kasan_init_64.c 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. #define DISABLE_BRANCH_PROFILING
  2. #define pr_fmt(fmt) "kasan: " fmt
  3. #include <linux/bootmem.h>
  4. #include <linux/kasan.h>
  5. #include <linux/kdebug.h>
  6. #include <linux/mm.h>
  7. #include <linux/sched.h>
  8. #include <linux/sched/task.h>
  9. #include <linux/vmalloc.h>
  10. #include <asm/e820/types.h>
  11. #include <asm/tlbflush.h>
  12. #include <asm/sections.h>
  13. extern pgd_t early_top_pgt[PTRS_PER_PGD];
  14. extern struct range pfn_mapped[E820_MAX_ENTRIES];
  15. static int __init map_range(struct range *range)
  16. {
  17. unsigned long start;
  18. unsigned long end;
  19. start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
  20. end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
  21. return vmemmap_populate(start, end, NUMA_NO_NODE);
  22. }
  23. static void __init clear_pgds(unsigned long start,
  24. unsigned long end)
  25. {
  26. pgd_t *pgd;
  27. for (; start < end; start += PGDIR_SIZE) {
  28. pgd = pgd_offset_k(start);
  29. /*
  30. * With folded p4d, pgd_clear() is nop, use p4d_clear()
  31. * instead.
  32. */
  33. if (CONFIG_PGTABLE_LEVELS < 5)
  34. p4d_clear(p4d_offset(pgd, start));
  35. else
  36. pgd_clear(pgd);
  37. }
  38. }
  39. static void __init kasan_map_early_shadow(pgd_t *pgd)
  40. {
  41. int i;
  42. unsigned long start = KASAN_SHADOW_START;
  43. unsigned long end = KASAN_SHADOW_END;
  44. for (i = pgd_index(start); start < end; i++) {
  45. switch (CONFIG_PGTABLE_LEVELS) {
  46. case 4:
  47. pgd[i] = __pgd(__pa_nodebug(kasan_zero_pud) |
  48. _KERNPG_TABLE);
  49. break;
  50. case 5:
  51. pgd[i] = __pgd(__pa_nodebug(kasan_zero_p4d) |
  52. _KERNPG_TABLE);
  53. break;
  54. default:
  55. BUILD_BUG();
  56. }
  57. start += PGDIR_SIZE;
  58. }
  59. }
  60. #ifdef CONFIG_KASAN_INLINE
  61. static int kasan_die_handler(struct notifier_block *self,
  62. unsigned long val,
  63. void *data)
  64. {
  65. if (val == DIE_GPF) {
  66. pr_emerg("CONFIG_KASAN_INLINE enabled\n");
  67. pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
  68. }
  69. return NOTIFY_OK;
  70. }
  71. static struct notifier_block kasan_die_notifier = {
  72. .notifier_call = kasan_die_handler,
  73. };
  74. #endif
  75. void __init kasan_early_init(void)
  76. {
  77. int i;
  78. pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL;
  79. pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE;
  80. pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE;
  81. p4dval_t p4d_val = __pa_nodebug(kasan_zero_pud) | _KERNPG_TABLE;
  82. for (i = 0; i < PTRS_PER_PTE; i++)
  83. kasan_zero_pte[i] = __pte(pte_val);
  84. for (i = 0; i < PTRS_PER_PMD; i++)
  85. kasan_zero_pmd[i] = __pmd(pmd_val);
  86. for (i = 0; i < PTRS_PER_PUD; i++)
  87. kasan_zero_pud[i] = __pud(pud_val);
  88. for (i = 0; CONFIG_PGTABLE_LEVELS >= 5 && i < PTRS_PER_P4D; i++)
  89. kasan_zero_p4d[i] = __p4d(p4d_val);
  90. kasan_map_early_shadow(early_top_pgt);
  91. kasan_map_early_shadow(init_top_pgt);
  92. }
  93. void __init kasan_init(void)
  94. {
  95. int i;
  96. #ifdef CONFIG_KASAN_INLINE
  97. register_die_notifier(&kasan_die_notifier);
  98. #endif
  99. memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
  100. load_cr3(early_top_pgt);
  101. __flush_tlb_all();
  102. clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END);
  103. kasan_populate_zero_shadow((void *)KASAN_SHADOW_START,
  104. kasan_mem_to_shadow((void *)PAGE_OFFSET));
  105. for (i = 0; i < E820_MAX_ENTRIES; i++) {
  106. if (pfn_mapped[i].end == 0)
  107. break;
  108. if (map_range(&pfn_mapped[i]))
  109. panic("kasan: unable to allocate shadow!");
  110. }
  111. kasan_populate_zero_shadow(
  112. kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
  113. kasan_mem_to_shadow((void *)__START_KERNEL_map));
  114. vmemmap_populate((unsigned long)kasan_mem_to_shadow(_stext),
  115. (unsigned long)kasan_mem_to_shadow(_end),
  116. NUMA_NO_NODE);
  117. kasan_populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
  118. (void *)KASAN_SHADOW_END);
  119. load_cr3(init_top_pgt);
  120. __flush_tlb_all();
  121. /*
  122. * kasan_zero_page has been used as early shadow memory, thus it may
  123. * contain some garbage. Now we can clear and write protect it, since
  124. * after the TLB flush no one should write to it.
  125. */
  126. memset(kasan_zero_page, 0, PAGE_SIZE);
  127. for (i = 0; i < PTRS_PER_PTE; i++) {
  128. pte_t pte = __pte(__pa(kasan_zero_page) | __PAGE_KERNEL_RO);
  129. set_pte(&kasan_zero_pte[i], pte);
  130. }
  131. /* Flush TLBs again to be sure that write protection applied. */
  132. __flush_tlb_all();
  133. init_task.kasan_depth = 0;
  134. pr_info("KernelAddressSanitizer initialized\n");
  135. }