mmu.h 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193
  1. #ifndef __KVM_X86_MMU_H
  2. #define __KVM_X86_MMU_H
  3. #include <linux/kvm_host.h>
  4. #include "kvm_cache_regs.h"
  5. #define PT64_PT_BITS 9
  6. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  7. #define PT32_PT_BITS 10
  8. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  9. #define PT_WRITABLE_SHIFT 1
  10. #define PT_USER_SHIFT 2
  11. #define PT_PRESENT_MASK (1ULL << 0)
  12. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  13. #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
  14. #define PT_PWT_MASK (1ULL << 3)
  15. #define PT_PCD_MASK (1ULL << 4)
  16. #define PT_ACCESSED_SHIFT 5
  17. #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
  18. #define PT_DIRTY_SHIFT 6
  19. #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
  20. #define PT_PAGE_SIZE_SHIFT 7
  21. #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
  22. #define PT_PAT_MASK (1ULL << 7)
  23. #define PT_GLOBAL_MASK (1ULL << 8)
  24. #define PT64_NX_SHIFT 63
  25. #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
  26. #define PT_PAT_SHIFT 7
  27. #define PT_DIR_PAT_SHIFT 12
  28. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  29. #define PT32_DIR_PSE36_SIZE 4
  30. #define PT32_DIR_PSE36_SHIFT 13
  31. #define PT32_DIR_PSE36_MASK \
  32. (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  33. #define PT64_ROOT_LEVEL 4
  34. #define PT32_ROOT_LEVEL 2
  35. #define PT32E_ROOT_LEVEL 3
  36. #define PT_PDPE_LEVEL 3
  37. #define PT_DIRECTORY_LEVEL 2
  38. #define PT_PAGE_TABLE_LEVEL 1
  39. #define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
  40. static inline u64 rsvd_bits(int s, int e)
  41. {
  42. return ((1ULL << (e - s + 1)) - 1) << s;
  43. }
  44. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value);
  45. void
  46. reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
  47. void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
  48. void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
  49. bool accessed_dirty);
  50. bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
  51. int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
  52. u64 fault_address, char *insn, int insn_len,
  53. bool need_unprotect);
  54. static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
  55. {
  56. if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
  57. return kvm->arch.n_max_mmu_pages -
  58. kvm->arch.n_used_mmu_pages;
  59. return 0;
  60. }
  61. static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
  62. {
  63. if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
  64. return 0;
  65. return kvm_mmu_load(vcpu);
  66. }
  67. /*
  68. * Currently, we have two sorts of write-protection, a) the first one
  69. * write-protects guest page to sync the guest modification, b) another one is
  70. * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
  71. * between these two sorts are:
  72. * 1) the first case clears SPTE_MMU_WRITEABLE bit.
  73. * 2) the first case requires flushing tlb immediately avoiding corrupting
  74. * shadow page table between all vcpus so it should be in the protection of
  75. * mmu-lock. And the another case does not need to flush tlb until returning
  76. * the dirty bitmap to userspace since it only write-protects the page
  77. * logged in the bitmap, that means the page in the dirty bitmap is not
  78. * missed, so it can flush tlb out of mmu-lock.
  79. *
  80. * So, there is the problem: the first case can meet the corrupted tlb caused
  81. * by another case which write-protects pages but without flush tlb
  82. * immediately. In order to making the first case be aware this problem we let
  83. * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
  84. * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
  85. *
  86. * Anyway, whenever a spte is updated (only permission and status bits are
  87. * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
  88. * readonly, if that happens, we need to flush tlb. Fortunately,
  89. * mmu_spte_update() has already handled it perfectly.
  90. *
  91. * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
  92. * - if we want to see if it has writable tlb entry or if the spte can be
  93. * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
  94. * case, otherwise
  95. * - if we fix page fault on the spte or do write-protection by dirty logging,
  96. * check PT_WRITABLE_MASK.
  97. *
  98. * TODO: introduce APIs to split these two cases.
  99. */
  100. static inline int is_writable_pte(unsigned long pte)
  101. {
  102. return pte & PT_WRITABLE_MASK;
  103. }
  104. static inline bool is_write_protection(struct kvm_vcpu *vcpu)
  105. {
  106. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  107. }
  108. /*
  109. * Check if a given access (described through the I/D, W/R and U/S bits of a
  110. * page fault error code pfec) causes a permission fault with the given PTE
  111. * access rights (in ACC_* format).
  112. *
  113. * Return zero if the access does not fault; return the page fault error code
  114. * if the access faults.
  115. */
  116. static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  117. unsigned pte_access, unsigned pte_pkey,
  118. unsigned pfec)
  119. {
  120. int cpl = kvm_x86_ops->get_cpl(vcpu);
  121. unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
  122. /*
  123. * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
  124. *
  125. * If CPL = 3, SMAP applies to all supervisor-mode data accesses
  126. * (these are implicit supervisor accesses) regardless of the value
  127. * of EFLAGS.AC.
  128. *
  129. * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
  130. * the result in X86_EFLAGS_AC. We then insert it in place of
  131. * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
  132. * but it will be one in index if SMAP checks are being overridden.
  133. * It is important to keep this branchless.
  134. */
  135. unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
  136. int index = (pfec >> 1) +
  137. (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
  138. bool fault = (mmu->permissions[index] >> pte_access) & 1;
  139. u32 errcode = PFERR_PRESENT_MASK;
  140. WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
  141. if (unlikely(mmu->pkru_mask)) {
  142. u32 pkru_bits, offset;
  143. /*
  144. * PKRU defines 32 bits, there are 16 domains and 2
  145. * attribute bits per domain in pkru. pte_pkey is the
  146. * index of the protection domain, so pte_pkey * 2 is
  147. * is the index of the first bit for the domain.
  148. */
  149. pkru_bits = (kvm_read_pkru(vcpu) >> (pte_pkey * 2)) & 3;
  150. /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
  151. offset = (pfec & ~1) +
  152. ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
  153. pkru_bits &= mmu->pkru_mask >> offset;
  154. errcode |= -pkru_bits & PFERR_PK_MASK;
  155. fault |= (pkru_bits != 0);
  156. }
  157. return -(u32)fault & errcode;
  158. }
  159. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
  160. void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
  161. void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
  162. void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
  163. bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
  164. struct kvm_memory_slot *slot, u64 gfn);
  165. int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
  166. #endif