mbcache.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432
  1. #include <linux/spinlock.h>
  2. #include <linux/slab.h>
  3. #include <linux/list.h>
  4. #include <linux/list_bl.h>
  5. #include <linux/module.h>
  6. #include <linux/sched.h>
  7. #include <linux/workqueue.h>
  8. #include <linux/mbcache.h>
  9. /*
  10. * Mbcache is a simple key-value store. Keys need not be unique, however
  11. * key-value pairs are expected to be unique (we use this fact in
  12. * mb_cache_entry_delete()).
  13. *
  14. * Ext2 and ext4 use this cache for deduplication of extended attribute blocks.
  15. * Ext4 also uses it for deduplication of xattr values stored in inodes.
  16. * They use hash of data as a key and provide a value that may represent a
  17. * block or inode number. That's why keys need not be unique (hash of different
  18. * data may be the same). However user provided value always uniquely
  19. * identifies a cache entry.
  20. *
  21. * We provide functions for creation and removal of entries, search by key,
  22. * and a special "delete entry with given key-value pair" operation. Fixed
  23. * size hash table is used for fast key lookups.
  24. */
  25. struct mb_cache {
  26. /* Hash table of entries */
  27. struct hlist_bl_head *c_hash;
  28. /* log2 of hash table size */
  29. int c_bucket_bits;
  30. /* Maximum entries in cache to avoid degrading hash too much */
  31. unsigned long c_max_entries;
  32. /* Protects c_list, c_entry_count */
  33. spinlock_t c_list_lock;
  34. struct list_head c_list;
  35. /* Number of entries in cache */
  36. unsigned long c_entry_count;
  37. struct shrinker c_shrink;
  38. /* Work for shrinking when the cache has too many entries */
  39. struct work_struct c_shrink_work;
  40. };
  41. static struct kmem_cache *mb_entry_cache;
  42. static unsigned long mb_cache_shrink(struct mb_cache *cache,
  43. unsigned long nr_to_scan);
  44. static inline struct hlist_bl_head *mb_cache_entry_head(struct mb_cache *cache,
  45. u32 key)
  46. {
  47. return &cache->c_hash[hash_32(key, cache->c_bucket_bits)];
  48. }
  49. /*
  50. * Number of entries to reclaim synchronously when there are too many entries
  51. * in cache
  52. */
  53. #define SYNC_SHRINK_BATCH 64
  54. /*
  55. * mb_cache_entry_create - create entry in cache
  56. * @cache - cache where the entry should be created
  57. * @mask - gfp mask with which the entry should be allocated
  58. * @key - key of the entry
  59. * @value - value of the entry
  60. * @reusable - is the entry reusable by others?
  61. *
  62. * Creates entry in @cache with key @key and value @value. The function returns
  63. * -EBUSY if entry with the same key and value already exists in cache.
  64. * Otherwise 0 is returned.
  65. */
  66. int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key,
  67. u64 value, bool reusable)
  68. {
  69. struct mb_cache_entry *entry, *dup;
  70. struct hlist_bl_node *dup_node;
  71. struct hlist_bl_head *head;
  72. /* Schedule background reclaim if there are too many entries */
  73. if (cache->c_entry_count >= cache->c_max_entries)
  74. schedule_work(&cache->c_shrink_work);
  75. /* Do some sync reclaim if background reclaim cannot keep up */
  76. if (cache->c_entry_count >= 2*cache->c_max_entries)
  77. mb_cache_shrink(cache, SYNC_SHRINK_BATCH);
  78. entry = kmem_cache_alloc(mb_entry_cache, mask);
  79. if (!entry)
  80. return -ENOMEM;
  81. INIT_LIST_HEAD(&entry->e_list);
  82. /* One ref for hash, one ref returned */
  83. atomic_set(&entry->e_refcnt, 1);
  84. entry->e_key = key;
  85. entry->e_value = value;
  86. entry->e_reusable = reusable;
  87. head = mb_cache_entry_head(cache, key);
  88. hlist_bl_lock(head);
  89. hlist_bl_for_each_entry(dup, dup_node, head, e_hash_list) {
  90. if (dup->e_key == key && dup->e_value == value) {
  91. hlist_bl_unlock(head);
  92. kmem_cache_free(mb_entry_cache, entry);
  93. return -EBUSY;
  94. }
  95. }
  96. hlist_bl_add_head(&entry->e_hash_list, head);
  97. hlist_bl_unlock(head);
  98. spin_lock(&cache->c_list_lock);
  99. list_add_tail(&entry->e_list, &cache->c_list);
  100. /* Grab ref for LRU list */
  101. atomic_inc(&entry->e_refcnt);
  102. cache->c_entry_count++;
  103. spin_unlock(&cache->c_list_lock);
  104. return 0;
  105. }
  106. EXPORT_SYMBOL(mb_cache_entry_create);
  107. void __mb_cache_entry_free(struct mb_cache_entry *entry)
  108. {
  109. kmem_cache_free(mb_entry_cache, entry);
  110. }
  111. EXPORT_SYMBOL(__mb_cache_entry_free);
  112. static struct mb_cache_entry *__entry_find(struct mb_cache *cache,
  113. struct mb_cache_entry *entry,
  114. u32 key)
  115. {
  116. struct mb_cache_entry *old_entry = entry;
  117. struct hlist_bl_node *node;
  118. struct hlist_bl_head *head;
  119. head = mb_cache_entry_head(cache, key);
  120. hlist_bl_lock(head);
  121. if (entry && !hlist_bl_unhashed(&entry->e_hash_list))
  122. node = entry->e_hash_list.next;
  123. else
  124. node = hlist_bl_first(head);
  125. while (node) {
  126. entry = hlist_bl_entry(node, struct mb_cache_entry,
  127. e_hash_list);
  128. if (entry->e_key == key && entry->e_reusable) {
  129. atomic_inc(&entry->e_refcnt);
  130. goto out;
  131. }
  132. node = node->next;
  133. }
  134. entry = NULL;
  135. out:
  136. hlist_bl_unlock(head);
  137. if (old_entry)
  138. mb_cache_entry_put(cache, old_entry);
  139. return entry;
  140. }
  141. /*
  142. * mb_cache_entry_find_first - find the first reusable entry with the given key
  143. * @cache: cache where we should search
  144. * @key: key to look for
  145. *
  146. * Search in @cache for a reusable entry with key @key. Grabs reference to the
  147. * first reusable entry found and returns the entry.
  148. */
  149. struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache,
  150. u32 key)
  151. {
  152. return __entry_find(cache, NULL, key);
  153. }
  154. EXPORT_SYMBOL(mb_cache_entry_find_first);
  155. /*
  156. * mb_cache_entry_find_next - find next reusable entry with the same key
  157. * @cache: cache where we should search
  158. * @entry: entry to start search from
  159. *
  160. * Finds next reusable entry in the hash chain which has the same key as @entry.
  161. * If @entry is unhashed (which can happen when deletion of entry races with the
  162. * search), finds the first reusable entry in the hash chain. The function drops
  163. * reference to @entry and returns with a reference to the found entry.
  164. */
  165. struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache,
  166. struct mb_cache_entry *entry)
  167. {
  168. return __entry_find(cache, entry, entry->e_key);
  169. }
  170. EXPORT_SYMBOL(mb_cache_entry_find_next);
  171. /*
  172. * mb_cache_entry_get - get a cache entry by value (and key)
  173. * @cache - cache we work with
  174. * @key - key
  175. * @value - value
  176. */
  177. struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key,
  178. u64 value)
  179. {
  180. struct hlist_bl_node *node;
  181. struct hlist_bl_head *head;
  182. struct mb_cache_entry *entry;
  183. head = mb_cache_entry_head(cache, key);
  184. hlist_bl_lock(head);
  185. hlist_bl_for_each_entry(entry, node, head, e_hash_list) {
  186. if (entry->e_key == key && entry->e_value == value) {
  187. atomic_inc(&entry->e_refcnt);
  188. goto out;
  189. }
  190. }
  191. entry = NULL;
  192. out:
  193. hlist_bl_unlock(head);
  194. return entry;
  195. }
  196. EXPORT_SYMBOL(mb_cache_entry_get);
  197. /* mb_cache_entry_delete - remove a cache entry
  198. * @cache - cache we work with
  199. * @key - key
  200. * @value - value
  201. *
  202. * Remove entry from cache @cache with key @key and value @value.
  203. */
  204. void mb_cache_entry_delete(struct mb_cache *cache, u32 key, u64 value)
  205. {
  206. struct hlist_bl_node *node;
  207. struct hlist_bl_head *head;
  208. struct mb_cache_entry *entry;
  209. head = mb_cache_entry_head(cache, key);
  210. hlist_bl_lock(head);
  211. hlist_bl_for_each_entry(entry, node, head, e_hash_list) {
  212. if (entry->e_key == key && entry->e_value == value) {
  213. /* We keep hash list reference to keep entry alive */
  214. hlist_bl_del_init(&entry->e_hash_list);
  215. hlist_bl_unlock(head);
  216. spin_lock(&cache->c_list_lock);
  217. if (!list_empty(&entry->e_list)) {
  218. list_del_init(&entry->e_list);
  219. cache->c_entry_count--;
  220. atomic_dec(&entry->e_refcnt);
  221. }
  222. spin_unlock(&cache->c_list_lock);
  223. mb_cache_entry_put(cache, entry);
  224. return;
  225. }
  226. }
  227. hlist_bl_unlock(head);
  228. }
  229. EXPORT_SYMBOL(mb_cache_entry_delete);
  230. /* mb_cache_entry_touch - cache entry got used
  231. * @cache - cache the entry belongs to
  232. * @entry - entry that got used
  233. *
  234. * Marks entry as used to give hit higher chances of surviving in cache.
  235. */
  236. void mb_cache_entry_touch(struct mb_cache *cache,
  237. struct mb_cache_entry *entry)
  238. {
  239. entry->e_referenced = 1;
  240. }
  241. EXPORT_SYMBOL(mb_cache_entry_touch);
  242. static unsigned long mb_cache_count(struct shrinker *shrink,
  243. struct shrink_control *sc)
  244. {
  245. struct mb_cache *cache = container_of(shrink, struct mb_cache,
  246. c_shrink);
  247. return cache->c_entry_count;
  248. }
  249. /* Shrink number of entries in cache */
  250. static unsigned long mb_cache_shrink(struct mb_cache *cache,
  251. unsigned long nr_to_scan)
  252. {
  253. struct mb_cache_entry *entry;
  254. struct hlist_bl_head *head;
  255. unsigned long shrunk = 0;
  256. spin_lock(&cache->c_list_lock);
  257. while (nr_to_scan-- && !list_empty(&cache->c_list)) {
  258. entry = list_first_entry(&cache->c_list,
  259. struct mb_cache_entry, e_list);
  260. if (entry->e_referenced) {
  261. entry->e_referenced = 0;
  262. list_move_tail(&entry->e_list, &cache->c_list);
  263. continue;
  264. }
  265. list_del_init(&entry->e_list);
  266. cache->c_entry_count--;
  267. /*
  268. * We keep LRU list reference so that entry doesn't go away
  269. * from under us.
  270. */
  271. spin_unlock(&cache->c_list_lock);
  272. head = mb_cache_entry_head(cache, entry->e_key);
  273. hlist_bl_lock(head);
  274. if (!hlist_bl_unhashed(&entry->e_hash_list)) {
  275. hlist_bl_del_init(&entry->e_hash_list);
  276. atomic_dec(&entry->e_refcnt);
  277. }
  278. hlist_bl_unlock(head);
  279. if (mb_cache_entry_put(cache, entry))
  280. shrunk++;
  281. cond_resched();
  282. spin_lock(&cache->c_list_lock);
  283. }
  284. spin_unlock(&cache->c_list_lock);
  285. return shrunk;
  286. }
  287. static unsigned long mb_cache_scan(struct shrinker *shrink,
  288. struct shrink_control *sc)
  289. {
  290. struct mb_cache *cache = container_of(shrink, struct mb_cache,
  291. c_shrink);
  292. return mb_cache_shrink(cache, sc->nr_to_scan);
  293. }
  294. /* We shrink 1/X of the cache when we have too many entries in it */
  295. #define SHRINK_DIVISOR 16
  296. static void mb_cache_shrink_worker(struct work_struct *work)
  297. {
  298. struct mb_cache *cache = container_of(work, struct mb_cache,
  299. c_shrink_work);
  300. mb_cache_shrink(cache, cache->c_max_entries / SHRINK_DIVISOR);
  301. }
  302. /*
  303. * mb_cache_create - create cache
  304. * @bucket_bits: log2 of the hash table size
  305. *
  306. * Create cache for keys with 2^bucket_bits hash entries.
  307. */
  308. struct mb_cache *mb_cache_create(int bucket_bits)
  309. {
  310. struct mb_cache *cache;
  311. unsigned long bucket_count = 1UL << bucket_bits;
  312. unsigned long i;
  313. cache = kzalloc(sizeof(struct mb_cache), GFP_KERNEL);
  314. if (!cache)
  315. goto err_out;
  316. cache->c_bucket_bits = bucket_bits;
  317. cache->c_max_entries = bucket_count << 4;
  318. INIT_LIST_HEAD(&cache->c_list);
  319. spin_lock_init(&cache->c_list_lock);
  320. cache->c_hash = kmalloc(bucket_count * sizeof(struct hlist_bl_head),
  321. GFP_KERNEL);
  322. if (!cache->c_hash) {
  323. kfree(cache);
  324. goto err_out;
  325. }
  326. for (i = 0; i < bucket_count; i++)
  327. INIT_HLIST_BL_HEAD(&cache->c_hash[i]);
  328. cache->c_shrink.count_objects = mb_cache_count;
  329. cache->c_shrink.scan_objects = mb_cache_scan;
  330. cache->c_shrink.seeks = DEFAULT_SEEKS;
  331. if (register_shrinker(&cache->c_shrink)) {
  332. kfree(cache->c_hash);
  333. kfree(cache);
  334. goto err_out;
  335. }
  336. INIT_WORK(&cache->c_shrink_work, mb_cache_shrink_worker);
  337. return cache;
  338. err_out:
  339. return NULL;
  340. }
  341. EXPORT_SYMBOL(mb_cache_create);
  342. /*
  343. * mb_cache_destroy - destroy cache
  344. * @cache: the cache to destroy
  345. *
  346. * Free all entries in cache and cache itself. Caller must make sure nobody
  347. * (except shrinker) can reach @cache when calling this.
  348. */
  349. void mb_cache_destroy(struct mb_cache *cache)
  350. {
  351. struct mb_cache_entry *entry, *next;
  352. unregister_shrinker(&cache->c_shrink);
  353. /*
  354. * We don't bother with any locking. Cache must not be used at this
  355. * point.
  356. */
  357. list_for_each_entry_safe(entry, next, &cache->c_list, e_list) {
  358. if (!hlist_bl_unhashed(&entry->e_hash_list)) {
  359. hlist_bl_del_init(&entry->e_hash_list);
  360. atomic_dec(&entry->e_refcnt);
  361. } else
  362. WARN_ON(1);
  363. list_del(&entry->e_list);
  364. WARN_ON(atomic_read(&entry->e_refcnt) != 1);
  365. mb_cache_entry_put(cache, entry);
  366. }
  367. kfree(cache->c_hash);
  368. kfree(cache);
  369. }
  370. EXPORT_SYMBOL(mb_cache_destroy);
  371. static int __init mbcache_init(void)
  372. {
  373. mb_entry_cache = kmem_cache_create("mbcache",
  374. sizeof(struct mb_cache_entry), 0,
  375. SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
  376. if (!mb_entry_cache)
  377. return -ENOMEM;
  378. return 0;
  379. }
  380. static void __exit mbcache_exit(void)
  381. {
  382. kmem_cache_destroy(mb_entry_cache);
  383. }
  384. module_init(mbcache_init)
  385. module_exit(mbcache_exit)
  386. MODULE_AUTHOR("Jan Kara <jack@suse.cz>");
  387. MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
  388. MODULE_LICENSE("GPL");