xfs_log_cil.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214
  1. /*
  2. * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it would be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write the Free Software Foundation,
  15. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  16. */
  17. #include "xfs.h"
  18. #include "xfs_fs.h"
  19. #include "xfs_format.h"
  20. #include "xfs_log_format.h"
  21. #include "xfs_shared.h"
  22. #include "xfs_trans_resv.h"
  23. #include "xfs_mount.h"
  24. #include "xfs_error.h"
  25. #include "xfs_alloc.h"
  26. #include "xfs_extent_busy.h"
  27. #include "xfs_discard.h"
  28. #include "xfs_trans.h"
  29. #include "xfs_trans_priv.h"
  30. #include "xfs_log.h"
  31. #include "xfs_log_priv.h"
  32. #include "xfs_trace.h"
  33. struct workqueue_struct *xfs_discard_wq;
  34. /*
  35. * Allocate a new ticket. Failing to get a new ticket makes it really hard to
  36. * recover, so we don't allow failure here. Also, we allocate in a context that
  37. * we don't want to be issuing transactions from, so we need to tell the
  38. * allocation code this as well.
  39. *
  40. * We don't reserve any space for the ticket - we are going to steal whatever
  41. * space we require from transactions as they commit. To ensure we reserve all
  42. * the space required, we need to set the current reservation of the ticket to
  43. * zero so that we know to steal the initial transaction overhead from the
  44. * first transaction commit.
  45. */
  46. static struct xlog_ticket *
  47. xlog_cil_ticket_alloc(
  48. struct xlog *log)
  49. {
  50. struct xlog_ticket *tic;
  51. tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
  52. KM_SLEEP|KM_NOFS);
  53. /*
  54. * set the current reservation to zero so we know to steal the basic
  55. * transaction overhead reservation from the first transaction commit.
  56. */
  57. tic->t_curr_res = 0;
  58. return tic;
  59. }
  60. /*
  61. * After the first stage of log recovery is done, we know where the head and
  62. * tail of the log are. We need this log initialisation done before we can
  63. * initialise the first CIL checkpoint context.
  64. *
  65. * Here we allocate a log ticket to track space usage during a CIL push. This
  66. * ticket is passed to xlog_write() directly so that we don't slowly leak log
  67. * space by failing to account for space used by log headers and additional
  68. * region headers for split regions.
  69. */
  70. void
  71. xlog_cil_init_post_recovery(
  72. struct xlog *log)
  73. {
  74. log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
  75. log->l_cilp->xc_ctx->sequence = 1;
  76. }
  77. static inline int
  78. xlog_cil_iovec_space(
  79. uint niovecs)
  80. {
  81. return round_up((sizeof(struct xfs_log_vec) +
  82. niovecs * sizeof(struct xfs_log_iovec)),
  83. sizeof(uint64_t));
  84. }
  85. /*
  86. * Allocate or pin log vector buffers for CIL insertion.
  87. *
  88. * The CIL currently uses disposable buffers for copying a snapshot of the
  89. * modified items into the log during a push. The biggest problem with this is
  90. * the requirement to allocate the disposable buffer during the commit if:
  91. * a) does not exist; or
  92. * b) it is too small
  93. *
  94. * If we do this allocation within xlog_cil_insert_format_items(), it is done
  95. * under the xc_ctx_lock, which means that a CIL push cannot occur during
  96. * the memory allocation. This means that we have a potential deadlock situation
  97. * under low memory conditions when we have lots of dirty metadata pinned in
  98. * the CIL and we need a CIL commit to occur to free memory.
  99. *
  100. * To avoid this, we need to move the memory allocation outside the
  101. * xc_ctx_lock, but because the log vector buffers are disposable, that opens
  102. * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
  103. * vector buffers between the check and the formatting of the item into the
  104. * log vector buffer within the xc_ctx_lock.
  105. *
  106. * Because the log vector buffer needs to be unchanged during the CIL push
  107. * process, we cannot share the buffer between the transaction commit (which
  108. * modifies the buffer) and the CIL push context that is writing the changes
  109. * into the log. This means skipping preallocation of buffer space is
  110. * unreliable, but we most definitely do not want to be allocating and freeing
  111. * buffers unnecessarily during commits when overwrites can be done safely.
  112. *
  113. * The simplest solution to this problem is to allocate a shadow buffer when a
  114. * log item is committed for the second time, and then to only use this buffer
  115. * if necessary. The buffer can remain attached to the log item until such time
  116. * it is needed, and this is the buffer that is reallocated to match the size of
  117. * the incoming modification. Then during the formatting of the item we can swap
  118. * the active buffer with the new one if we can't reuse the existing buffer. We
  119. * don't free the old buffer as it may be reused on the next modification if
  120. * it's size is right, otherwise we'll free and reallocate it at that point.
  121. *
  122. * This function builds a vector for the changes in each log item in the
  123. * transaction. It then works out the length of the buffer needed for each log
  124. * item, allocates them and attaches the vector to the log item in preparation
  125. * for the formatting step which occurs under the xc_ctx_lock.
  126. *
  127. * While this means the memory footprint goes up, it avoids the repeated
  128. * alloc/free pattern that repeated modifications of an item would otherwise
  129. * cause, and hence minimises the CPU overhead of such behaviour.
  130. */
  131. static void
  132. xlog_cil_alloc_shadow_bufs(
  133. struct xlog *log,
  134. struct xfs_trans *tp)
  135. {
  136. struct xfs_log_item_desc *lidp;
  137. list_for_each_entry(lidp, &tp->t_items, lid_trans) {
  138. struct xfs_log_item *lip = lidp->lid_item;
  139. struct xfs_log_vec *lv;
  140. int niovecs = 0;
  141. int nbytes = 0;
  142. int buf_size;
  143. bool ordered = false;
  144. /* Skip items which aren't dirty in this transaction. */
  145. if (!(lidp->lid_flags & XFS_LID_DIRTY))
  146. continue;
  147. /* get number of vecs and size of data to be stored */
  148. lip->li_ops->iop_size(lip, &niovecs, &nbytes);
  149. /*
  150. * Ordered items need to be tracked but we do not wish to write
  151. * them. We need a logvec to track the object, but we do not
  152. * need an iovec or buffer to be allocated for copying data.
  153. */
  154. if (niovecs == XFS_LOG_VEC_ORDERED) {
  155. ordered = true;
  156. niovecs = 0;
  157. nbytes = 0;
  158. }
  159. /*
  160. * We 64-bit align the length of each iovec so that the start
  161. * of the next one is naturally aligned. We'll need to
  162. * account for that slack space here. Then round nbytes up
  163. * to 64-bit alignment so that the initial buffer alignment is
  164. * easy to calculate and verify.
  165. */
  166. nbytes += niovecs * sizeof(uint64_t);
  167. nbytes = round_up(nbytes, sizeof(uint64_t));
  168. /*
  169. * The data buffer needs to start 64-bit aligned, so round up
  170. * that space to ensure we can align it appropriately and not
  171. * overrun the buffer.
  172. */
  173. buf_size = nbytes + xlog_cil_iovec_space(niovecs);
  174. /*
  175. * if we have no shadow buffer, or it is too small, we need to
  176. * reallocate it.
  177. */
  178. if (!lip->li_lv_shadow ||
  179. buf_size > lip->li_lv_shadow->lv_size) {
  180. /*
  181. * We free and allocate here as a realloc would copy
  182. * unecessary data. We don't use kmem_zalloc() for the
  183. * same reason - we don't need to zero the data area in
  184. * the buffer, only the log vector header and the iovec
  185. * storage.
  186. */
  187. kmem_free(lip->li_lv_shadow);
  188. lv = kmem_alloc(buf_size, KM_SLEEP|KM_NOFS);
  189. memset(lv, 0, xlog_cil_iovec_space(niovecs));
  190. lv->lv_item = lip;
  191. lv->lv_size = buf_size;
  192. if (ordered)
  193. lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
  194. else
  195. lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
  196. lip->li_lv_shadow = lv;
  197. } else {
  198. /* same or smaller, optimise common overwrite case */
  199. lv = lip->li_lv_shadow;
  200. if (ordered)
  201. lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
  202. else
  203. lv->lv_buf_len = 0;
  204. lv->lv_bytes = 0;
  205. lv->lv_next = NULL;
  206. }
  207. /* Ensure the lv is set up according to ->iop_size */
  208. lv->lv_niovecs = niovecs;
  209. /* The allocated data region lies beyond the iovec region */
  210. lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
  211. }
  212. }
  213. /*
  214. * Prepare the log item for insertion into the CIL. Calculate the difference in
  215. * log space and vectors it will consume, and if it is a new item pin it as
  216. * well.
  217. */
  218. STATIC void
  219. xfs_cil_prepare_item(
  220. struct xlog *log,
  221. struct xfs_log_vec *lv,
  222. struct xfs_log_vec *old_lv,
  223. int *diff_len,
  224. int *diff_iovecs)
  225. {
  226. /* Account for the new LV being passed in */
  227. if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
  228. *diff_len += lv->lv_bytes;
  229. *diff_iovecs += lv->lv_niovecs;
  230. }
  231. /*
  232. * If there is no old LV, this is the first time we've seen the item in
  233. * this CIL context and so we need to pin it. If we are replacing the
  234. * old_lv, then remove the space it accounts for and make it the shadow
  235. * buffer for later freeing. In both cases we are now switching to the
  236. * shadow buffer, so update the the pointer to it appropriately.
  237. */
  238. if (!old_lv) {
  239. lv->lv_item->li_ops->iop_pin(lv->lv_item);
  240. lv->lv_item->li_lv_shadow = NULL;
  241. } else if (old_lv != lv) {
  242. ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
  243. *diff_len -= old_lv->lv_bytes;
  244. *diff_iovecs -= old_lv->lv_niovecs;
  245. lv->lv_item->li_lv_shadow = old_lv;
  246. }
  247. /* attach new log vector to log item */
  248. lv->lv_item->li_lv = lv;
  249. /*
  250. * If this is the first time the item is being committed to the
  251. * CIL, store the sequence number on the log item so we can
  252. * tell in future commits whether this is the first checkpoint
  253. * the item is being committed into.
  254. */
  255. if (!lv->lv_item->li_seq)
  256. lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
  257. }
  258. /*
  259. * Format log item into a flat buffers
  260. *
  261. * For delayed logging, we need to hold a formatted buffer containing all the
  262. * changes on the log item. This enables us to relog the item in memory and
  263. * write it out asynchronously without needing to relock the object that was
  264. * modified at the time it gets written into the iclog.
  265. *
  266. * This function takes the prepared log vectors attached to each log item, and
  267. * formats the changes into the log vector buffer. The buffer it uses is
  268. * dependent on the current state of the vector in the CIL - the shadow lv is
  269. * guaranteed to be large enough for the current modification, but we will only
  270. * use that if we can't reuse the existing lv. If we can't reuse the existing
  271. * lv, then simple swap it out for the shadow lv. We don't free it - that is
  272. * done lazily either by th enext modification or the freeing of the log item.
  273. *
  274. * We don't set up region headers during this process; we simply copy the
  275. * regions into the flat buffer. We can do this because we still have to do a
  276. * formatting step to write the regions into the iclog buffer. Writing the
  277. * ophdrs during the iclog write means that we can support splitting large
  278. * regions across iclog boundares without needing a change in the format of the
  279. * item/region encapsulation.
  280. *
  281. * Hence what we need to do now is change the rewrite the vector array to point
  282. * to the copied region inside the buffer we just allocated. This allows us to
  283. * format the regions into the iclog as though they are being formatted
  284. * directly out of the objects themselves.
  285. */
  286. static void
  287. xlog_cil_insert_format_items(
  288. struct xlog *log,
  289. struct xfs_trans *tp,
  290. int *diff_len,
  291. int *diff_iovecs)
  292. {
  293. struct xfs_log_item_desc *lidp;
  294. /* Bail out if we didn't find a log item. */
  295. if (list_empty(&tp->t_items)) {
  296. ASSERT(0);
  297. return;
  298. }
  299. list_for_each_entry(lidp, &tp->t_items, lid_trans) {
  300. struct xfs_log_item *lip = lidp->lid_item;
  301. struct xfs_log_vec *lv;
  302. struct xfs_log_vec *old_lv = NULL;
  303. struct xfs_log_vec *shadow;
  304. bool ordered = false;
  305. /* Skip items which aren't dirty in this transaction. */
  306. if (!(lidp->lid_flags & XFS_LID_DIRTY))
  307. continue;
  308. /*
  309. * The formatting size information is already attached to
  310. * the shadow lv on the log item.
  311. */
  312. shadow = lip->li_lv_shadow;
  313. if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
  314. ordered = true;
  315. /* Skip items that do not have any vectors for writing */
  316. if (!shadow->lv_niovecs && !ordered)
  317. continue;
  318. /* compare to existing item size */
  319. old_lv = lip->li_lv;
  320. if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
  321. /* same or smaller, optimise common overwrite case */
  322. lv = lip->li_lv;
  323. lv->lv_next = NULL;
  324. if (ordered)
  325. goto insert;
  326. /*
  327. * set the item up as though it is a new insertion so
  328. * that the space reservation accounting is correct.
  329. */
  330. *diff_iovecs -= lv->lv_niovecs;
  331. *diff_len -= lv->lv_bytes;
  332. /* Ensure the lv is set up according to ->iop_size */
  333. lv->lv_niovecs = shadow->lv_niovecs;
  334. /* reset the lv buffer information for new formatting */
  335. lv->lv_buf_len = 0;
  336. lv->lv_bytes = 0;
  337. lv->lv_buf = (char *)lv +
  338. xlog_cil_iovec_space(lv->lv_niovecs);
  339. } else {
  340. /* switch to shadow buffer! */
  341. lv = shadow;
  342. lv->lv_item = lip;
  343. if (ordered) {
  344. /* track as an ordered logvec */
  345. ASSERT(lip->li_lv == NULL);
  346. goto insert;
  347. }
  348. }
  349. ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
  350. lip->li_ops->iop_format(lip, lv);
  351. insert:
  352. xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
  353. }
  354. }
  355. /*
  356. * Insert the log items into the CIL and calculate the difference in space
  357. * consumed by the item. Add the space to the checkpoint ticket and calculate
  358. * if the change requires additional log metadata. If it does, take that space
  359. * as well. Remove the amount of space we added to the checkpoint ticket from
  360. * the current transaction ticket so that the accounting works out correctly.
  361. */
  362. static void
  363. xlog_cil_insert_items(
  364. struct xlog *log,
  365. struct xfs_trans *tp)
  366. {
  367. struct xfs_cil *cil = log->l_cilp;
  368. struct xfs_cil_ctx *ctx = cil->xc_ctx;
  369. struct xfs_log_item_desc *lidp;
  370. int len = 0;
  371. int diff_iovecs = 0;
  372. int iclog_space;
  373. int iovhdr_res = 0, split_res = 0, ctx_res = 0;
  374. ASSERT(tp);
  375. /*
  376. * We can do this safely because the context can't checkpoint until we
  377. * are done so it doesn't matter exactly how we update the CIL.
  378. */
  379. xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
  380. spin_lock(&cil->xc_cil_lock);
  381. /* account for space used by new iovec headers */
  382. iovhdr_res = diff_iovecs * sizeof(xlog_op_header_t);
  383. len += iovhdr_res;
  384. ctx->nvecs += diff_iovecs;
  385. /* attach the transaction to the CIL if it has any busy extents */
  386. if (!list_empty(&tp->t_busy))
  387. list_splice_init(&tp->t_busy, &ctx->busy_extents);
  388. /*
  389. * Now transfer enough transaction reservation to the context ticket
  390. * for the checkpoint. The context ticket is special - the unit
  391. * reservation has to grow as well as the current reservation as we
  392. * steal from tickets so we can correctly determine the space used
  393. * during the transaction commit.
  394. */
  395. if (ctx->ticket->t_curr_res == 0) {
  396. ctx_res = ctx->ticket->t_unit_res;
  397. ctx->ticket->t_curr_res = ctx_res;
  398. tp->t_ticket->t_curr_res -= ctx_res;
  399. }
  400. /* do we need space for more log record headers? */
  401. iclog_space = log->l_iclog_size - log->l_iclog_hsize;
  402. if (len > 0 && (ctx->space_used / iclog_space !=
  403. (ctx->space_used + len) / iclog_space)) {
  404. split_res = (len + iclog_space - 1) / iclog_space;
  405. /* need to take into account split region headers, too */
  406. split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
  407. ctx->ticket->t_unit_res += split_res;
  408. ctx->ticket->t_curr_res += split_res;
  409. tp->t_ticket->t_curr_res -= split_res;
  410. ASSERT(tp->t_ticket->t_curr_res >= len);
  411. }
  412. tp->t_ticket->t_curr_res -= len;
  413. ctx->space_used += len;
  414. /*
  415. * If we've overrun the reservation, dump the tx details before we move
  416. * the log items. Shutdown is imminent...
  417. */
  418. if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
  419. xfs_warn(log->l_mp, "Transaction log reservation overrun:");
  420. xfs_warn(log->l_mp,
  421. " log items: %d bytes (iov hdrs: %d bytes)",
  422. len, iovhdr_res);
  423. xfs_warn(log->l_mp, " split region headers: %d bytes",
  424. split_res);
  425. xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res);
  426. xlog_print_trans(tp);
  427. }
  428. /*
  429. * Now (re-)position everything modified at the tail of the CIL.
  430. * We do this here so we only need to take the CIL lock once during
  431. * the transaction commit.
  432. */
  433. list_for_each_entry(lidp, &tp->t_items, lid_trans) {
  434. struct xfs_log_item *lip = lidp->lid_item;
  435. /* Skip items which aren't dirty in this transaction. */
  436. if (!(lidp->lid_flags & XFS_LID_DIRTY))
  437. continue;
  438. /*
  439. * Only move the item if it isn't already at the tail. This is
  440. * to prevent a transient list_empty() state when reinserting
  441. * an item that is already the only item in the CIL.
  442. */
  443. if (!list_is_last(&lip->li_cil, &cil->xc_cil))
  444. list_move_tail(&lip->li_cil, &cil->xc_cil);
  445. }
  446. spin_unlock(&cil->xc_cil_lock);
  447. if (tp->t_ticket->t_curr_res < 0)
  448. xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
  449. }
  450. static void
  451. xlog_cil_free_logvec(
  452. struct xfs_log_vec *log_vector)
  453. {
  454. struct xfs_log_vec *lv;
  455. for (lv = log_vector; lv; ) {
  456. struct xfs_log_vec *next = lv->lv_next;
  457. kmem_free(lv);
  458. lv = next;
  459. }
  460. }
  461. static void
  462. xlog_discard_endio_work(
  463. struct work_struct *work)
  464. {
  465. struct xfs_cil_ctx *ctx =
  466. container_of(work, struct xfs_cil_ctx, discard_endio_work);
  467. struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
  468. xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
  469. kmem_free(ctx);
  470. }
  471. /*
  472. * Queue up the actual completion to a thread to avoid IRQ-safe locking for
  473. * pagb_lock. Note that we need a unbounded workqueue, otherwise we might
  474. * get the execution delayed up to 30 seconds for weird reasons.
  475. */
  476. static void
  477. xlog_discard_endio(
  478. struct bio *bio)
  479. {
  480. struct xfs_cil_ctx *ctx = bio->bi_private;
  481. INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
  482. queue_work(xfs_discard_wq, &ctx->discard_endio_work);
  483. }
  484. static void
  485. xlog_discard_busy_extents(
  486. struct xfs_mount *mp,
  487. struct xfs_cil_ctx *ctx)
  488. {
  489. struct list_head *list = &ctx->busy_extents;
  490. struct xfs_extent_busy *busyp;
  491. struct bio *bio = NULL;
  492. struct blk_plug plug;
  493. int error = 0;
  494. ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
  495. blk_start_plug(&plug);
  496. list_for_each_entry(busyp, list, list) {
  497. trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
  498. busyp->length);
  499. error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
  500. XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
  501. XFS_FSB_TO_BB(mp, busyp->length),
  502. GFP_NOFS, 0, &bio);
  503. if (error && error != -EOPNOTSUPP) {
  504. xfs_info(mp,
  505. "discard failed for extent [0x%llx,%u], error %d",
  506. (unsigned long long)busyp->bno,
  507. busyp->length,
  508. error);
  509. break;
  510. }
  511. }
  512. if (bio) {
  513. bio->bi_private = ctx;
  514. bio->bi_end_io = xlog_discard_endio;
  515. submit_bio(bio);
  516. } else {
  517. xlog_discard_endio_work(&ctx->discard_endio_work);
  518. }
  519. blk_finish_plug(&plug);
  520. }
  521. /*
  522. * Mark all items committed and clear busy extents. We free the log vector
  523. * chains in a separate pass so that we unpin the log items as quickly as
  524. * possible.
  525. */
  526. static void
  527. xlog_cil_committed(
  528. void *args,
  529. int abort)
  530. {
  531. struct xfs_cil_ctx *ctx = args;
  532. struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
  533. xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
  534. ctx->start_lsn, abort);
  535. xfs_extent_busy_sort(&ctx->busy_extents);
  536. xfs_extent_busy_clear(mp, &ctx->busy_extents,
  537. (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
  538. /*
  539. * If we are aborting the commit, wake up anyone waiting on the
  540. * committing list. If we don't, then a shutdown we can leave processes
  541. * waiting in xlog_cil_force_lsn() waiting on a sequence commit that
  542. * will never happen because we aborted it.
  543. */
  544. spin_lock(&ctx->cil->xc_push_lock);
  545. if (abort)
  546. wake_up_all(&ctx->cil->xc_commit_wait);
  547. list_del(&ctx->committing);
  548. spin_unlock(&ctx->cil->xc_push_lock);
  549. xlog_cil_free_logvec(ctx->lv_chain);
  550. if (!list_empty(&ctx->busy_extents))
  551. xlog_discard_busy_extents(mp, ctx);
  552. else
  553. kmem_free(ctx);
  554. }
  555. /*
  556. * Push the Committed Item List to the log. If @push_seq flag is zero, then it
  557. * is a background flush and so we can chose to ignore it. Otherwise, if the
  558. * current sequence is the same as @push_seq we need to do a flush. If
  559. * @push_seq is less than the current sequence, then it has already been
  560. * flushed and we don't need to do anything - the caller will wait for it to
  561. * complete if necessary.
  562. *
  563. * @push_seq is a value rather than a flag because that allows us to do an
  564. * unlocked check of the sequence number for a match. Hence we can allows log
  565. * forces to run racily and not issue pushes for the same sequence twice. If we
  566. * get a race between multiple pushes for the same sequence they will block on
  567. * the first one and then abort, hence avoiding needless pushes.
  568. */
  569. STATIC int
  570. xlog_cil_push(
  571. struct xlog *log)
  572. {
  573. struct xfs_cil *cil = log->l_cilp;
  574. struct xfs_log_vec *lv;
  575. struct xfs_cil_ctx *ctx;
  576. struct xfs_cil_ctx *new_ctx;
  577. struct xlog_in_core *commit_iclog;
  578. struct xlog_ticket *tic;
  579. int num_iovecs;
  580. int error = 0;
  581. struct xfs_trans_header thdr;
  582. struct xfs_log_iovec lhdr;
  583. struct xfs_log_vec lvhdr = { NULL };
  584. xfs_lsn_t commit_lsn;
  585. xfs_lsn_t push_seq;
  586. if (!cil)
  587. return 0;
  588. new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
  589. new_ctx->ticket = xlog_cil_ticket_alloc(log);
  590. down_write(&cil->xc_ctx_lock);
  591. ctx = cil->xc_ctx;
  592. spin_lock(&cil->xc_push_lock);
  593. push_seq = cil->xc_push_seq;
  594. ASSERT(push_seq <= ctx->sequence);
  595. /*
  596. * Check if we've anything to push. If there is nothing, then we don't
  597. * move on to a new sequence number and so we have to be able to push
  598. * this sequence again later.
  599. */
  600. if (list_empty(&cil->xc_cil)) {
  601. cil->xc_push_seq = 0;
  602. spin_unlock(&cil->xc_push_lock);
  603. goto out_skip;
  604. }
  605. /* check for a previously pushed seqeunce */
  606. if (push_seq < cil->xc_ctx->sequence) {
  607. spin_unlock(&cil->xc_push_lock);
  608. goto out_skip;
  609. }
  610. /*
  611. * We are now going to push this context, so add it to the committing
  612. * list before we do anything else. This ensures that anyone waiting on
  613. * this push can easily detect the difference between a "push in
  614. * progress" and "CIL is empty, nothing to do".
  615. *
  616. * IOWs, a wait loop can now check for:
  617. * the current sequence not being found on the committing list;
  618. * an empty CIL; and
  619. * an unchanged sequence number
  620. * to detect a push that had nothing to do and therefore does not need
  621. * waiting on. If the CIL is not empty, we get put on the committing
  622. * list before emptying the CIL and bumping the sequence number. Hence
  623. * an empty CIL and an unchanged sequence number means we jumped out
  624. * above after doing nothing.
  625. *
  626. * Hence the waiter will either find the commit sequence on the
  627. * committing list or the sequence number will be unchanged and the CIL
  628. * still dirty. In that latter case, the push has not yet started, and
  629. * so the waiter will have to continue trying to check the CIL
  630. * committing list until it is found. In extreme cases of delay, the
  631. * sequence may fully commit between the attempts the wait makes to wait
  632. * on the commit sequence.
  633. */
  634. list_add(&ctx->committing, &cil->xc_committing);
  635. spin_unlock(&cil->xc_push_lock);
  636. /*
  637. * pull all the log vectors off the items in the CIL, and
  638. * remove the items from the CIL. We don't need the CIL lock
  639. * here because it's only needed on the transaction commit
  640. * side which is currently locked out by the flush lock.
  641. */
  642. lv = NULL;
  643. num_iovecs = 0;
  644. while (!list_empty(&cil->xc_cil)) {
  645. struct xfs_log_item *item;
  646. item = list_first_entry(&cil->xc_cil,
  647. struct xfs_log_item, li_cil);
  648. list_del_init(&item->li_cil);
  649. if (!ctx->lv_chain)
  650. ctx->lv_chain = item->li_lv;
  651. else
  652. lv->lv_next = item->li_lv;
  653. lv = item->li_lv;
  654. item->li_lv = NULL;
  655. num_iovecs += lv->lv_niovecs;
  656. }
  657. /*
  658. * initialise the new context and attach it to the CIL. Then attach
  659. * the current context to the CIL committing lsit so it can be found
  660. * during log forces to extract the commit lsn of the sequence that
  661. * needs to be forced.
  662. */
  663. INIT_LIST_HEAD(&new_ctx->committing);
  664. INIT_LIST_HEAD(&new_ctx->busy_extents);
  665. new_ctx->sequence = ctx->sequence + 1;
  666. new_ctx->cil = cil;
  667. cil->xc_ctx = new_ctx;
  668. /*
  669. * The switch is now done, so we can drop the context lock and move out
  670. * of a shared context. We can't just go straight to the commit record,
  671. * though - we need to synchronise with previous and future commits so
  672. * that the commit records are correctly ordered in the log to ensure
  673. * that we process items during log IO completion in the correct order.
  674. *
  675. * For example, if we get an EFI in one checkpoint and the EFD in the
  676. * next (e.g. due to log forces), we do not want the checkpoint with
  677. * the EFD to be committed before the checkpoint with the EFI. Hence
  678. * we must strictly order the commit records of the checkpoints so
  679. * that: a) the checkpoint callbacks are attached to the iclogs in the
  680. * correct order; and b) the checkpoints are replayed in correct order
  681. * in log recovery.
  682. *
  683. * Hence we need to add this context to the committing context list so
  684. * that higher sequences will wait for us to write out a commit record
  685. * before they do.
  686. *
  687. * xfs_log_force_lsn requires us to mirror the new sequence into the cil
  688. * structure atomically with the addition of this sequence to the
  689. * committing list. This also ensures that we can do unlocked checks
  690. * against the current sequence in log forces without risking
  691. * deferencing a freed context pointer.
  692. */
  693. spin_lock(&cil->xc_push_lock);
  694. cil->xc_current_sequence = new_ctx->sequence;
  695. spin_unlock(&cil->xc_push_lock);
  696. up_write(&cil->xc_ctx_lock);
  697. /*
  698. * Build a checkpoint transaction header and write it to the log to
  699. * begin the transaction. We need to account for the space used by the
  700. * transaction header here as it is not accounted for in xlog_write().
  701. *
  702. * The LSN we need to pass to the log items on transaction commit is
  703. * the LSN reported by the first log vector write. If we use the commit
  704. * record lsn then we can move the tail beyond the grant write head.
  705. */
  706. tic = ctx->ticket;
  707. thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
  708. thdr.th_type = XFS_TRANS_CHECKPOINT;
  709. thdr.th_tid = tic->t_tid;
  710. thdr.th_num_items = num_iovecs;
  711. lhdr.i_addr = &thdr;
  712. lhdr.i_len = sizeof(xfs_trans_header_t);
  713. lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
  714. tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
  715. lvhdr.lv_niovecs = 1;
  716. lvhdr.lv_iovecp = &lhdr;
  717. lvhdr.lv_next = ctx->lv_chain;
  718. error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
  719. if (error)
  720. goto out_abort_free_ticket;
  721. /*
  722. * now that we've written the checkpoint into the log, strictly
  723. * order the commit records so replay will get them in the right order.
  724. */
  725. restart:
  726. spin_lock(&cil->xc_push_lock);
  727. list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
  728. /*
  729. * Avoid getting stuck in this loop because we were woken by the
  730. * shutdown, but then went back to sleep once already in the
  731. * shutdown state.
  732. */
  733. if (XLOG_FORCED_SHUTDOWN(log)) {
  734. spin_unlock(&cil->xc_push_lock);
  735. goto out_abort_free_ticket;
  736. }
  737. /*
  738. * Higher sequences will wait for this one so skip them.
  739. * Don't wait for our own sequence, either.
  740. */
  741. if (new_ctx->sequence >= ctx->sequence)
  742. continue;
  743. if (!new_ctx->commit_lsn) {
  744. /*
  745. * It is still being pushed! Wait for the push to
  746. * complete, then start again from the beginning.
  747. */
  748. xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
  749. goto restart;
  750. }
  751. }
  752. spin_unlock(&cil->xc_push_lock);
  753. /* xfs_log_done always frees the ticket on error. */
  754. commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, false);
  755. if (commit_lsn == -1)
  756. goto out_abort;
  757. /* attach all the transactions w/ busy extents to iclog */
  758. ctx->log_cb.cb_func = xlog_cil_committed;
  759. ctx->log_cb.cb_arg = ctx;
  760. error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
  761. if (error)
  762. goto out_abort;
  763. /*
  764. * now the checkpoint commit is complete and we've attached the
  765. * callbacks to the iclog we can assign the commit LSN to the context
  766. * and wake up anyone who is waiting for the commit to complete.
  767. */
  768. spin_lock(&cil->xc_push_lock);
  769. ctx->commit_lsn = commit_lsn;
  770. wake_up_all(&cil->xc_commit_wait);
  771. spin_unlock(&cil->xc_push_lock);
  772. /* release the hounds! */
  773. return xfs_log_release_iclog(log->l_mp, commit_iclog);
  774. out_skip:
  775. up_write(&cil->xc_ctx_lock);
  776. xfs_log_ticket_put(new_ctx->ticket);
  777. kmem_free(new_ctx);
  778. return 0;
  779. out_abort_free_ticket:
  780. xfs_log_ticket_put(tic);
  781. out_abort:
  782. xlog_cil_committed(ctx, XFS_LI_ABORTED);
  783. return -EIO;
  784. }
  785. static void
  786. xlog_cil_push_work(
  787. struct work_struct *work)
  788. {
  789. struct xfs_cil *cil = container_of(work, struct xfs_cil,
  790. xc_push_work);
  791. xlog_cil_push(cil->xc_log);
  792. }
  793. /*
  794. * We need to push CIL every so often so we don't cache more than we can fit in
  795. * the log. The limit really is that a checkpoint can't be more than half the
  796. * log (the current checkpoint is not allowed to overwrite the previous
  797. * checkpoint), but commit latency and memory usage limit this to a smaller
  798. * size.
  799. */
  800. static void
  801. xlog_cil_push_background(
  802. struct xlog *log)
  803. {
  804. struct xfs_cil *cil = log->l_cilp;
  805. /*
  806. * The cil won't be empty because we are called while holding the
  807. * context lock so whatever we added to the CIL will still be there
  808. */
  809. ASSERT(!list_empty(&cil->xc_cil));
  810. /*
  811. * don't do a background push if we haven't used up all the
  812. * space available yet.
  813. */
  814. if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
  815. return;
  816. spin_lock(&cil->xc_push_lock);
  817. if (cil->xc_push_seq < cil->xc_current_sequence) {
  818. cil->xc_push_seq = cil->xc_current_sequence;
  819. queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
  820. }
  821. spin_unlock(&cil->xc_push_lock);
  822. }
  823. /*
  824. * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
  825. * number that is passed. When it returns, the work will be queued for
  826. * @push_seq, but it won't be completed. The caller is expected to do any
  827. * waiting for push_seq to complete if it is required.
  828. */
  829. static void
  830. xlog_cil_push_now(
  831. struct xlog *log,
  832. xfs_lsn_t push_seq)
  833. {
  834. struct xfs_cil *cil = log->l_cilp;
  835. if (!cil)
  836. return;
  837. ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
  838. /* start on any pending background push to minimise wait time on it */
  839. flush_work(&cil->xc_push_work);
  840. /*
  841. * If the CIL is empty or we've already pushed the sequence then
  842. * there's no work we need to do.
  843. */
  844. spin_lock(&cil->xc_push_lock);
  845. if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
  846. spin_unlock(&cil->xc_push_lock);
  847. return;
  848. }
  849. cil->xc_push_seq = push_seq;
  850. queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
  851. spin_unlock(&cil->xc_push_lock);
  852. }
  853. bool
  854. xlog_cil_empty(
  855. struct xlog *log)
  856. {
  857. struct xfs_cil *cil = log->l_cilp;
  858. bool empty = false;
  859. spin_lock(&cil->xc_push_lock);
  860. if (list_empty(&cil->xc_cil))
  861. empty = true;
  862. spin_unlock(&cil->xc_push_lock);
  863. return empty;
  864. }
  865. /*
  866. * Commit a transaction with the given vector to the Committed Item List.
  867. *
  868. * To do this, we need to format the item, pin it in memory if required and
  869. * account for the space used by the transaction. Once we have done that we
  870. * need to release the unused reservation for the transaction, attach the
  871. * transaction to the checkpoint context so we carry the busy extents through
  872. * to checkpoint completion, and then unlock all the items in the transaction.
  873. *
  874. * Called with the context lock already held in read mode to lock out
  875. * background commit, returns without it held once background commits are
  876. * allowed again.
  877. */
  878. void
  879. xfs_log_commit_cil(
  880. struct xfs_mount *mp,
  881. struct xfs_trans *tp,
  882. xfs_lsn_t *commit_lsn,
  883. bool regrant)
  884. {
  885. struct xlog *log = mp->m_log;
  886. struct xfs_cil *cil = log->l_cilp;
  887. xfs_lsn_t xc_commit_lsn;
  888. /*
  889. * Do all necessary memory allocation before we lock the CIL.
  890. * This ensures the allocation does not deadlock with a CIL
  891. * push in memory reclaim (e.g. from kswapd).
  892. */
  893. xlog_cil_alloc_shadow_bufs(log, tp);
  894. /* lock out background commit */
  895. down_read(&cil->xc_ctx_lock);
  896. xlog_cil_insert_items(log, tp);
  897. xc_commit_lsn = cil->xc_ctx->sequence;
  898. if (commit_lsn)
  899. *commit_lsn = xc_commit_lsn;
  900. xfs_log_done(mp, tp->t_ticket, NULL, regrant);
  901. xfs_trans_unreserve_and_mod_sb(tp);
  902. /*
  903. * Once all the items of the transaction have been copied to the CIL,
  904. * the items can be unlocked and freed.
  905. *
  906. * This needs to be done before we drop the CIL context lock because we
  907. * have to update state in the log items and unlock them before they go
  908. * to disk. If we don't, then the CIL checkpoint can race with us and
  909. * we can run checkpoint completion before we've updated and unlocked
  910. * the log items. This affects (at least) processing of stale buffers,
  911. * inodes and EFIs.
  912. */
  913. xfs_trans_free_items(tp, xc_commit_lsn, false);
  914. xlog_cil_push_background(log);
  915. up_read(&cil->xc_ctx_lock);
  916. }
  917. /*
  918. * Conditionally push the CIL based on the sequence passed in.
  919. *
  920. * We only need to push if we haven't already pushed the sequence
  921. * number given. Hence the only time we will trigger a push here is
  922. * if the push sequence is the same as the current context.
  923. *
  924. * We return the current commit lsn to allow the callers to determine if a
  925. * iclog flush is necessary following this call.
  926. */
  927. xfs_lsn_t
  928. xlog_cil_force_lsn(
  929. struct xlog *log,
  930. xfs_lsn_t sequence)
  931. {
  932. struct xfs_cil *cil = log->l_cilp;
  933. struct xfs_cil_ctx *ctx;
  934. xfs_lsn_t commit_lsn = NULLCOMMITLSN;
  935. ASSERT(sequence <= cil->xc_current_sequence);
  936. /*
  937. * check to see if we need to force out the current context.
  938. * xlog_cil_push() handles racing pushes for the same sequence,
  939. * so no need to deal with it here.
  940. */
  941. restart:
  942. xlog_cil_push_now(log, sequence);
  943. /*
  944. * See if we can find a previous sequence still committing.
  945. * We need to wait for all previous sequence commits to complete
  946. * before allowing the force of push_seq to go ahead. Hence block
  947. * on commits for those as well.
  948. */
  949. spin_lock(&cil->xc_push_lock);
  950. list_for_each_entry(ctx, &cil->xc_committing, committing) {
  951. /*
  952. * Avoid getting stuck in this loop because we were woken by the
  953. * shutdown, but then went back to sleep once already in the
  954. * shutdown state.
  955. */
  956. if (XLOG_FORCED_SHUTDOWN(log))
  957. goto out_shutdown;
  958. if (ctx->sequence > sequence)
  959. continue;
  960. if (!ctx->commit_lsn) {
  961. /*
  962. * It is still being pushed! Wait for the push to
  963. * complete, then start again from the beginning.
  964. */
  965. xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
  966. goto restart;
  967. }
  968. if (ctx->sequence != sequence)
  969. continue;
  970. /* found it! */
  971. commit_lsn = ctx->commit_lsn;
  972. }
  973. /*
  974. * The call to xlog_cil_push_now() executes the push in the background.
  975. * Hence by the time we have got here it our sequence may not have been
  976. * pushed yet. This is true if the current sequence still matches the
  977. * push sequence after the above wait loop and the CIL still contains
  978. * dirty objects. This is guaranteed by the push code first adding the
  979. * context to the committing list before emptying the CIL.
  980. *
  981. * Hence if we don't find the context in the committing list and the
  982. * current sequence number is unchanged then the CIL contents are
  983. * significant. If the CIL is empty, if means there was nothing to push
  984. * and that means there is nothing to wait for. If the CIL is not empty,
  985. * it means we haven't yet started the push, because if it had started
  986. * we would have found the context on the committing list.
  987. */
  988. if (sequence == cil->xc_current_sequence &&
  989. !list_empty(&cil->xc_cil)) {
  990. spin_unlock(&cil->xc_push_lock);
  991. goto restart;
  992. }
  993. spin_unlock(&cil->xc_push_lock);
  994. return commit_lsn;
  995. /*
  996. * We detected a shutdown in progress. We need to trigger the log force
  997. * to pass through it's iclog state machine error handling, even though
  998. * we are already in a shutdown state. Hence we can't return
  999. * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
  1000. * LSN is already stable), so we return a zero LSN instead.
  1001. */
  1002. out_shutdown:
  1003. spin_unlock(&cil->xc_push_lock);
  1004. return 0;
  1005. }
  1006. /*
  1007. * Check if the current log item was first committed in this sequence.
  1008. * We can't rely on just the log item being in the CIL, we have to check
  1009. * the recorded commit sequence number.
  1010. *
  1011. * Note: for this to be used in a non-racy manner, it has to be called with
  1012. * CIL flushing locked out. As a result, it should only be used during the
  1013. * transaction commit process when deciding what to format into the item.
  1014. */
  1015. bool
  1016. xfs_log_item_in_current_chkpt(
  1017. struct xfs_log_item *lip)
  1018. {
  1019. struct xfs_cil_ctx *ctx;
  1020. if (list_empty(&lip->li_cil))
  1021. return false;
  1022. ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
  1023. /*
  1024. * li_seq is written on the first commit of a log item to record the
  1025. * first checkpoint it is written to. Hence if it is different to the
  1026. * current sequence, we're in a new checkpoint.
  1027. */
  1028. if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
  1029. return false;
  1030. return true;
  1031. }
  1032. /*
  1033. * Perform initial CIL structure initialisation.
  1034. */
  1035. int
  1036. xlog_cil_init(
  1037. struct xlog *log)
  1038. {
  1039. struct xfs_cil *cil;
  1040. struct xfs_cil_ctx *ctx;
  1041. cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
  1042. if (!cil)
  1043. return -ENOMEM;
  1044. ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
  1045. if (!ctx) {
  1046. kmem_free(cil);
  1047. return -ENOMEM;
  1048. }
  1049. INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
  1050. INIT_LIST_HEAD(&cil->xc_cil);
  1051. INIT_LIST_HEAD(&cil->xc_committing);
  1052. spin_lock_init(&cil->xc_cil_lock);
  1053. spin_lock_init(&cil->xc_push_lock);
  1054. init_rwsem(&cil->xc_ctx_lock);
  1055. init_waitqueue_head(&cil->xc_commit_wait);
  1056. INIT_LIST_HEAD(&ctx->committing);
  1057. INIT_LIST_HEAD(&ctx->busy_extents);
  1058. ctx->sequence = 1;
  1059. ctx->cil = cil;
  1060. cil->xc_ctx = ctx;
  1061. cil->xc_current_sequence = ctx->sequence;
  1062. cil->xc_log = log;
  1063. log->l_cilp = cil;
  1064. return 0;
  1065. }
  1066. void
  1067. xlog_cil_destroy(
  1068. struct xlog *log)
  1069. {
  1070. if (log->l_cilp->xc_ctx) {
  1071. if (log->l_cilp->xc_ctx->ticket)
  1072. xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
  1073. kmem_free(log->l_cilp->xc_ctx);
  1074. }
  1075. ASSERT(list_empty(&log->l_cilp->xc_cil));
  1076. kmem_free(log->l_cilp);
  1077. }