tsc.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/sched/clock.h>
  5. #include <linux/init.h>
  6. #include <linux/export.h>
  7. #include <linux/timer.h>
  8. #include <linux/acpi_pmtmr.h>
  9. #include <linux/cpufreq.h>
  10. #include <linux/delay.h>
  11. #include <linux/clocksource.h>
  12. #include <linux/percpu.h>
  13. #include <linux/timex.h>
  14. #include <linux/static_key.h>
  15. #include <asm/hpet.h>
  16. #include <asm/timer.h>
  17. #include <asm/vgtod.h>
  18. #include <asm/time.h>
  19. #include <asm/delay.h>
  20. #include <asm/hypervisor.h>
  21. #include <asm/nmi.h>
  22. #include <asm/x86_init.h>
  23. #include <asm/geode.h>
  24. #include <asm/apic.h>
  25. #include <asm/intel-family.h>
  26. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  27. EXPORT_SYMBOL(cpu_khz);
  28. unsigned int __read_mostly tsc_khz;
  29. EXPORT_SYMBOL(tsc_khz);
  30. /*
  31. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  32. */
  33. static int __read_mostly tsc_unstable;
  34. /* native_sched_clock() is called before tsc_init(), so
  35. we must start with the TSC soft disabled to prevent
  36. erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
  37. static int __read_mostly tsc_disabled = -1;
  38. static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  39. int tsc_clocksource_reliable;
  40. static u32 art_to_tsc_numerator;
  41. static u32 art_to_tsc_denominator;
  42. static u64 art_to_tsc_offset;
  43. struct clocksource *art_related_clocksource;
  44. struct cyc2ns {
  45. struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
  46. seqcount_t seq; /* 32 + 4 = 36 */
  47. }; /* fits one cacheline */
  48. static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  49. void cyc2ns_read_begin(struct cyc2ns_data *data)
  50. {
  51. int seq, idx;
  52. preempt_disable_notrace();
  53. do {
  54. seq = this_cpu_read(cyc2ns.seq.sequence);
  55. idx = seq & 1;
  56. data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
  57. data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
  58. data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
  59. } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
  60. }
  61. void cyc2ns_read_end(void)
  62. {
  63. preempt_enable_notrace();
  64. }
  65. /*
  66. * Accelerators for sched_clock()
  67. * convert from cycles(64bits) => nanoseconds (64bits)
  68. * basic equation:
  69. * ns = cycles / (freq / ns_per_sec)
  70. * ns = cycles * (ns_per_sec / freq)
  71. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  72. * ns = cycles * (10^6 / cpu_khz)
  73. *
  74. * Then we use scaling math (suggested by george@mvista.com) to get:
  75. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  76. * ns = cycles * cyc2ns_scale / SC
  77. *
  78. * And since SC is a constant power of two, we can convert the div
  79. * into a shift. The larger SC is, the more accurate the conversion, but
  80. * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
  81. * (64-bit result) can be used.
  82. *
  83. * We can use khz divisor instead of mhz to keep a better precision.
  84. * (mathieu.desnoyers@polymtl.ca)
  85. *
  86. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  87. */
  88. static void cyc2ns_data_init(struct cyc2ns_data *data)
  89. {
  90. data->cyc2ns_mul = 0;
  91. data->cyc2ns_shift = 0;
  92. data->cyc2ns_offset = 0;
  93. }
  94. static void cyc2ns_init(int cpu)
  95. {
  96. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  97. cyc2ns_data_init(&c2n->data[0]);
  98. cyc2ns_data_init(&c2n->data[1]);
  99. seqcount_init(&c2n->seq);
  100. }
  101. static inline unsigned long long cycles_2_ns(unsigned long long cyc)
  102. {
  103. struct cyc2ns_data data;
  104. unsigned long long ns;
  105. cyc2ns_read_begin(&data);
  106. ns = data.cyc2ns_offset;
  107. ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
  108. cyc2ns_read_end();
  109. return ns;
  110. }
  111. static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
  112. {
  113. unsigned long long ns_now;
  114. struct cyc2ns_data data;
  115. struct cyc2ns *c2n;
  116. unsigned long flags;
  117. local_irq_save(flags);
  118. sched_clock_idle_sleep_event();
  119. if (!khz)
  120. goto done;
  121. ns_now = cycles_2_ns(tsc_now);
  122. /*
  123. * Compute a new multiplier as per the above comment and ensure our
  124. * time function is continuous; see the comment near struct
  125. * cyc2ns_data.
  126. */
  127. clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
  128. NSEC_PER_MSEC, 0);
  129. /*
  130. * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
  131. * not expected to be greater than 31 due to the original published
  132. * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
  133. * value) - refer perf_event_mmap_page documentation in perf_event.h.
  134. */
  135. if (data.cyc2ns_shift == 32) {
  136. data.cyc2ns_shift = 31;
  137. data.cyc2ns_mul >>= 1;
  138. }
  139. data.cyc2ns_offset = ns_now -
  140. mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
  141. c2n = per_cpu_ptr(&cyc2ns, cpu);
  142. raw_write_seqcount_latch(&c2n->seq);
  143. c2n->data[0] = data;
  144. raw_write_seqcount_latch(&c2n->seq);
  145. c2n->data[1] = data;
  146. done:
  147. sched_clock_idle_wakeup_event();
  148. local_irq_restore(flags);
  149. }
  150. /*
  151. * Scheduler clock - returns current time in nanosec units.
  152. */
  153. u64 native_sched_clock(void)
  154. {
  155. if (static_branch_likely(&__use_tsc)) {
  156. u64 tsc_now = rdtsc();
  157. /* return the value in ns */
  158. return cycles_2_ns(tsc_now);
  159. }
  160. /*
  161. * Fall back to jiffies if there's no TSC available:
  162. * ( But note that we still use it if the TSC is marked
  163. * unstable. We do this because unlike Time Of Day,
  164. * the scheduler clock tolerates small errors and it's
  165. * very important for it to be as fast as the platform
  166. * can achieve it. )
  167. */
  168. /* No locking but a rare wrong value is not a big deal: */
  169. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  170. }
  171. /*
  172. * Generate a sched_clock if you already have a TSC value.
  173. */
  174. u64 native_sched_clock_from_tsc(u64 tsc)
  175. {
  176. return cycles_2_ns(tsc);
  177. }
  178. /* We need to define a real function for sched_clock, to override the
  179. weak default version */
  180. #ifdef CONFIG_PARAVIRT
  181. unsigned long long sched_clock(void)
  182. {
  183. return paravirt_sched_clock();
  184. }
  185. bool using_native_sched_clock(void)
  186. {
  187. return pv_time_ops.sched_clock == native_sched_clock;
  188. }
  189. #else
  190. unsigned long long
  191. sched_clock(void) __attribute__((alias("native_sched_clock")));
  192. bool using_native_sched_clock(void) { return true; }
  193. #endif
  194. int check_tsc_unstable(void)
  195. {
  196. return tsc_unstable;
  197. }
  198. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  199. #ifdef CONFIG_X86_TSC
  200. int __init notsc_setup(char *str)
  201. {
  202. pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
  203. tsc_disabled = 1;
  204. return 1;
  205. }
  206. #else
  207. /*
  208. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  209. * in cpu/common.c
  210. */
  211. int __init notsc_setup(char *str)
  212. {
  213. setup_clear_cpu_cap(X86_FEATURE_TSC);
  214. return 1;
  215. }
  216. #endif
  217. __setup("notsc", notsc_setup);
  218. static int no_sched_irq_time;
  219. static int __init tsc_setup(char *str)
  220. {
  221. if (!strcmp(str, "reliable"))
  222. tsc_clocksource_reliable = 1;
  223. if (!strncmp(str, "noirqtime", 9))
  224. no_sched_irq_time = 1;
  225. if (!strcmp(str, "unstable"))
  226. mark_tsc_unstable("boot parameter");
  227. return 1;
  228. }
  229. __setup("tsc=", tsc_setup);
  230. #define MAX_RETRIES 5
  231. #define SMI_TRESHOLD 50000
  232. /*
  233. * Read TSC and the reference counters. Take care of SMI disturbance
  234. */
  235. static u64 tsc_read_refs(u64 *p, int hpet)
  236. {
  237. u64 t1, t2;
  238. int i;
  239. for (i = 0; i < MAX_RETRIES; i++) {
  240. t1 = get_cycles();
  241. if (hpet)
  242. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  243. else
  244. *p = acpi_pm_read_early();
  245. t2 = get_cycles();
  246. if ((t2 - t1) < SMI_TRESHOLD)
  247. return t2;
  248. }
  249. return ULLONG_MAX;
  250. }
  251. /*
  252. * Calculate the TSC frequency from HPET reference
  253. */
  254. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  255. {
  256. u64 tmp;
  257. if (hpet2 < hpet1)
  258. hpet2 += 0x100000000ULL;
  259. hpet2 -= hpet1;
  260. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  261. do_div(tmp, 1000000);
  262. do_div(deltatsc, tmp);
  263. return (unsigned long) deltatsc;
  264. }
  265. /*
  266. * Calculate the TSC frequency from PMTimer reference
  267. */
  268. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  269. {
  270. u64 tmp;
  271. if (!pm1 && !pm2)
  272. return ULONG_MAX;
  273. if (pm2 < pm1)
  274. pm2 += (u64)ACPI_PM_OVRRUN;
  275. pm2 -= pm1;
  276. tmp = pm2 * 1000000000LL;
  277. do_div(tmp, PMTMR_TICKS_PER_SEC);
  278. do_div(deltatsc, tmp);
  279. return (unsigned long) deltatsc;
  280. }
  281. #define CAL_MS 10
  282. #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
  283. #define CAL_PIT_LOOPS 1000
  284. #define CAL2_MS 50
  285. #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
  286. #define CAL2_PIT_LOOPS 5000
  287. /*
  288. * Try to calibrate the TSC against the Programmable
  289. * Interrupt Timer and return the frequency of the TSC
  290. * in kHz.
  291. *
  292. * Return ULONG_MAX on failure to calibrate.
  293. */
  294. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  295. {
  296. u64 tsc, t1, t2, delta;
  297. unsigned long tscmin, tscmax;
  298. int pitcnt;
  299. /* Set the Gate high, disable speaker */
  300. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  301. /*
  302. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  303. * count mode), binary count. Set the latch register to 50ms
  304. * (LSB then MSB) to begin countdown.
  305. */
  306. outb(0xb0, 0x43);
  307. outb(latch & 0xff, 0x42);
  308. outb(latch >> 8, 0x42);
  309. tsc = t1 = t2 = get_cycles();
  310. pitcnt = 0;
  311. tscmax = 0;
  312. tscmin = ULONG_MAX;
  313. while ((inb(0x61) & 0x20) == 0) {
  314. t2 = get_cycles();
  315. delta = t2 - tsc;
  316. tsc = t2;
  317. if ((unsigned long) delta < tscmin)
  318. tscmin = (unsigned int) delta;
  319. if ((unsigned long) delta > tscmax)
  320. tscmax = (unsigned int) delta;
  321. pitcnt++;
  322. }
  323. /*
  324. * Sanity checks:
  325. *
  326. * If we were not able to read the PIT more than loopmin
  327. * times, then we have been hit by a massive SMI
  328. *
  329. * If the maximum is 10 times larger than the minimum,
  330. * then we got hit by an SMI as well.
  331. */
  332. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  333. return ULONG_MAX;
  334. /* Calculate the PIT value */
  335. delta = t2 - t1;
  336. do_div(delta, ms);
  337. return delta;
  338. }
  339. /*
  340. * This reads the current MSB of the PIT counter, and
  341. * checks if we are running on sufficiently fast and
  342. * non-virtualized hardware.
  343. *
  344. * Our expectations are:
  345. *
  346. * - the PIT is running at roughly 1.19MHz
  347. *
  348. * - each IO is going to take about 1us on real hardware,
  349. * but we allow it to be much faster (by a factor of 10) or
  350. * _slightly_ slower (ie we allow up to a 2us read+counter
  351. * update - anything else implies a unacceptably slow CPU
  352. * or PIT for the fast calibration to work.
  353. *
  354. * - with 256 PIT ticks to read the value, we have 214us to
  355. * see the same MSB (and overhead like doing a single TSC
  356. * read per MSB value etc).
  357. *
  358. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  359. * them each to take about a microsecond on real hardware.
  360. * So we expect a count value of around 100. But we'll be
  361. * generous, and accept anything over 50.
  362. *
  363. * - if the PIT is stuck, and we see *many* more reads, we
  364. * return early (and the next caller of pit_expect_msb()
  365. * then consider it a failure when they don't see the
  366. * next expected value).
  367. *
  368. * These expectations mean that we know that we have seen the
  369. * transition from one expected value to another with a fairly
  370. * high accuracy, and we didn't miss any events. We can thus
  371. * use the TSC value at the transitions to calculate a pretty
  372. * good value for the TSC frequencty.
  373. */
  374. static inline int pit_verify_msb(unsigned char val)
  375. {
  376. /* Ignore LSB */
  377. inb(0x42);
  378. return inb(0x42) == val;
  379. }
  380. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  381. {
  382. int count;
  383. u64 tsc = 0, prev_tsc = 0;
  384. for (count = 0; count < 50000; count++) {
  385. if (!pit_verify_msb(val))
  386. break;
  387. prev_tsc = tsc;
  388. tsc = get_cycles();
  389. }
  390. *deltap = get_cycles() - prev_tsc;
  391. *tscp = tsc;
  392. /*
  393. * We require _some_ success, but the quality control
  394. * will be based on the error terms on the TSC values.
  395. */
  396. return count > 5;
  397. }
  398. /*
  399. * How many MSB values do we want to see? We aim for
  400. * a maximum error rate of 500ppm (in practice the
  401. * real error is much smaller), but refuse to spend
  402. * more than 50ms on it.
  403. */
  404. #define MAX_QUICK_PIT_MS 50
  405. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  406. static unsigned long quick_pit_calibrate(void)
  407. {
  408. int i;
  409. u64 tsc, delta;
  410. unsigned long d1, d2;
  411. /* Set the Gate high, disable speaker */
  412. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  413. /*
  414. * Counter 2, mode 0 (one-shot), binary count
  415. *
  416. * NOTE! Mode 2 decrements by two (and then the
  417. * output is flipped each time, giving the same
  418. * final output frequency as a decrement-by-one),
  419. * so mode 0 is much better when looking at the
  420. * individual counts.
  421. */
  422. outb(0xb0, 0x43);
  423. /* Start at 0xffff */
  424. outb(0xff, 0x42);
  425. outb(0xff, 0x42);
  426. /*
  427. * The PIT starts counting at the next edge, so we
  428. * need to delay for a microsecond. The easiest way
  429. * to do that is to just read back the 16-bit counter
  430. * once from the PIT.
  431. */
  432. pit_verify_msb(0);
  433. if (pit_expect_msb(0xff, &tsc, &d1)) {
  434. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  435. if (!pit_expect_msb(0xff-i, &delta, &d2))
  436. break;
  437. delta -= tsc;
  438. /*
  439. * Extrapolate the error and fail fast if the error will
  440. * never be below 500 ppm.
  441. */
  442. if (i == 1 &&
  443. d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
  444. return 0;
  445. /*
  446. * Iterate until the error is less than 500 ppm
  447. */
  448. if (d1+d2 >= delta >> 11)
  449. continue;
  450. /*
  451. * Check the PIT one more time to verify that
  452. * all TSC reads were stable wrt the PIT.
  453. *
  454. * This also guarantees serialization of the
  455. * last cycle read ('d2') in pit_expect_msb.
  456. */
  457. if (!pit_verify_msb(0xfe - i))
  458. break;
  459. goto success;
  460. }
  461. }
  462. pr_info("Fast TSC calibration failed\n");
  463. return 0;
  464. success:
  465. /*
  466. * Ok, if we get here, then we've seen the
  467. * MSB of the PIT decrement 'i' times, and the
  468. * error has shrunk to less than 500 ppm.
  469. *
  470. * As a result, we can depend on there not being
  471. * any odd delays anywhere, and the TSC reads are
  472. * reliable (within the error).
  473. *
  474. * kHz = ticks / time-in-seconds / 1000;
  475. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  476. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  477. */
  478. delta *= PIT_TICK_RATE;
  479. do_div(delta, i*256*1000);
  480. pr_info("Fast TSC calibration using PIT\n");
  481. return delta;
  482. }
  483. /**
  484. * native_calibrate_tsc
  485. * Determine TSC frequency via CPUID, else return 0.
  486. */
  487. unsigned long native_calibrate_tsc(void)
  488. {
  489. unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
  490. unsigned int crystal_khz;
  491. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  492. return 0;
  493. if (boot_cpu_data.cpuid_level < 0x15)
  494. return 0;
  495. eax_denominator = ebx_numerator = ecx_hz = edx = 0;
  496. /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
  497. cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
  498. if (ebx_numerator == 0 || eax_denominator == 0)
  499. return 0;
  500. crystal_khz = ecx_hz / 1000;
  501. if (crystal_khz == 0) {
  502. switch (boot_cpu_data.x86_model) {
  503. case INTEL_FAM6_SKYLAKE_MOBILE:
  504. case INTEL_FAM6_SKYLAKE_DESKTOP:
  505. case INTEL_FAM6_KABYLAKE_MOBILE:
  506. case INTEL_FAM6_KABYLAKE_DESKTOP:
  507. crystal_khz = 24000; /* 24.0 MHz */
  508. break;
  509. case INTEL_FAM6_SKYLAKE_X:
  510. case INTEL_FAM6_ATOM_DENVERTON:
  511. crystal_khz = 25000; /* 25.0 MHz */
  512. break;
  513. case INTEL_FAM6_ATOM_GOLDMONT:
  514. crystal_khz = 19200; /* 19.2 MHz */
  515. break;
  516. }
  517. }
  518. /*
  519. * TSC frequency determined by CPUID is a "hardware reported"
  520. * frequency and is the most accurate one so far we have. This
  521. * is considered a known frequency.
  522. */
  523. setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
  524. /*
  525. * For Atom SoCs TSC is the only reliable clocksource.
  526. * Mark TSC reliable so no watchdog on it.
  527. */
  528. if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
  529. setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
  530. return crystal_khz * ebx_numerator / eax_denominator;
  531. }
  532. static unsigned long cpu_khz_from_cpuid(void)
  533. {
  534. unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
  535. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  536. return 0;
  537. if (boot_cpu_data.cpuid_level < 0x16)
  538. return 0;
  539. eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
  540. cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
  541. return eax_base_mhz * 1000;
  542. }
  543. /**
  544. * native_calibrate_cpu - calibrate the cpu on boot
  545. */
  546. unsigned long native_calibrate_cpu(void)
  547. {
  548. u64 tsc1, tsc2, delta, ref1, ref2;
  549. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  550. unsigned long flags, latch, ms, fast_calibrate;
  551. int hpet = is_hpet_enabled(), i, loopmin;
  552. fast_calibrate = cpu_khz_from_cpuid();
  553. if (fast_calibrate)
  554. return fast_calibrate;
  555. fast_calibrate = cpu_khz_from_msr();
  556. if (fast_calibrate)
  557. return fast_calibrate;
  558. local_irq_save(flags);
  559. fast_calibrate = quick_pit_calibrate();
  560. local_irq_restore(flags);
  561. if (fast_calibrate)
  562. return fast_calibrate;
  563. /*
  564. * Run 5 calibration loops to get the lowest frequency value
  565. * (the best estimate). We use two different calibration modes
  566. * here:
  567. *
  568. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  569. * load a timeout of 50ms. We read the time right after we
  570. * started the timer and wait until the PIT count down reaches
  571. * zero. In each wait loop iteration we read the TSC and check
  572. * the delta to the previous read. We keep track of the min
  573. * and max values of that delta. The delta is mostly defined
  574. * by the IO time of the PIT access, so we can detect when a
  575. * SMI/SMM disturbance happened between the two reads. If the
  576. * maximum time is significantly larger than the minimum time,
  577. * then we discard the result and have another try.
  578. *
  579. * 2) Reference counter. If available we use the HPET or the
  580. * PMTIMER as a reference to check the sanity of that value.
  581. * We use separate TSC readouts and check inside of the
  582. * reference read for a SMI/SMM disturbance. We dicard
  583. * disturbed values here as well. We do that around the PIT
  584. * calibration delay loop as we have to wait for a certain
  585. * amount of time anyway.
  586. */
  587. /* Preset PIT loop values */
  588. latch = CAL_LATCH;
  589. ms = CAL_MS;
  590. loopmin = CAL_PIT_LOOPS;
  591. for (i = 0; i < 3; i++) {
  592. unsigned long tsc_pit_khz;
  593. /*
  594. * Read the start value and the reference count of
  595. * hpet/pmtimer when available. Then do the PIT
  596. * calibration, which will take at least 50ms, and
  597. * read the end value.
  598. */
  599. local_irq_save(flags);
  600. tsc1 = tsc_read_refs(&ref1, hpet);
  601. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  602. tsc2 = tsc_read_refs(&ref2, hpet);
  603. local_irq_restore(flags);
  604. /* Pick the lowest PIT TSC calibration so far */
  605. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  606. /* hpet or pmtimer available ? */
  607. if (ref1 == ref2)
  608. continue;
  609. /* Check, whether the sampling was disturbed by an SMI */
  610. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  611. continue;
  612. tsc2 = (tsc2 - tsc1) * 1000000LL;
  613. if (hpet)
  614. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  615. else
  616. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  617. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  618. /* Check the reference deviation */
  619. delta = ((u64) tsc_pit_min) * 100;
  620. do_div(delta, tsc_ref_min);
  621. /*
  622. * If both calibration results are inside a 10% window
  623. * then we can be sure, that the calibration
  624. * succeeded. We break out of the loop right away. We
  625. * use the reference value, as it is more precise.
  626. */
  627. if (delta >= 90 && delta <= 110) {
  628. pr_info("PIT calibration matches %s. %d loops\n",
  629. hpet ? "HPET" : "PMTIMER", i + 1);
  630. return tsc_ref_min;
  631. }
  632. /*
  633. * Check whether PIT failed more than once. This
  634. * happens in virtualized environments. We need to
  635. * give the virtual PC a slightly longer timeframe for
  636. * the HPET/PMTIMER to make the result precise.
  637. */
  638. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  639. latch = CAL2_LATCH;
  640. ms = CAL2_MS;
  641. loopmin = CAL2_PIT_LOOPS;
  642. }
  643. }
  644. /*
  645. * Now check the results.
  646. */
  647. if (tsc_pit_min == ULONG_MAX) {
  648. /* PIT gave no useful value */
  649. pr_warn("Unable to calibrate against PIT\n");
  650. /* We don't have an alternative source, disable TSC */
  651. if (!hpet && !ref1 && !ref2) {
  652. pr_notice("No reference (HPET/PMTIMER) available\n");
  653. return 0;
  654. }
  655. /* The alternative source failed as well, disable TSC */
  656. if (tsc_ref_min == ULONG_MAX) {
  657. pr_warn("HPET/PMTIMER calibration failed\n");
  658. return 0;
  659. }
  660. /* Use the alternative source */
  661. pr_info("using %s reference calibration\n",
  662. hpet ? "HPET" : "PMTIMER");
  663. return tsc_ref_min;
  664. }
  665. /* We don't have an alternative source, use the PIT calibration value */
  666. if (!hpet && !ref1 && !ref2) {
  667. pr_info("Using PIT calibration value\n");
  668. return tsc_pit_min;
  669. }
  670. /* The alternative source failed, use the PIT calibration value */
  671. if (tsc_ref_min == ULONG_MAX) {
  672. pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
  673. return tsc_pit_min;
  674. }
  675. /*
  676. * The calibration values differ too much. In doubt, we use
  677. * the PIT value as we know that there are PMTIMERs around
  678. * running at double speed. At least we let the user know:
  679. */
  680. pr_warn("PIT calibration deviates from %s: %lu %lu\n",
  681. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  682. pr_info("Using PIT calibration value\n");
  683. return tsc_pit_min;
  684. }
  685. int recalibrate_cpu_khz(void)
  686. {
  687. #ifndef CONFIG_SMP
  688. unsigned long cpu_khz_old = cpu_khz;
  689. if (!boot_cpu_has(X86_FEATURE_TSC))
  690. return -ENODEV;
  691. cpu_khz = x86_platform.calibrate_cpu();
  692. tsc_khz = x86_platform.calibrate_tsc();
  693. if (tsc_khz == 0)
  694. tsc_khz = cpu_khz;
  695. else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
  696. cpu_khz = tsc_khz;
  697. cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
  698. cpu_khz_old, cpu_khz);
  699. return 0;
  700. #else
  701. return -ENODEV;
  702. #endif
  703. }
  704. EXPORT_SYMBOL(recalibrate_cpu_khz);
  705. static unsigned long long cyc2ns_suspend;
  706. void tsc_save_sched_clock_state(void)
  707. {
  708. if (!sched_clock_stable())
  709. return;
  710. cyc2ns_suspend = sched_clock();
  711. }
  712. /*
  713. * Even on processors with invariant TSC, TSC gets reset in some the
  714. * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
  715. * arbitrary value (still sync'd across cpu's) during resume from such sleep
  716. * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
  717. * that sched_clock() continues from the point where it was left off during
  718. * suspend.
  719. */
  720. void tsc_restore_sched_clock_state(void)
  721. {
  722. unsigned long long offset;
  723. unsigned long flags;
  724. int cpu;
  725. if (!sched_clock_stable())
  726. return;
  727. local_irq_save(flags);
  728. /*
  729. * We're coming out of suspend, there's no concurrency yet; don't
  730. * bother being nice about the RCU stuff, just write to both
  731. * data fields.
  732. */
  733. this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
  734. this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
  735. offset = cyc2ns_suspend - sched_clock();
  736. for_each_possible_cpu(cpu) {
  737. per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
  738. per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
  739. }
  740. local_irq_restore(flags);
  741. }
  742. #ifdef CONFIG_CPU_FREQ
  743. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  744. * changes.
  745. *
  746. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  747. * not that important because current Opteron setups do not support
  748. * scaling on SMP anyroads.
  749. *
  750. * Should fix up last_tsc too. Currently gettimeofday in the
  751. * first tick after the change will be slightly wrong.
  752. */
  753. static unsigned int ref_freq;
  754. static unsigned long loops_per_jiffy_ref;
  755. static unsigned long tsc_khz_ref;
  756. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  757. void *data)
  758. {
  759. struct cpufreq_freqs *freq = data;
  760. unsigned long *lpj;
  761. lpj = &boot_cpu_data.loops_per_jiffy;
  762. #ifdef CONFIG_SMP
  763. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  764. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  765. #endif
  766. if (!ref_freq) {
  767. ref_freq = freq->old;
  768. loops_per_jiffy_ref = *lpj;
  769. tsc_khz_ref = tsc_khz;
  770. }
  771. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  772. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
  773. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  774. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  775. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  776. mark_tsc_unstable("cpufreq changes");
  777. set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
  778. }
  779. return 0;
  780. }
  781. static struct notifier_block time_cpufreq_notifier_block = {
  782. .notifier_call = time_cpufreq_notifier
  783. };
  784. static int __init cpufreq_register_tsc_scaling(void)
  785. {
  786. if (!boot_cpu_has(X86_FEATURE_TSC))
  787. return 0;
  788. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  789. return 0;
  790. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  791. CPUFREQ_TRANSITION_NOTIFIER);
  792. return 0;
  793. }
  794. core_initcall(cpufreq_register_tsc_scaling);
  795. #endif /* CONFIG_CPU_FREQ */
  796. #define ART_CPUID_LEAF (0x15)
  797. #define ART_MIN_DENOMINATOR (1)
  798. /*
  799. * If ART is present detect the numerator:denominator to convert to TSC
  800. */
  801. static void detect_art(void)
  802. {
  803. unsigned int unused[2];
  804. if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
  805. return;
  806. /* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
  807. if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
  808. !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
  809. !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
  810. return;
  811. cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
  812. &art_to_tsc_numerator, unused, unused+1);
  813. if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
  814. return;
  815. rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
  816. /* Make this sticky over multiple CPU init calls */
  817. setup_force_cpu_cap(X86_FEATURE_ART);
  818. }
  819. /* clocksource code */
  820. static struct clocksource clocksource_tsc;
  821. static void tsc_resume(struct clocksource *cs)
  822. {
  823. tsc_verify_tsc_adjust(true);
  824. }
  825. /*
  826. * We used to compare the TSC to the cycle_last value in the clocksource
  827. * structure to avoid a nasty time-warp. This can be observed in a
  828. * very small window right after one CPU updated cycle_last under
  829. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  830. * is smaller than the cycle_last reference value due to a TSC which
  831. * is slighty behind. This delta is nowhere else observable, but in
  832. * that case it results in a forward time jump in the range of hours
  833. * due to the unsigned delta calculation of the time keeping core
  834. * code, which is necessary to support wrapping clocksources like pm
  835. * timer.
  836. *
  837. * This sanity check is now done in the core timekeeping code.
  838. * checking the result of read_tsc() - cycle_last for being negative.
  839. * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
  840. */
  841. static u64 read_tsc(struct clocksource *cs)
  842. {
  843. return (u64)rdtsc_ordered();
  844. }
  845. static void tsc_cs_mark_unstable(struct clocksource *cs)
  846. {
  847. if (tsc_unstable)
  848. return;
  849. tsc_unstable = 1;
  850. if (using_native_sched_clock())
  851. clear_sched_clock_stable();
  852. disable_sched_clock_irqtime();
  853. pr_info("Marking TSC unstable due to clocksource watchdog\n");
  854. }
  855. static void tsc_cs_tick_stable(struct clocksource *cs)
  856. {
  857. if (tsc_unstable)
  858. return;
  859. if (using_native_sched_clock())
  860. sched_clock_tick_stable();
  861. }
  862. /*
  863. * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
  864. */
  865. static struct clocksource clocksource_tsc = {
  866. .name = "tsc",
  867. .rating = 300,
  868. .read = read_tsc,
  869. .mask = CLOCKSOURCE_MASK(64),
  870. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  871. CLOCK_SOURCE_MUST_VERIFY,
  872. .archdata = { .vclock_mode = VCLOCK_TSC },
  873. .resume = tsc_resume,
  874. .mark_unstable = tsc_cs_mark_unstable,
  875. .tick_stable = tsc_cs_tick_stable,
  876. };
  877. void mark_tsc_unstable(char *reason)
  878. {
  879. if (tsc_unstable)
  880. return;
  881. tsc_unstable = 1;
  882. if (using_native_sched_clock())
  883. clear_sched_clock_stable();
  884. disable_sched_clock_irqtime();
  885. pr_info("Marking TSC unstable due to %s\n", reason);
  886. /* Change only the rating, when not registered */
  887. if (clocksource_tsc.mult) {
  888. clocksource_mark_unstable(&clocksource_tsc);
  889. } else {
  890. clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
  891. clocksource_tsc.rating = 0;
  892. }
  893. }
  894. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  895. static void __init check_system_tsc_reliable(void)
  896. {
  897. #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
  898. if (is_geode_lx()) {
  899. /* RTSC counts during suspend */
  900. #define RTSC_SUSP 0x100
  901. unsigned long res_low, res_high;
  902. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  903. /* Geode_LX - the OLPC CPU has a very reliable TSC */
  904. if (res_low & RTSC_SUSP)
  905. tsc_clocksource_reliable = 1;
  906. }
  907. #endif
  908. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  909. tsc_clocksource_reliable = 1;
  910. }
  911. /*
  912. * Make an educated guess if the TSC is trustworthy and synchronized
  913. * over all CPUs.
  914. */
  915. int unsynchronized_tsc(void)
  916. {
  917. if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
  918. return 1;
  919. #ifdef CONFIG_SMP
  920. if (apic_is_clustered_box())
  921. return 1;
  922. #endif
  923. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  924. return 0;
  925. if (tsc_clocksource_reliable)
  926. return 0;
  927. /*
  928. * Intel systems are normally all synchronized.
  929. * Exceptions must mark TSC as unstable:
  930. */
  931. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  932. /* assume multi socket systems are not synchronized: */
  933. if (num_possible_cpus() > 1)
  934. return 1;
  935. }
  936. return 0;
  937. }
  938. /*
  939. * Convert ART to TSC given numerator/denominator found in detect_art()
  940. */
  941. struct system_counterval_t convert_art_to_tsc(u64 art)
  942. {
  943. u64 tmp, res, rem;
  944. rem = do_div(art, art_to_tsc_denominator);
  945. res = art * art_to_tsc_numerator;
  946. tmp = rem * art_to_tsc_numerator;
  947. do_div(tmp, art_to_tsc_denominator);
  948. res += tmp + art_to_tsc_offset;
  949. return (struct system_counterval_t) {.cs = art_related_clocksource,
  950. .cycles = res};
  951. }
  952. EXPORT_SYMBOL(convert_art_to_tsc);
  953. static void tsc_refine_calibration_work(struct work_struct *work);
  954. static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
  955. /**
  956. * tsc_refine_calibration_work - Further refine tsc freq calibration
  957. * @work - ignored.
  958. *
  959. * This functions uses delayed work over a period of a
  960. * second to further refine the TSC freq value. Since this is
  961. * timer based, instead of loop based, we don't block the boot
  962. * process while this longer calibration is done.
  963. *
  964. * If there are any calibration anomalies (too many SMIs, etc),
  965. * or the refined calibration is off by 1% of the fast early
  966. * calibration, we throw out the new calibration and use the
  967. * early calibration.
  968. */
  969. static void tsc_refine_calibration_work(struct work_struct *work)
  970. {
  971. static u64 tsc_start = -1, ref_start;
  972. static int hpet;
  973. u64 tsc_stop, ref_stop, delta;
  974. unsigned long freq;
  975. int cpu;
  976. /* Don't bother refining TSC on unstable systems */
  977. if (check_tsc_unstable())
  978. goto out;
  979. /*
  980. * Since the work is started early in boot, we may be
  981. * delayed the first time we expire. So set the workqueue
  982. * again once we know timers are working.
  983. */
  984. if (tsc_start == -1) {
  985. /*
  986. * Only set hpet once, to avoid mixing hardware
  987. * if the hpet becomes enabled later.
  988. */
  989. hpet = is_hpet_enabled();
  990. schedule_delayed_work(&tsc_irqwork, HZ);
  991. tsc_start = tsc_read_refs(&ref_start, hpet);
  992. return;
  993. }
  994. tsc_stop = tsc_read_refs(&ref_stop, hpet);
  995. /* hpet or pmtimer available ? */
  996. if (ref_start == ref_stop)
  997. goto out;
  998. /* Check, whether the sampling was disturbed by an SMI */
  999. if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
  1000. goto out;
  1001. delta = tsc_stop - tsc_start;
  1002. delta *= 1000000LL;
  1003. if (hpet)
  1004. freq = calc_hpet_ref(delta, ref_start, ref_stop);
  1005. else
  1006. freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
  1007. /* Make sure we're within 1% */
  1008. if (abs(tsc_khz - freq) > tsc_khz/100)
  1009. goto out;
  1010. tsc_khz = freq;
  1011. pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
  1012. (unsigned long)tsc_khz / 1000,
  1013. (unsigned long)tsc_khz % 1000);
  1014. /* Inform the TSC deadline clockevent devices about the recalibration */
  1015. lapic_update_tsc_freq();
  1016. /* Update the sched_clock() rate to match the clocksource one */
  1017. for_each_possible_cpu(cpu)
  1018. set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
  1019. out:
  1020. if (boot_cpu_has(X86_FEATURE_ART))
  1021. art_related_clocksource = &clocksource_tsc;
  1022. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  1023. }
  1024. static int __init init_tsc_clocksource(void)
  1025. {
  1026. if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
  1027. return 0;
  1028. if (tsc_clocksource_reliable)
  1029. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  1030. /* lower the rating if we already know its unstable: */
  1031. if (check_tsc_unstable()) {
  1032. clocksource_tsc.rating = 0;
  1033. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  1034. }
  1035. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
  1036. clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
  1037. /*
  1038. * When TSC frequency is known (retrieved via MSR or CPUID), we skip
  1039. * the refined calibration and directly register it as a clocksource.
  1040. */
  1041. if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
  1042. if (boot_cpu_has(X86_FEATURE_ART))
  1043. art_related_clocksource = &clocksource_tsc;
  1044. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  1045. return 0;
  1046. }
  1047. schedule_delayed_work(&tsc_irqwork, 0);
  1048. return 0;
  1049. }
  1050. /*
  1051. * We use device_initcall here, to ensure we run after the hpet
  1052. * is fully initialized, which may occur at fs_initcall time.
  1053. */
  1054. device_initcall(init_tsc_clocksource);
  1055. void __init tsc_init(void)
  1056. {
  1057. u64 lpj, cyc;
  1058. int cpu;
  1059. if (!boot_cpu_has(X86_FEATURE_TSC)) {
  1060. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1061. return;
  1062. }
  1063. cpu_khz = x86_platform.calibrate_cpu();
  1064. tsc_khz = x86_platform.calibrate_tsc();
  1065. /*
  1066. * Trust non-zero tsc_khz as authorative,
  1067. * and use it to sanity check cpu_khz,
  1068. * which will be off if system timer is off.
  1069. */
  1070. if (tsc_khz == 0)
  1071. tsc_khz = cpu_khz;
  1072. else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
  1073. cpu_khz = tsc_khz;
  1074. if (!tsc_khz) {
  1075. mark_tsc_unstable("could not calculate TSC khz");
  1076. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1077. return;
  1078. }
  1079. pr_info("Detected %lu.%03lu MHz processor\n",
  1080. (unsigned long)cpu_khz / 1000,
  1081. (unsigned long)cpu_khz % 1000);
  1082. /* Sanitize TSC ADJUST before cyc2ns gets initialized */
  1083. tsc_store_and_check_tsc_adjust(true);
  1084. /*
  1085. * Secondary CPUs do not run through tsc_init(), so set up
  1086. * all the scale factors for all CPUs, assuming the same
  1087. * speed as the bootup CPU. (cpufreq notifiers will fix this
  1088. * up if their speed diverges)
  1089. */
  1090. cyc = rdtsc();
  1091. for_each_possible_cpu(cpu) {
  1092. cyc2ns_init(cpu);
  1093. set_cyc2ns_scale(tsc_khz, cpu, cyc);
  1094. }
  1095. if (tsc_disabled > 0)
  1096. return;
  1097. /* now allow native_sched_clock() to use rdtsc */
  1098. tsc_disabled = 0;
  1099. static_branch_enable(&__use_tsc);
  1100. if (!no_sched_irq_time)
  1101. enable_sched_clock_irqtime();
  1102. lpj = ((u64)tsc_khz * 1000);
  1103. do_div(lpj, HZ);
  1104. lpj_fine = lpj;
  1105. use_tsc_delay();
  1106. check_system_tsc_reliable();
  1107. if (unsynchronized_tsc())
  1108. mark_tsc_unstable("TSCs unsynchronized");
  1109. detect_art();
  1110. }
  1111. #ifdef CONFIG_SMP
  1112. /*
  1113. * If we have a constant TSC and are using the TSC for the delay loop,
  1114. * we can skip clock calibration if another cpu in the same socket has already
  1115. * been calibrated. This assumes that CONSTANT_TSC applies to all
  1116. * cpus in the socket - this should be a safe assumption.
  1117. */
  1118. unsigned long calibrate_delay_is_known(void)
  1119. {
  1120. int sibling, cpu = smp_processor_id();
  1121. struct cpumask *mask = topology_core_cpumask(cpu);
  1122. if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
  1123. return 0;
  1124. if (!mask)
  1125. return 0;
  1126. sibling = cpumask_any_but(mask, cpu);
  1127. if (sibling < nr_cpu_ids)
  1128. return cpu_data(sibling).loops_per_jiffy;
  1129. return 0;
  1130. }
  1131. #endif