nand-controller.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528
  1. /*
  2. * Copyright 2017 ATMEL
  3. * Copyright 2017 Free Electrons
  4. *
  5. * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
  6. *
  7. * Derived from the atmel_nand.c driver which contained the following
  8. * copyrights:
  9. *
  10. * Copyright 2003 Rick Bronson
  11. *
  12. * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
  13. * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
  14. *
  15. * Derived from drivers/mtd/spia.c (removed in v3.8)
  16. * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
  17. *
  18. *
  19. * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
  20. * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
  21. *
  22. * Derived from Das U-Boot source code
  23. * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
  24. * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
  25. *
  26. * Add Programmable Multibit ECC support for various AT91 SoC
  27. * Copyright 2012 ATMEL, Hong Xu
  28. *
  29. * Add Nand Flash Controller support for SAMA5 SoC
  30. * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
  31. *
  32. * This program is free software; you can redistribute it and/or modify
  33. * it under the terms of the GNU General Public License version 2 as
  34. * published by the Free Software Foundation.
  35. *
  36. * A few words about the naming convention in this file. This convention
  37. * applies to structure and function names.
  38. *
  39. * Prefixes:
  40. *
  41. * - atmel_nand_: all generic structures/functions
  42. * - atmel_smc_nand_: all structures/functions specific to the SMC interface
  43. * (at91sam9 and avr32 SoCs)
  44. * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
  45. * (sama5 SoCs and later)
  46. * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
  47. * that is available in the HSMC block
  48. * - <soc>_nand_: all SoC specific structures/functions
  49. */
  50. #include <linux/clk.h>
  51. #include <linux/dma-mapping.h>
  52. #include <linux/dmaengine.h>
  53. #include <linux/genalloc.h>
  54. #include <linux/gpio/consumer.h>
  55. #include <linux/interrupt.h>
  56. #include <linux/mfd/syscon.h>
  57. #include <linux/mfd/syscon/atmel-matrix.h>
  58. #include <linux/mfd/syscon/atmel-smc.h>
  59. #include <linux/module.h>
  60. #include <linux/mtd/rawnand.h>
  61. #include <linux/of_address.h>
  62. #include <linux/of_irq.h>
  63. #include <linux/of_platform.h>
  64. #include <linux/iopoll.h>
  65. #include <linux/platform_device.h>
  66. #include <linux/regmap.h>
  67. #include "pmecc.h"
  68. #define ATMEL_HSMC_NFC_CFG 0x0
  69. #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
  70. #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
  71. #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
  72. #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
  73. #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
  74. #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
  75. #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
  76. #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
  77. #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
  78. #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
  79. #define ATMEL_HSMC_NFC_CTRL 0x4
  80. #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
  81. #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
  82. #define ATMEL_HSMC_NFC_SR 0x8
  83. #define ATMEL_HSMC_NFC_IER 0xc
  84. #define ATMEL_HSMC_NFC_IDR 0x10
  85. #define ATMEL_HSMC_NFC_IMR 0x14
  86. #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
  87. #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
  88. #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
  89. #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
  90. #define ATMEL_HSMC_NFC_SR_WR BIT(11)
  91. #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
  92. #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
  93. #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
  94. #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
  95. #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
  96. #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
  97. #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
  98. #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
  99. ATMEL_HSMC_NFC_SR_UNDEF | \
  100. ATMEL_HSMC_NFC_SR_AWB | \
  101. ATMEL_HSMC_NFC_SR_NFCASE)
  102. #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
  103. #define ATMEL_HSMC_NFC_ADDR 0x18
  104. #define ATMEL_HSMC_NFC_BANK 0x1c
  105. #define ATMEL_NFC_MAX_RB_ID 7
  106. #define ATMEL_NFC_SRAM_SIZE 0x2400
  107. #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
  108. #define ATMEL_NFC_VCMD2 BIT(18)
  109. #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
  110. #define ATMEL_NFC_CSID(cs) ((cs) << 22)
  111. #define ATMEL_NFC_DATAEN BIT(25)
  112. #define ATMEL_NFC_NFCWR BIT(26)
  113. #define ATMEL_NFC_MAX_ADDR_CYCLES 5
  114. #define ATMEL_NAND_ALE_OFFSET BIT(21)
  115. #define ATMEL_NAND_CLE_OFFSET BIT(22)
  116. #define DEFAULT_TIMEOUT_MS 1000
  117. #define MIN_DMA_LEN 128
  118. static bool atmel_nand_avoid_dma __read_mostly;
  119. MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
  120. module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
  121. enum atmel_nand_rb_type {
  122. ATMEL_NAND_NO_RB,
  123. ATMEL_NAND_NATIVE_RB,
  124. ATMEL_NAND_GPIO_RB,
  125. };
  126. struct atmel_nand_rb {
  127. enum atmel_nand_rb_type type;
  128. union {
  129. struct gpio_desc *gpio;
  130. int id;
  131. };
  132. };
  133. struct atmel_nand_cs {
  134. int id;
  135. struct atmel_nand_rb rb;
  136. struct gpio_desc *csgpio;
  137. struct {
  138. void __iomem *virt;
  139. dma_addr_t dma;
  140. } io;
  141. struct atmel_smc_cs_conf smcconf;
  142. };
  143. struct atmel_nand {
  144. struct list_head node;
  145. struct device *dev;
  146. struct nand_chip base;
  147. struct atmel_nand_cs *activecs;
  148. struct atmel_pmecc_user *pmecc;
  149. struct gpio_desc *cdgpio;
  150. int numcs;
  151. struct atmel_nand_cs cs[];
  152. };
  153. static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
  154. {
  155. return container_of(chip, struct atmel_nand, base);
  156. }
  157. enum atmel_nfc_data_xfer {
  158. ATMEL_NFC_NO_DATA,
  159. ATMEL_NFC_READ_DATA,
  160. ATMEL_NFC_WRITE_DATA,
  161. };
  162. struct atmel_nfc_op {
  163. u8 cs;
  164. u8 ncmds;
  165. u8 cmds[2];
  166. u8 naddrs;
  167. u8 addrs[5];
  168. enum atmel_nfc_data_xfer data;
  169. u32 wait;
  170. u32 errors;
  171. };
  172. struct atmel_nand_controller;
  173. struct atmel_nand_controller_caps;
  174. struct atmel_nand_controller_ops {
  175. int (*probe)(struct platform_device *pdev,
  176. const struct atmel_nand_controller_caps *caps);
  177. int (*remove)(struct atmel_nand_controller *nc);
  178. void (*nand_init)(struct atmel_nand_controller *nc,
  179. struct atmel_nand *nand);
  180. int (*ecc_init)(struct nand_chip *chip);
  181. int (*setup_data_interface)(struct atmel_nand *nand, int csline,
  182. const struct nand_data_interface *conf);
  183. };
  184. struct atmel_nand_controller_caps {
  185. bool has_dma;
  186. bool legacy_of_bindings;
  187. u32 ale_offs;
  188. u32 cle_offs;
  189. const struct atmel_nand_controller_ops *ops;
  190. };
  191. struct atmel_nand_controller {
  192. struct nand_controller base;
  193. const struct atmel_nand_controller_caps *caps;
  194. struct device *dev;
  195. struct regmap *smc;
  196. struct dma_chan *dmac;
  197. struct atmel_pmecc *pmecc;
  198. struct list_head chips;
  199. struct clk *mck;
  200. };
  201. static inline struct atmel_nand_controller *
  202. to_nand_controller(struct nand_controller *ctl)
  203. {
  204. return container_of(ctl, struct atmel_nand_controller, base);
  205. }
  206. struct atmel_smc_nand_controller {
  207. struct atmel_nand_controller base;
  208. struct regmap *matrix;
  209. unsigned int ebi_csa_offs;
  210. };
  211. static inline struct atmel_smc_nand_controller *
  212. to_smc_nand_controller(struct nand_controller *ctl)
  213. {
  214. return container_of(to_nand_controller(ctl),
  215. struct atmel_smc_nand_controller, base);
  216. }
  217. struct atmel_hsmc_nand_controller {
  218. struct atmel_nand_controller base;
  219. struct {
  220. struct gen_pool *pool;
  221. void __iomem *virt;
  222. dma_addr_t dma;
  223. } sram;
  224. const struct atmel_hsmc_reg_layout *hsmc_layout;
  225. struct regmap *io;
  226. struct atmel_nfc_op op;
  227. struct completion complete;
  228. int irq;
  229. /* Only used when instantiating from legacy DT bindings. */
  230. struct clk *clk;
  231. };
  232. static inline struct atmel_hsmc_nand_controller *
  233. to_hsmc_nand_controller(struct nand_controller *ctl)
  234. {
  235. return container_of(to_nand_controller(ctl),
  236. struct atmel_hsmc_nand_controller, base);
  237. }
  238. static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
  239. {
  240. op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
  241. op->wait ^= status & op->wait;
  242. return !op->wait || op->errors;
  243. }
  244. static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
  245. {
  246. struct atmel_hsmc_nand_controller *nc = data;
  247. u32 sr, rcvd;
  248. bool done;
  249. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
  250. rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
  251. done = atmel_nfc_op_done(&nc->op, sr);
  252. if (rcvd)
  253. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
  254. if (done)
  255. complete(&nc->complete);
  256. return rcvd ? IRQ_HANDLED : IRQ_NONE;
  257. }
  258. static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
  259. unsigned int timeout_ms)
  260. {
  261. int ret;
  262. if (!timeout_ms)
  263. timeout_ms = DEFAULT_TIMEOUT_MS;
  264. if (poll) {
  265. u32 status;
  266. ret = regmap_read_poll_timeout(nc->base.smc,
  267. ATMEL_HSMC_NFC_SR, status,
  268. atmel_nfc_op_done(&nc->op,
  269. status),
  270. 0, timeout_ms * 1000);
  271. } else {
  272. init_completion(&nc->complete);
  273. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
  274. nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
  275. ret = wait_for_completion_timeout(&nc->complete,
  276. msecs_to_jiffies(timeout_ms));
  277. if (!ret)
  278. ret = -ETIMEDOUT;
  279. else
  280. ret = 0;
  281. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
  282. }
  283. if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
  284. dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
  285. ret = -ETIMEDOUT;
  286. }
  287. if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
  288. dev_err(nc->base.dev, "Access to an undefined area\n");
  289. ret = -EIO;
  290. }
  291. if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
  292. dev_err(nc->base.dev, "Access while busy\n");
  293. ret = -EIO;
  294. }
  295. if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
  296. dev_err(nc->base.dev, "Wrong access size\n");
  297. ret = -EIO;
  298. }
  299. return ret;
  300. }
  301. static void atmel_nand_dma_transfer_finished(void *data)
  302. {
  303. struct completion *finished = data;
  304. complete(finished);
  305. }
  306. static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
  307. void *buf, dma_addr_t dev_dma, size_t len,
  308. enum dma_data_direction dir)
  309. {
  310. DECLARE_COMPLETION_ONSTACK(finished);
  311. dma_addr_t src_dma, dst_dma, buf_dma;
  312. struct dma_async_tx_descriptor *tx;
  313. dma_cookie_t cookie;
  314. buf_dma = dma_map_single(nc->dev, buf, len, dir);
  315. if (dma_mapping_error(nc->dev, dev_dma)) {
  316. dev_err(nc->dev,
  317. "Failed to prepare a buffer for DMA access\n");
  318. goto err;
  319. }
  320. if (dir == DMA_FROM_DEVICE) {
  321. src_dma = dev_dma;
  322. dst_dma = buf_dma;
  323. } else {
  324. src_dma = buf_dma;
  325. dst_dma = dev_dma;
  326. }
  327. tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
  328. DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
  329. if (!tx) {
  330. dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
  331. goto err_unmap;
  332. }
  333. tx->callback = atmel_nand_dma_transfer_finished;
  334. tx->callback_param = &finished;
  335. cookie = dmaengine_submit(tx);
  336. if (dma_submit_error(cookie)) {
  337. dev_err(nc->dev, "Failed to do DMA tx_submit\n");
  338. goto err_unmap;
  339. }
  340. dma_async_issue_pending(nc->dmac);
  341. wait_for_completion(&finished);
  342. return 0;
  343. err_unmap:
  344. dma_unmap_single(nc->dev, buf_dma, len, dir);
  345. err:
  346. dev_dbg(nc->dev, "Fall back to CPU I/O\n");
  347. return -EIO;
  348. }
  349. static u8 atmel_nand_read_byte(struct nand_chip *chip)
  350. {
  351. struct atmel_nand *nand = to_atmel_nand(chip);
  352. return ioread8(nand->activecs->io.virt);
  353. }
  354. static void atmel_nand_write_byte(struct nand_chip *chip, u8 byte)
  355. {
  356. struct atmel_nand *nand = to_atmel_nand(chip);
  357. if (chip->options & NAND_BUSWIDTH_16)
  358. iowrite16(byte | (byte << 8), nand->activecs->io.virt);
  359. else
  360. iowrite8(byte, nand->activecs->io.virt);
  361. }
  362. static void atmel_nand_read_buf(struct nand_chip *chip, u8 *buf, int len)
  363. {
  364. struct atmel_nand *nand = to_atmel_nand(chip);
  365. struct atmel_nand_controller *nc;
  366. nc = to_nand_controller(chip->controller);
  367. /*
  368. * If the controller supports DMA, the buffer address is DMA-able and
  369. * len is long enough to make DMA transfers profitable, let's trigger
  370. * a DMA transfer. If it fails, fallback to PIO mode.
  371. */
  372. if (nc->dmac && virt_addr_valid(buf) &&
  373. len >= MIN_DMA_LEN &&
  374. !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
  375. DMA_FROM_DEVICE))
  376. return;
  377. if (chip->options & NAND_BUSWIDTH_16)
  378. ioread16_rep(nand->activecs->io.virt, buf, len / 2);
  379. else
  380. ioread8_rep(nand->activecs->io.virt, buf, len);
  381. }
  382. static void atmel_nand_write_buf(struct nand_chip *chip, const u8 *buf, int len)
  383. {
  384. struct atmel_nand *nand = to_atmel_nand(chip);
  385. struct atmel_nand_controller *nc;
  386. nc = to_nand_controller(chip->controller);
  387. /*
  388. * If the controller supports DMA, the buffer address is DMA-able and
  389. * len is long enough to make DMA transfers profitable, let's trigger
  390. * a DMA transfer. If it fails, fallback to PIO mode.
  391. */
  392. if (nc->dmac && virt_addr_valid(buf) &&
  393. len >= MIN_DMA_LEN &&
  394. !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
  395. len, DMA_TO_DEVICE))
  396. return;
  397. if (chip->options & NAND_BUSWIDTH_16)
  398. iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
  399. else
  400. iowrite8_rep(nand->activecs->io.virt, buf, len);
  401. }
  402. static int atmel_nand_dev_ready(struct mtd_info *mtd)
  403. {
  404. struct nand_chip *chip = mtd_to_nand(mtd);
  405. struct atmel_nand *nand = to_atmel_nand(chip);
  406. return gpiod_get_value(nand->activecs->rb.gpio);
  407. }
  408. static void atmel_nand_select_chip(struct nand_chip *chip, int cs)
  409. {
  410. struct atmel_nand *nand = to_atmel_nand(chip);
  411. if (cs < 0 || cs >= nand->numcs) {
  412. nand->activecs = NULL;
  413. chip->dev_ready = NULL;
  414. return;
  415. }
  416. nand->activecs = &nand->cs[cs];
  417. if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
  418. chip->dev_ready = atmel_nand_dev_ready;
  419. }
  420. static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
  421. {
  422. struct nand_chip *chip = mtd_to_nand(mtd);
  423. struct atmel_nand *nand = to_atmel_nand(chip);
  424. struct atmel_hsmc_nand_controller *nc;
  425. u32 status;
  426. nc = to_hsmc_nand_controller(chip->controller);
  427. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
  428. return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
  429. }
  430. static void atmel_hsmc_nand_select_chip(struct nand_chip *chip, int cs)
  431. {
  432. struct mtd_info *mtd = nand_to_mtd(chip);
  433. struct atmel_nand *nand = to_atmel_nand(chip);
  434. struct atmel_hsmc_nand_controller *nc;
  435. nc = to_hsmc_nand_controller(chip->controller);
  436. atmel_nand_select_chip(chip, cs);
  437. if (!nand->activecs) {
  438. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
  439. ATMEL_HSMC_NFC_CTRL_DIS);
  440. return;
  441. }
  442. if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
  443. chip->dev_ready = atmel_hsmc_nand_dev_ready;
  444. regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
  445. ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
  446. ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
  447. ATMEL_HSMC_NFC_CFG_RSPARE |
  448. ATMEL_HSMC_NFC_CFG_WSPARE,
  449. ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
  450. ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
  451. ATMEL_HSMC_NFC_CFG_RSPARE);
  452. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
  453. ATMEL_HSMC_NFC_CTRL_EN);
  454. }
  455. static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
  456. {
  457. u8 *addrs = nc->op.addrs;
  458. unsigned int op = 0;
  459. u32 addr, val;
  460. int i, ret;
  461. nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
  462. for (i = 0; i < nc->op.ncmds; i++)
  463. op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
  464. if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
  465. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
  466. op |= ATMEL_NFC_CSID(nc->op.cs) |
  467. ATMEL_NFC_ACYCLE(nc->op.naddrs);
  468. if (nc->op.ncmds > 1)
  469. op |= ATMEL_NFC_VCMD2;
  470. addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
  471. (addrs[3] << 24);
  472. if (nc->op.data != ATMEL_NFC_NO_DATA) {
  473. op |= ATMEL_NFC_DATAEN;
  474. nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
  475. if (nc->op.data == ATMEL_NFC_WRITE_DATA)
  476. op |= ATMEL_NFC_NFCWR;
  477. }
  478. /* Clear all flags. */
  479. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
  480. /* Send the command. */
  481. regmap_write(nc->io, op, addr);
  482. ret = atmel_nfc_wait(nc, poll, 0);
  483. if (ret)
  484. dev_err(nc->base.dev,
  485. "Failed to send NAND command (err = %d)!",
  486. ret);
  487. /* Reset the op state. */
  488. memset(&nc->op, 0, sizeof(nc->op));
  489. return ret;
  490. }
  491. static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
  492. unsigned int ctrl)
  493. {
  494. struct nand_chip *chip = mtd_to_nand(mtd);
  495. struct atmel_nand *nand = to_atmel_nand(chip);
  496. struct atmel_hsmc_nand_controller *nc;
  497. nc = to_hsmc_nand_controller(chip->controller);
  498. if (ctrl & NAND_ALE) {
  499. if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
  500. return;
  501. nc->op.addrs[nc->op.naddrs++] = dat;
  502. } else if (ctrl & NAND_CLE) {
  503. if (nc->op.ncmds > 1)
  504. return;
  505. nc->op.cmds[nc->op.ncmds++] = dat;
  506. }
  507. if (dat == NAND_CMD_NONE) {
  508. nc->op.cs = nand->activecs->id;
  509. atmel_nfc_exec_op(nc, true);
  510. }
  511. }
  512. static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
  513. unsigned int ctrl)
  514. {
  515. struct nand_chip *chip = mtd_to_nand(mtd);
  516. struct atmel_nand *nand = to_atmel_nand(chip);
  517. struct atmel_nand_controller *nc;
  518. nc = to_nand_controller(chip->controller);
  519. if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
  520. if (ctrl & NAND_NCE)
  521. gpiod_set_value(nand->activecs->csgpio, 0);
  522. else
  523. gpiod_set_value(nand->activecs->csgpio, 1);
  524. }
  525. if (ctrl & NAND_ALE)
  526. writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
  527. else if (ctrl & NAND_CLE)
  528. writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
  529. }
  530. static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
  531. bool oob_required)
  532. {
  533. struct mtd_info *mtd = nand_to_mtd(chip);
  534. struct atmel_hsmc_nand_controller *nc;
  535. int ret = -EIO;
  536. nc = to_hsmc_nand_controller(chip->controller);
  537. if (nc->base.dmac)
  538. ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
  539. nc->sram.dma, mtd->writesize,
  540. DMA_TO_DEVICE);
  541. /* Falling back to CPU copy. */
  542. if (ret)
  543. memcpy_toio(nc->sram.virt, buf, mtd->writesize);
  544. if (oob_required)
  545. memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
  546. mtd->oobsize);
  547. }
  548. static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
  549. bool oob_required)
  550. {
  551. struct mtd_info *mtd = nand_to_mtd(chip);
  552. struct atmel_hsmc_nand_controller *nc;
  553. int ret = -EIO;
  554. nc = to_hsmc_nand_controller(chip->controller);
  555. if (nc->base.dmac)
  556. ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
  557. mtd->writesize, DMA_FROM_DEVICE);
  558. /* Falling back to CPU copy. */
  559. if (ret)
  560. memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
  561. if (oob_required)
  562. memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
  563. mtd->oobsize);
  564. }
  565. static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
  566. {
  567. struct mtd_info *mtd = nand_to_mtd(chip);
  568. struct atmel_hsmc_nand_controller *nc;
  569. nc = to_hsmc_nand_controller(chip->controller);
  570. if (column >= 0) {
  571. nc->op.addrs[nc->op.naddrs++] = column;
  572. /*
  573. * 2 address cycles for the column offset on large page NANDs.
  574. */
  575. if (mtd->writesize > 512)
  576. nc->op.addrs[nc->op.naddrs++] = column >> 8;
  577. }
  578. if (page >= 0) {
  579. nc->op.addrs[nc->op.naddrs++] = page;
  580. nc->op.addrs[nc->op.naddrs++] = page >> 8;
  581. if (chip->options & NAND_ROW_ADDR_3)
  582. nc->op.addrs[nc->op.naddrs++] = page >> 16;
  583. }
  584. }
  585. static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
  586. {
  587. struct atmel_nand *nand = to_atmel_nand(chip);
  588. struct atmel_nand_controller *nc;
  589. int ret;
  590. nc = to_nand_controller(chip->controller);
  591. if (raw)
  592. return 0;
  593. ret = atmel_pmecc_enable(nand->pmecc, op);
  594. if (ret)
  595. dev_err(nc->dev,
  596. "Failed to enable ECC engine (err = %d)\n", ret);
  597. return ret;
  598. }
  599. static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
  600. {
  601. struct atmel_nand *nand = to_atmel_nand(chip);
  602. if (!raw)
  603. atmel_pmecc_disable(nand->pmecc);
  604. }
  605. static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
  606. {
  607. struct atmel_nand *nand = to_atmel_nand(chip);
  608. struct mtd_info *mtd = nand_to_mtd(chip);
  609. struct atmel_nand_controller *nc;
  610. struct mtd_oob_region oobregion;
  611. void *eccbuf;
  612. int ret, i;
  613. nc = to_nand_controller(chip->controller);
  614. if (raw)
  615. return 0;
  616. ret = atmel_pmecc_wait_rdy(nand->pmecc);
  617. if (ret) {
  618. dev_err(nc->dev,
  619. "Failed to transfer NAND page data (err = %d)\n",
  620. ret);
  621. return ret;
  622. }
  623. mtd_ooblayout_ecc(mtd, 0, &oobregion);
  624. eccbuf = chip->oob_poi + oobregion.offset;
  625. for (i = 0; i < chip->ecc.steps; i++) {
  626. atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
  627. eccbuf);
  628. eccbuf += chip->ecc.bytes;
  629. }
  630. return 0;
  631. }
  632. static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
  633. bool raw)
  634. {
  635. struct atmel_nand *nand = to_atmel_nand(chip);
  636. struct mtd_info *mtd = nand_to_mtd(chip);
  637. struct atmel_nand_controller *nc;
  638. struct mtd_oob_region oobregion;
  639. int ret, i, max_bitflips = 0;
  640. void *databuf, *eccbuf;
  641. nc = to_nand_controller(chip->controller);
  642. if (raw)
  643. return 0;
  644. ret = atmel_pmecc_wait_rdy(nand->pmecc);
  645. if (ret) {
  646. dev_err(nc->dev,
  647. "Failed to read NAND page data (err = %d)\n",
  648. ret);
  649. return ret;
  650. }
  651. mtd_ooblayout_ecc(mtd, 0, &oobregion);
  652. eccbuf = chip->oob_poi + oobregion.offset;
  653. databuf = buf;
  654. for (i = 0; i < chip->ecc.steps; i++) {
  655. ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
  656. eccbuf);
  657. if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
  658. ret = nand_check_erased_ecc_chunk(databuf,
  659. chip->ecc.size,
  660. eccbuf,
  661. chip->ecc.bytes,
  662. NULL, 0,
  663. chip->ecc.strength);
  664. if (ret >= 0)
  665. max_bitflips = max(ret, max_bitflips);
  666. else
  667. mtd->ecc_stats.failed++;
  668. databuf += chip->ecc.size;
  669. eccbuf += chip->ecc.bytes;
  670. }
  671. return max_bitflips;
  672. }
  673. static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
  674. bool oob_required, int page, bool raw)
  675. {
  676. struct mtd_info *mtd = nand_to_mtd(chip);
  677. struct atmel_nand *nand = to_atmel_nand(chip);
  678. int ret;
  679. nand_prog_page_begin_op(chip, page, 0, NULL, 0);
  680. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
  681. if (ret)
  682. return ret;
  683. atmel_nand_write_buf(chip, buf, mtd->writesize);
  684. ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
  685. if (ret) {
  686. atmel_pmecc_disable(nand->pmecc);
  687. return ret;
  688. }
  689. atmel_nand_pmecc_disable(chip, raw);
  690. atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize);
  691. return nand_prog_page_end_op(chip);
  692. }
  693. static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
  694. int oob_required, int page)
  695. {
  696. return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
  697. }
  698. static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
  699. const u8 *buf, int oob_required,
  700. int page)
  701. {
  702. return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
  703. }
  704. static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
  705. bool oob_required, int page, bool raw)
  706. {
  707. struct mtd_info *mtd = nand_to_mtd(chip);
  708. int ret;
  709. nand_read_page_op(chip, page, 0, NULL, 0);
  710. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
  711. if (ret)
  712. return ret;
  713. atmel_nand_read_buf(chip, buf, mtd->writesize);
  714. atmel_nand_read_buf(chip, chip->oob_poi, mtd->oobsize);
  715. ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
  716. atmel_nand_pmecc_disable(chip, raw);
  717. return ret;
  718. }
  719. static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
  720. int oob_required, int page)
  721. {
  722. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
  723. }
  724. static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
  725. int oob_required, int page)
  726. {
  727. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
  728. }
  729. static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
  730. const u8 *buf, bool oob_required,
  731. int page, bool raw)
  732. {
  733. struct mtd_info *mtd = nand_to_mtd(chip);
  734. struct atmel_nand *nand = to_atmel_nand(chip);
  735. struct atmel_hsmc_nand_controller *nc;
  736. int ret, status;
  737. nc = to_hsmc_nand_controller(chip->controller);
  738. atmel_nfc_copy_to_sram(chip, buf, false);
  739. nc->op.cmds[0] = NAND_CMD_SEQIN;
  740. nc->op.ncmds = 1;
  741. atmel_nfc_set_op_addr(chip, page, 0x0);
  742. nc->op.cs = nand->activecs->id;
  743. nc->op.data = ATMEL_NFC_WRITE_DATA;
  744. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
  745. if (ret)
  746. return ret;
  747. ret = atmel_nfc_exec_op(nc, false);
  748. if (ret) {
  749. atmel_nand_pmecc_disable(chip, raw);
  750. dev_err(nc->base.dev,
  751. "Failed to transfer NAND page data (err = %d)\n",
  752. ret);
  753. return ret;
  754. }
  755. ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
  756. atmel_nand_pmecc_disable(chip, raw);
  757. if (ret)
  758. return ret;
  759. atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize);
  760. nc->op.cmds[0] = NAND_CMD_PAGEPROG;
  761. nc->op.ncmds = 1;
  762. nc->op.cs = nand->activecs->id;
  763. ret = atmel_nfc_exec_op(nc, false);
  764. if (ret)
  765. dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
  766. ret);
  767. status = chip->waitfunc(mtd, chip);
  768. if (status & NAND_STATUS_FAIL)
  769. return -EIO;
  770. return ret;
  771. }
  772. static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
  773. const u8 *buf, int oob_required,
  774. int page)
  775. {
  776. return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
  777. false);
  778. }
  779. static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
  780. const u8 *buf,
  781. int oob_required, int page)
  782. {
  783. return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
  784. true);
  785. }
  786. static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
  787. bool oob_required, int page,
  788. bool raw)
  789. {
  790. struct mtd_info *mtd = nand_to_mtd(chip);
  791. struct atmel_nand *nand = to_atmel_nand(chip);
  792. struct atmel_hsmc_nand_controller *nc;
  793. int ret;
  794. nc = to_hsmc_nand_controller(chip->controller);
  795. /*
  796. * Optimized read page accessors only work when the NAND R/B pin is
  797. * connected to a native SoC R/B pin. If that's not the case, fallback
  798. * to the non-optimized one.
  799. */
  800. if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
  801. nand_read_page_op(chip, page, 0, NULL, 0);
  802. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
  803. raw);
  804. }
  805. nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
  806. if (mtd->writesize > 512)
  807. nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
  808. atmel_nfc_set_op_addr(chip, page, 0x0);
  809. nc->op.cs = nand->activecs->id;
  810. nc->op.data = ATMEL_NFC_READ_DATA;
  811. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
  812. if (ret)
  813. return ret;
  814. ret = atmel_nfc_exec_op(nc, false);
  815. if (ret) {
  816. atmel_nand_pmecc_disable(chip, raw);
  817. dev_err(nc->base.dev,
  818. "Failed to load NAND page data (err = %d)\n",
  819. ret);
  820. return ret;
  821. }
  822. atmel_nfc_copy_from_sram(chip, buf, true);
  823. ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
  824. atmel_nand_pmecc_disable(chip, raw);
  825. return ret;
  826. }
  827. static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
  828. int oob_required, int page)
  829. {
  830. return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
  831. false);
  832. }
  833. static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
  834. u8 *buf, int oob_required,
  835. int page)
  836. {
  837. return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
  838. true);
  839. }
  840. static int atmel_nand_pmecc_init(struct nand_chip *chip)
  841. {
  842. struct mtd_info *mtd = nand_to_mtd(chip);
  843. struct atmel_nand *nand = to_atmel_nand(chip);
  844. struct atmel_nand_controller *nc;
  845. struct atmel_pmecc_user_req req;
  846. nc = to_nand_controller(chip->controller);
  847. if (!nc->pmecc) {
  848. dev_err(nc->dev, "HW ECC not supported\n");
  849. return -ENOTSUPP;
  850. }
  851. if (nc->caps->legacy_of_bindings) {
  852. u32 val;
  853. if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
  854. &val))
  855. chip->ecc.strength = val;
  856. if (!of_property_read_u32(nc->dev->of_node,
  857. "atmel,pmecc-sector-size",
  858. &val))
  859. chip->ecc.size = val;
  860. }
  861. if (chip->ecc.options & NAND_ECC_MAXIMIZE)
  862. req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
  863. else if (chip->ecc.strength)
  864. req.ecc.strength = chip->ecc.strength;
  865. else if (chip->ecc_strength_ds)
  866. req.ecc.strength = chip->ecc_strength_ds;
  867. else
  868. req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
  869. if (chip->ecc.size)
  870. req.ecc.sectorsize = chip->ecc.size;
  871. else if (chip->ecc_step_ds)
  872. req.ecc.sectorsize = chip->ecc_step_ds;
  873. else
  874. req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
  875. req.pagesize = mtd->writesize;
  876. req.oobsize = mtd->oobsize;
  877. if (mtd->writesize <= 512) {
  878. req.ecc.bytes = 4;
  879. req.ecc.ooboffset = 0;
  880. } else {
  881. req.ecc.bytes = mtd->oobsize - 2;
  882. req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
  883. }
  884. nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
  885. if (IS_ERR(nand->pmecc))
  886. return PTR_ERR(nand->pmecc);
  887. chip->ecc.algo = NAND_ECC_BCH;
  888. chip->ecc.size = req.ecc.sectorsize;
  889. chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
  890. chip->ecc.strength = req.ecc.strength;
  891. chip->options |= NAND_NO_SUBPAGE_WRITE;
  892. mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
  893. return 0;
  894. }
  895. static int atmel_nand_ecc_init(struct nand_chip *chip)
  896. {
  897. struct atmel_nand_controller *nc;
  898. int ret;
  899. nc = to_nand_controller(chip->controller);
  900. switch (chip->ecc.mode) {
  901. case NAND_ECC_NONE:
  902. case NAND_ECC_SOFT:
  903. /*
  904. * Nothing to do, the core will initialize everything for us.
  905. */
  906. break;
  907. case NAND_ECC_HW:
  908. ret = atmel_nand_pmecc_init(chip);
  909. if (ret)
  910. return ret;
  911. chip->ecc.read_page = atmel_nand_pmecc_read_page;
  912. chip->ecc.write_page = atmel_nand_pmecc_write_page;
  913. chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
  914. chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
  915. break;
  916. default:
  917. /* Other modes are not supported. */
  918. dev_err(nc->dev, "Unsupported ECC mode: %d\n",
  919. chip->ecc.mode);
  920. return -ENOTSUPP;
  921. }
  922. return 0;
  923. }
  924. static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
  925. {
  926. int ret;
  927. ret = atmel_nand_ecc_init(chip);
  928. if (ret)
  929. return ret;
  930. if (chip->ecc.mode != NAND_ECC_HW)
  931. return 0;
  932. /* Adjust the ECC operations for the HSMC IP. */
  933. chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
  934. chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
  935. chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
  936. chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
  937. return 0;
  938. }
  939. static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
  940. const struct nand_data_interface *conf,
  941. struct atmel_smc_cs_conf *smcconf)
  942. {
  943. u32 ncycles, totalcycles, timeps, mckperiodps;
  944. struct atmel_nand_controller *nc;
  945. int ret;
  946. nc = to_nand_controller(nand->base.controller);
  947. /* DDR interface not supported. */
  948. if (conf->type != NAND_SDR_IFACE)
  949. return -ENOTSUPP;
  950. /*
  951. * tRC < 30ns implies EDO mode. This controller does not support this
  952. * mode.
  953. */
  954. if (conf->timings.sdr.tRC_min < 30000)
  955. return -ENOTSUPP;
  956. atmel_smc_cs_conf_init(smcconf);
  957. mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
  958. mckperiodps *= 1000;
  959. /*
  960. * Set write pulse timing. This one is easy to extract:
  961. *
  962. * NWE_PULSE = tWP
  963. */
  964. ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
  965. totalcycles = ncycles;
  966. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
  967. ncycles);
  968. if (ret)
  969. return ret;
  970. /*
  971. * The write setup timing depends on the operation done on the NAND.
  972. * All operations goes through the same data bus, but the operation
  973. * type depends on the address we are writing to (ALE/CLE address
  974. * lines).
  975. * Since we have no way to differentiate the different operations at
  976. * the SMC level, we must consider the worst case (the biggest setup
  977. * time among all operation types):
  978. *
  979. * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
  980. */
  981. timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
  982. conf->timings.sdr.tALS_min);
  983. timeps = max(timeps, conf->timings.sdr.tDS_min);
  984. ncycles = DIV_ROUND_UP(timeps, mckperiodps);
  985. ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
  986. totalcycles += ncycles;
  987. ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
  988. ncycles);
  989. if (ret)
  990. return ret;
  991. /*
  992. * As for the write setup timing, the write hold timing depends on the
  993. * operation done on the NAND:
  994. *
  995. * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
  996. */
  997. timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
  998. conf->timings.sdr.tALH_min);
  999. timeps = max3(timeps, conf->timings.sdr.tDH_min,
  1000. conf->timings.sdr.tWH_min);
  1001. ncycles = DIV_ROUND_UP(timeps, mckperiodps);
  1002. totalcycles += ncycles;
  1003. /*
  1004. * The write cycle timing is directly matching tWC, but is also
  1005. * dependent on the other timings on the setup and hold timings we
  1006. * calculated earlier, which gives:
  1007. *
  1008. * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
  1009. */
  1010. ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
  1011. ncycles = max(totalcycles, ncycles);
  1012. ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
  1013. ncycles);
  1014. if (ret)
  1015. return ret;
  1016. /*
  1017. * We don't want the CS line to be toggled between each byte/word
  1018. * transfer to the NAND. The only way to guarantee that is to have the
  1019. * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
  1020. *
  1021. * NCS_WR_PULSE = NWE_CYCLE
  1022. */
  1023. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
  1024. ncycles);
  1025. if (ret)
  1026. return ret;
  1027. /*
  1028. * As for the write setup timing, the read hold timing depends on the
  1029. * operation done on the NAND:
  1030. *
  1031. * NRD_HOLD = max(tREH, tRHOH)
  1032. */
  1033. timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
  1034. ncycles = DIV_ROUND_UP(timeps, mckperiodps);
  1035. totalcycles = ncycles;
  1036. /*
  1037. * TDF = tRHZ - NRD_HOLD
  1038. */
  1039. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
  1040. ncycles -= totalcycles;
  1041. /*
  1042. * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
  1043. * we might end up with a config that does not fit in the TDF field.
  1044. * Just take the max value in this case and hope that the NAND is more
  1045. * tolerant than advertised.
  1046. */
  1047. if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
  1048. ncycles = ATMEL_SMC_MODE_TDF_MAX;
  1049. else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
  1050. ncycles = ATMEL_SMC_MODE_TDF_MIN;
  1051. smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
  1052. ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
  1053. /*
  1054. * Read pulse timing directly matches tRP:
  1055. *
  1056. * NRD_PULSE = tRP
  1057. */
  1058. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
  1059. totalcycles += ncycles;
  1060. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
  1061. ncycles);
  1062. if (ret)
  1063. return ret;
  1064. /*
  1065. * The write cycle timing is directly matching tWC, but is also
  1066. * dependent on the setup and hold timings we calculated earlier,
  1067. * which gives:
  1068. *
  1069. * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
  1070. *
  1071. * NRD_SETUP is always 0.
  1072. */
  1073. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
  1074. ncycles = max(totalcycles, ncycles);
  1075. ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
  1076. ncycles);
  1077. if (ret)
  1078. return ret;
  1079. /*
  1080. * We don't want the CS line to be toggled between each byte/word
  1081. * transfer from the NAND. The only way to guarantee that is to have
  1082. * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
  1083. *
  1084. * NCS_RD_PULSE = NRD_CYCLE
  1085. */
  1086. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
  1087. ncycles);
  1088. if (ret)
  1089. return ret;
  1090. /* Txxx timings are directly matching tXXX ones. */
  1091. ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
  1092. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1093. ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
  1094. ncycles);
  1095. if (ret)
  1096. return ret;
  1097. ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
  1098. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1099. ATMEL_HSMC_TIMINGS_TADL_SHIFT,
  1100. ncycles);
  1101. /*
  1102. * Version 4 of the ONFI spec mandates that tADL be at least 400
  1103. * nanoseconds, but, depending on the master clock rate, 400 ns may not
  1104. * fit in the tADL field of the SMC reg. We need to relax the check and
  1105. * accept the -ERANGE return code.
  1106. *
  1107. * Note that previous versions of the ONFI spec had a lower tADL_min
  1108. * (100 or 200 ns). It's not clear why this timing constraint got
  1109. * increased but it seems most NANDs are fine with values lower than
  1110. * 400ns, so we should be safe.
  1111. */
  1112. if (ret && ret != -ERANGE)
  1113. return ret;
  1114. ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
  1115. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1116. ATMEL_HSMC_TIMINGS_TAR_SHIFT,
  1117. ncycles);
  1118. if (ret)
  1119. return ret;
  1120. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
  1121. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1122. ATMEL_HSMC_TIMINGS_TRR_SHIFT,
  1123. ncycles);
  1124. if (ret)
  1125. return ret;
  1126. ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
  1127. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1128. ATMEL_HSMC_TIMINGS_TWB_SHIFT,
  1129. ncycles);
  1130. if (ret)
  1131. return ret;
  1132. /* Attach the CS line to the NFC logic. */
  1133. smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
  1134. /* Set the appropriate data bus width. */
  1135. if (nand->base.options & NAND_BUSWIDTH_16)
  1136. smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
  1137. /* Operate in NRD/NWE READ/WRITEMODE. */
  1138. smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
  1139. ATMEL_SMC_MODE_WRITEMODE_NWE;
  1140. return 0;
  1141. }
  1142. static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
  1143. int csline,
  1144. const struct nand_data_interface *conf)
  1145. {
  1146. struct atmel_nand_controller *nc;
  1147. struct atmel_smc_cs_conf smcconf;
  1148. struct atmel_nand_cs *cs;
  1149. int ret;
  1150. nc = to_nand_controller(nand->base.controller);
  1151. ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
  1152. if (ret)
  1153. return ret;
  1154. if (csline == NAND_DATA_IFACE_CHECK_ONLY)
  1155. return 0;
  1156. cs = &nand->cs[csline];
  1157. cs->smcconf = smcconf;
  1158. atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
  1159. return 0;
  1160. }
  1161. static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
  1162. int csline,
  1163. const struct nand_data_interface *conf)
  1164. {
  1165. struct atmel_hsmc_nand_controller *nc;
  1166. struct atmel_smc_cs_conf smcconf;
  1167. struct atmel_nand_cs *cs;
  1168. int ret;
  1169. nc = to_hsmc_nand_controller(nand->base.controller);
  1170. ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
  1171. if (ret)
  1172. return ret;
  1173. if (csline == NAND_DATA_IFACE_CHECK_ONLY)
  1174. return 0;
  1175. cs = &nand->cs[csline];
  1176. cs->smcconf = smcconf;
  1177. if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
  1178. cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
  1179. atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
  1180. &cs->smcconf);
  1181. return 0;
  1182. }
  1183. static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
  1184. const struct nand_data_interface *conf)
  1185. {
  1186. struct nand_chip *chip = mtd_to_nand(mtd);
  1187. struct atmel_nand *nand = to_atmel_nand(chip);
  1188. struct atmel_nand_controller *nc;
  1189. nc = to_nand_controller(nand->base.controller);
  1190. if (csline >= nand->numcs ||
  1191. (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
  1192. return -EINVAL;
  1193. return nc->caps->ops->setup_data_interface(nand, csline, conf);
  1194. }
  1195. static void atmel_nand_init(struct atmel_nand_controller *nc,
  1196. struct atmel_nand *nand)
  1197. {
  1198. struct nand_chip *chip = &nand->base;
  1199. struct mtd_info *mtd = nand_to_mtd(chip);
  1200. mtd->dev.parent = nc->dev;
  1201. nand->base.controller = &nc->base;
  1202. chip->cmd_ctrl = atmel_nand_cmd_ctrl;
  1203. chip->read_byte = atmel_nand_read_byte;
  1204. chip->write_byte = atmel_nand_write_byte;
  1205. chip->read_buf = atmel_nand_read_buf;
  1206. chip->write_buf = atmel_nand_write_buf;
  1207. chip->select_chip = atmel_nand_select_chip;
  1208. if (nc->mck && nc->caps->ops->setup_data_interface)
  1209. chip->setup_data_interface = atmel_nand_setup_data_interface;
  1210. /* Some NANDs require a longer delay than the default one (20us). */
  1211. chip->chip_delay = 40;
  1212. /*
  1213. * Use a bounce buffer when the buffer passed by the MTD user is not
  1214. * suitable for DMA.
  1215. */
  1216. if (nc->dmac)
  1217. chip->options |= NAND_USE_BOUNCE_BUFFER;
  1218. /* Default to HW ECC if pmecc is available. */
  1219. if (nc->pmecc)
  1220. chip->ecc.mode = NAND_ECC_HW;
  1221. }
  1222. static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
  1223. struct atmel_nand *nand)
  1224. {
  1225. struct nand_chip *chip = &nand->base;
  1226. struct atmel_smc_nand_controller *smc_nc;
  1227. int i;
  1228. atmel_nand_init(nc, nand);
  1229. smc_nc = to_smc_nand_controller(chip->controller);
  1230. if (!smc_nc->matrix)
  1231. return;
  1232. /* Attach the CS to the NAND Flash logic. */
  1233. for (i = 0; i < nand->numcs; i++)
  1234. regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
  1235. BIT(nand->cs[i].id), BIT(nand->cs[i].id));
  1236. }
  1237. static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
  1238. struct atmel_nand *nand)
  1239. {
  1240. struct nand_chip *chip = &nand->base;
  1241. atmel_nand_init(nc, nand);
  1242. /* Overload some methods for the HSMC controller. */
  1243. chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
  1244. chip->select_chip = atmel_hsmc_nand_select_chip;
  1245. }
  1246. static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
  1247. {
  1248. struct nand_chip *chip = &nand->base;
  1249. struct mtd_info *mtd = nand_to_mtd(chip);
  1250. int ret;
  1251. ret = mtd_device_unregister(mtd);
  1252. if (ret)
  1253. return ret;
  1254. nand_cleanup(chip);
  1255. list_del(&nand->node);
  1256. return 0;
  1257. }
  1258. static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
  1259. struct device_node *np,
  1260. int reg_cells)
  1261. {
  1262. struct atmel_nand *nand;
  1263. struct gpio_desc *gpio;
  1264. int numcs, ret, i;
  1265. numcs = of_property_count_elems_of_size(np, "reg",
  1266. reg_cells * sizeof(u32));
  1267. if (numcs < 1) {
  1268. dev_err(nc->dev, "Missing or invalid reg property\n");
  1269. return ERR_PTR(-EINVAL);
  1270. }
  1271. nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
  1272. if (!nand) {
  1273. dev_err(nc->dev, "Failed to allocate NAND object\n");
  1274. return ERR_PTR(-ENOMEM);
  1275. }
  1276. nand->numcs = numcs;
  1277. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
  1278. &np->fwnode, GPIOD_IN,
  1279. "nand-det");
  1280. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1281. dev_err(nc->dev,
  1282. "Failed to get detect gpio (err = %ld)\n",
  1283. PTR_ERR(gpio));
  1284. return ERR_CAST(gpio);
  1285. }
  1286. if (!IS_ERR(gpio))
  1287. nand->cdgpio = gpio;
  1288. for (i = 0; i < numcs; i++) {
  1289. struct resource res;
  1290. u32 val;
  1291. ret = of_address_to_resource(np, 0, &res);
  1292. if (ret) {
  1293. dev_err(nc->dev, "Invalid reg property (err = %d)\n",
  1294. ret);
  1295. return ERR_PTR(ret);
  1296. }
  1297. ret = of_property_read_u32_index(np, "reg", i * reg_cells,
  1298. &val);
  1299. if (ret) {
  1300. dev_err(nc->dev, "Invalid reg property (err = %d)\n",
  1301. ret);
  1302. return ERR_PTR(ret);
  1303. }
  1304. nand->cs[i].id = val;
  1305. nand->cs[i].io.dma = res.start;
  1306. nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
  1307. if (IS_ERR(nand->cs[i].io.virt))
  1308. return ERR_CAST(nand->cs[i].io.virt);
  1309. if (!of_property_read_u32(np, "atmel,rb", &val)) {
  1310. if (val > ATMEL_NFC_MAX_RB_ID)
  1311. return ERR_PTR(-EINVAL);
  1312. nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
  1313. nand->cs[i].rb.id = val;
  1314. } else {
  1315. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
  1316. "rb", i, &np->fwnode,
  1317. GPIOD_IN, "nand-rb");
  1318. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1319. dev_err(nc->dev,
  1320. "Failed to get R/B gpio (err = %ld)\n",
  1321. PTR_ERR(gpio));
  1322. return ERR_CAST(gpio);
  1323. }
  1324. if (!IS_ERR(gpio)) {
  1325. nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
  1326. nand->cs[i].rb.gpio = gpio;
  1327. }
  1328. }
  1329. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
  1330. i, &np->fwnode,
  1331. GPIOD_OUT_HIGH,
  1332. "nand-cs");
  1333. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1334. dev_err(nc->dev,
  1335. "Failed to get CS gpio (err = %ld)\n",
  1336. PTR_ERR(gpio));
  1337. return ERR_CAST(gpio);
  1338. }
  1339. if (!IS_ERR(gpio))
  1340. nand->cs[i].csgpio = gpio;
  1341. }
  1342. nand_set_flash_node(&nand->base, np);
  1343. return nand;
  1344. }
  1345. static int
  1346. atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
  1347. struct atmel_nand *nand)
  1348. {
  1349. struct nand_chip *chip = &nand->base;
  1350. struct mtd_info *mtd = nand_to_mtd(chip);
  1351. int ret;
  1352. /* No card inserted, skip this NAND. */
  1353. if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
  1354. dev_info(nc->dev, "No SmartMedia card inserted.\n");
  1355. return 0;
  1356. }
  1357. nc->caps->ops->nand_init(nc, nand);
  1358. ret = nand_scan(chip, nand->numcs);
  1359. if (ret) {
  1360. dev_err(nc->dev, "NAND scan failed: %d\n", ret);
  1361. return ret;
  1362. }
  1363. ret = mtd_device_register(mtd, NULL, 0);
  1364. if (ret) {
  1365. dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
  1366. nand_cleanup(chip);
  1367. return ret;
  1368. }
  1369. list_add_tail(&nand->node, &nc->chips);
  1370. return 0;
  1371. }
  1372. static int
  1373. atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
  1374. {
  1375. struct atmel_nand *nand, *tmp;
  1376. int ret;
  1377. list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
  1378. ret = atmel_nand_controller_remove_nand(nand);
  1379. if (ret)
  1380. return ret;
  1381. }
  1382. return 0;
  1383. }
  1384. static int
  1385. atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
  1386. {
  1387. struct device *dev = nc->dev;
  1388. struct platform_device *pdev = to_platform_device(dev);
  1389. struct atmel_nand *nand;
  1390. struct gpio_desc *gpio;
  1391. struct resource *res;
  1392. /*
  1393. * Legacy bindings only allow connecting a single NAND with a unique CS
  1394. * line to the controller.
  1395. */
  1396. nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
  1397. GFP_KERNEL);
  1398. if (!nand)
  1399. return -ENOMEM;
  1400. nand->numcs = 1;
  1401. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1402. nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
  1403. if (IS_ERR(nand->cs[0].io.virt))
  1404. return PTR_ERR(nand->cs[0].io.virt);
  1405. nand->cs[0].io.dma = res->start;
  1406. /*
  1407. * The old driver was hardcoding the CS id to 3 for all sama5
  1408. * controllers. Since this id is only meaningful for the sama5
  1409. * controller we can safely assign this id to 3 no matter the
  1410. * controller.
  1411. * If one wants to connect a NAND to a different CS line, he will
  1412. * have to use the new bindings.
  1413. */
  1414. nand->cs[0].id = 3;
  1415. /* R/B GPIO. */
  1416. gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
  1417. if (IS_ERR(gpio)) {
  1418. dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
  1419. PTR_ERR(gpio));
  1420. return PTR_ERR(gpio);
  1421. }
  1422. if (gpio) {
  1423. nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
  1424. nand->cs[0].rb.gpio = gpio;
  1425. }
  1426. /* CS GPIO. */
  1427. gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
  1428. if (IS_ERR(gpio)) {
  1429. dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
  1430. PTR_ERR(gpio));
  1431. return PTR_ERR(gpio);
  1432. }
  1433. nand->cs[0].csgpio = gpio;
  1434. /* Card detect GPIO. */
  1435. gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
  1436. if (IS_ERR(gpio)) {
  1437. dev_err(dev,
  1438. "Failed to get detect gpio (err = %ld)\n",
  1439. PTR_ERR(gpio));
  1440. return PTR_ERR(gpio);
  1441. }
  1442. nand->cdgpio = gpio;
  1443. nand_set_flash_node(&nand->base, nc->dev->of_node);
  1444. return atmel_nand_controller_add_nand(nc, nand);
  1445. }
  1446. static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
  1447. {
  1448. struct device_node *np, *nand_np;
  1449. struct device *dev = nc->dev;
  1450. int ret, reg_cells;
  1451. u32 val;
  1452. /* We do not retrieve the SMC syscon when parsing old DTs. */
  1453. if (nc->caps->legacy_of_bindings)
  1454. return atmel_nand_controller_legacy_add_nands(nc);
  1455. np = dev->of_node;
  1456. ret = of_property_read_u32(np, "#address-cells", &val);
  1457. if (ret) {
  1458. dev_err(dev, "missing #address-cells property\n");
  1459. return ret;
  1460. }
  1461. reg_cells = val;
  1462. ret = of_property_read_u32(np, "#size-cells", &val);
  1463. if (ret) {
  1464. dev_err(dev, "missing #address-cells property\n");
  1465. return ret;
  1466. }
  1467. reg_cells += val;
  1468. for_each_child_of_node(np, nand_np) {
  1469. struct atmel_nand *nand;
  1470. nand = atmel_nand_create(nc, nand_np, reg_cells);
  1471. if (IS_ERR(nand)) {
  1472. ret = PTR_ERR(nand);
  1473. goto err;
  1474. }
  1475. ret = atmel_nand_controller_add_nand(nc, nand);
  1476. if (ret)
  1477. goto err;
  1478. }
  1479. return 0;
  1480. err:
  1481. atmel_nand_controller_remove_nands(nc);
  1482. return ret;
  1483. }
  1484. static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
  1485. {
  1486. if (nc->dmac)
  1487. dma_release_channel(nc->dmac);
  1488. clk_put(nc->mck);
  1489. }
  1490. static const struct of_device_id atmel_matrix_of_ids[] = {
  1491. {
  1492. .compatible = "atmel,at91sam9260-matrix",
  1493. .data = (void *)AT91SAM9260_MATRIX_EBICSA,
  1494. },
  1495. {
  1496. .compatible = "atmel,at91sam9261-matrix",
  1497. .data = (void *)AT91SAM9261_MATRIX_EBICSA,
  1498. },
  1499. {
  1500. .compatible = "atmel,at91sam9263-matrix",
  1501. .data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
  1502. },
  1503. {
  1504. .compatible = "atmel,at91sam9rl-matrix",
  1505. .data = (void *)AT91SAM9RL_MATRIX_EBICSA,
  1506. },
  1507. {
  1508. .compatible = "atmel,at91sam9g45-matrix",
  1509. .data = (void *)AT91SAM9G45_MATRIX_EBICSA,
  1510. },
  1511. {
  1512. .compatible = "atmel,at91sam9n12-matrix",
  1513. .data = (void *)AT91SAM9N12_MATRIX_EBICSA,
  1514. },
  1515. {
  1516. .compatible = "atmel,at91sam9x5-matrix",
  1517. .data = (void *)AT91SAM9X5_MATRIX_EBICSA,
  1518. },
  1519. { /* sentinel */ },
  1520. };
  1521. static int atmel_nand_attach_chip(struct nand_chip *chip)
  1522. {
  1523. struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
  1524. struct atmel_nand *nand = to_atmel_nand(chip);
  1525. struct mtd_info *mtd = nand_to_mtd(chip);
  1526. int ret;
  1527. ret = nc->caps->ops->ecc_init(chip);
  1528. if (ret)
  1529. return ret;
  1530. if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
  1531. /*
  1532. * We keep the MTD name unchanged to avoid breaking platforms
  1533. * where the MTD cmdline parser is used and the bootloader
  1534. * has not been updated to use the new naming scheme.
  1535. */
  1536. mtd->name = "atmel_nand";
  1537. } else if (!mtd->name) {
  1538. /*
  1539. * If the new bindings are used and the bootloader has not been
  1540. * updated to pass a new mtdparts parameter on the cmdline, you
  1541. * should define the following property in your nand node:
  1542. *
  1543. * label = "atmel_nand";
  1544. *
  1545. * This way, mtd->name will be set by the core when
  1546. * nand_set_flash_node() is called.
  1547. */
  1548. mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
  1549. "%s:nand.%d", dev_name(nc->dev),
  1550. nand->cs[0].id);
  1551. if (!mtd->name) {
  1552. dev_err(nc->dev, "Failed to allocate mtd->name\n");
  1553. return -ENOMEM;
  1554. }
  1555. }
  1556. return 0;
  1557. }
  1558. static const struct nand_controller_ops atmel_nand_controller_ops = {
  1559. .attach_chip = atmel_nand_attach_chip,
  1560. };
  1561. static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
  1562. struct platform_device *pdev,
  1563. const struct atmel_nand_controller_caps *caps)
  1564. {
  1565. struct device *dev = &pdev->dev;
  1566. struct device_node *np = dev->of_node;
  1567. int ret;
  1568. nand_controller_init(&nc->base);
  1569. nc->base.ops = &atmel_nand_controller_ops;
  1570. INIT_LIST_HEAD(&nc->chips);
  1571. nc->dev = dev;
  1572. nc->caps = caps;
  1573. platform_set_drvdata(pdev, nc);
  1574. nc->pmecc = devm_atmel_pmecc_get(dev);
  1575. if (IS_ERR(nc->pmecc)) {
  1576. ret = PTR_ERR(nc->pmecc);
  1577. if (ret != -EPROBE_DEFER)
  1578. dev_err(dev, "Could not get PMECC object (err = %d)\n",
  1579. ret);
  1580. return ret;
  1581. }
  1582. if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
  1583. dma_cap_mask_t mask;
  1584. dma_cap_zero(mask);
  1585. dma_cap_set(DMA_MEMCPY, mask);
  1586. nc->dmac = dma_request_channel(mask, NULL, NULL);
  1587. if (!nc->dmac)
  1588. dev_err(nc->dev, "Failed to request DMA channel\n");
  1589. }
  1590. /* We do not retrieve the SMC syscon when parsing old DTs. */
  1591. if (nc->caps->legacy_of_bindings)
  1592. return 0;
  1593. nc->mck = of_clk_get(dev->parent->of_node, 0);
  1594. if (IS_ERR(nc->mck)) {
  1595. dev_err(dev, "Failed to retrieve MCK clk\n");
  1596. return PTR_ERR(nc->mck);
  1597. }
  1598. np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
  1599. if (!np) {
  1600. dev_err(dev, "Missing or invalid atmel,smc property\n");
  1601. return -EINVAL;
  1602. }
  1603. nc->smc = syscon_node_to_regmap(np);
  1604. of_node_put(np);
  1605. if (IS_ERR(nc->smc)) {
  1606. ret = PTR_ERR(nc->smc);
  1607. dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
  1608. return ret;
  1609. }
  1610. return 0;
  1611. }
  1612. static int
  1613. atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
  1614. {
  1615. struct device *dev = nc->base.dev;
  1616. const struct of_device_id *match;
  1617. struct device_node *np;
  1618. int ret;
  1619. /* We do not retrieve the matrix syscon when parsing old DTs. */
  1620. if (nc->base.caps->legacy_of_bindings)
  1621. return 0;
  1622. np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
  1623. if (!np)
  1624. return 0;
  1625. match = of_match_node(atmel_matrix_of_ids, np);
  1626. if (!match) {
  1627. of_node_put(np);
  1628. return 0;
  1629. }
  1630. nc->matrix = syscon_node_to_regmap(np);
  1631. of_node_put(np);
  1632. if (IS_ERR(nc->matrix)) {
  1633. ret = PTR_ERR(nc->matrix);
  1634. dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
  1635. return ret;
  1636. }
  1637. nc->ebi_csa_offs = (uintptr_t)match->data;
  1638. /*
  1639. * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
  1640. * add 4 to ->ebi_csa_offs.
  1641. */
  1642. if (of_device_is_compatible(dev->parent->of_node,
  1643. "atmel,at91sam9263-ebi1"))
  1644. nc->ebi_csa_offs += 4;
  1645. return 0;
  1646. }
  1647. static int
  1648. atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
  1649. {
  1650. struct regmap_config regmap_conf = {
  1651. .reg_bits = 32,
  1652. .val_bits = 32,
  1653. .reg_stride = 4,
  1654. };
  1655. struct device *dev = nc->base.dev;
  1656. struct device_node *nand_np, *nfc_np;
  1657. void __iomem *iomem;
  1658. struct resource res;
  1659. int ret;
  1660. nand_np = dev->of_node;
  1661. nfc_np = of_find_compatible_node(dev->of_node, NULL,
  1662. "atmel,sama5d3-nfc");
  1663. nc->clk = of_clk_get(nfc_np, 0);
  1664. if (IS_ERR(nc->clk)) {
  1665. ret = PTR_ERR(nc->clk);
  1666. dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
  1667. ret);
  1668. goto out;
  1669. }
  1670. ret = clk_prepare_enable(nc->clk);
  1671. if (ret) {
  1672. dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
  1673. ret);
  1674. goto out;
  1675. }
  1676. nc->irq = of_irq_get(nand_np, 0);
  1677. if (nc->irq <= 0) {
  1678. ret = nc->irq ?: -ENXIO;
  1679. if (ret != -EPROBE_DEFER)
  1680. dev_err(dev, "Failed to get IRQ number (err = %d)\n",
  1681. ret);
  1682. goto out;
  1683. }
  1684. ret = of_address_to_resource(nfc_np, 0, &res);
  1685. if (ret) {
  1686. dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
  1687. ret);
  1688. goto out;
  1689. }
  1690. iomem = devm_ioremap_resource(dev, &res);
  1691. if (IS_ERR(iomem)) {
  1692. ret = PTR_ERR(iomem);
  1693. goto out;
  1694. }
  1695. regmap_conf.name = "nfc-io";
  1696. regmap_conf.max_register = resource_size(&res) - 4;
  1697. nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
  1698. if (IS_ERR(nc->io)) {
  1699. ret = PTR_ERR(nc->io);
  1700. dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
  1701. ret);
  1702. goto out;
  1703. }
  1704. ret = of_address_to_resource(nfc_np, 1, &res);
  1705. if (ret) {
  1706. dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
  1707. ret);
  1708. goto out;
  1709. }
  1710. iomem = devm_ioremap_resource(dev, &res);
  1711. if (IS_ERR(iomem)) {
  1712. ret = PTR_ERR(iomem);
  1713. goto out;
  1714. }
  1715. regmap_conf.name = "smc";
  1716. regmap_conf.max_register = resource_size(&res) - 4;
  1717. nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
  1718. if (IS_ERR(nc->base.smc)) {
  1719. ret = PTR_ERR(nc->base.smc);
  1720. dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
  1721. ret);
  1722. goto out;
  1723. }
  1724. ret = of_address_to_resource(nfc_np, 2, &res);
  1725. if (ret) {
  1726. dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
  1727. ret);
  1728. goto out;
  1729. }
  1730. nc->sram.virt = devm_ioremap_resource(dev, &res);
  1731. if (IS_ERR(nc->sram.virt)) {
  1732. ret = PTR_ERR(nc->sram.virt);
  1733. goto out;
  1734. }
  1735. nc->sram.dma = res.start;
  1736. out:
  1737. of_node_put(nfc_np);
  1738. return ret;
  1739. }
  1740. static int
  1741. atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
  1742. {
  1743. struct device *dev = nc->base.dev;
  1744. struct device_node *np;
  1745. int ret;
  1746. np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
  1747. if (!np) {
  1748. dev_err(dev, "Missing or invalid atmel,smc property\n");
  1749. return -EINVAL;
  1750. }
  1751. nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
  1752. nc->irq = of_irq_get(np, 0);
  1753. of_node_put(np);
  1754. if (nc->irq <= 0) {
  1755. ret = nc->irq ?: -ENXIO;
  1756. if (ret != -EPROBE_DEFER)
  1757. dev_err(dev, "Failed to get IRQ number (err = %d)\n",
  1758. ret);
  1759. return ret;
  1760. }
  1761. np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
  1762. if (!np) {
  1763. dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
  1764. return -EINVAL;
  1765. }
  1766. nc->io = syscon_node_to_regmap(np);
  1767. of_node_put(np);
  1768. if (IS_ERR(nc->io)) {
  1769. ret = PTR_ERR(nc->io);
  1770. dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
  1771. return ret;
  1772. }
  1773. nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
  1774. "atmel,nfc-sram", 0);
  1775. if (!nc->sram.pool) {
  1776. dev_err(nc->base.dev, "Missing SRAM\n");
  1777. return -ENOMEM;
  1778. }
  1779. nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
  1780. ATMEL_NFC_SRAM_SIZE,
  1781. &nc->sram.dma);
  1782. if (!nc->sram.virt) {
  1783. dev_err(nc->base.dev,
  1784. "Could not allocate memory from the NFC SRAM pool\n");
  1785. return -ENOMEM;
  1786. }
  1787. return 0;
  1788. }
  1789. static int
  1790. atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
  1791. {
  1792. struct atmel_hsmc_nand_controller *hsmc_nc;
  1793. int ret;
  1794. ret = atmel_nand_controller_remove_nands(nc);
  1795. if (ret)
  1796. return ret;
  1797. hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
  1798. if (hsmc_nc->sram.pool)
  1799. gen_pool_free(hsmc_nc->sram.pool,
  1800. (unsigned long)hsmc_nc->sram.virt,
  1801. ATMEL_NFC_SRAM_SIZE);
  1802. if (hsmc_nc->clk) {
  1803. clk_disable_unprepare(hsmc_nc->clk);
  1804. clk_put(hsmc_nc->clk);
  1805. }
  1806. atmel_nand_controller_cleanup(nc);
  1807. return 0;
  1808. }
  1809. static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
  1810. const struct atmel_nand_controller_caps *caps)
  1811. {
  1812. struct device *dev = &pdev->dev;
  1813. struct atmel_hsmc_nand_controller *nc;
  1814. int ret;
  1815. nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
  1816. if (!nc)
  1817. return -ENOMEM;
  1818. ret = atmel_nand_controller_init(&nc->base, pdev, caps);
  1819. if (ret)
  1820. return ret;
  1821. if (caps->legacy_of_bindings)
  1822. ret = atmel_hsmc_nand_controller_legacy_init(nc);
  1823. else
  1824. ret = atmel_hsmc_nand_controller_init(nc);
  1825. if (ret)
  1826. return ret;
  1827. /* Make sure all irqs are masked before registering our IRQ handler. */
  1828. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
  1829. ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
  1830. IRQF_SHARED, "nfc", nc);
  1831. if (ret) {
  1832. dev_err(dev,
  1833. "Could not get register NFC interrupt handler (err = %d)\n",
  1834. ret);
  1835. goto err;
  1836. }
  1837. /* Initial NFC configuration. */
  1838. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
  1839. ATMEL_HSMC_NFC_CFG_DTO_MAX);
  1840. ret = atmel_nand_controller_add_nands(&nc->base);
  1841. if (ret)
  1842. goto err;
  1843. return 0;
  1844. err:
  1845. atmel_hsmc_nand_controller_remove(&nc->base);
  1846. return ret;
  1847. }
  1848. static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
  1849. .probe = atmel_hsmc_nand_controller_probe,
  1850. .remove = atmel_hsmc_nand_controller_remove,
  1851. .ecc_init = atmel_hsmc_nand_ecc_init,
  1852. .nand_init = atmel_hsmc_nand_init,
  1853. .setup_data_interface = atmel_hsmc_nand_setup_data_interface,
  1854. };
  1855. static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
  1856. .has_dma = true,
  1857. .ale_offs = BIT(21),
  1858. .cle_offs = BIT(22),
  1859. .ops = &atmel_hsmc_nc_ops,
  1860. };
  1861. /* Only used to parse old bindings. */
  1862. static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
  1863. .has_dma = true,
  1864. .ale_offs = BIT(21),
  1865. .cle_offs = BIT(22),
  1866. .ops = &atmel_hsmc_nc_ops,
  1867. .legacy_of_bindings = true,
  1868. };
  1869. static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
  1870. const struct atmel_nand_controller_caps *caps)
  1871. {
  1872. struct device *dev = &pdev->dev;
  1873. struct atmel_smc_nand_controller *nc;
  1874. int ret;
  1875. nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
  1876. if (!nc)
  1877. return -ENOMEM;
  1878. ret = atmel_nand_controller_init(&nc->base, pdev, caps);
  1879. if (ret)
  1880. return ret;
  1881. ret = atmel_smc_nand_controller_init(nc);
  1882. if (ret)
  1883. return ret;
  1884. return atmel_nand_controller_add_nands(&nc->base);
  1885. }
  1886. static int
  1887. atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
  1888. {
  1889. int ret;
  1890. ret = atmel_nand_controller_remove_nands(nc);
  1891. if (ret)
  1892. return ret;
  1893. atmel_nand_controller_cleanup(nc);
  1894. return 0;
  1895. }
  1896. /*
  1897. * The SMC reg layout of at91rm9200 is completely different which prevents us
  1898. * from re-using atmel_smc_nand_setup_data_interface() for the
  1899. * ->setup_data_interface() hook.
  1900. * At this point, there's no support for the at91rm9200 SMC IP, so we leave
  1901. * ->setup_data_interface() unassigned.
  1902. */
  1903. static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
  1904. .probe = atmel_smc_nand_controller_probe,
  1905. .remove = atmel_smc_nand_controller_remove,
  1906. .ecc_init = atmel_nand_ecc_init,
  1907. .nand_init = atmel_smc_nand_init,
  1908. };
  1909. static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
  1910. .ale_offs = BIT(21),
  1911. .cle_offs = BIT(22),
  1912. .ops = &at91rm9200_nc_ops,
  1913. };
  1914. static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
  1915. .probe = atmel_smc_nand_controller_probe,
  1916. .remove = atmel_smc_nand_controller_remove,
  1917. .ecc_init = atmel_nand_ecc_init,
  1918. .nand_init = atmel_smc_nand_init,
  1919. .setup_data_interface = atmel_smc_nand_setup_data_interface,
  1920. };
  1921. static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
  1922. .ale_offs = BIT(21),
  1923. .cle_offs = BIT(22),
  1924. .ops = &atmel_smc_nc_ops,
  1925. };
  1926. static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
  1927. .ale_offs = BIT(22),
  1928. .cle_offs = BIT(21),
  1929. .ops = &atmel_smc_nc_ops,
  1930. };
  1931. static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
  1932. .has_dma = true,
  1933. .ale_offs = BIT(21),
  1934. .cle_offs = BIT(22),
  1935. .ops = &atmel_smc_nc_ops,
  1936. };
  1937. /* Only used to parse old bindings. */
  1938. static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
  1939. .ale_offs = BIT(21),
  1940. .cle_offs = BIT(22),
  1941. .ops = &atmel_smc_nc_ops,
  1942. .legacy_of_bindings = true,
  1943. };
  1944. static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
  1945. .ale_offs = BIT(22),
  1946. .cle_offs = BIT(21),
  1947. .ops = &atmel_smc_nc_ops,
  1948. .legacy_of_bindings = true,
  1949. };
  1950. static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
  1951. .has_dma = true,
  1952. .ale_offs = BIT(21),
  1953. .cle_offs = BIT(22),
  1954. .ops = &atmel_smc_nc_ops,
  1955. .legacy_of_bindings = true,
  1956. };
  1957. static const struct of_device_id atmel_nand_controller_of_ids[] = {
  1958. {
  1959. .compatible = "atmel,at91rm9200-nand-controller",
  1960. .data = &atmel_rm9200_nc_caps,
  1961. },
  1962. {
  1963. .compatible = "atmel,at91sam9260-nand-controller",
  1964. .data = &atmel_sam9260_nc_caps,
  1965. },
  1966. {
  1967. .compatible = "atmel,at91sam9261-nand-controller",
  1968. .data = &atmel_sam9261_nc_caps,
  1969. },
  1970. {
  1971. .compatible = "atmel,at91sam9g45-nand-controller",
  1972. .data = &atmel_sam9g45_nc_caps,
  1973. },
  1974. {
  1975. .compatible = "atmel,sama5d3-nand-controller",
  1976. .data = &atmel_sama5_nc_caps,
  1977. },
  1978. /* Support for old/deprecated bindings: */
  1979. {
  1980. .compatible = "atmel,at91rm9200-nand",
  1981. .data = &atmel_rm9200_nand_caps,
  1982. },
  1983. {
  1984. .compatible = "atmel,sama5d4-nand",
  1985. .data = &atmel_rm9200_nand_caps,
  1986. },
  1987. {
  1988. .compatible = "atmel,sama5d2-nand",
  1989. .data = &atmel_rm9200_nand_caps,
  1990. },
  1991. { /* sentinel */ },
  1992. };
  1993. MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
  1994. static int atmel_nand_controller_probe(struct platform_device *pdev)
  1995. {
  1996. const struct atmel_nand_controller_caps *caps;
  1997. if (pdev->id_entry)
  1998. caps = (void *)pdev->id_entry->driver_data;
  1999. else
  2000. caps = of_device_get_match_data(&pdev->dev);
  2001. if (!caps) {
  2002. dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
  2003. return -EINVAL;
  2004. }
  2005. if (caps->legacy_of_bindings) {
  2006. u32 ale_offs = 21;
  2007. /*
  2008. * If we are parsing legacy DT props and the DT contains a
  2009. * valid NFC node, forward the request to the sama5 logic.
  2010. */
  2011. if (of_find_compatible_node(pdev->dev.of_node, NULL,
  2012. "atmel,sama5d3-nfc"))
  2013. caps = &atmel_sama5_nand_caps;
  2014. /*
  2015. * Even if the compatible says we are dealing with an
  2016. * at91rm9200 controller, the atmel,nand-has-dma specify that
  2017. * this controller supports DMA, which means we are in fact
  2018. * dealing with an at91sam9g45+ controller.
  2019. */
  2020. if (!caps->has_dma &&
  2021. of_property_read_bool(pdev->dev.of_node,
  2022. "atmel,nand-has-dma"))
  2023. caps = &atmel_sam9g45_nand_caps;
  2024. /*
  2025. * All SoCs except the at91sam9261 are assigning ALE to A21 and
  2026. * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
  2027. * actually dealing with an at91sam9261 controller.
  2028. */
  2029. of_property_read_u32(pdev->dev.of_node,
  2030. "atmel,nand-addr-offset", &ale_offs);
  2031. if (ale_offs != 21)
  2032. caps = &atmel_sam9261_nand_caps;
  2033. }
  2034. return caps->ops->probe(pdev, caps);
  2035. }
  2036. static int atmel_nand_controller_remove(struct platform_device *pdev)
  2037. {
  2038. struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
  2039. return nc->caps->ops->remove(nc);
  2040. }
  2041. static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
  2042. {
  2043. struct atmel_nand_controller *nc = dev_get_drvdata(dev);
  2044. struct atmel_nand *nand;
  2045. if (nc->pmecc)
  2046. atmel_pmecc_reset(nc->pmecc);
  2047. list_for_each_entry(nand, &nc->chips, node) {
  2048. int i;
  2049. for (i = 0; i < nand->numcs; i++)
  2050. nand_reset(&nand->base, i);
  2051. }
  2052. return 0;
  2053. }
  2054. static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
  2055. atmel_nand_controller_resume);
  2056. static struct platform_driver atmel_nand_controller_driver = {
  2057. .driver = {
  2058. .name = "atmel-nand-controller",
  2059. .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
  2060. .pm = &atmel_nand_controller_pm_ops,
  2061. },
  2062. .probe = atmel_nand_controller_probe,
  2063. .remove = atmel_nand_controller_remove,
  2064. };
  2065. module_platform_driver(atmel_nand_controller_driver);
  2066. MODULE_LICENSE("GPL");
  2067. MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
  2068. MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
  2069. MODULE_ALIAS("platform:atmel-nand-controller");