grace period
  683. * to complete. For example, if there are no RCU callbacks queued anywhere
  684. * in the system, then rcu_barrier() is within its rights to return
  685. * immediately, without waiting for anything, much less an RCU grace period.
  686. */
  687. void rcu_barrier(void)
  688. {
  689. _rcu_barrier(rcu_state_p);
  690. }
  691. EXPORT_SYMBOL_GPL(rcu_barrier);
  692. /*
  693. * Initialize preemptible RCU's state structures.
  694. */
  695. static void __init __rcu_init_preempt(void)
  696. {
  697. rcu_init_one(rcu_state_p);
  698. }
  699. /*
  700. * Check for a task exiting while in a preemptible-RCU read-side
  701. * critical section, clean up if so. No need to issue warnings,
  702. * as debug_check_no_locks_held() already does this if lockdep
  703. * is enabled.
  704. */
  705. void exit_rcu(void)
  706. {
  707. struct task_struct *t = current;
  708. if (likely(list_empty(&current->rcu_node_entry)))
  709. return;
  710. t->rcu_read_lock_nesting = 1;
  711. barrier();
  712. t->rcu_read_unlock_special.b.blocked = true;
  713. __rcu_read_unlock();
  714. }
  715. #else /* #ifdef CONFIG_PREEMPT_RCU */
  716. static struct rcu_state *const rcu_state_p = &rcu_sched_state;
  717. /*
  718. * Tell them what RCU they are running.
  719. */
  720. static void __init rcu_bootup_announce(void)
  721. {
  722. pr_info("Hierarchical RCU implementation.\n");
  723. rcu_bootup_announce_oddness();
  724. }
  725. /*
  726. * Because preemptible RCU does not exist, we never have to check for
  727. * CPUs being in quiescent states.
  728. */
  729. static void rcu_preempt_note_context_switch(bool preempt)
  730. {
  731. }
  732. /*
  733. * Because preemptible RCU does not exist, there are never any preempted
  734. * RCU readers.
  735. */
  736. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  737. {
  738. return 0;
  739. }
  740. /*
  741. * Because there is no preemptible RCU, there can be no readers blocked.
  742. */
  743. static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
  744. {
  745. return false;
  746. }
  747. /*
  748. * Because preemptible RCU does not exist, we never have to check for
  749. * tasks blocked within RCU read-side critical sections.
  750. */
  751. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  752. {
  753. }
  754. /*
  755. * Because preemptible RCU does not exist, we never have to check for
  756. * tasks blocked within RCU read-side critical sections.
  757. */
  758. static int rcu_print_task_stall(struct rcu_node *rnp)
  759. {
  760. return 0;
  761. }
  762. /*
  763. * Because preemptible RCU does not exist, we never have to check for
  764. * tasks blocked within RCU read-side critical sections that are
  765. * blocking the current expedited grace period.
  766. */
  767. static int rcu_print_task_exp_stall(struct rcu_node *rnp)
  768. {
  769. return 0;
  770. }
  771. /*
  772. * Because there is no preemptible RCU, there can be no readers blocked,
  773. * so there is no need to check for blocked tasks. So check only for
  774. * bogus qsmask values.
  775. */
  776. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  777. {
  778. WARN_ON_ONCE(rnp->qsmask);
  779. }
  780. /*
  781. * Because preemptible RCU does not exist, it never has any callbacks
  782. * to check.
  783. */
  784. static void rcu_preempt_check_callbacks(void)
  785. {
  786. }
  787. /*
  788. * Because preemptible RCU does not exist, rcu_barrier() is just
  789. * another name for rcu_barrier_sched().
  790. */
  791. void rcu_barrier(void)
  792. {
  793. rcu_barrier_sched();
  794. }
  795. EXPORT_SYMBOL_GPL(rcu_barrier);
  796. /*
  797. * Because preemptible RCU does not exist, it need not be initialized.
  798. */
  799. static void __init __rcu_init_preempt(void)
  800. {
  801. }
  802. /*
  803. * Because preemptible RCU does not exist, tasks cannot possibly exit
  804. * while in preemptible RCU read-side critical sections.
  805. */
  806. void exit_rcu(void)
  807. {
  808. }
  809. #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  810. #ifdef CONFIG_RCU_BOOST
  811. #include "../locking/rtmutex_common.h"
  812. static void rcu_wake_cond(struct task_struct *t, int status)
  813. {
  814. /*
  815. * If the thread is yielding, only wake it when this
  816. * is invoked from idle
  817. */
  818. if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
  819. wake_up_process(t);
  820. }
  821. /*
  822. * Carry out RCU priority boosting on the task indicated by ->exp_tasks
  823. * or ->boost_tasks, advancing the pointer to the next task in the
  824. * ->blkd_tasks list.
  825. *
  826. * Note that irqs must be enabled: boosting the task can block.
  827. * Returns 1 if there are more tasks needing to be boosted.
  828. */
  829. static int rcu_boost(struct rcu_node *rnp)
  830. {
  831. unsigned long flags;
  832. struct task_struct *t;
  833. struct list_head *tb;
  834. if (READ_ONCE(rnp->exp_tasks) == NULL &&
  835. READ_ONCE(rnp->boost_tasks) == NULL)
  836. return 0; /* Nothing left to boost. */
  837. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  838. /*
  839. * Recheck under the lock: all tasks in need of boosting
  840. * might exit their RCU read-side critical sections on their own.
  841. */
  842. if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
  843. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  844. return 0;
  845. }
  846. /*
  847. * Preferentially boost tasks blocking expedited grace periods.
  848. * This cannot starve the normal grace periods because a second
  849. * expedited grace period must boost all blocked tasks, including
  850. * those blocking the pre-existing normal grace period.
  851. */
  852. if (rnp->exp_tasks != NULL) {
  853. tb = rnp->exp_tasks;
  854. rnp->n_exp_boosts++;
  855. } else {
  856. tb = rnp->boost_tasks;
  857. rnp->n_normal_boosts++;
  858. }
  859. rnp->n_tasks_boosted++;
  860. /*
  861. * We boost task t by manufacturing an rt_mutex that appears to
  862. * be held by task t. We leave a pointer to that rt_mutex where
  863. * task t can find it, and task t will release the mutex when it
  864. * exits its outermost RCU read-side critical section. Then
  865. * simply acquiring this artificial rt_mutex will boost task
  866. * t's priority. (Thanks to tglx for suggesting this approach!)
  867. *
  868. * Note that task t must acquire rnp->lock to remove itself from
  869. * the ->blkd_tasks list, which it will do from exit() if from
  870. * nowhere else. We therefore are guaranteed that task t will
  871. * stay around at least until we drop rnp->lock. Note that
  872. * rnp->lock also resolves races between our priority boosting
  873. * and task t's exiting its outermost RCU read-side critical
  874. * section.
  875. */
  876. t = container_of(tb, struct task_struct, rcu_node_entry);
  877. rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
  878. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  879. /* Lock only for side effect: boosts task t's priority. */
  880. rt_mutex_lock(&rnp->boost_mtx);
  881. rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
  882. return READ_ONCE(rnp->exp_tasks) != NULL ||
  883. READ_ONCE(rnp->boost_tasks) != NULL;
  884. }
  885. /*
  886. * Priority-boosting kthread, one per leaf rcu_node.
  887. */
  888. static int rcu_boost_kthread(void *arg)
  889. {
  890. struct rcu_node *rnp = (struct rcu_node *)arg;
  891. int spincnt = 0;
  892. int more2boost;
  893. trace_rcu_utilization(TPS("Start boost kthread@init"));
  894. for (;;) {
  895. rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
  896. trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
  897. rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
  898. trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
  899. rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
  900. more2boost = rcu_boost(rnp);
  901. if (more2boost)
  902. spincnt++;
  903. else
  904. spincnt = 0;
  905. if (spincnt > 10) {
  906. rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
  907. trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
  908. schedule_timeout_interruptible(2);
  909. trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
  910. spincnt = 0;
  911. }
  912. }
  913. /* NOTREACHED */
  914. trace_rcu_utilization(TPS("End boost kthread@notreached"));
  915. return 0;
  916. }
  917. /*
  918. * Check to see if it is time to start boosting RCU readers that are
  919. * blocking the current grace period, and, if so, tell the per-rcu_node
  920. * kthread to start boosting them. If there is an expedited grace
  921. * period in progress, it is always time to boost.
  922. *
  923. * The caller must hold rnp->lock, which this function releases.
  924. * The ->boost_kthread_task is immortal, so we don't need to worry
  925. * about it going away.
  926. */
  927. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  928. __releases(rnp->lock)
  929. {
  930. struct task_struct *t;
  931. lockdep_assert_held(&rnp->lock);
  932. if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
  933. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  934. return;
  935. }
  936. if (rnp->exp_tasks != NULL ||
  937. (rnp->gp_tasks != NULL &&
  938. rnp->boost_tasks == NULL &&
  939. rnp->qsmask == 0 &&
  940. ULONG_CMP_GE(jiffies, rnp->boost_time))) {
  941. if (rnp->exp_tasks == NULL)
  942. rnp->boost_tasks = rnp->gp_tasks;
  943. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  944. t = rnp->boost_kthread_task;
  945. if (t)
  946. rcu_wake_cond(t, rnp->boost_kthread_status);
  947. } else {
  948. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  949. }
  950. }
  951. /*
  952. * Wake up the per-CPU kthread to invoke RCU callbacks.
  953. */
  954. static void invoke_rcu_callbacks_kthread(void)
  955. {
  956. unsigned long flags;
  957. local_irq_save(flags);
  958. __this_cpu_write(rcu_cpu_has_work, 1);
  959. if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
  960. current != __this_cpu_read(rcu_cpu_kthread_task)) {
  961. rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
  962. __this_cpu_read(rcu_cpu_kthread_status));
  963. }
  964. local_irq_restore(flags);
  965. }
  966. /*
  967. * Is the current CPU running the RCU-callbacks kthread?
  968. * Caller must have preemption disabled.
  969. */
  970. static bool rcu_is_callbacks_kthread(void)
  971. {
  972. return __this_cpu_read(rcu_cpu_kthread_task) == current;
  973. }
  974. #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
  975. /*
  976. * Do priority-boost accounting for the start of a new grace period.
  977. */
  978. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  979. {
  980. rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
  981. }
  982. /*
  983. * Create an RCU-boost kthread for the specified node if one does not
  984. * already exist. We only create this kthread for preemptible RCU.
  985. * Returns zero if all is well, a negated errno otherwise.
  986. */
  987. static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
  988. struct rcu_node *rnp)
  989. {
  990. int rnp_index = rnp - &rsp->node[0];
  991. unsigned long flags;
  992. struct sched_param sp;
  993. struct task_struct *t;
  994. if (rcu_state_p != rsp)
  995. return 0;
  996. if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
  997. return 0;
  998. rsp->boost = 1;
  999. if (rnp->boost_kthread_task != NULL)
  1000. return 0;
  1001. t = kthread_create(rcu_boost_kthread, (void *)rnp,
  1002. "rcub/%d", rnp_index);
  1003. if (IS_ERR(t))
  1004. return PTR_ERR(t);
  1005. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1006. rnp->boost_kthread_task = t;
  1007. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1008. sp.sched_priority = kthread_prio;
  1009. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  1010. wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
  1011. return 0;
  1012. }
  1013. static void rcu_kthread_do_work(void)
  1014. {
  1015. rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
  1016. rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
  1017. rcu_preempt_do_callbacks();
  1018. }
  1019. static void rcu_cpu_kthread_setup(unsigned int cpu)
  1020. {
  1021. struct sched_param sp;
  1022. sp.sched_priority = kthread_prio;
  1023. sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
  1024. }
  1025. static void rcu_cpu_kthread_park(unsigned int cpu)
  1026. {
  1027. per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
  1028. }
  1029. static int rcu_cpu_kthread_should_run(unsigned int cpu)
  1030. {
  1031. return __this_cpu_read(rcu_cpu_has_work);
  1032. }
  1033. /*
  1034. * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
  1035. * RCU softirq used in flavors and configurations of RCU that do not
  1036. * support RCU priority boosting.
  1037. */
  1038. static void rcu_cpu_kthread(unsigned int cpu)
  1039. {
  1040. unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
  1041. char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
  1042. int spincnt;
  1043. for (spincnt = 0; spincnt < 10; spincnt++) {
  1044. trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
  1045. local_bh_disable();
  1046. *statusp = RCU_KTHREAD_RUNNING;
  1047. this_cpu_inc(rcu_cpu_kthread_loops);
  1048. local_irq_disable();
  1049. work = *workp;
  1050. *workp = 0;
  1051. local_irq_enable();
  1052. if (work)
  1053. rcu_kthread_do_work();
  1054. local_bh_enable();
  1055. if (*workp == 0) {
  1056. trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
  1057. *statusp = RCU_KTHREAD_WAITING;
  1058. return;
  1059. }
  1060. }
  1061. *statusp = RCU_KTHREAD_YIELDING;
  1062. trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
  1063. schedule_timeout_interruptible(2);
  1064. trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
  1065. *statusp = RCU_KTHREAD_WAITING;
  1066. }
  1067. /*
  1068. * Set the per-rcu_node kthread's affinity to cover all CPUs that are
  1069. * served by the rcu_node in question. The CPU hotplug lock is still
  1070. * held, so the value of rnp->qsmaskinit will be stable.
  1071. *
  1072. * We don't include outgoingcpu in the affinity set, use -1 if there is
  1073. * no outgoing CPU. If there are no CPUs left in the affinity set,
  1074. * this function allows the kthread to execute on any CPU.
  1075. */
  1076. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1077. {
  1078. struct task_struct *t = rnp->boost_kthread_task;
  1079. unsigned long mask = rcu_rnp_online_cpus(rnp);
  1080. cpumask_var_t cm;
  1081. int cpu;
  1082. if (!t)
  1083. return;
  1084. if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
  1085. return;
  1086. for_each_leaf_node_possible_cpu(rnp, cpu)
  1087. if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
  1088. cpu != outgoingcpu)
  1089. cpumask_set_cpu(cpu, cm);
  1090. if (cpumask_weight(cm) == 0)
  1091. cpumask_setall(cm);
  1092. set_cpus_allowed_ptr(t, cm);
  1093. free_cpumask_var(cm);
  1094. }
  1095. static struct smp_hotplug_thread rcu_cpu_thread_spec = {
  1096. .store = &rcu_cpu_kthread_task,
  1097. .thread_should_run = rcu_cpu_kthread_should_run,
  1098. .thread_fn = rcu_cpu_kthread,
  1099. .thread_comm = "rcuc/%u",
  1100. .setup = rcu_cpu_kthread_setup,
  1101. .park = rcu_cpu_kthread_park,
  1102. };
  1103. /*
  1104. * Spawn boost kthreads -- called as soon as the scheduler is running.
  1105. */
  1106. static void __init rcu_spawn_boost_kthreads(void)
  1107. {
  1108. struct rcu_node *rnp;
  1109. int cpu;
  1110. for_each_possible_cpu(cpu)
  1111. per_cpu(rcu_cpu_has_work, cpu) = 0;
  1112. BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
  1113. rcu_for_each_leaf_node(rcu_state_p, rnp)
  1114. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1115. }
  1116. static void rcu_prepare_kthreads(int cpu)
  1117. {
  1118. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  1119. struct rcu_node *rnp = rdp->mynode;
  1120. /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
  1121. if (rcu_scheduler_fully_active)
  1122. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1123. }
  1124. #else /* #ifdef CONFIG_RCU_BOOST */
  1125. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1126. __releases(rnp->lock)
  1127. {
  1128. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1129. }
  1130. static void invoke_rcu_callbacks_kthread(void)
  1131. {
  1132. WARN_ON_ONCE(1);
  1133. }
  1134. static bool rcu_is_callbacks_kthread(void)
  1135. {
  1136. return false;
  1137. }
  1138. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1139. {
  1140. }
  1141. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1142. {
  1143. }
  1144. static void __init rcu_spawn_boost_kthreads(void)
  1145. {
  1146. }
  1147. static void rcu_prepare_kthreads(int cpu)
  1148. {
  1149. }
  1150. #endif /* #else #ifdef CONFIG_RCU_BOOST */
  1151. #if !defined(CONFIG_RCU_FAST_NO_HZ)
  1152. /*
  1153. * Check to see if any future RCU-related work will need to be done
  1154. * by the current CPU, even if none need be done immediately, returning
  1155. * 1 if so. This function is part of the RCU implementation; it is -not-
  1156. * an exported member of the RCU API.
  1157. *
  1158. * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
  1159. * any flavor of RCU.
  1160. */
  1161. int rcu_needs_cpu(u64 basemono, u64 *nextevt)
  1162. {
  1163. *nextevt = KTIME_MAX;
  1164. return rcu_cpu_has_callbacks(NULL);
  1165. }
  1166. /*
  1167. * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
  1168. * after it.
  1169. */
  1170. static void rcu_cleanup_after_idle(void)
  1171. {
  1172. }
  1173. /*
  1174. * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
  1175. * is nothing.
  1176. */
  1177. static void rcu_prepare_for_idle(void)
  1178. {
  1179. }
  1180. /*
  1181. * Don't bother keeping a running count of the number of RCU callbacks
  1182. * posted because CONFIG_RCU_FAST_NO_HZ=n.
  1183. */
  1184. static void rcu_idle_count_callbacks_posted(void)
  1185. {
  1186. }
  1187. #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1188. /*
  1189. * This code is invoked when a CPU goes idle, at which point we want
  1190. * to have the CPU do everything required for RCU so that it can enter
  1191. * the energy-efficient dyntick-idle mode. This is handled by a
  1192. * state machine implemented by rcu_prepare_for_idle() below.
  1193. *
  1194. * The following three proprocessor symbols control this state machine:
  1195. *
  1196. * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
  1197. * to sleep in dyntick-idle mode with RCU callbacks pending. This
  1198. * is sized to be roughly one RCU grace period. Those energy-efficiency
  1199. * benchmarkers who might otherwise be tempted to set this to a large
  1200. * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
  1201. * system. And if you are -that- concerned about energy efficiency,
  1202. * just power the system down and be done with it!
  1203. * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
  1204. * permitted to sleep in dyntick-idle mode with only lazy RCU
  1205. * callbacks pending. Setting this too high can OOM your system.
  1206. *
  1207. * The values below work well in practice. If future workloads require
  1208. * adjustment, they can be converted into kernel config parameters, though
  1209. * making the state machine smarter might be a better option.
  1210. */
  1211. #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
  1212. #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
  1213. static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
  1214. module_param(rcu_idle_gp_delay, int, 0644);
  1215. static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
  1216. module_param(rcu_idle_lazy_gp_delay, int, 0644);
  1217. /*
  1218. * Try to advance callbacks for all flavors of RCU on the current CPU, but
  1219. * only if it has been awhile since the last time we did so. Afterwards,
  1220. * if there are any callbacks ready for immediate invocation, return true.
  1221. */
  1222. static bool __maybe_unused rcu_try_advance_all_cbs(void)
  1223. {
  1224. bool cbs_ready = false;
  1225. struct rcu_data *rdp;
  1226. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1227. struct rcu_node *rnp;
  1228. struct rcu_state *rsp;
  1229. /* Exit early if we advanced recently. */
  1230. if (jiffies == rdtp->last_advance_all)
  1231. return false;
  1232. rdtp->last_advance_all = jiffies;
  1233. for_each_rcu_flavor(rsp) {
  1234. rdp = this_cpu_ptr(rsp->rda);
  1235. rnp = rdp->mynode;
  1236. /*
  1237. * Don't bother checking unless a grace period has
  1238. * completed since we last checked and there are
  1239. * callbacks not yet ready to invoke.
  1240. */
  1241. if ((rdp->completed != rnp->completed ||
  1242. unlikely(READ_ONCE(rdp->gpwrap))) &&
  1243. rcu_segcblist_pend_cbs(&rdp->cblist))
  1244. note_gp_changes(rsp, rdp);
  1245. if (rcu_segcblist_ready_cbs(&rdp->cblist))
  1246. cbs_ready = true;
  1247. }
  1248. return cbs_ready;
  1249. }
  1250. /*
  1251. * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
  1252. * to invoke. If the CPU has callbacks, try to advance them. Tell the
  1253. * caller to set the timeout based on whether or not there are non-lazy
  1254. * callbacks.
  1255. *
  1256. * The caller must have disabled interrupts.
  1257. */
  1258. int rcu_needs_cpu(u64 basemono, u64 *nextevt)
  1259. {
  1260. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1261. unsigned long dj;
  1262. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_needs_cpu() invoked with irqs enabled!!!");
  1263. /* Snapshot to detect later posting of non-lazy callback. */
  1264. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1265. /* If no callbacks, RCU doesn't need the CPU. */
  1266. if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
  1267. *nextevt = KTIME_MAX;
  1268. return 0;
  1269. }
  1270. /* Attempt to advance callbacks. */
  1271. if (rcu_try_advance_all_cbs()) {
  1272. /* Some ready to invoke, so initiate later invocation. */
  1273. invoke_rcu_core();
  1274. return 1;
  1275. }
  1276. rdtp->last_accelerate = jiffies;
  1277. /* Request timer delay depending on laziness, and round. */
  1278. if (!rdtp->all_lazy) {
  1279. dj = round_up(rcu_idle_gp_delay + jiffies,
  1280. rcu_idle_gp_delay) - jiffies;
  1281. } else {
  1282. dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
  1283. }
  1284. *nextevt = basemono + dj * TICK_NSEC;
  1285. return 0;
  1286. }
  1287. /*
  1288. * Prepare a CPU for idle from an RCU perspective. The first major task
  1289. * is to sense whether nohz mode has been enabled or disabled via sysfs.
  1290. * The second major task is to check to see if a non-lazy callback has
  1291. * arrived at a CPU that previously had only lazy callbacks. The third
  1292. * major task is to accelerate (that is, assign grace-period numbers to)
  1293. * any recently arrived callbacks.
  1294. *
  1295. * The caller must have disabled interrupts.
  1296. */
  1297. static void rcu_prepare_for_idle(void)
  1298. {
  1299. bool needwake;
  1300. struct rcu_data *rdp;
  1301. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1302. struct rcu_node *rnp;
  1303. struct rcu_state *rsp;
  1304. int tne;
  1305. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_prepare_for_idle() invoked with irqs enabled!!!");
  1306. if (rcu_is_nocb_cpu(smp_processor_id()))
  1307. return;
  1308. /* Handle nohz enablement switches conservatively. */
  1309. tne = READ_ONCE(tick_nohz_active);
  1310. if (tne != rdtp->tick_nohz_enabled_snap) {
  1311. if (rcu_cpu_has_callbacks(NULL))
  1312. invoke_rcu_core(); /* force nohz to see update. */
  1313. rdtp->tick_nohz_enabled_snap = tne;
  1314. return;
  1315. }
  1316. if (!tne)
  1317. return;
  1318. /*
  1319. * If a non-lazy callback arrived at a CPU having only lazy
  1320. * callbacks, invoke RCU core for the side-effect of recalculating
  1321. * idle duration on re-entry to idle.
  1322. */
  1323. if (rdtp->all_lazy &&
  1324. rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
  1325. rdtp->all_lazy = false;
  1326. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1327. invoke_rcu_core();
  1328. return;
  1329. }
  1330. /*
  1331. * If we have not yet accelerated this jiffy, accelerate all
  1332. * callbacks on this CPU.
  1333. */
  1334. if (rdtp->last_accelerate == jiffies)
  1335. return;
  1336. rdtp->last_accelerate = jiffies;
  1337. for_each_rcu_flavor(rsp) {
  1338. rdp = this_cpu_ptr(rsp->rda);
  1339. if (rcu_segcblist_pend_cbs(&rdp->cblist))
  1340. continue;
  1341. rnp = rdp->mynode;
  1342. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  1343. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  1344. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
  1345. if (needwake)
  1346. rcu_gp_kthread_wake(rsp);
  1347. }
  1348. }
  1349. /*
  1350. * Clean up for exit from idle. Attempt to advance callbacks based on
  1351. * any grace periods that elapsed while the CPU was idle, and if any
  1352. * callbacks are now ready to invoke, initiate invocation.
  1353. */
  1354. static void rcu_cleanup_after_idle(void)
  1355. {
  1356. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_cleanup_after_idle() invoked with irqs enabled!!!");
  1357. if (rcu_is_nocb_cpu(smp_processor_id()))
  1358. return;
  1359. if (rcu_try_advance_all_cbs())
  1360. invoke_rcu_core();
  1361. }
  1362. /*
  1363. * Keep a running count of the number of non-lazy callbacks posted
  1364. * on this CPU. This running counter (which is never decremented) allows
  1365. * rcu_prepare_for_idle() to detect when something out of the idle loop
  1366. * posts a callback, even if an equal number of callbacks are invoked.
  1367. * Of course, callbacks should only be posted from within a trace event
  1368. * designed to be called from idle or from within RCU_NONIDLE().
  1369. */
  1370. static void rcu_idle_count_callbacks_posted(void)
  1371. {
  1372. __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
  1373. }
  1374. /*
  1375. * Data for flushing lazy RCU callbacks at OOM time.
  1376. */
  1377. static atomic_t oom_callback_count;
  1378. static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
  1379. /*
  1380. * RCU OOM callback -- decrement the outstanding count and deliver the
  1381. * wake-up if we are the last one.
  1382. */
  1383. static void rcu_oom_callback(struct rcu_head *rhp)
  1384. {
  1385. if (atomic_dec_and_test(&oom_callback_count))
  1386. wake_up(&oom_callback_wq);
  1387. }
  1388. /*
  1389. * Post an rcu_oom_notify callback on the current CPU if it has at
  1390. * least one lazy callback. This will unnecessarily post callbacks
  1391. * to CPUs that already have a non-lazy callback at the end of their
  1392. * callback list, but this is an infrequent operation, so accept some
  1393. * extra overhead to keep things simple.
  1394. */
  1395. static void rcu_oom_notify_cpu(void *unused)
  1396. {
  1397. struct rcu_state *rsp;
  1398. struct rcu_data *rdp;
  1399. for_each_rcu_flavor(rsp) {
  1400. rdp = raw_cpu_ptr(rsp->rda);
  1401. if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
  1402. atomic_inc(&oom_callback_count);
  1403. rsp->call(&rdp->oom_head, rcu_oom_callback);
  1404. }
  1405. }
  1406. }
  1407. /*
  1408. * If low on memory, ensure that each CPU has a non-lazy callback.
  1409. * This will wake up CPUs that have only lazy callbacks, in turn
  1410. * ensuring that they free up the corresponding memory in a timely manner.
  1411. * Because an uncertain amount of memory will be freed in some uncertain
  1412. * timeframe, we do not claim to have freed anything.
  1413. */
  1414. static int rcu_oom_notify(struct notifier_block *self,
  1415. unsigned long notused, void *nfreed)
  1416. {
  1417. int cpu;
  1418. /* Wait for callbacks from earlier instance to complete. */
  1419. wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
  1420. smp_mb(); /* Ensure callback reuse happens after callback invocation. */
  1421. /*
  1422. * Prevent premature wakeup: ensure that all increments happen
  1423. * before there is a chance of the counter reaching zero.
  1424. */
  1425. atomic_set(&oom_callback_count, 1);
  1426. for_each_online_cpu(cpu) {
  1427. smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
  1428. cond_resched_rcu_qs();
  1429. }
  1430. /* Unconditionally decrement: no need to wake ourselves up. */
  1431. atomic_dec(&oom_callback_count);
  1432. return NOTIFY_OK;
  1433. }
  1434. static struct notifier_block rcu_oom_nb = {
  1435. .notifier_call = rcu_oom_notify
  1436. };
  1437. static int __init rcu_register_oom_notifier(void)
  1438. {
  1439. register_oom_notifier(&rcu_oom_nb);
  1440. return 0;
  1441. }
  1442. early_initcall(rcu_register_oom_notifier);
  1443. #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1444. #ifdef CONFIG_RCU_FAST_NO_HZ
  1445. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1446. {
  1447. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1448. unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
  1449. sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
  1450. rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
  1451. ulong2long(nlpd),
  1452. rdtp->all_lazy ? 'L' : '.',
  1453. rdtp->tick_nohz_enabled_snap ? '.' : 'D');
  1454. }
  1455. #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
  1456. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1457. {
  1458. *cp = '\0';
  1459. }
  1460. #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
  1461. /* Initiate the stall-info list. */
  1462. static void print_cpu_stall_info_begin(void)
  1463. {
  1464. pr_cont("\n");
  1465. }
  1466. /*
  1467. * Print out diagnostic information for the specified stalled CPU.
  1468. *
  1469. * If the specified CPU is aware of the current RCU grace period
  1470. * (flavor specified by rsp), then print the number of scheduling
  1471. * clock interrupts the CPU has taken during the time that it has
  1472. * been aware. Otherwise, print the number of RCU grace periods
  1473. * that this CPU is ignorant of, for example, "1" if the CPU was
  1474. * aware of the previous grace period.
  1475. *
  1476. * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
  1477. */
  1478. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1479. {
  1480. char fast_no_hz[72];
  1481. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1482. struct rcu_dynticks *rdtp = rdp->dynticks;
  1483. char *ticks_title;
  1484. unsigned long ticks_value;
  1485. if (rsp->gpnum == rdp->gpnum) {
  1486. ticks_title = "ticks this GP";
  1487. ticks_value = rdp->ticks_this_gp;
  1488. } else {
  1489. ticks_title = "GPs behind";
  1490. ticks_value = rsp->gpnum - rdp->gpnum;
  1491. }
  1492. print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
  1493. pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
  1494. cpu,
  1495. "O."[!!cpu_online(cpu)],
  1496. "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
  1497. "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
  1498. ticks_value, ticks_title,
  1499. rcu_dynticks_snap(rdtp) & 0xfff,
  1500. rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
  1501. rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
  1502. READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
  1503. fast_no_hz);
  1504. }
  1505. /* Terminate the stall-info list. */
  1506. static void print_cpu_stall_info_end(void)
  1507. {
  1508. pr_err("\t");
  1509. }
  1510. /* Zero ->ticks_this_gp for all flavors of RCU. */
  1511. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1512. {
  1513. rdp->ticks_this_gp = 0;
  1514. rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
  1515. }
  1516. /* Increment ->ticks_this_gp for all flavors of RCU. */
  1517. static void increment_cpu_stall_ticks(void)
  1518. {
  1519. struct rcu_state *rsp;
  1520. for_each_rcu_flavor(rsp)
  1521. raw_cpu_inc(rsp->rda->ticks_this_gp);
  1522. }
  1523. #ifdef CONFIG_RCU_NOCB_CPU
  1524. /*
  1525. * Offload callback processing from the boot-time-specified set of CPUs
  1526. * specified by rcu_nocb_mask. For each CPU in the set, there is a
  1527. * kthread created that pulls the callbacks from the corresponding CPU,
  1528. * waits for a grace period to elapse, and invokes the callbacks.
  1529. * The no-CBs CPUs do a wake_up() on their kthread when they insert
  1530. * a callback into any empty list, unless the rcu_nocb_poll boot parameter
  1531. * has been specified, in which case each kthread actively polls its
  1532. * CPU. (Which isn't so great for energy efficiency, but which does
  1533. * reduce RCU's overhead on that CPU.)
  1534. *
  1535. * This is intended to be used in conjunction with Frederic Weisbecker's
  1536. * adaptive-idle work, which would seriously reduce OS jitter on CPUs
  1537. * running CPU-bound user-mode computations.
  1538. *
  1539. * Offloading of callback processing could also in theory be used as
  1540. * an energy-efficiency measure because CPUs with no RCU callbacks
  1541. * queued are more aggressive about entering dyntick-idle mode.
  1542. */
  1543. /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
  1544. static int __init rcu_nocb_setup(char *str)
  1545. {
  1546. alloc_bootmem_cpumask_var(&rcu_nocb_mask);
  1547. have_rcu_nocb_mask = true;
  1548. cpulist_parse(str, rcu_nocb_mask);
  1549. return 1;
  1550. }
  1551. __setup("rcu_nocbs=", rcu_nocb_setup);
  1552. static int __init parse_rcu_nocb_poll(char *arg)
  1553. {
  1554. rcu_nocb_poll = true;
  1555. return 0;
  1556. }
  1557. early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
  1558. /*
  1559. * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
  1560. * grace period.
  1561. */
  1562. static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
  1563. {
  1564. swake_up_all(sq);
  1565. }
  1566. /*
  1567. * Set the root rcu_node structure's ->need_future_gp field
  1568. * based on the sum of those of all rcu_node structures. This does
  1569. * double-count the root rcu_node structure's requests, but this
  1570. * is necessary to handle the possibility of a rcu_nocb_kthread()
  1571. * having awakened during the time that the rcu_node structures
  1572. * were being updated for the end of the previous grace period.
  1573. */
  1574. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  1575. {
  1576. rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
  1577. }
  1578. static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
  1579. {
  1580. return &rnp->nocb_gp_wq[rnp->completed & 0x1];
  1581. }
  1582. static void rcu_init_one_nocb(struct rcu_node *rnp)
  1583. {
  1584. init_swait_queue_head(&rnp->nocb_gp_wq[0]);
  1585. init_swait_queue_head(&rnp->nocb_gp_wq[1]);
  1586. }
  1587. /* Is the specified CPU a no-CBs CPU? */
  1588. bool rcu_is_nocb_cpu(int cpu)
  1589. {
  1590. if (have_rcu_nocb_mask)
  1591. return cpumask_test_cpu(cpu, rcu_nocb_mask);
  1592. return false;
  1593. }
  1594. /*
  1595. * Kick the leader kthread for this NOCB group.
  1596. */
  1597. static void wake_nocb_leader(struct rcu_data *rdp, bool force)
  1598. {
  1599. struct rcu_data *rdp_leader = rdp->nocb_leader;
  1600. if (!READ_ONCE(rdp_leader->nocb_kthread))
  1601. return;
  1602. if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
  1603. /* Prior smp_mb__after_atomic() orders against prior enqueue. */
  1604. WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
  1605. smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
  1606. swake_up(&rdp_leader->nocb_wq);
  1607. }
  1608. }
  1609. /*
  1610. * Does the specified CPU need an RCU callback for the specified flavor
  1611. * of rcu_barrier()?
  1612. */
  1613. static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
  1614. {
  1615. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1616. unsigned long ret;
  1617. #ifdef CONFIG_PROVE_RCU
  1618. struct rcu_head *rhp;
  1619. #endif /* #ifdef CONFIG_PROVE_RCU */
  1620. /*
  1621. * Check count of all no-CBs callbacks awaiting invocation.
  1622. * There needs to be a barrier before this function is called,
  1623. * but associated with a prior determination that no more
  1624. * callbacks would be posted. In the worst case, the first
  1625. * barrier in _rcu_barrier() suffices (but the caller cannot
  1626. * necessarily rely on this, not a substitute for the caller
  1627. * getting the concurrency design right!). There must also be
  1628. * a barrier between the following load an posting of a callback
  1629. * (if a callback is in fact needed). This is associated with an
  1630. * atomic_inc() in the caller.
  1631. */
  1632. ret = atomic_long_read(&rdp->nocb_q_count);
  1633. #ifdef CONFIG_PROVE_RCU
  1634. rhp = READ_ONCE(rdp->nocb_head);
  1635. if (!rhp)
  1636. rhp = READ_ONCE(rdp->nocb_gp_head);
  1637. if (!rhp)
  1638. rhp = READ_ONCE(rdp->nocb_follower_head);
  1639. /* Having no rcuo kthread but CBs after scheduler starts is bad! */
  1640. if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
  1641. rcu_scheduler_fully_active) {
  1642. /* RCU callback enqueued before CPU first came online??? */
  1643. pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
  1644. cpu, rhp->func);
  1645. WARN_ON_ONCE(1);
  1646. }
  1647. #endif /* #ifdef CONFIG_PROVE_RCU */
  1648. return !!ret;
  1649. }
  1650. /*
  1651. * Enqueue the specified string of rcu_head structures onto the specified
  1652. * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
  1653. * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
  1654. * counts are supplied by rhcount and rhcount_lazy.
  1655. *
  1656. * If warranted, also wake up the kthread servicing this CPUs queues.
  1657. */
  1658. static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
  1659. struct rcu_head *rhp,
  1660. struct rcu_head **rhtp,
  1661. int rhcount, int rhcount_lazy,
  1662. unsigned long flags)
  1663. {
  1664. int len;
  1665. struct rcu_head **old_rhpp;
  1666. struct task_struct *t;
  1667. /* Enqueue the callback on the nocb list and update counts. */
  1668. atomic_long_add(rhcount, &rdp->nocb_q_count);
  1669. /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
  1670. old_rhpp = xchg(&rdp->nocb_tail, rhtp);
  1671. WRITE_ONCE(*old_rhpp, rhp);
  1672. atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
  1673. smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
  1674. /* If we are not being polled and there is a kthread, awaken it ... */
  1675. t = READ_ONCE(rdp->nocb_kthread);
  1676. if (rcu_nocb_poll || !t) {
  1677. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1678. TPS("WakeNotPoll"));
  1679. return;
  1680. }
  1681. len = atomic_long_read(&rdp->nocb_q_count);
  1682. if (old_rhpp == &rdp->nocb_head) {
  1683. if (!irqs_disabled_flags(flags)) {
  1684. /* ... if queue was empty ... */
  1685. wake_nocb_leader(rdp, false);
  1686. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1687. TPS("WakeEmpty"));
  1688. } else {
  1689. WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE);
  1690. /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
  1691. smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true);
  1692. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1693. TPS("WakeEmptyIsDeferred"));
  1694. }
  1695. rdp->qlen_last_fqs_check = 0;
  1696. } else if (len > rdp->qlen_last_fqs_check + qhimark) {
  1697. /* ... or if many callbacks queued. */
  1698. if (!irqs_disabled_flags(flags)) {
  1699. wake_nocb_leader(rdp, true);
  1700. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1701. TPS("WakeOvf"));
  1702. } else {
  1703. WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_FORCE);
  1704. /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
  1705. smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true);
  1706. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1707. TPS("WakeOvfIsDeferred"));
  1708. }
  1709. rdp->qlen_last_fqs_check = LONG_MAX / 2;
  1710. } else {
  1711. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
  1712. }
  1713. return;
  1714. }
  1715. /*
  1716. * This is a helper for __call_rcu(), which invokes this when the normal
  1717. * callback queue is inoperable. If this is not a no-CBs CPU, this
  1718. * function returns failure back to __call_rcu(), which can complain
  1719. * appropriately.
  1720. *
  1721. * Otherwise, this function queues the callback where the corresponding
  1722. * "rcuo" kthread can find it.
  1723. */
  1724. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  1725. bool lazy, unsigned long flags)
  1726. {
  1727. if (!rcu_is_nocb_cpu(rdp->cpu))
  1728. return false;
  1729. __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
  1730. if (__is_kfree_rcu_offset((unsigned long)rhp->func))
  1731. trace_rcu_kfree_callback(rdp->rsp->name, rhp,
  1732. (unsigned long)rhp->func,
  1733. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1734. -atomic_long_read(&rdp->nocb_q_count));
  1735. else
  1736. trace_rcu_callback(rdp->rsp->name, rhp,
  1737. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1738. -atomic_long_read(&rdp->nocb_q_count));
  1739. /*
  1740. * If called from an extended quiescent state with interrupts
  1741. * disabled, invoke the RCU core in order to allow the idle-entry
  1742. * deferred-wakeup check to function.
  1743. */
  1744. if (irqs_disabled_flags(flags) &&
  1745. !rcu_is_watching() &&
  1746. cpu_online(smp_processor_id()))
  1747. invoke_rcu_core();
  1748. return true;
  1749. }
  1750. /*
  1751. * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
  1752. * not a no-CBs CPU.
  1753. */
  1754. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  1755. struct rcu_data *rdp,
  1756. unsigned long flags)
  1757. {
  1758. long ql = rsp->orphan_done.len;
  1759. long qll = rsp->orphan_done.len_lazy;
  1760. /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
  1761. if (!rcu_is_nocb_cpu(smp_processor_id()))
  1762. return false;
  1763. /* First, enqueue the donelist, if any. This preserves CB ordering. */
  1764. if (rsp->orphan_done.head) {
  1765. __call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_done),
  1766. rcu_cblist_tail(&rsp->orphan_done),
  1767. ql, qll, flags);
  1768. }
  1769. if (rsp->orphan_pend.head) {
  1770. __call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_pend),
  1771. rcu_cblist_tail(&rsp->orphan_pend),
  1772. ql, qll, flags);
  1773. }
  1774. rcu_cblist_init(&rsp->orphan_done);
  1775. rcu_cblist_init(&rsp->orphan_pend);
  1776. return true;
  1777. }
  1778. /*
  1779. * If necessary, kick off a new grace period, and either way wait
  1780. * for a subsequent grace period to complete.
  1781. */
  1782. static void rcu_nocb_wait_gp(struct rcu_data *rdp)
  1783. {
  1784. unsigned long c;
  1785. bool d;
  1786. unsigned long flags;
  1787. bool needwake;
  1788. struct rcu_node *rnp = rdp->mynode;
  1789. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1790. needwake = rcu_start_future_gp(rnp, rdp, &c);
  1791. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1792. if (needwake)
  1793. rcu_gp_kthread_wake(rdp->rsp);
  1794. /*
  1795. * Wait for the grace period. Do so interruptibly to avoid messing
  1796. * up the load average.
  1797. */
  1798. trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
  1799. for (;;) {
  1800. swait_event_interruptible(
  1801. rnp->nocb_gp_wq[c & 0x1],
  1802. (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
  1803. if (likely(d))
  1804. break;
  1805. WARN_ON(signal_pending(current));
  1806. trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
  1807. }
  1808. trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
  1809. smp_mb(); /* Ensure that CB invocation happens after GP end. */
  1810. }
  1811. /*
  1812. * Leaders come here to wait for additional callbacks to show up.
  1813. * This function does not return until callbacks appear.
  1814. */
  1815. static void nocb_leader_wait(struct rcu_data *my_rdp)
  1816. {
  1817. bool firsttime = true;
  1818. bool gotcbs;
  1819. struct rcu_data *rdp;
  1820. struct rcu_head **tail;
  1821. wait_again:
  1822. /* Wait for callbacks to appear. */
  1823. if (!rcu_nocb_poll) {
  1824. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
  1825. swait_event_interruptible(my_rdp->nocb_wq,
  1826. !READ_ONCE(my_rdp->nocb_leader_sleep));
  1827. /* Memory barrier handled by smp_mb() calls below and repoll. */
  1828. } else if (firsttime) {
  1829. firsttime = false; /* Don't drown trace log with "Poll"! */
  1830. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
  1831. }
  1832. /*
  1833. * Each pass through the following loop checks a follower for CBs.
  1834. * We are our own first follower. Any CBs found are moved to
  1835. * nocb_gp_head, where they await a grace period.
  1836. */
  1837. gotcbs = false;
  1838. smp_mb(); /* wakeup before ->nocb_head reads. */
  1839. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  1840. rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
  1841. if (!rdp->nocb_gp_head)
  1842. continue; /* No CBs here, try next follower. */
  1843. /* Move callbacks to wait-for-GP list, which is empty. */
  1844. WRITE_ONCE(rdp->nocb_head, NULL);
  1845. rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
  1846. gotcbs = true;
  1847. }
  1848. /*
  1849. * If there were no callbacks, sleep a bit, rescan after a
  1850. * memory barrier, and go retry.
  1851. */
  1852. if (unlikely(!gotcbs)) {
  1853. if (!rcu_nocb_poll)
  1854. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
  1855. "WokeEmpty");
  1856. WARN_ON(signal_pending(current));
  1857. schedule_timeout_interruptible(1);
  1858. /* Rescan in case we were a victim of memory ordering. */
  1859. my_rdp->nocb_leader_sleep = true;
  1860. smp_mb(); /* Ensure _sleep true before scan. */
  1861. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
  1862. if (READ_ONCE(rdp->nocb_head)) {
  1863. /* Found CB, so short-circuit next wait. */
  1864. my_rdp->nocb_leader_sleep = false;
  1865. break;
  1866. }
  1867. goto wait_again;
  1868. }
  1869. /* Wait for one grace period. */
  1870. rcu_nocb_wait_gp(my_rdp);
  1871. /*
  1872. * We left ->nocb_leader_sleep unset to reduce cache thrashing.
  1873. * We set it now, but recheck for new callbacks while
  1874. * traversing our follower list.
  1875. */
  1876. my_rdp->nocb_leader_sleep = true;
  1877. smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
  1878. /* Each pass through the following loop wakes a follower, if needed. */
  1879. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  1880. if (READ_ONCE(rdp->nocb_head))
  1881. my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
  1882. if (!rdp->nocb_gp_head)
  1883. continue; /* No CBs, so no need to wake follower. */
  1884. /* Append callbacks to follower's "done" list. */
  1885. tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
  1886. *tail = rdp->nocb_gp_head;
  1887. smp_mb__after_atomic(); /* Store *tail before wakeup. */
  1888. if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
  1889. /*
  1890. * List was empty, wake up the follower.
  1891. * Memory barriers supplied by atomic_long_add().
  1892. */
  1893. swake_up(&rdp->nocb_wq);
  1894. }
  1895. }
  1896. /* If we (the leader) don't have CBs, go wait some more. */
  1897. if (!my_rdp->nocb_follower_head)
  1898. goto wait_again;
  1899. }
  1900. /*
  1901. * Followers come here to wait for additional callbacks to show up.
  1902. * This function does not return until callbacks appear.
  1903. */
  1904. static void nocb_follower_wait(struct rcu_data *rdp)
  1905. {
  1906. bool firsttime = true;
  1907. for (;;) {
  1908. if (!rcu_nocb_poll) {
  1909. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1910. "FollowerSleep");
  1911. swait_event_interruptible(rdp->nocb_wq,
  1912. READ_ONCE(rdp->nocb_follower_head));
  1913. } else if (firsttime) {
  1914. /* Don't drown trace log with "Poll"! */
  1915. firsttime = false;
  1916. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
  1917. }
  1918. if (smp_load_acquire(&rdp->nocb_follower_head)) {
  1919. /* ^^^ Ensure CB invocation follows _head test. */
  1920. return;
  1921. }
  1922. if (!rcu_nocb_poll)
  1923. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1924. "WokeEmpty");
  1925. WARN_ON(signal_pending(current));
  1926. schedule_timeout_interruptible(1);
  1927. }
  1928. }
  1929. /*
  1930. * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
  1931. * callbacks queued by the corresponding no-CBs CPU, however, there is
  1932. * an optional leader-follower relationship so that the grace-period
  1933. * kthreads don't have to do quite so many wakeups.
  1934. */
  1935. static int rcu_nocb_kthread(void *arg)
  1936. {
  1937. int c, cl;
  1938. struct rcu_head *list;
  1939. struct rcu_head *next;
  1940. struct rcu_head **tail;
  1941. struct rcu_data *rdp = arg;
  1942. /* Each pass through this loop invokes one batch of callbacks */
  1943. for (;;) {
  1944. /* Wait for callbacks. */
  1945. if (rdp->nocb_leader == rdp)
  1946. nocb_leader_wait(rdp);
  1947. else
  1948. nocb_follower_wait(rdp);
  1949. /* Pull the ready-to-invoke callbacks onto local list. */
  1950. list = READ_ONCE(rdp->nocb_follower_head);
  1951. BUG_ON(!list);
  1952. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
  1953. WRITE_ONCE(rdp->nocb_follower_head, NULL);
  1954. tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
  1955. /* Each pass through the following loop invokes a callback. */
  1956. trace_rcu_batch_start(rdp->rsp->name,
  1957. atomic_long_read(&rdp->nocb_q_count_lazy),
  1958. atomic_long_read(&rdp->nocb_q_count), -1);
  1959. c = cl = 0;
  1960. while (list) {
  1961. next = list->next;
  1962. /* Wait for enqueuing to complete, if needed. */
  1963. while (next == NULL && &list->next != tail) {
  1964. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1965. TPS("WaitQueue"));
  1966. schedule_timeout_interruptible(1);
  1967. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1968. TPS("WokeQueue"));
  1969. next = list->next;
  1970. }
  1971. debug_rcu_head_unqueue(list);
  1972. local_bh_disable();
  1973. if (__rcu_reclaim(rdp->rsp->name, list))
  1974. cl++;
  1975. c++;
  1976. local_bh_enable();
  1977. cond_resched_rcu_qs();
  1978. list = next;
  1979. }
  1980. trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
  1981. smp_mb__before_atomic(); /* _add after CB invocation. */
  1982. atomic_long_add(-c, &rdp->nocb_q_count);
  1983. atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
  1984. rdp->n_nocbs_invoked += c;
  1985. }
  1986. return 0;
  1987. }
  1988. /* Is a deferred wakeup of rcu_nocb_kthread() required? */
  1989. static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  1990. {
  1991. return READ_ONCE(rdp->nocb_defer_wakeup);
  1992. }
  1993. /* Do a deferred wakeup of rcu_nocb_kthread(). */
  1994. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  1995. {
  1996. int ndw;
  1997. if (!rcu_nocb_need_deferred_wakeup(rdp))
  1998. return;
  1999. ndw = READ_ONCE(rdp->nocb_defer_wakeup);
  2000. WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
  2001. wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE);
  2002. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
  2003. }
  2004. void __init rcu_init_nohz(void)
  2005. {
  2006. int cpu;
  2007. bool need_rcu_nocb_mask = true;
  2008. struct rcu_state *rsp;
  2009. #if defined(CONFIG_NO_HZ_FULL)
  2010. if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
  2011. need_rcu_nocb_mask = true;
  2012. #endif /* #if defined(CONFIG_NO_HZ_FULL) */
  2013. if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
  2014. if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
  2015. pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
  2016. return;
  2017. }
  2018. have_rcu_nocb_mask = true;
  2019. }
  2020. if (!have_rcu_nocb_mask)
  2021. return;
  2022. #if defined(CONFIG_NO_HZ_FULL)
  2023. if (tick_nohz_full_running)
  2024. cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
  2025. #endif /* #if defined(CONFIG_NO_HZ_FULL) */
  2026. if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
  2027. pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
  2028. cpumask_and(rcu_nocb_mask, cpu_possible_mask,
  2029. rcu_nocb_mask);
  2030. }
  2031. pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
  2032. cpumask_pr_args(rcu_nocb_mask));
  2033. if (rcu_nocb_poll)
  2034. pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
  2035. for_each_rcu_flavor(rsp) {
  2036. for_each_cpu(cpu, rcu_nocb_mask)
  2037. init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
  2038. rcu_organize_nocb_kthreads(rsp);
  2039. }
  2040. }
  2041. /* Initialize per-rcu_data variables for no-CBs CPUs. */
  2042. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2043. {
  2044. rdp->nocb_tail = &rdp->nocb_head;
  2045. init_swait_queue_head(&rdp->nocb_wq);
  2046. rdp->nocb_follower_tail = &rdp->nocb_follower_head;
  2047. }
  2048. /*
  2049. * If the specified CPU is a no-CBs CPU that does not already have its
  2050. * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
  2051. * brought online out of order, this can require re-organizing the
  2052. * leader-follower relationships.
  2053. */
  2054. static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
  2055. {
  2056. struct rcu_data *rdp;
  2057. struct rcu_data *rdp_last;
  2058. struct rcu_data *rdp_old_leader;
  2059. struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
  2060. struct task_struct *t;
  2061. /*
  2062. * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
  2063. * then nothing to do.
  2064. */
  2065. if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
  2066. return;
  2067. /* If we didn't spawn the leader first, reorganize! */
  2068. rdp_old_leader = rdp_spawn->nocb_leader;
  2069. if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
  2070. rdp_last = NULL;
  2071. rdp = rdp_old_leader;
  2072. do {
  2073. rdp->nocb_leader = rdp_spawn;
  2074. if (rdp_last && rdp != rdp_spawn)
  2075. rdp_last->nocb_next_follower = rdp;
  2076. if (rdp == rdp_spawn) {
  2077. rdp = rdp->nocb_next_follower;
  2078. } else {
  2079. rdp_last = rdp;
  2080. rdp = rdp->nocb_next_follower;
  2081. rdp_last->nocb_next_follower = NULL;
  2082. }
  2083. } while (rdp);
  2084. rdp_spawn->nocb_next_follower = rdp_old_leader;
  2085. }
  2086. /* Spawn the kthread for this CPU and RCU flavor. */
  2087. t = kthread_run(rcu_nocb_kthread, rdp_spawn,
  2088. "rcuo%c/%d", rsp->abbr, cpu);
  2089. BUG_ON(IS_ERR(t));
  2090. WRITE_ONCE(rdp_spawn->nocb_kthread, t);
  2091. }
  2092. /*
  2093. * If the specified CPU is a no-CBs CPU that does not already have its
  2094. * rcuo kthreads, spawn them.
  2095. */
  2096. static void rcu_spawn_all_nocb_kthreads(int cpu)
  2097. {
  2098. struct rcu_state *rsp;
  2099. if (rcu_scheduler_fully_active)
  2100. for_each_rcu_flavor(rsp)
  2101. rcu_spawn_one_nocb_kthread(rsp, cpu);
  2102. }
  2103. /*
  2104. * Once the scheduler is running, spawn rcuo kthreads for all online
  2105. * no-CBs CPUs. This assumes that the early_initcall()s happen before
  2106. * non-boot CPUs come online -- if this changes, we will need to add
  2107. * some mutual exclusion.
  2108. */
  2109. static void __init rcu_spawn_nocb_kthreads(void)
  2110. {
  2111. int cpu;
  2112. for_each_online_cpu(cpu)
  2113. rcu_spawn_all_nocb_kthreads(cpu);
  2114. }
  2115. /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
  2116. static int rcu_nocb_leader_stride = -1;
  2117. module_param(rcu_nocb_leader_stride, int, 0444);
  2118. /*
  2119. * Initialize leader-follower relationships for all no-CBs CPU.
  2120. */
  2121. static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
  2122. {
  2123. int cpu;
  2124. int ls = rcu_nocb_leader_stride;
  2125. int nl = 0; /* Next leader. */
  2126. struct rcu_data *rdp;
  2127. struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
  2128. struct rcu_data *rdp_prev = NULL;
  2129. if (!have_rcu_nocb_mask)
  2130. return;
  2131. if (ls == -1) {
  2132. ls = int_sqrt(nr_cpu_ids);
  2133. rcu_nocb_leader_stride = ls;
  2134. }
  2135. /*
  2136. * Each pass through this loop sets up one rcu_data structure.
  2137. * Should the corresponding CPU come online in the future, then
  2138. * we will spawn the needed set of rcu_nocb_kthread() kthreads.
  2139. */
  2140. for_each_cpu(cpu, rcu_nocb_mask) {
  2141. rdp = per_cpu_ptr(rsp->rda, cpu);
  2142. if (rdp->cpu >= nl) {
  2143. /* New leader, set up for followers & next leader. */
  2144. nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
  2145. rdp->nocb_leader = rdp;
  2146. rdp_leader = rdp;
  2147. } else {
  2148. /* Another follower, link to previous leader. */
  2149. rdp->nocb_leader = rdp_leader;
  2150. rdp_prev->nocb_next_follower = rdp;
  2151. }
  2152. rdp_prev = rdp;
  2153. }
  2154. }
  2155. /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
  2156. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2157. {
  2158. if (!rcu_is_nocb_cpu(rdp->cpu))
  2159. return false;
  2160. /* If there are early-boot callbacks, move them to nocb lists. */
  2161. if (!rcu_segcblist_empty(&rdp->cblist)) {
  2162. rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
  2163. rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
  2164. atomic_long_set(&rdp->nocb_q_count,
  2165. rcu_segcblist_n_cbs(&rdp->cblist));
  2166. atomic_long_set(&rdp->nocb_q_count_lazy,
  2167. rcu_segcblist_n_lazy_cbs(&rdp->cblist));
  2168. rcu_segcblist_init(&rdp->cblist);
  2169. }
  2170. rcu_segcblist_disable(&rdp->cblist);
  2171. return true;
  2172. }
  2173. #else /* #ifdef CONFIG_RCU_NOCB_CPU */
  2174. static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
  2175. {
  2176. WARN_ON_ONCE(1); /* Should be dead code. */
  2177. return false;
  2178. }
  2179. static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
  2180. {
  2181. }
  2182. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  2183. {
  2184. }
  2185. static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
  2186. {
  2187. return NULL;
  2188. }
  2189. static void rcu_init_one_nocb(struct rcu_node *rnp)
  2190. {
  2191. }
  2192. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  2193. bool lazy, unsigned long flags)
  2194. {
  2195. return false;
  2196. }
  2197. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  2198. struct rcu_data *rdp,
  2199. unsigned long flags)
  2200. {
  2201. return false;
  2202. }
  2203. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2204. {
  2205. }
  2206. static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2207. {
  2208. return false;
  2209. }
  2210. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2211. {
  2212. }
  2213. static void rcu_spawn_all_nocb_kthreads(int cpu)
  2214. {
  2215. }
  2216. static void __init rcu_spawn_nocb_kthreads(void)
  2217. {
  2218. }
  2219. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2220. {
  2221. return false;
  2222. }
  2223. #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
  2224. /*
  2225. * An adaptive-ticks CPU can potentially execute in kernel mode for an
  2226. * arbitrarily long period of time with the scheduling-clock tick turned
  2227. * off. RCU will be paying attention to this CPU because it is in the
  2228. * kernel, but the CPU cannot be guaranteed to be executing the RCU state
  2229. * machine because the scheduling-clock tick has been disabled. Therefore,
  2230. * if an adaptive-ticks CPU is failing to respond to the current grace
  2231. * period and has not be idle from an RCU perspective, kick it.
  2232. */
  2233. static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
  2234. {
  2235. #ifdef CONFIG_NO_HZ_FULL
  2236. if (tick_nohz_full_cpu(cpu))
  2237. smp_send_reschedule(cpu);
  2238. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2239. }
  2240. /*
  2241. * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
  2242. * grace-period kthread will do force_quiescent_state() processing?
  2243. * The idea is to avoid waking up RCU core processing on such a
  2244. * CPU unless the grace period has extended for too long.
  2245. *
  2246. * This code relies on the fact that all NO_HZ_FULL CPUs are also
  2247. * CONFIG_RCU_NOCB_CPU CPUs.
  2248. */
  2249. static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
  2250. {
  2251. #ifdef CONFIG_NO_HZ_FULL
  2252. if (tick_nohz_full_cpu(smp_processor_id()) &&
  2253. (!rcu_gp_in_progress(rsp) ||
  2254. ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
  2255. return true;
  2256. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2257. return false;
  2258. }
  2259. /*
  2260. * Bind the grace-period kthread for the sysidle flavor of RCU to the
  2261. * timekeeping CPU.
  2262. */
  2263. static void rcu_bind_gp_kthread(void)
  2264. {
  2265. int __maybe_unused cpu;
  2266. if (!tick_nohz_full_enabled())
  2267. return;
  2268. housekeeping_affine(current);
  2269. }
  2270. /* Record the current task on dyntick-idle entry. */
  2271. static void rcu_dynticks_task_enter(void)
  2272. {
  2273. #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
  2274. WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
  2275. #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
  2276. }
  2277. /* Record no current task on dyntick-idle exit. */
  2278. static void rcu_dynticks_task_exit(void)
  2279. {
  2280. #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
  2281. WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
  2282. #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
  2283. }