tcp_input.c 180 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <linux/prefetch.h>
  69. #include <net/dst.h>
  70. #include <net/tcp.h>
  71. #include <net/inet_common.h>
  72. #include <linux/ipsec.h>
  73. #include <asm/unaligned.h>
  74. #include <linux/errqueue.h>
  75. int sysctl_tcp_timestamps __read_mostly = 1;
  76. int sysctl_tcp_window_scaling __read_mostly = 1;
  77. int sysctl_tcp_sack __read_mostly = 1;
  78. int sysctl_tcp_fack __read_mostly = 1;
  79. int sysctl_tcp_max_reordering __read_mostly = 300;
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 100;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  91. int sysctl_tcp_thin_dupack __read_mostly;
  92. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  93. int sysctl_tcp_early_retrans __read_mostly = 3;
  94. int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
  95. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  96. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  97. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  98. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  99. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  100. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  101. #define FLAG_ECE 0x40 /* ECE in this ACK */
  102. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  103. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  104. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  105. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  106. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  107. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  108. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  109. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  110. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  111. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  112. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  113. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  114. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  115. #define REXMIT_NONE 0 /* no loss recovery to do */
  116. #define REXMIT_LOST 1 /* retransmit packets marked lost */
  117. #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
  118. /* Adapt the MSS value used to make delayed ack decision to the
  119. * real world.
  120. */
  121. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  122. {
  123. struct inet_connection_sock *icsk = inet_csk(sk);
  124. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  125. unsigned int len;
  126. icsk->icsk_ack.last_seg_size = 0;
  127. /* skb->len may jitter because of SACKs, even if peer
  128. * sends good full-sized frames.
  129. */
  130. len = skb_shinfo(skb)->gso_size ? : skb->len;
  131. if (len >= icsk->icsk_ack.rcv_mss) {
  132. icsk->icsk_ack.rcv_mss = len;
  133. } else {
  134. /* Otherwise, we make more careful check taking into account,
  135. * that SACKs block is variable.
  136. *
  137. * "len" is invariant segment length, including TCP header.
  138. */
  139. len += skb->data - skb_transport_header(skb);
  140. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  141. /* If PSH is not set, packet should be
  142. * full sized, provided peer TCP is not badly broken.
  143. * This observation (if it is correct 8)) allows
  144. * to handle super-low mtu links fairly.
  145. */
  146. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  147. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  148. /* Subtract also invariant (if peer is RFC compliant),
  149. * tcp header plus fixed timestamp option length.
  150. * Resulting "len" is MSS free of SACK jitter.
  151. */
  152. len -= tcp_sk(sk)->tcp_header_len;
  153. icsk->icsk_ack.last_seg_size = len;
  154. if (len == lss) {
  155. icsk->icsk_ack.rcv_mss = len;
  156. return;
  157. }
  158. }
  159. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  160. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  161. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  162. }
  163. }
  164. static void tcp_incr_quickack(struct sock *sk)
  165. {
  166. struct inet_connection_sock *icsk = inet_csk(sk);
  167. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  168. if (quickacks == 0)
  169. quickacks = 2;
  170. if (quickacks > icsk->icsk_ack.quick)
  171. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  172. }
  173. static void tcp_enter_quickack_mode(struct sock *sk)
  174. {
  175. struct inet_connection_sock *icsk = inet_csk(sk);
  176. tcp_incr_quickack(sk);
  177. icsk->icsk_ack.pingpong = 0;
  178. icsk->icsk_ack.ato = TCP_ATO_MIN;
  179. }
  180. /* Send ACKs quickly, if "quick" count is not exhausted
  181. * and the session is not interactive.
  182. */
  183. static bool tcp_in_quickack_mode(struct sock *sk)
  184. {
  185. const struct inet_connection_sock *icsk = inet_csk(sk);
  186. const struct dst_entry *dst = __sk_dst_get(sk);
  187. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  188. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  189. }
  190. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  191. {
  192. if (tp->ecn_flags & TCP_ECN_OK)
  193. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  194. }
  195. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  196. {
  197. if (tcp_hdr(skb)->cwr)
  198. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  199. }
  200. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  201. {
  202. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  203. }
  204. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  205. {
  206. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  207. case INET_ECN_NOT_ECT:
  208. /* Funny extension: if ECT is not set on a segment,
  209. * and we already seen ECT on a previous segment,
  210. * it is probably a retransmit.
  211. */
  212. if (tp->ecn_flags & TCP_ECN_SEEN)
  213. tcp_enter_quickack_mode((struct sock *)tp);
  214. break;
  215. case INET_ECN_CE:
  216. if (tcp_ca_needs_ecn((struct sock *)tp))
  217. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  218. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  219. /* Better not delay acks, sender can have a very low cwnd */
  220. tcp_enter_quickack_mode((struct sock *)tp);
  221. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  222. }
  223. tp->ecn_flags |= TCP_ECN_SEEN;
  224. break;
  225. default:
  226. if (tcp_ca_needs_ecn((struct sock *)tp))
  227. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  228. tp->ecn_flags |= TCP_ECN_SEEN;
  229. break;
  230. }
  231. }
  232. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  233. {
  234. if (tp->ecn_flags & TCP_ECN_OK)
  235. __tcp_ecn_check_ce(tp, skb);
  236. }
  237. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  238. {
  239. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  240. tp->ecn_flags &= ~TCP_ECN_OK;
  241. }
  242. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  243. {
  244. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  245. tp->ecn_flags &= ~TCP_ECN_OK;
  246. }
  247. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  248. {
  249. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  250. return true;
  251. return false;
  252. }
  253. /* Buffer size and advertised window tuning.
  254. *
  255. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  256. */
  257. static void tcp_sndbuf_expand(struct sock *sk)
  258. {
  259. const struct tcp_sock *tp = tcp_sk(sk);
  260. int sndmem, per_mss;
  261. u32 nr_segs;
  262. /* Worst case is non GSO/TSO : each frame consumes one skb
  263. * and skb->head is kmalloced using power of two area of memory
  264. */
  265. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  266. MAX_TCP_HEADER +
  267. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  268. per_mss = roundup_pow_of_two(per_mss) +
  269. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  270. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  271. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  272. /* Fast Recovery (RFC 5681 3.2) :
  273. * Cubic needs 1.7 factor, rounded to 2 to include
  274. * extra cushion (application might react slowly to POLLOUT)
  275. */
  276. sndmem = 2 * nr_segs * per_mss;
  277. if (sk->sk_sndbuf < sndmem)
  278. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  279. }
  280. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  281. *
  282. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  283. * forward and advertised in receiver window (tp->rcv_wnd) and
  284. * "application buffer", required to isolate scheduling/application
  285. * latencies from network.
  286. * window_clamp is maximal advertised window. It can be less than
  287. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  288. * is reserved for "application" buffer. The less window_clamp is
  289. * the smoother our behaviour from viewpoint of network, but the lower
  290. * throughput and the higher sensitivity of the connection to losses. 8)
  291. *
  292. * rcv_ssthresh is more strict window_clamp used at "slow start"
  293. * phase to predict further behaviour of this connection.
  294. * It is used for two goals:
  295. * - to enforce header prediction at sender, even when application
  296. * requires some significant "application buffer". It is check #1.
  297. * - to prevent pruning of receive queue because of misprediction
  298. * of receiver window. Check #2.
  299. *
  300. * The scheme does not work when sender sends good segments opening
  301. * window and then starts to feed us spaghetti. But it should work
  302. * in common situations. Otherwise, we have to rely on queue collapsing.
  303. */
  304. /* Slow part of check#2. */
  305. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  306. {
  307. struct tcp_sock *tp = tcp_sk(sk);
  308. /* Optimize this! */
  309. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  310. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  311. while (tp->rcv_ssthresh <= window) {
  312. if (truesize <= skb->len)
  313. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  314. truesize >>= 1;
  315. window >>= 1;
  316. }
  317. return 0;
  318. }
  319. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  320. {
  321. struct tcp_sock *tp = tcp_sk(sk);
  322. /* Check #1 */
  323. if (tp->rcv_ssthresh < tp->window_clamp &&
  324. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  325. !tcp_under_memory_pressure(sk)) {
  326. int incr;
  327. /* Check #2. Increase window, if skb with such overhead
  328. * will fit to rcvbuf in future.
  329. */
  330. if (tcp_win_from_space(skb->truesize) <= skb->len)
  331. incr = 2 * tp->advmss;
  332. else
  333. incr = __tcp_grow_window(sk, skb);
  334. if (incr) {
  335. incr = max_t(int, incr, 2 * skb->len);
  336. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  337. tp->window_clamp);
  338. inet_csk(sk)->icsk_ack.quick |= 1;
  339. }
  340. }
  341. }
  342. /* 3. Tuning rcvbuf, when connection enters established state. */
  343. static void tcp_fixup_rcvbuf(struct sock *sk)
  344. {
  345. u32 mss = tcp_sk(sk)->advmss;
  346. int rcvmem;
  347. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  348. tcp_default_init_rwnd(mss);
  349. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  350. * Allow enough cushion so that sender is not limited by our window
  351. */
  352. if (sysctl_tcp_moderate_rcvbuf)
  353. rcvmem <<= 2;
  354. if (sk->sk_rcvbuf < rcvmem)
  355. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  356. }
  357. /* 4. Try to fixup all. It is made immediately after connection enters
  358. * established state.
  359. */
  360. void tcp_init_buffer_space(struct sock *sk)
  361. {
  362. struct tcp_sock *tp = tcp_sk(sk);
  363. int maxwin;
  364. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  365. tcp_fixup_rcvbuf(sk);
  366. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  367. tcp_sndbuf_expand(sk);
  368. tp->rcvq_space.space = tp->rcv_wnd;
  369. tp->rcvq_space.time = tcp_time_stamp;
  370. tp->rcvq_space.seq = tp->copied_seq;
  371. maxwin = tcp_full_space(sk);
  372. if (tp->window_clamp >= maxwin) {
  373. tp->window_clamp = maxwin;
  374. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  375. tp->window_clamp = max(maxwin -
  376. (maxwin >> sysctl_tcp_app_win),
  377. 4 * tp->advmss);
  378. }
  379. /* Force reservation of one segment. */
  380. if (sysctl_tcp_app_win &&
  381. tp->window_clamp > 2 * tp->advmss &&
  382. tp->window_clamp + tp->advmss > maxwin)
  383. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  384. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  385. tp->snd_cwnd_stamp = tcp_time_stamp;
  386. }
  387. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  388. static void tcp_clamp_window(struct sock *sk)
  389. {
  390. struct tcp_sock *tp = tcp_sk(sk);
  391. struct inet_connection_sock *icsk = inet_csk(sk);
  392. icsk->icsk_ack.quick = 0;
  393. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  394. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  395. !tcp_under_memory_pressure(sk) &&
  396. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  397. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  398. sysctl_tcp_rmem[2]);
  399. }
  400. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  401. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  402. }
  403. /* Initialize RCV_MSS value.
  404. * RCV_MSS is an our guess about MSS used by the peer.
  405. * We haven't any direct information about the MSS.
  406. * It's better to underestimate the RCV_MSS rather than overestimate.
  407. * Overestimations make us ACKing less frequently than needed.
  408. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  409. */
  410. void tcp_initialize_rcv_mss(struct sock *sk)
  411. {
  412. const struct tcp_sock *tp = tcp_sk(sk);
  413. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  414. hint = min(hint, tp->rcv_wnd / 2);
  415. hint = min(hint, TCP_MSS_DEFAULT);
  416. hint = max(hint, TCP_MIN_MSS);
  417. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  418. }
  419. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  420. /* Receiver "autotuning" code.
  421. *
  422. * The algorithm for RTT estimation w/o timestamps is based on
  423. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  424. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  425. *
  426. * More detail on this code can be found at
  427. * <http://staff.psc.edu/jheffner/>,
  428. * though this reference is out of date. A new paper
  429. * is pending.
  430. */
  431. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  432. {
  433. u32 new_sample = tp->rcv_rtt_est.rtt;
  434. long m = sample;
  435. if (m == 0)
  436. m = 1;
  437. if (new_sample != 0) {
  438. /* If we sample in larger samples in the non-timestamp
  439. * case, we could grossly overestimate the RTT especially
  440. * with chatty applications or bulk transfer apps which
  441. * are stalled on filesystem I/O.
  442. *
  443. * Also, since we are only going for a minimum in the
  444. * non-timestamp case, we do not smooth things out
  445. * else with timestamps disabled convergence takes too
  446. * long.
  447. */
  448. if (!win_dep) {
  449. m -= (new_sample >> 3);
  450. new_sample += m;
  451. } else {
  452. m <<= 3;
  453. if (m < new_sample)
  454. new_sample = m;
  455. }
  456. } else {
  457. /* No previous measure. */
  458. new_sample = m << 3;
  459. }
  460. if (tp->rcv_rtt_est.rtt != new_sample)
  461. tp->rcv_rtt_est.rtt = new_sample;
  462. }
  463. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  464. {
  465. if (tp->rcv_rtt_est.time == 0)
  466. goto new_measure;
  467. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  468. return;
  469. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  470. new_measure:
  471. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  472. tp->rcv_rtt_est.time = tcp_time_stamp;
  473. }
  474. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  475. const struct sk_buff *skb)
  476. {
  477. struct tcp_sock *tp = tcp_sk(sk);
  478. if (tp->rx_opt.rcv_tsecr &&
  479. (TCP_SKB_CB(skb)->end_seq -
  480. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  481. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  482. }
  483. /*
  484. * This function should be called every time data is copied to user space.
  485. * It calculates the appropriate TCP receive buffer space.
  486. */
  487. void tcp_rcv_space_adjust(struct sock *sk)
  488. {
  489. struct tcp_sock *tp = tcp_sk(sk);
  490. int time;
  491. int copied;
  492. time = tcp_time_stamp - tp->rcvq_space.time;
  493. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  494. return;
  495. /* Number of bytes copied to user in last RTT */
  496. copied = tp->copied_seq - tp->rcvq_space.seq;
  497. if (copied <= tp->rcvq_space.space)
  498. goto new_measure;
  499. /* A bit of theory :
  500. * copied = bytes received in previous RTT, our base window
  501. * To cope with packet losses, we need a 2x factor
  502. * To cope with slow start, and sender growing its cwin by 100 %
  503. * every RTT, we need a 4x factor, because the ACK we are sending
  504. * now is for the next RTT, not the current one :
  505. * <prev RTT . ><current RTT .. ><next RTT .... >
  506. */
  507. if (sysctl_tcp_moderate_rcvbuf &&
  508. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  509. int rcvwin, rcvmem, rcvbuf;
  510. /* minimal window to cope with packet losses, assuming
  511. * steady state. Add some cushion because of small variations.
  512. */
  513. rcvwin = (copied << 1) + 16 * tp->advmss;
  514. /* If rate increased by 25%,
  515. * assume slow start, rcvwin = 3 * copied
  516. * If rate increased by 50%,
  517. * assume sender can use 2x growth, rcvwin = 4 * copied
  518. */
  519. if (copied >=
  520. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  521. if (copied >=
  522. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  523. rcvwin <<= 1;
  524. else
  525. rcvwin += (rcvwin >> 1);
  526. }
  527. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  528. while (tcp_win_from_space(rcvmem) < tp->advmss)
  529. rcvmem += 128;
  530. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  531. if (rcvbuf > sk->sk_rcvbuf) {
  532. sk->sk_rcvbuf = rcvbuf;
  533. /* Make the window clamp follow along. */
  534. tp->window_clamp = rcvwin;
  535. }
  536. }
  537. tp->rcvq_space.space = copied;
  538. new_measure:
  539. tp->rcvq_space.seq = tp->copied_seq;
  540. tp->rcvq_space.time = tcp_time_stamp;
  541. }
  542. /* There is something which you must keep in mind when you analyze the
  543. * behavior of the tp->ato delayed ack timeout interval. When a
  544. * connection starts up, we want to ack as quickly as possible. The
  545. * problem is that "good" TCP's do slow start at the beginning of data
  546. * transmission. The means that until we send the first few ACK's the
  547. * sender will sit on his end and only queue most of his data, because
  548. * he can only send snd_cwnd unacked packets at any given time. For
  549. * each ACK we send, he increments snd_cwnd and transmits more of his
  550. * queue. -DaveM
  551. */
  552. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  553. {
  554. struct tcp_sock *tp = tcp_sk(sk);
  555. struct inet_connection_sock *icsk = inet_csk(sk);
  556. u32 now;
  557. inet_csk_schedule_ack(sk);
  558. tcp_measure_rcv_mss(sk, skb);
  559. tcp_rcv_rtt_measure(tp);
  560. now = tcp_time_stamp;
  561. if (!icsk->icsk_ack.ato) {
  562. /* The _first_ data packet received, initialize
  563. * delayed ACK engine.
  564. */
  565. tcp_incr_quickack(sk);
  566. icsk->icsk_ack.ato = TCP_ATO_MIN;
  567. } else {
  568. int m = now - icsk->icsk_ack.lrcvtime;
  569. if (m <= TCP_ATO_MIN / 2) {
  570. /* The fastest case is the first. */
  571. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  572. } else if (m < icsk->icsk_ack.ato) {
  573. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  574. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  575. icsk->icsk_ack.ato = icsk->icsk_rto;
  576. } else if (m > icsk->icsk_rto) {
  577. /* Too long gap. Apparently sender failed to
  578. * restart window, so that we send ACKs quickly.
  579. */
  580. tcp_incr_quickack(sk);
  581. sk_mem_reclaim(sk);
  582. }
  583. }
  584. icsk->icsk_ack.lrcvtime = now;
  585. tcp_ecn_check_ce(tp, skb);
  586. if (skb->len >= 128)
  587. tcp_grow_window(sk, skb);
  588. }
  589. /* Called to compute a smoothed rtt estimate. The data fed to this
  590. * routine either comes from timestamps, or from segments that were
  591. * known _not_ to have been retransmitted [see Karn/Partridge
  592. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  593. * piece by Van Jacobson.
  594. * NOTE: the next three routines used to be one big routine.
  595. * To save cycles in the RFC 1323 implementation it was better to break
  596. * it up into three procedures. -- erics
  597. */
  598. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  599. {
  600. struct tcp_sock *tp = tcp_sk(sk);
  601. long m = mrtt_us; /* RTT */
  602. u32 srtt = tp->srtt_us;
  603. /* The following amusing code comes from Jacobson's
  604. * article in SIGCOMM '88. Note that rtt and mdev
  605. * are scaled versions of rtt and mean deviation.
  606. * This is designed to be as fast as possible
  607. * m stands for "measurement".
  608. *
  609. * On a 1990 paper the rto value is changed to:
  610. * RTO = rtt + 4 * mdev
  611. *
  612. * Funny. This algorithm seems to be very broken.
  613. * These formulae increase RTO, when it should be decreased, increase
  614. * too slowly, when it should be increased quickly, decrease too quickly
  615. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  616. * does not matter how to _calculate_ it. Seems, it was trap
  617. * that VJ failed to avoid. 8)
  618. */
  619. if (srtt != 0) {
  620. m -= (srtt >> 3); /* m is now error in rtt est */
  621. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  622. if (m < 0) {
  623. m = -m; /* m is now abs(error) */
  624. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  625. /* This is similar to one of Eifel findings.
  626. * Eifel blocks mdev updates when rtt decreases.
  627. * This solution is a bit different: we use finer gain
  628. * for mdev in this case (alpha*beta).
  629. * Like Eifel it also prevents growth of rto,
  630. * but also it limits too fast rto decreases,
  631. * happening in pure Eifel.
  632. */
  633. if (m > 0)
  634. m >>= 3;
  635. } else {
  636. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  637. }
  638. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  639. if (tp->mdev_us > tp->mdev_max_us) {
  640. tp->mdev_max_us = tp->mdev_us;
  641. if (tp->mdev_max_us > tp->rttvar_us)
  642. tp->rttvar_us = tp->mdev_max_us;
  643. }
  644. if (after(tp->snd_una, tp->rtt_seq)) {
  645. if (tp->mdev_max_us < tp->rttvar_us)
  646. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  647. tp->rtt_seq = tp->snd_nxt;
  648. tp->mdev_max_us = tcp_rto_min_us(sk);
  649. }
  650. } else {
  651. /* no previous measure. */
  652. srtt = m << 3; /* take the measured time to be rtt */
  653. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  654. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  655. tp->mdev_max_us = tp->rttvar_us;
  656. tp->rtt_seq = tp->snd_nxt;
  657. }
  658. tp->srtt_us = max(1U, srtt);
  659. }
  660. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  661. * Note: TCP stack does not yet implement pacing.
  662. * FQ packet scheduler can be used to implement cheap but effective
  663. * TCP pacing, to smooth the burst on large writes when packets
  664. * in flight is significantly lower than cwnd (or rwin)
  665. */
  666. int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
  667. int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
  668. static void tcp_update_pacing_rate(struct sock *sk)
  669. {
  670. const struct tcp_sock *tp = tcp_sk(sk);
  671. u64 rate;
  672. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  673. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  674. /* current rate is (cwnd * mss) / srtt
  675. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  676. * In Congestion Avoidance phase, set it to 120 % the current rate.
  677. *
  678. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  679. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  680. * end of slow start and should slow down.
  681. */
  682. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  683. rate *= sysctl_tcp_pacing_ss_ratio;
  684. else
  685. rate *= sysctl_tcp_pacing_ca_ratio;
  686. rate *= max(tp->snd_cwnd, tp->packets_out);
  687. if (likely(tp->srtt_us))
  688. do_div(rate, tp->srtt_us);
  689. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  690. * without any lock. We want to make sure compiler wont store
  691. * intermediate values in this location.
  692. */
  693. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  694. sk->sk_max_pacing_rate);
  695. }
  696. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  697. * routine referred to above.
  698. */
  699. static void tcp_set_rto(struct sock *sk)
  700. {
  701. const struct tcp_sock *tp = tcp_sk(sk);
  702. /* Old crap is replaced with new one. 8)
  703. *
  704. * More seriously:
  705. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  706. * It cannot be less due to utterly erratic ACK generation made
  707. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  708. * to do with delayed acks, because at cwnd>2 true delack timeout
  709. * is invisible. Actually, Linux-2.4 also generates erratic
  710. * ACKs in some circumstances.
  711. */
  712. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  713. /* 2. Fixups made earlier cannot be right.
  714. * If we do not estimate RTO correctly without them,
  715. * all the algo is pure shit and should be replaced
  716. * with correct one. It is exactly, which we pretend to do.
  717. */
  718. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  719. * guarantees that rto is higher.
  720. */
  721. tcp_bound_rto(sk);
  722. }
  723. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  724. {
  725. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  726. if (!cwnd)
  727. cwnd = TCP_INIT_CWND;
  728. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  729. }
  730. /*
  731. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  732. * disables it when reordering is detected
  733. */
  734. void tcp_disable_fack(struct tcp_sock *tp)
  735. {
  736. /* RFC3517 uses different metric in lost marker => reset on change */
  737. if (tcp_is_fack(tp))
  738. tp->lost_skb_hint = NULL;
  739. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  740. }
  741. /* Take a notice that peer is sending D-SACKs */
  742. static void tcp_dsack_seen(struct tcp_sock *tp)
  743. {
  744. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  745. }
  746. static void tcp_update_reordering(struct sock *sk, const int metric,
  747. const int ts)
  748. {
  749. struct tcp_sock *tp = tcp_sk(sk);
  750. if (metric > tp->reordering) {
  751. int mib_idx;
  752. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  753. /* This exciting event is worth to be remembered. 8) */
  754. if (ts)
  755. mib_idx = LINUX_MIB_TCPTSREORDER;
  756. else if (tcp_is_reno(tp))
  757. mib_idx = LINUX_MIB_TCPRENOREORDER;
  758. else if (tcp_is_fack(tp))
  759. mib_idx = LINUX_MIB_TCPFACKREORDER;
  760. else
  761. mib_idx = LINUX_MIB_TCPSACKREORDER;
  762. NET_INC_STATS(sock_net(sk), mib_idx);
  763. #if FASTRETRANS_DEBUG > 1
  764. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  765. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  766. tp->reordering,
  767. tp->fackets_out,
  768. tp->sacked_out,
  769. tp->undo_marker ? tp->undo_retrans : 0);
  770. #endif
  771. tcp_disable_fack(tp);
  772. }
  773. if (metric > 0)
  774. tcp_disable_early_retrans(tp);
  775. tp->rack.reord = 1;
  776. }
  777. /* This must be called before lost_out is incremented */
  778. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  779. {
  780. if (!tp->retransmit_skb_hint ||
  781. before(TCP_SKB_CB(skb)->seq,
  782. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  783. tp->retransmit_skb_hint = skb;
  784. if (!tp->lost_out ||
  785. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  786. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  787. }
  788. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  789. {
  790. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  791. tcp_verify_retransmit_hint(tp, skb);
  792. tp->lost_out += tcp_skb_pcount(skb);
  793. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  794. }
  795. }
  796. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  797. {
  798. tcp_verify_retransmit_hint(tp, skb);
  799. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  800. tp->lost_out += tcp_skb_pcount(skb);
  801. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  802. }
  803. }
  804. /* This procedure tags the retransmission queue when SACKs arrive.
  805. *
  806. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  807. * Packets in queue with these bits set are counted in variables
  808. * sacked_out, retrans_out and lost_out, correspondingly.
  809. *
  810. * Valid combinations are:
  811. * Tag InFlight Description
  812. * 0 1 - orig segment is in flight.
  813. * S 0 - nothing flies, orig reached receiver.
  814. * L 0 - nothing flies, orig lost by net.
  815. * R 2 - both orig and retransmit are in flight.
  816. * L|R 1 - orig is lost, retransmit is in flight.
  817. * S|R 1 - orig reached receiver, retrans is still in flight.
  818. * (L|S|R is logically valid, it could occur when L|R is sacked,
  819. * but it is equivalent to plain S and code short-curcuits it to S.
  820. * L|S is logically invalid, it would mean -1 packet in flight 8))
  821. *
  822. * These 6 states form finite state machine, controlled by the following events:
  823. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  824. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  825. * 3. Loss detection event of two flavors:
  826. * A. Scoreboard estimator decided the packet is lost.
  827. * A'. Reno "three dupacks" marks head of queue lost.
  828. * A''. Its FACK modification, head until snd.fack is lost.
  829. * B. SACK arrives sacking SND.NXT at the moment, when the
  830. * segment was retransmitted.
  831. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  832. *
  833. * It is pleasant to note, that state diagram turns out to be commutative,
  834. * so that we are allowed not to be bothered by order of our actions,
  835. * when multiple events arrive simultaneously. (see the function below).
  836. *
  837. * Reordering detection.
  838. * --------------------
  839. * Reordering metric is maximal distance, which a packet can be displaced
  840. * in packet stream. With SACKs we can estimate it:
  841. *
  842. * 1. SACK fills old hole and the corresponding segment was not
  843. * ever retransmitted -> reordering. Alas, we cannot use it
  844. * when segment was retransmitted.
  845. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  846. * for retransmitted and already SACKed segment -> reordering..
  847. * Both of these heuristics are not used in Loss state, when we cannot
  848. * account for retransmits accurately.
  849. *
  850. * SACK block validation.
  851. * ----------------------
  852. *
  853. * SACK block range validation checks that the received SACK block fits to
  854. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  855. * Note that SND.UNA is not included to the range though being valid because
  856. * it means that the receiver is rather inconsistent with itself reporting
  857. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  858. * perfectly valid, however, in light of RFC2018 which explicitly states
  859. * that "SACK block MUST reflect the newest segment. Even if the newest
  860. * segment is going to be discarded ...", not that it looks very clever
  861. * in case of head skb. Due to potentional receiver driven attacks, we
  862. * choose to avoid immediate execution of a walk in write queue due to
  863. * reneging and defer head skb's loss recovery to standard loss recovery
  864. * procedure that will eventually trigger (nothing forbids us doing this).
  865. *
  866. * Implements also blockage to start_seq wrap-around. Problem lies in the
  867. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  868. * there's no guarantee that it will be before snd_nxt (n). The problem
  869. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  870. * wrap (s_w):
  871. *
  872. * <- outs wnd -> <- wrapzone ->
  873. * u e n u_w e_w s n_w
  874. * | | | | | | |
  875. * |<------------+------+----- TCP seqno space --------------+---------->|
  876. * ...-- <2^31 ->| |<--------...
  877. * ...---- >2^31 ------>| |<--------...
  878. *
  879. * Current code wouldn't be vulnerable but it's better still to discard such
  880. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  881. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  882. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  883. * equal to the ideal case (infinite seqno space without wrap caused issues).
  884. *
  885. * With D-SACK the lower bound is extended to cover sequence space below
  886. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  887. * again, D-SACK block must not to go across snd_una (for the same reason as
  888. * for the normal SACK blocks, explained above). But there all simplicity
  889. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  890. * fully below undo_marker they do not affect behavior in anyway and can
  891. * therefore be safely ignored. In rare cases (which are more or less
  892. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  893. * fragmentation and packet reordering past skb's retransmission. To consider
  894. * them correctly, the acceptable range must be extended even more though
  895. * the exact amount is rather hard to quantify. However, tp->max_window can
  896. * be used as an exaggerated estimate.
  897. */
  898. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  899. u32 start_seq, u32 end_seq)
  900. {
  901. /* Too far in future, or reversed (interpretation is ambiguous) */
  902. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  903. return false;
  904. /* Nasty start_seq wrap-around check (see comments above) */
  905. if (!before(start_seq, tp->snd_nxt))
  906. return false;
  907. /* In outstanding window? ...This is valid exit for D-SACKs too.
  908. * start_seq == snd_una is non-sensical (see comments above)
  909. */
  910. if (after(start_seq, tp->snd_una))
  911. return true;
  912. if (!is_dsack || !tp->undo_marker)
  913. return false;
  914. /* ...Then it's D-SACK, and must reside below snd_una completely */
  915. if (after(end_seq, tp->snd_una))
  916. return false;
  917. if (!before(start_seq, tp->undo_marker))
  918. return true;
  919. /* Too old */
  920. if (!after(end_seq, tp->undo_marker))
  921. return false;
  922. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  923. * start_seq < undo_marker and end_seq >= undo_marker.
  924. */
  925. return !before(start_seq, end_seq - tp->max_window);
  926. }
  927. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  928. struct tcp_sack_block_wire *sp, int num_sacks,
  929. u32 prior_snd_una)
  930. {
  931. struct tcp_sock *tp = tcp_sk(sk);
  932. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  933. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  934. bool dup_sack = false;
  935. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  936. dup_sack = true;
  937. tcp_dsack_seen(tp);
  938. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  939. } else if (num_sacks > 1) {
  940. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  941. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  942. if (!after(end_seq_0, end_seq_1) &&
  943. !before(start_seq_0, start_seq_1)) {
  944. dup_sack = true;
  945. tcp_dsack_seen(tp);
  946. NET_INC_STATS(sock_net(sk),
  947. LINUX_MIB_TCPDSACKOFORECV);
  948. }
  949. }
  950. /* D-SACK for already forgotten data... Do dumb counting. */
  951. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  952. !after(end_seq_0, prior_snd_una) &&
  953. after(end_seq_0, tp->undo_marker))
  954. tp->undo_retrans--;
  955. return dup_sack;
  956. }
  957. struct tcp_sacktag_state {
  958. int reord;
  959. int fack_count;
  960. /* Timestamps for earliest and latest never-retransmitted segment
  961. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  962. * but congestion control should still get an accurate delay signal.
  963. */
  964. struct skb_mstamp first_sackt;
  965. struct skb_mstamp last_sackt;
  966. int flag;
  967. };
  968. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  969. * the incoming SACK may not exactly match but we can find smaller MSS
  970. * aligned portion of it that matches. Therefore we might need to fragment
  971. * which may fail and creates some hassle (caller must handle error case
  972. * returns).
  973. *
  974. * FIXME: this could be merged to shift decision code
  975. */
  976. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  977. u32 start_seq, u32 end_seq)
  978. {
  979. int err;
  980. bool in_sack;
  981. unsigned int pkt_len;
  982. unsigned int mss;
  983. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  984. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  985. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  986. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  987. mss = tcp_skb_mss(skb);
  988. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  989. if (!in_sack) {
  990. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  991. if (pkt_len < mss)
  992. pkt_len = mss;
  993. } else {
  994. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  995. if (pkt_len < mss)
  996. return -EINVAL;
  997. }
  998. /* Round if necessary so that SACKs cover only full MSSes
  999. * and/or the remaining small portion (if present)
  1000. */
  1001. if (pkt_len > mss) {
  1002. unsigned int new_len = (pkt_len / mss) * mss;
  1003. if (!in_sack && new_len < pkt_len) {
  1004. new_len += mss;
  1005. if (new_len >= skb->len)
  1006. return 0;
  1007. }
  1008. pkt_len = new_len;
  1009. }
  1010. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1011. if (err < 0)
  1012. return err;
  1013. }
  1014. return in_sack;
  1015. }
  1016. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1017. static u8 tcp_sacktag_one(struct sock *sk,
  1018. struct tcp_sacktag_state *state, u8 sacked,
  1019. u32 start_seq, u32 end_seq,
  1020. int dup_sack, int pcount,
  1021. const struct skb_mstamp *xmit_time)
  1022. {
  1023. struct tcp_sock *tp = tcp_sk(sk);
  1024. int fack_count = state->fack_count;
  1025. /* Account D-SACK for retransmitted packet. */
  1026. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1027. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1028. after(end_seq, tp->undo_marker))
  1029. tp->undo_retrans--;
  1030. if (sacked & TCPCB_SACKED_ACKED)
  1031. state->reord = min(fack_count, state->reord);
  1032. }
  1033. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1034. if (!after(end_seq, tp->snd_una))
  1035. return sacked;
  1036. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1037. tcp_rack_advance(tp, xmit_time, sacked);
  1038. if (sacked & TCPCB_SACKED_RETRANS) {
  1039. /* If the segment is not tagged as lost,
  1040. * we do not clear RETRANS, believing
  1041. * that retransmission is still in flight.
  1042. */
  1043. if (sacked & TCPCB_LOST) {
  1044. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1045. tp->lost_out -= pcount;
  1046. tp->retrans_out -= pcount;
  1047. }
  1048. } else {
  1049. if (!(sacked & TCPCB_RETRANS)) {
  1050. /* New sack for not retransmitted frame,
  1051. * which was in hole. It is reordering.
  1052. */
  1053. if (before(start_seq,
  1054. tcp_highest_sack_seq(tp)))
  1055. state->reord = min(fack_count,
  1056. state->reord);
  1057. if (!after(end_seq, tp->high_seq))
  1058. state->flag |= FLAG_ORIG_SACK_ACKED;
  1059. if (state->first_sackt.v64 == 0)
  1060. state->first_sackt = *xmit_time;
  1061. state->last_sackt = *xmit_time;
  1062. }
  1063. if (sacked & TCPCB_LOST) {
  1064. sacked &= ~TCPCB_LOST;
  1065. tp->lost_out -= pcount;
  1066. }
  1067. }
  1068. sacked |= TCPCB_SACKED_ACKED;
  1069. state->flag |= FLAG_DATA_SACKED;
  1070. tp->sacked_out += pcount;
  1071. tp->delivered += pcount; /* Out-of-order packets delivered */
  1072. fack_count += pcount;
  1073. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1074. if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
  1075. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1076. tp->lost_cnt_hint += pcount;
  1077. if (fack_count > tp->fackets_out)
  1078. tp->fackets_out = fack_count;
  1079. }
  1080. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1081. * frames and clear it. undo_retrans is decreased above, L|R frames
  1082. * are accounted above as well.
  1083. */
  1084. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1085. sacked &= ~TCPCB_SACKED_RETRANS;
  1086. tp->retrans_out -= pcount;
  1087. }
  1088. return sacked;
  1089. }
  1090. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1091. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1092. */
  1093. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1094. struct tcp_sacktag_state *state,
  1095. unsigned int pcount, int shifted, int mss,
  1096. bool dup_sack)
  1097. {
  1098. struct tcp_sock *tp = tcp_sk(sk);
  1099. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1100. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1101. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1102. BUG_ON(!pcount);
  1103. /* Adjust counters and hints for the newly sacked sequence
  1104. * range but discard the return value since prev is already
  1105. * marked. We must tag the range first because the seq
  1106. * advancement below implicitly advances
  1107. * tcp_highest_sack_seq() when skb is highest_sack.
  1108. */
  1109. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1110. start_seq, end_seq, dup_sack, pcount,
  1111. &skb->skb_mstamp);
  1112. if (skb == tp->lost_skb_hint)
  1113. tp->lost_cnt_hint += pcount;
  1114. TCP_SKB_CB(prev)->end_seq += shifted;
  1115. TCP_SKB_CB(skb)->seq += shifted;
  1116. tcp_skb_pcount_add(prev, pcount);
  1117. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1118. tcp_skb_pcount_add(skb, -pcount);
  1119. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1120. * in theory this shouldn't be necessary but as long as DSACK
  1121. * code can come after this skb later on it's better to keep
  1122. * setting gso_size to something.
  1123. */
  1124. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1125. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1126. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1127. if (tcp_skb_pcount(skb) <= 1)
  1128. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1129. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1130. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1131. if (skb->len > 0) {
  1132. BUG_ON(!tcp_skb_pcount(skb));
  1133. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1134. return false;
  1135. }
  1136. /* Whole SKB was eaten :-) */
  1137. if (skb == tp->retransmit_skb_hint)
  1138. tp->retransmit_skb_hint = prev;
  1139. if (skb == tp->lost_skb_hint) {
  1140. tp->lost_skb_hint = prev;
  1141. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1142. }
  1143. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1144. TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
  1145. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1146. TCP_SKB_CB(prev)->end_seq++;
  1147. if (skb == tcp_highest_sack(sk))
  1148. tcp_advance_highest_sack(sk, skb);
  1149. tcp_skb_collapse_tstamp(prev, skb);
  1150. tcp_unlink_write_queue(skb, sk);
  1151. sk_wmem_free_skb(sk, skb);
  1152. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
  1153. return true;
  1154. }
  1155. /* I wish gso_size would have a bit more sane initialization than
  1156. * something-or-zero which complicates things
  1157. */
  1158. static int tcp_skb_seglen(const struct sk_buff *skb)
  1159. {
  1160. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1161. }
  1162. /* Shifting pages past head area doesn't work */
  1163. static int skb_can_shift(const struct sk_buff *skb)
  1164. {
  1165. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1166. }
  1167. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1168. * skb.
  1169. */
  1170. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1171. struct tcp_sacktag_state *state,
  1172. u32 start_seq, u32 end_seq,
  1173. bool dup_sack)
  1174. {
  1175. struct tcp_sock *tp = tcp_sk(sk);
  1176. struct sk_buff *prev;
  1177. int mss;
  1178. int pcount = 0;
  1179. int len;
  1180. int in_sack;
  1181. if (!sk_can_gso(sk))
  1182. goto fallback;
  1183. /* Normally R but no L won't result in plain S */
  1184. if (!dup_sack &&
  1185. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1186. goto fallback;
  1187. if (!skb_can_shift(skb))
  1188. goto fallback;
  1189. /* This frame is about to be dropped (was ACKed). */
  1190. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1191. goto fallback;
  1192. /* Can only happen with delayed DSACK + discard craziness */
  1193. if (unlikely(skb == tcp_write_queue_head(sk)))
  1194. goto fallback;
  1195. prev = tcp_write_queue_prev(sk, skb);
  1196. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1197. goto fallback;
  1198. if (!tcp_skb_can_collapse_to(prev))
  1199. goto fallback;
  1200. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1201. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1202. if (in_sack) {
  1203. len = skb->len;
  1204. pcount = tcp_skb_pcount(skb);
  1205. mss = tcp_skb_seglen(skb);
  1206. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1207. * drop this restriction as unnecessary
  1208. */
  1209. if (mss != tcp_skb_seglen(prev))
  1210. goto fallback;
  1211. } else {
  1212. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1213. goto noop;
  1214. /* CHECKME: This is non-MSS split case only?, this will
  1215. * cause skipped skbs due to advancing loop btw, original
  1216. * has that feature too
  1217. */
  1218. if (tcp_skb_pcount(skb) <= 1)
  1219. goto noop;
  1220. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1221. if (!in_sack) {
  1222. /* TODO: head merge to next could be attempted here
  1223. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1224. * though it might not be worth of the additional hassle
  1225. *
  1226. * ...we can probably just fallback to what was done
  1227. * previously. We could try merging non-SACKed ones
  1228. * as well but it probably isn't going to buy off
  1229. * because later SACKs might again split them, and
  1230. * it would make skb timestamp tracking considerably
  1231. * harder problem.
  1232. */
  1233. goto fallback;
  1234. }
  1235. len = end_seq - TCP_SKB_CB(skb)->seq;
  1236. BUG_ON(len < 0);
  1237. BUG_ON(len > skb->len);
  1238. /* MSS boundaries should be honoured or else pcount will
  1239. * severely break even though it makes things bit trickier.
  1240. * Optimize common case to avoid most of the divides
  1241. */
  1242. mss = tcp_skb_mss(skb);
  1243. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1244. * drop this restriction as unnecessary
  1245. */
  1246. if (mss != tcp_skb_seglen(prev))
  1247. goto fallback;
  1248. if (len == mss) {
  1249. pcount = 1;
  1250. } else if (len < mss) {
  1251. goto noop;
  1252. } else {
  1253. pcount = len / mss;
  1254. len = pcount * mss;
  1255. }
  1256. }
  1257. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1258. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1259. goto fallback;
  1260. if (!skb_shift(prev, skb, len))
  1261. goto fallback;
  1262. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1263. goto out;
  1264. /* Hole filled allows collapsing with the next as well, this is very
  1265. * useful when hole on every nth skb pattern happens
  1266. */
  1267. if (prev == tcp_write_queue_tail(sk))
  1268. goto out;
  1269. skb = tcp_write_queue_next(sk, prev);
  1270. if (!skb_can_shift(skb) ||
  1271. (skb == tcp_send_head(sk)) ||
  1272. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1273. (mss != tcp_skb_seglen(skb)))
  1274. goto out;
  1275. len = skb->len;
  1276. if (skb_shift(prev, skb, len)) {
  1277. pcount += tcp_skb_pcount(skb);
  1278. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1279. }
  1280. out:
  1281. state->fack_count += pcount;
  1282. return prev;
  1283. noop:
  1284. return skb;
  1285. fallback:
  1286. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1287. return NULL;
  1288. }
  1289. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1290. struct tcp_sack_block *next_dup,
  1291. struct tcp_sacktag_state *state,
  1292. u32 start_seq, u32 end_seq,
  1293. bool dup_sack_in)
  1294. {
  1295. struct tcp_sock *tp = tcp_sk(sk);
  1296. struct sk_buff *tmp;
  1297. tcp_for_write_queue_from(skb, sk) {
  1298. int in_sack = 0;
  1299. bool dup_sack = dup_sack_in;
  1300. if (skb == tcp_send_head(sk))
  1301. break;
  1302. /* queue is in-order => we can short-circuit the walk early */
  1303. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1304. break;
  1305. if (next_dup &&
  1306. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1307. in_sack = tcp_match_skb_to_sack(sk, skb,
  1308. next_dup->start_seq,
  1309. next_dup->end_seq);
  1310. if (in_sack > 0)
  1311. dup_sack = true;
  1312. }
  1313. /* skb reference here is a bit tricky to get right, since
  1314. * shifting can eat and free both this skb and the next,
  1315. * so not even _safe variant of the loop is enough.
  1316. */
  1317. if (in_sack <= 0) {
  1318. tmp = tcp_shift_skb_data(sk, skb, state,
  1319. start_seq, end_seq, dup_sack);
  1320. if (tmp) {
  1321. if (tmp != skb) {
  1322. skb = tmp;
  1323. continue;
  1324. }
  1325. in_sack = 0;
  1326. } else {
  1327. in_sack = tcp_match_skb_to_sack(sk, skb,
  1328. start_seq,
  1329. end_seq);
  1330. }
  1331. }
  1332. if (unlikely(in_sack < 0))
  1333. break;
  1334. if (in_sack) {
  1335. TCP_SKB_CB(skb)->sacked =
  1336. tcp_sacktag_one(sk,
  1337. state,
  1338. TCP_SKB_CB(skb)->sacked,
  1339. TCP_SKB_CB(skb)->seq,
  1340. TCP_SKB_CB(skb)->end_seq,
  1341. dup_sack,
  1342. tcp_skb_pcount(skb),
  1343. &skb->skb_mstamp);
  1344. if (!before(TCP_SKB_CB(skb)->seq,
  1345. tcp_highest_sack_seq(tp)))
  1346. tcp_advance_highest_sack(sk, skb);
  1347. }
  1348. state->fack_count += tcp_skb_pcount(skb);
  1349. }
  1350. return skb;
  1351. }
  1352. /* Avoid all extra work that is being done by sacktag while walking in
  1353. * a normal way
  1354. */
  1355. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1356. struct tcp_sacktag_state *state,
  1357. u32 skip_to_seq)
  1358. {
  1359. tcp_for_write_queue_from(skb, sk) {
  1360. if (skb == tcp_send_head(sk))
  1361. break;
  1362. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1363. break;
  1364. state->fack_count += tcp_skb_pcount(skb);
  1365. }
  1366. return skb;
  1367. }
  1368. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1369. struct sock *sk,
  1370. struct tcp_sack_block *next_dup,
  1371. struct tcp_sacktag_state *state,
  1372. u32 skip_to_seq)
  1373. {
  1374. if (!next_dup)
  1375. return skb;
  1376. if (before(next_dup->start_seq, skip_to_seq)) {
  1377. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1378. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1379. next_dup->start_seq, next_dup->end_seq,
  1380. 1);
  1381. }
  1382. return skb;
  1383. }
  1384. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1385. {
  1386. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1387. }
  1388. static int
  1389. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1390. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1391. {
  1392. struct tcp_sock *tp = tcp_sk(sk);
  1393. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1394. TCP_SKB_CB(ack_skb)->sacked);
  1395. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1396. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1397. struct tcp_sack_block *cache;
  1398. struct sk_buff *skb;
  1399. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1400. int used_sacks;
  1401. bool found_dup_sack = false;
  1402. int i, j;
  1403. int first_sack_index;
  1404. state->flag = 0;
  1405. state->reord = tp->packets_out;
  1406. if (!tp->sacked_out) {
  1407. if (WARN_ON(tp->fackets_out))
  1408. tp->fackets_out = 0;
  1409. tcp_highest_sack_reset(sk);
  1410. }
  1411. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1412. num_sacks, prior_snd_una);
  1413. if (found_dup_sack)
  1414. state->flag |= FLAG_DSACKING_ACK;
  1415. /* Eliminate too old ACKs, but take into
  1416. * account more or less fresh ones, they can
  1417. * contain valid SACK info.
  1418. */
  1419. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1420. return 0;
  1421. if (!tp->packets_out)
  1422. goto out;
  1423. used_sacks = 0;
  1424. first_sack_index = 0;
  1425. for (i = 0; i < num_sacks; i++) {
  1426. bool dup_sack = !i && found_dup_sack;
  1427. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1428. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1429. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1430. sp[used_sacks].start_seq,
  1431. sp[used_sacks].end_seq)) {
  1432. int mib_idx;
  1433. if (dup_sack) {
  1434. if (!tp->undo_marker)
  1435. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1436. else
  1437. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1438. } else {
  1439. /* Don't count olds caused by ACK reordering */
  1440. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1441. !after(sp[used_sacks].end_seq, tp->snd_una))
  1442. continue;
  1443. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1444. }
  1445. NET_INC_STATS(sock_net(sk), mib_idx);
  1446. if (i == 0)
  1447. first_sack_index = -1;
  1448. continue;
  1449. }
  1450. /* Ignore very old stuff early */
  1451. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1452. continue;
  1453. used_sacks++;
  1454. }
  1455. /* order SACK blocks to allow in order walk of the retrans queue */
  1456. for (i = used_sacks - 1; i > 0; i--) {
  1457. for (j = 0; j < i; j++) {
  1458. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1459. swap(sp[j], sp[j + 1]);
  1460. /* Track where the first SACK block goes to */
  1461. if (j == first_sack_index)
  1462. first_sack_index = j + 1;
  1463. }
  1464. }
  1465. }
  1466. skb = tcp_write_queue_head(sk);
  1467. state->fack_count = 0;
  1468. i = 0;
  1469. if (!tp->sacked_out) {
  1470. /* It's already past, so skip checking against it */
  1471. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1472. } else {
  1473. cache = tp->recv_sack_cache;
  1474. /* Skip empty blocks in at head of the cache */
  1475. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1476. !cache->end_seq)
  1477. cache++;
  1478. }
  1479. while (i < used_sacks) {
  1480. u32 start_seq = sp[i].start_seq;
  1481. u32 end_seq = sp[i].end_seq;
  1482. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1483. struct tcp_sack_block *next_dup = NULL;
  1484. if (found_dup_sack && ((i + 1) == first_sack_index))
  1485. next_dup = &sp[i + 1];
  1486. /* Skip too early cached blocks */
  1487. while (tcp_sack_cache_ok(tp, cache) &&
  1488. !before(start_seq, cache->end_seq))
  1489. cache++;
  1490. /* Can skip some work by looking recv_sack_cache? */
  1491. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1492. after(end_seq, cache->start_seq)) {
  1493. /* Head todo? */
  1494. if (before(start_seq, cache->start_seq)) {
  1495. skb = tcp_sacktag_skip(skb, sk, state,
  1496. start_seq);
  1497. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1498. state,
  1499. start_seq,
  1500. cache->start_seq,
  1501. dup_sack);
  1502. }
  1503. /* Rest of the block already fully processed? */
  1504. if (!after(end_seq, cache->end_seq))
  1505. goto advance_sp;
  1506. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1507. state,
  1508. cache->end_seq);
  1509. /* ...tail remains todo... */
  1510. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1511. /* ...but better entrypoint exists! */
  1512. skb = tcp_highest_sack(sk);
  1513. if (!skb)
  1514. break;
  1515. state->fack_count = tp->fackets_out;
  1516. cache++;
  1517. goto walk;
  1518. }
  1519. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1520. /* Check overlap against next cached too (past this one already) */
  1521. cache++;
  1522. continue;
  1523. }
  1524. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1525. skb = tcp_highest_sack(sk);
  1526. if (!skb)
  1527. break;
  1528. state->fack_count = tp->fackets_out;
  1529. }
  1530. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1531. walk:
  1532. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1533. start_seq, end_seq, dup_sack);
  1534. advance_sp:
  1535. i++;
  1536. }
  1537. /* Clear the head of the cache sack blocks so we can skip it next time */
  1538. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1539. tp->recv_sack_cache[i].start_seq = 0;
  1540. tp->recv_sack_cache[i].end_seq = 0;
  1541. }
  1542. for (j = 0; j < used_sacks; j++)
  1543. tp->recv_sack_cache[i++] = sp[j];
  1544. if ((state->reord < tp->fackets_out) &&
  1545. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1546. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1547. tcp_verify_left_out(tp);
  1548. out:
  1549. #if FASTRETRANS_DEBUG > 0
  1550. WARN_ON((int)tp->sacked_out < 0);
  1551. WARN_ON((int)tp->lost_out < 0);
  1552. WARN_ON((int)tp->retrans_out < 0);
  1553. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1554. #endif
  1555. return state->flag;
  1556. }
  1557. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1558. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1559. */
  1560. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1561. {
  1562. u32 holes;
  1563. holes = max(tp->lost_out, 1U);
  1564. holes = min(holes, tp->packets_out);
  1565. if ((tp->sacked_out + holes) > tp->packets_out) {
  1566. tp->sacked_out = tp->packets_out - holes;
  1567. return true;
  1568. }
  1569. return false;
  1570. }
  1571. /* If we receive more dupacks than we expected counting segments
  1572. * in assumption of absent reordering, interpret this as reordering.
  1573. * The only another reason could be bug in receiver TCP.
  1574. */
  1575. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1576. {
  1577. struct tcp_sock *tp = tcp_sk(sk);
  1578. if (tcp_limit_reno_sacked(tp))
  1579. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1580. }
  1581. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1582. static void tcp_add_reno_sack(struct sock *sk)
  1583. {
  1584. struct tcp_sock *tp = tcp_sk(sk);
  1585. u32 prior_sacked = tp->sacked_out;
  1586. tp->sacked_out++;
  1587. tcp_check_reno_reordering(sk, 0);
  1588. if (tp->sacked_out > prior_sacked)
  1589. tp->delivered++; /* Some out-of-order packet is delivered */
  1590. tcp_verify_left_out(tp);
  1591. }
  1592. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1593. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1594. {
  1595. struct tcp_sock *tp = tcp_sk(sk);
  1596. if (acked > 0) {
  1597. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1598. tp->delivered += max_t(int, acked - tp->sacked_out, 1);
  1599. if (acked - 1 >= tp->sacked_out)
  1600. tp->sacked_out = 0;
  1601. else
  1602. tp->sacked_out -= acked - 1;
  1603. }
  1604. tcp_check_reno_reordering(sk, acked);
  1605. tcp_verify_left_out(tp);
  1606. }
  1607. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1608. {
  1609. tp->sacked_out = 0;
  1610. }
  1611. void tcp_clear_retrans(struct tcp_sock *tp)
  1612. {
  1613. tp->retrans_out = 0;
  1614. tp->lost_out = 0;
  1615. tp->undo_marker = 0;
  1616. tp->undo_retrans = -1;
  1617. tp->fackets_out = 0;
  1618. tp->sacked_out = 0;
  1619. }
  1620. static inline void tcp_init_undo(struct tcp_sock *tp)
  1621. {
  1622. tp->undo_marker = tp->snd_una;
  1623. /* Retransmission still in flight may cause DSACKs later. */
  1624. tp->undo_retrans = tp->retrans_out ? : -1;
  1625. }
  1626. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1627. * and reset tags completely, otherwise preserve SACKs. If receiver
  1628. * dropped its ofo queue, we will know this due to reneging detection.
  1629. */
  1630. void tcp_enter_loss(struct sock *sk)
  1631. {
  1632. const struct inet_connection_sock *icsk = inet_csk(sk);
  1633. struct tcp_sock *tp = tcp_sk(sk);
  1634. struct net *net = sock_net(sk);
  1635. struct sk_buff *skb;
  1636. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1637. bool is_reneg; /* is receiver reneging on SACKs? */
  1638. /* Reduce ssthresh if it has not yet been made inside this window. */
  1639. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1640. !after(tp->high_seq, tp->snd_una) ||
  1641. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1642. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1643. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1644. tcp_ca_event(sk, CA_EVENT_LOSS);
  1645. tcp_init_undo(tp);
  1646. }
  1647. tp->snd_cwnd = 1;
  1648. tp->snd_cwnd_cnt = 0;
  1649. tp->snd_cwnd_stamp = tcp_time_stamp;
  1650. tp->retrans_out = 0;
  1651. tp->lost_out = 0;
  1652. if (tcp_is_reno(tp))
  1653. tcp_reset_reno_sack(tp);
  1654. skb = tcp_write_queue_head(sk);
  1655. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1656. if (is_reneg) {
  1657. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1658. tp->sacked_out = 0;
  1659. tp->fackets_out = 0;
  1660. }
  1661. tcp_clear_all_retrans_hints(tp);
  1662. tcp_for_write_queue(skb, sk) {
  1663. if (skb == tcp_send_head(sk))
  1664. break;
  1665. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1666. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
  1667. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1668. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1669. tp->lost_out += tcp_skb_pcount(skb);
  1670. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1671. }
  1672. }
  1673. tcp_verify_left_out(tp);
  1674. /* Timeout in disordered state after receiving substantial DUPACKs
  1675. * suggests that the degree of reordering is over-estimated.
  1676. */
  1677. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1678. tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
  1679. tp->reordering = min_t(unsigned int, tp->reordering,
  1680. net->ipv4.sysctl_tcp_reordering);
  1681. tcp_set_ca_state(sk, TCP_CA_Loss);
  1682. tp->high_seq = tp->snd_nxt;
  1683. tcp_ecn_queue_cwr(tp);
  1684. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1685. * loss recovery is underway except recurring timeout(s) on
  1686. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1687. */
  1688. tp->frto = sysctl_tcp_frto &&
  1689. (new_recovery || icsk->icsk_retransmits) &&
  1690. !inet_csk(sk)->icsk_mtup.probe_size;
  1691. }
  1692. /* If ACK arrived pointing to a remembered SACK, it means that our
  1693. * remembered SACKs do not reflect real state of receiver i.e.
  1694. * receiver _host_ is heavily congested (or buggy).
  1695. *
  1696. * To avoid big spurious retransmission bursts due to transient SACK
  1697. * scoreboard oddities that look like reneging, we give the receiver a
  1698. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1699. * restore sanity to the SACK scoreboard. If the apparent reneging
  1700. * persists until this RTO then we'll clear the SACK scoreboard.
  1701. */
  1702. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1703. {
  1704. if (flag & FLAG_SACK_RENEGING) {
  1705. struct tcp_sock *tp = tcp_sk(sk);
  1706. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1707. msecs_to_jiffies(10));
  1708. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1709. delay, TCP_RTO_MAX);
  1710. return true;
  1711. }
  1712. return false;
  1713. }
  1714. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1715. {
  1716. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1717. }
  1718. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1719. * counter when SACK is enabled (without SACK, sacked_out is used for
  1720. * that purpose).
  1721. *
  1722. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1723. * segments up to the highest received SACK block so far and holes in
  1724. * between them.
  1725. *
  1726. * With reordering, holes may still be in flight, so RFC3517 recovery
  1727. * uses pure sacked_out (total number of SACKed segments) even though
  1728. * it violates the RFC that uses duplicate ACKs, often these are equal
  1729. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1730. * they differ. Since neither occurs due to loss, TCP should really
  1731. * ignore them.
  1732. */
  1733. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1734. {
  1735. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1736. }
  1737. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1738. {
  1739. struct tcp_sock *tp = tcp_sk(sk);
  1740. unsigned long delay;
  1741. /* Delay early retransmit and entering fast recovery for
  1742. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1743. * available, or RTO is scheduled to fire first.
  1744. */
  1745. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1746. (flag & FLAG_ECE) || !tp->srtt_us)
  1747. return false;
  1748. delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
  1749. msecs_to_jiffies(2));
  1750. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1751. return false;
  1752. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1753. TCP_RTO_MAX);
  1754. return true;
  1755. }
  1756. /* Linux NewReno/SACK/FACK/ECN state machine.
  1757. * --------------------------------------
  1758. *
  1759. * "Open" Normal state, no dubious events, fast path.
  1760. * "Disorder" In all the respects it is "Open",
  1761. * but requires a bit more attention. It is entered when
  1762. * we see some SACKs or dupacks. It is split of "Open"
  1763. * mainly to move some processing from fast path to slow one.
  1764. * "CWR" CWND was reduced due to some Congestion Notification event.
  1765. * It can be ECN, ICMP source quench, local device congestion.
  1766. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1767. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1768. *
  1769. * tcp_fastretrans_alert() is entered:
  1770. * - each incoming ACK, if state is not "Open"
  1771. * - when arrived ACK is unusual, namely:
  1772. * * SACK
  1773. * * Duplicate ACK.
  1774. * * ECN ECE.
  1775. *
  1776. * Counting packets in flight is pretty simple.
  1777. *
  1778. * in_flight = packets_out - left_out + retrans_out
  1779. *
  1780. * packets_out is SND.NXT-SND.UNA counted in packets.
  1781. *
  1782. * retrans_out is number of retransmitted segments.
  1783. *
  1784. * left_out is number of segments left network, but not ACKed yet.
  1785. *
  1786. * left_out = sacked_out + lost_out
  1787. *
  1788. * sacked_out: Packets, which arrived to receiver out of order
  1789. * and hence not ACKed. With SACKs this number is simply
  1790. * amount of SACKed data. Even without SACKs
  1791. * it is easy to give pretty reliable estimate of this number,
  1792. * counting duplicate ACKs.
  1793. *
  1794. * lost_out: Packets lost by network. TCP has no explicit
  1795. * "loss notification" feedback from network (for now).
  1796. * It means that this number can be only _guessed_.
  1797. * Actually, it is the heuristics to predict lossage that
  1798. * distinguishes different algorithms.
  1799. *
  1800. * F.e. after RTO, when all the queue is considered as lost,
  1801. * lost_out = packets_out and in_flight = retrans_out.
  1802. *
  1803. * Essentially, we have now two algorithms counting
  1804. * lost packets.
  1805. *
  1806. * FACK: It is the simplest heuristics. As soon as we decided
  1807. * that something is lost, we decide that _all_ not SACKed
  1808. * packets until the most forward SACK are lost. I.e.
  1809. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1810. * It is absolutely correct estimate, if network does not reorder
  1811. * packets. And it loses any connection to reality when reordering
  1812. * takes place. We use FACK by default until reordering
  1813. * is suspected on the path to this destination.
  1814. *
  1815. * NewReno: when Recovery is entered, we assume that one segment
  1816. * is lost (classic Reno). While we are in Recovery and
  1817. * a partial ACK arrives, we assume that one more packet
  1818. * is lost (NewReno). This heuristics are the same in NewReno
  1819. * and SACK.
  1820. *
  1821. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1822. * deflation etc. CWND is real congestion window, never inflated, changes
  1823. * only according to classic VJ rules.
  1824. *
  1825. * Really tricky (and requiring careful tuning) part of algorithm
  1826. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1827. * The first determines the moment _when_ we should reduce CWND and,
  1828. * hence, slow down forward transmission. In fact, it determines the moment
  1829. * when we decide that hole is caused by loss, rather than by a reorder.
  1830. *
  1831. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1832. * holes, caused by lost packets.
  1833. *
  1834. * And the most logically complicated part of algorithm is undo
  1835. * heuristics. We detect false retransmits due to both too early
  1836. * fast retransmit (reordering) and underestimated RTO, analyzing
  1837. * timestamps and D-SACKs. When we detect that some segments were
  1838. * retransmitted by mistake and CWND reduction was wrong, we undo
  1839. * window reduction and abort recovery phase. This logic is hidden
  1840. * inside several functions named tcp_try_undo_<something>.
  1841. */
  1842. /* This function decides, when we should leave Disordered state
  1843. * and enter Recovery phase, reducing congestion window.
  1844. *
  1845. * Main question: may we further continue forward transmission
  1846. * with the same cwnd?
  1847. */
  1848. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1849. {
  1850. struct tcp_sock *tp = tcp_sk(sk);
  1851. __u32 packets_out;
  1852. int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
  1853. /* Trick#1: The loss is proven. */
  1854. if (tp->lost_out)
  1855. return true;
  1856. /* Not-A-Trick#2 : Classic rule... */
  1857. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1858. return true;
  1859. /* Trick#4: It is still not OK... But will it be useful to delay
  1860. * recovery more?
  1861. */
  1862. packets_out = tp->packets_out;
  1863. if (packets_out <= tp->reordering &&
  1864. tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
  1865. !tcp_may_send_now(sk)) {
  1866. /* We have nothing to send. This connection is limited
  1867. * either by receiver window or by application.
  1868. */
  1869. return true;
  1870. }
  1871. /* If a thin stream is detected, retransmit after first
  1872. * received dupack. Employ only if SACK is supported in order
  1873. * to avoid possible corner-case series of spurious retransmissions
  1874. * Use only if there are no unsent data.
  1875. */
  1876. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1877. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1878. tcp_is_sack(tp) && !tcp_send_head(sk))
  1879. return true;
  1880. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1881. * retransmissions due to small network reorderings, we implement
  1882. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1883. * interval if appropriate.
  1884. */
  1885. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1886. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1887. !tcp_may_send_now(sk))
  1888. return !tcp_pause_early_retransmit(sk, flag);
  1889. return false;
  1890. }
  1891. /* Detect loss in event "A" above by marking head of queue up as lost.
  1892. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1893. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1894. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1895. * the maximum SACKed segments to pass before reaching this limit.
  1896. */
  1897. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1898. {
  1899. struct tcp_sock *tp = tcp_sk(sk);
  1900. struct sk_buff *skb;
  1901. int cnt, oldcnt, lost;
  1902. unsigned int mss;
  1903. /* Use SACK to deduce losses of new sequences sent during recovery */
  1904. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1905. WARN_ON(packets > tp->packets_out);
  1906. if (tp->lost_skb_hint) {
  1907. skb = tp->lost_skb_hint;
  1908. cnt = tp->lost_cnt_hint;
  1909. /* Head already handled? */
  1910. if (mark_head && skb != tcp_write_queue_head(sk))
  1911. return;
  1912. } else {
  1913. skb = tcp_write_queue_head(sk);
  1914. cnt = 0;
  1915. }
  1916. tcp_for_write_queue_from(skb, sk) {
  1917. if (skb == tcp_send_head(sk))
  1918. break;
  1919. /* TODO: do this better */
  1920. /* this is not the most efficient way to do this... */
  1921. tp->lost_skb_hint = skb;
  1922. tp->lost_cnt_hint = cnt;
  1923. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1924. break;
  1925. oldcnt = cnt;
  1926. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1927. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1928. cnt += tcp_skb_pcount(skb);
  1929. if (cnt > packets) {
  1930. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1931. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1932. (oldcnt >= packets))
  1933. break;
  1934. mss = tcp_skb_mss(skb);
  1935. /* If needed, chop off the prefix to mark as lost. */
  1936. lost = (packets - oldcnt) * mss;
  1937. if (lost < skb->len &&
  1938. tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
  1939. break;
  1940. cnt = packets;
  1941. }
  1942. tcp_skb_mark_lost(tp, skb);
  1943. if (mark_head)
  1944. break;
  1945. }
  1946. tcp_verify_left_out(tp);
  1947. }
  1948. /* Account newly detected lost packet(s) */
  1949. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1950. {
  1951. struct tcp_sock *tp = tcp_sk(sk);
  1952. if (tcp_is_reno(tp)) {
  1953. tcp_mark_head_lost(sk, 1, 1);
  1954. } else if (tcp_is_fack(tp)) {
  1955. int lost = tp->fackets_out - tp->reordering;
  1956. if (lost <= 0)
  1957. lost = 1;
  1958. tcp_mark_head_lost(sk, lost, 0);
  1959. } else {
  1960. int sacked_upto = tp->sacked_out - tp->reordering;
  1961. if (sacked_upto >= 0)
  1962. tcp_mark_head_lost(sk, sacked_upto, 0);
  1963. else if (fast_rexmit)
  1964. tcp_mark_head_lost(sk, 1, 1);
  1965. }
  1966. }
  1967. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  1968. {
  1969. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1970. before(tp->rx_opt.rcv_tsecr, when);
  1971. }
  1972. /* skb is spurious retransmitted if the returned timestamp echo
  1973. * reply is prior to the skb transmission time
  1974. */
  1975. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  1976. const struct sk_buff *skb)
  1977. {
  1978. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  1979. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  1980. }
  1981. /* Nothing was retransmitted or returned timestamp is less
  1982. * than timestamp of the first retransmission.
  1983. */
  1984. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  1985. {
  1986. return !tp->retrans_stamp ||
  1987. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  1988. }
  1989. /* Undo procedures. */
  1990. /* We can clear retrans_stamp when there are no retransmissions in the
  1991. * window. It would seem that it is trivially available for us in
  1992. * tp->retrans_out, however, that kind of assumptions doesn't consider
  1993. * what will happen if errors occur when sending retransmission for the
  1994. * second time. ...It could the that such segment has only
  1995. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  1996. * the head skb is enough except for some reneging corner cases that
  1997. * are not worth the effort.
  1998. *
  1999. * Main reason for all this complexity is the fact that connection dying
  2000. * time now depends on the validity of the retrans_stamp, in particular,
  2001. * that successive retransmissions of a segment must not advance
  2002. * retrans_stamp under any conditions.
  2003. */
  2004. static bool tcp_any_retrans_done(const struct sock *sk)
  2005. {
  2006. const struct tcp_sock *tp = tcp_sk(sk);
  2007. struct sk_buff *skb;
  2008. if (tp->retrans_out)
  2009. return true;
  2010. skb = tcp_write_queue_head(sk);
  2011. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2012. return true;
  2013. return false;
  2014. }
  2015. #if FASTRETRANS_DEBUG > 1
  2016. static void DBGUNDO(struct sock *sk, const char *msg)
  2017. {
  2018. struct tcp_sock *tp = tcp_sk(sk);
  2019. struct inet_sock *inet = inet_sk(sk);
  2020. if (sk->sk_family == AF_INET) {
  2021. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2022. msg,
  2023. &inet->inet_daddr, ntohs(inet->inet_dport),
  2024. tp->snd_cwnd, tcp_left_out(tp),
  2025. tp->snd_ssthresh, tp->prior_ssthresh,
  2026. tp->packets_out);
  2027. }
  2028. #if IS_ENABLED(CONFIG_IPV6)
  2029. else if (sk->sk_family == AF_INET6) {
  2030. struct ipv6_pinfo *np = inet6_sk(sk);
  2031. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2032. msg,
  2033. &np->daddr, ntohs(inet->inet_dport),
  2034. tp->snd_cwnd, tcp_left_out(tp),
  2035. tp->snd_ssthresh, tp->prior_ssthresh,
  2036. tp->packets_out);
  2037. }
  2038. #endif
  2039. }
  2040. #else
  2041. #define DBGUNDO(x...) do { } while (0)
  2042. #endif
  2043. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2044. {
  2045. struct tcp_sock *tp = tcp_sk(sk);
  2046. if (unmark_loss) {
  2047. struct sk_buff *skb;
  2048. tcp_for_write_queue(skb, sk) {
  2049. if (skb == tcp_send_head(sk))
  2050. break;
  2051. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2052. }
  2053. tp->lost_out = 0;
  2054. tcp_clear_all_retrans_hints(tp);
  2055. }
  2056. if (tp->prior_ssthresh) {
  2057. const struct inet_connection_sock *icsk = inet_csk(sk);
  2058. if (icsk->icsk_ca_ops->undo_cwnd)
  2059. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2060. else
  2061. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2062. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2063. tp->snd_ssthresh = tp->prior_ssthresh;
  2064. tcp_ecn_withdraw_cwr(tp);
  2065. }
  2066. }
  2067. tp->snd_cwnd_stamp = tcp_time_stamp;
  2068. tp->undo_marker = 0;
  2069. }
  2070. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2071. {
  2072. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2073. }
  2074. /* People celebrate: "We love our President!" */
  2075. static bool tcp_try_undo_recovery(struct sock *sk)
  2076. {
  2077. struct tcp_sock *tp = tcp_sk(sk);
  2078. if (tcp_may_undo(tp)) {
  2079. int mib_idx;
  2080. /* Happy end! We did not retransmit anything
  2081. * or our original transmission succeeded.
  2082. */
  2083. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2084. tcp_undo_cwnd_reduction(sk, false);
  2085. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2086. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2087. else
  2088. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2089. NET_INC_STATS(sock_net(sk), mib_idx);
  2090. }
  2091. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2092. /* Hold old state until something *above* high_seq
  2093. * is ACKed. For Reno it is MUST to prevent false
  2094. * fast retransmits (RFC2582). SACK TCP is safe. */
  2095. if (!tcp_any_retrans_done(sk))
  2096. tp->retrans_stamp = 0;
  2097. return true;
  2098. }
  2099. tcp_set_ca_state(sk, TCP_CA_Open);
  2100. return false;
  2101. }
  2102. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2103. static bool tcp_try_undo_dsack(struct sock *sk)
  2104. {
  2105. struct tcp_sock *tp = tcp_sk(sk);
  2106. if (tp->undo_marker && !tp->undo_retrans) {
  2107. DBGUNDO(sk, "D-SACK");
  2108. tcp_undo_cwnd_reduction(sk, false);
  2109. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2110. return true;
  2111. }
  2112. return false;
  2113. }
  2114. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2115. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2116. {
  2117. struct tcp_sock *tp = tcp_sk(sk);
  2118. if (frto_undo || tcp_may_undo(tp)) {
  2119. tcp_undo_cwnd_reduction(sk, true);
  2120. DBGUNDO(sk, "partial loss");
  2121. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2122. if (frto_undo)
  2123. NET_INC_STATS(sock_net(sk),
  2124. LINUX_MIB_TCPSPURIOUSRTOS);
  2125. inet_csk(sk)->icsk_retransmits = 0;
  2126. if (frto_undo || tcp_is_sack(tp))
  2127. tcp_set_ca_state(sk, TCP_CA_Open);
  2128. return true;
  2129. }
  2130. return false;
  2131. }
  2132. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2133. * It computes the number of packets to send (sndcnt) based on packets newly
  2134. * delivered:
  2135. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2136. * cwnd reductions across a full RTT.
  2137. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2138. * But when the retransmits are acked without further losses, PRR
  2139. * slow starts cwnd up to ssthresh to speed up the recovery.
  2140. */
  2141. static void tcp_init_cwnd_reduction(struct sock *sk)
  2142. {
  2143. struct tcp_sock *tp = tcp_sk(sk);
  2144. tp->high_seq = tp->snd_nxt;
  2145. tp->tlp_high_seq = 0;
  2146. tp->snd_cwnd_cnt = 0;
  2147. tp->prior_cwnd = tp->snd_cwnd;
  2148. tp->prr_delivered = 0;
  2149. tp->prr_out = 0;
  2150. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2151. tcp_ecn_queue_cwr(tp);
  2152. }
  2153. static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
  2154. int flag)
  2155. {
  2156. struct tcp_sock *tp = tcp_sk(sk);
  2157. int sndcnt = 0;
  2158. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2159. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2160. return;
  2161. tp->prr_delivered += newly_acked_sacked;
  2162. if (delta < 0) {
  2163. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2164. tp->prior_cwnd - 1;
  2165. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2166. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2167. !(flag & FLAG_LOST_RETRANS)) {
  2168. sndcnt = min_t(int, delta,
  2169. max_t(int, tp->prr_delivered - tp->prr_out,
  2170. newly_acked_sacked) + 1);
  2171. } else {
  2172. sndcnt = min(delta, newly_acked_sacked);
  2173. }
  2174. /* Force a fast retransmit upon entering fast recovery */
  2175. sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
  2176. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2177. }
  2178. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2179. {
  2180. struct tcp_sock *tp = tcp_sk(sk);
  2181. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2182. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2183. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2184. tp->snd_cwnd = tp->snd_ssthresh;
  2185. tp->snd_cwnd_stamp = tcp_time_stamp;
  2186. }
  2187. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2188. }
  2189. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2190. void tcp_enter_cwr(struct sock *sk)
  2191. {
  2192. struct tcp_sock *tp = tcp_sk(sk);
  2193. tp->prior_ssthresh = 0;
  2194. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2195. tp->undo_marker = 0;
  2196. tcp_init_cwnd_reduction(sk);
  2197. tcp_set_ca_state(sk, TCP_CA_CWR);
  2198. }
  2199. }
  2200. EXPORT_SYMBOL(tcp_enter_cwr);
  2201. static void tcp_try_keep_open(struct sock *sk)
  2202. {
  2203. struct tcp_sock *tp = tcp_sk(sk);
  2204. int state = TCP_CA_Open;
  2205. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2206. state = TCP_CA_Disorder;
  2207. if (inet_csk(sk)->icsk_ca_state != state) {
  2208. tcp_set_ca_state(sk, state);
  2209. tp->high_seq = tp->snd_nxt;
  2210. }
  2211. }
  2212. static void tcp_try_to_open(struct sock *sk, int flag)
  2213. {
  2214. struct tcp_sock *tp = tcp_sk(sk);
  2215. tcp_verify_left_out(tp);
  2216. if (!tcp_any_retrans_done(sk))
  2217. tp->retrans_stamp = 0;
  2218. if (flag & FLAG_ECE)
  2219. tcp_enter_cwr(sk);
  2220. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2221. tcp_try_keep_open(sk);
  2222. }
  2223. }
  2224. static void tcp_mtup_probe_failed(struct sock *sk)
  2225. {
  2226. struct inet_connection_sock *icsk = inet_csk(sk);
  2227. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2228. icsk->icsk_mtup.probe_size = 0;
  2229. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2230. }
  2231. static void tcp_mtup_probe_success(struct sock *sk)
  2232. {
  2233. struct tcp_sock *tp = tcp_sk(sk);
  2234. struct inet_connection_sock *icsk = inet_csk(sk);
  2235. /* FIXME: breaks with very large cwnd */
  2236. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2237. tp->snd_cwnd = tp->snd_cwnd *
  2238. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2239. icsk->icsk_mtup.probe_size;
  2240. tp->snd_cwnd_cnt = 0;
  2241. tp->snd_cwnd_stamp = tcp_time_stamp;
  2242. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2243. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2244. icsk->icsk_mtup.probe_size = 0;
  2245. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2246. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2247. }
  2248. /* Do a simple retransmit without using the backoff mechanisms in
  2249. * tcp_timer. This is used for path mtu discovery.
  2250. * The socket is already locked here.
  2251. */
  2252. void tcp_simple_retransmit(struct sock *sk)
  2253. {
  2254. const struct inet_connection_sock *icsk = inet_csk(sk);
  2255. struct tcp_sock *tp = tcp_sk(sk);
  2256. struct sk_buff *skb;
  2257. unsigned int mss = tcp_current_mss(sk);
  2258. u32 prior_lost = tp->lost_out;
  2259. tcp_for_write_queue(skb, sk) {
  2260. if (skb == tcp_send_head(sk))
  2261. break;
  2262. if (tcp_skb_seglen(skb) > mss &&
  2263. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2264. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2265. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2266. tp->retrans_out -= tcp_skb_pcount(skb);
  2267. }
  2268. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2269. }
  2270. }
  2271. tcp_clear_retrans_hints_partial(tp);
  2272. if (prior_lost == tp->lost_out)
  2273. return;
  2274. if (tcp_is_reno(tp))
  2275. tcp_limit_reno_sacked(tp);
  2276. tcp_verify_left_out(tp);
  2277. /* Don't muck with the congestion window here.
  2278. * Reason is that we do not increase amount of _data_
  2279. * in network, but units changed and effective
  2280. * cwnd/ssthresh really reduced now.
  2281. */
  2282. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2283. tp->high_seq = tp->snd_nxt;
  2284. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2285. tp->prior_ssthresh = 0;
  2286. tp->undo_marker = 0;
  2287. tcp_set_ca_state(sk, TCP_CA_Loss);
  2288. }
  2289. tcp_xmit_retransmit_queue(sk);
  2290. }
  2291. EXPORT_SYMBOL(tcp_simple_retransmit);
  2292. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2293. {
  2294. struct tcp_sock *tp = tcp_sk(sk);
  2295. int mib_idx;
  2296. if (tcp_is_reno(tp))
  2297. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2298. else
  2299. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2300. NET_INC_STATS(sock_net(sk), mib_idx);
  2301. tp->prior_ssthresh = 0;
  2302. tcp_init_undo(tp);
  2303. if (!tcp_in_cwnd_reduction(sk)) {
  2304. if (!ece_ack)
  2305. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2306. tcp_init_cwnd_reduction(sk);
  2307. }
  2308. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2309. }
  2310. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2311. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2312. */
  2313. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
  2314. int *rexmit)
  2315. {
  2316. struct tcp_sock *tp = tcp_sk(sk);
  2317. bool recovered = !before(tp->snd_una, tp->high_seq);
  2318. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2319. tcp_try_undo_loss(sk, false))
  2320. return;
  2321. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2322. /* Step 3.b. A timeout is spurious if not all data are
  2323. * lost, i.e., never-retransmitted data are (s)acked.
  2324. */
  2325. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2326. tcp_try_undo_loss(sk, true))
  2327. return;
  2328. if (after(tp->snd_nxt, tp->high_seq)) {
  2329. if (flag & FLAG_DATA_SACKED || is_dupack)
  2330. tp->frto = 0; /* Step 3.a. loss was real */
  2331. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2332. tp->high_seq = tp->snd_nxt;
  2333. /* Step 2.b. Try send new data (but deferred until cwnd
  2334. * is updated in tcp_ack()). Otherwise fall back to
  2335. * the conventional recovery.
  2336. */
  2337. if (tcp_send_head(sk) &&
  2338. after(tcp_wnd_end(tp), tp->snd_nxt)) {
  2339. *rexmit = REXMIT_NEW;
  2340. return;
  2341. }
  2342. tp->frto = 0;
  2343. }
  2344. }
  2345. if (recovered) {
  2346. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2347. tcp_try_undo_recovery(sk);
  2348. return;
  2349. }
  2350. if (tcp_is_reno(tp)) {
  2351. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2352. * delivered. Lower inflight to clock out (re)tranmissions.
  2353. */
  2354. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2355. tcp_add_reno_sack(sk);
  2356. else if (flag & FLAG_SND_UNA_ADVANCED)
  2357. tcp_reset_reno_sack(tp);
  2358. }
  2359. *rexmit = REXMIT_LOST;
  2360. }
  2361. /* Undo during fast recovery after partial ACK. */
  2362. static bool tcp_try_undo_partial(struct sock *sk, const int acked)
  2363. {
  2364. struct tcp_sock *tp = tcp_sk(sk);
  2365. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2366. /* Plain luck! Hole if filled with delayed
  2367. * packet, rather than with a retransmit.
  2368. */
  2369. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2370. /* We are getting evidence that the reordering degree is higher
  2371. * than we realized. If there are no retransmits out then we
  2372. * can undo. Otherwise we clock out new packets but do not
  2373. * mark more packets lost or retransmit more.
  2374. */
  2375. if (tp->retrans_out)
  2376. return true;
  2377. if (!tcp_any_retrans_done(sk))
  2378. tp->retrans_stamp = 0;
  2379. DBGUNDO(sk, "partial recovery");
  2380. tcp_undo_cwnd_reduction(sk, true);
  2381. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2382. tcp_try_keep_open(sk);
  2383. return true;
  2384. }
  2385. return false;
  2386. }
  2387. /* Process an event, which can update packets-in-flight not trivially.
  2388. * Main goal of this function is to calculate new estimate for left_out,
  2389. * taking into account both packets sitting in receiver's buffer and
  2390. * packets lost by network.
  2391. *
  2392. * Besides that it updates the congestion state when packet loss or ECN
  2393. * is detected. But it does not reduce the cwnd, it is done by the
  2394. * congestion control later.
  2395. *
  2396. * It does _not_ decide what to send, it is made in function
  2397. * tcp_xmit_retransmit_queue().
  2398. */
  2399. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2400. bool is_dupack, int *ack_flag, int *rexmit)
  2401. {
  2402. struct inet_connection_sock *icsk = inet_csk(sk);
  2403. struct tcp_sock *tp = tcp_sk(sk);
  2404. int fast_rexmit = 0, flag = *ack_flag;
  2405. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2406. (tcp_fackets_out(tp) > tp->reordering));
  2407. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2408. tp->sacked_out = 0;
  2409. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2410. tp->fackets_out = 0;
  2411. /* Now state machine starts.
  2412. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2413. if (flag & FLAG_ECE)
  2414. tp->prior_ssthresh = 0;
  2415. /* B. In all the states check for reneging SACKs. */
  2416. if (tcp_check_sack_reneging(sk, flag))
  2417. return;
  2418. /* C. Check consistency of the current state. */
  2419. tcp_verify_left_out(tp);
  2420. /* D. Check state exit conditions. State can be terminated
  2421. * when high_seq is ACKed. */
  2422. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2423. WARN_ON(tp->retrans_out != 0);
  2424. tp->retrans_stamp = 0;
  2425. } else if (!before(tp->snd_una, tp->high_seq)) {
  2426. switch (icsk->icsk_ca_state) {
  2427. case TCP_CA_CWR:
  2428. /* CWR is to be held something *above* high_seq
  2429. * is ACKed for CWR bit to reach receiver. */
  2430. if (tp->snd_una != tp->high_seq) {
  2431. tcp_end_cwnd_reduction(sk);
  2432. tcp_set_ca_state(sk, TCP_CA_Open);
  2433. }
  2434. break;
  2435. case TCP_CA_Recovery:
  2436. if (tcp_is_reno(tp))
  2437. tcp_reset_reno_sack(tp);
  2438. if (tcp_try_undo_recovery(sk))
  2439. return;
  2440. tcp_end_cwnd_reduction(sk);
  2441. break;
  2442. }
  2443. }
  2444. /* Use RACK to detect loss */
  2445. if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
  2446. tcp_rack_mark_lost(sk)) {
  2447. flag |= FLAG_LOST_RETRANS;
  2448. *ack_flag |= FLAG_LOST_RETRANS;
  2449. }
  2450. /* E. Process state. */
  2451. switch (icsk->icsk_ca_state) {
  2452. case TCP_CA_Recovery:
  2453. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2454. if (tcp_is_reno(tp) && is_dupack)
  2455. tcp_add_reno_sack(sk);
  2456. } else {
  2457. if (tcp_try_undo_partial(sk, acked))
  2458. return;
  2459. /* Partial ACK arrived. Force fast retransmit. */
  2460. do_lost = tcp_is_reno(tp) ||
  2461. tcp_fackets_out(tp) > tp->reordering;
  2462. }
  2463. if (tcp_try_undo_dsack(sk)) {
  2464. tcp_try_keep_open(sk);
  2465. return;
  2466. }
  2467. break;
  2468. case TCP_CA_Loss:
  2469. tcp_process_loss(sk, flag, is_dupack, rexmit);
  2470. if (icsk->icsk_ca_state != TCP_CA_Open &&
  2471. !(flag & FLAG_LOST_RETRANS))
  2472. return;
  2473. /* Change state if cwnd is undone or retransmits are lost */
  2474. default:
  2475. if (tcp_is_reno(tp)) {
  2476. if (flag & FLAG_SND_UNA_ADVANCED)
  2477. tcp_reset_reno_sack(tp);
  2478. if (is_dupack)
  2479. tcp_add_reno_sack(sk);
  2480. }
  2481. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2482. tcp_try_undo_dsack(sk);
  2483. if (!tcp_time_to_recover(sk, flag)) {
  2484. tcp_try_to_open(sk, flag);
  2485. return;
  2486. }
  2487. /* MTU probe failure: don't reduce cwnd */
  2488. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2489. icsk->icsk_mtup.probe_size &&
  2490. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2491. tcp_mtup_probe_failed(sk);
  2492. /* Restores the reduction we did in tcp_mtup_probe() */
  2493. tp->snd_cwnd++;
  2494. tcp_simple_retransmit(sk);
  2495. return;
  2496. }
  2497. /* Otherwise enter Recovery state */
  2498. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2499. fast_rexmit = 1;
  2500. }
  2501. if (do_lost)
  2502. tcp_update_scoreboard(sk, fast_rexmit);
  2503. *rexmit = REXMIT_LOST;
  2504. }
  2505. /* Kathleen Nichols' algorithm for tracking the minimum value of
  2506. * a data stream over some fixed time interval. (E.g., the minimum
  2507. * RTT over the past five minutes.) It uses constant space and constant
  2508. * time per update yet almost always delivers the same minimum as an
  2509. * implementation that has to keep all the data in the window.
  2510. *
  2511. * The algorithm keeps track of the best, 2nd best & 3rd best min
  2512. * values, maintaining an invariant that the measurement time of the
  2513. * n'th best >= n-1'th best. It also makes sure that the three values
  2514. * are widely separated in the time window since that bounds the worse
  2515. * case error when that data is monotonically increasing over the window.
  2516. *
  2517. * Upon getting a new min, we can forget everything earlier because it
  2518. * has no value - the new min is <= everything else in the window by
  2519. * definition and it's the most recent. So we restart fresh on every new min
  2520. * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
  2521. * best.
  2522. */
  2523. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2524. {
  2525. const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
  2526. struct rtt_meas *m = tcp_sk(sk)->rtt_min;
  2527. struct rtt_meas rttm = {
  2528. .rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
  2529. .ts = now,
  2530. };
  2531. u32 elapsed;
  2532. /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
  2533. if (unlikely(rttm.rtt <= m[0].rtt))
  2534. m[0] = m[1] = m[2] = rttm;
  2535. else if (rttm.rtt <= m[1].rtt)
  2536. m[1] = m[2] = rttm;
  2537. else if (rttm.rtt <= m[2].rtt)
  2538. m[2] = rttm;
  2539. elapsed = now - m[0].ts;
  2540. if (unlikely(elapsed > wlen)) {
  2541. /* Passed entire window without a new min so make 2nd choice
  2542. * the new min & 3rd choice the new 2nd. So forth and so on.
  2543. */
  2544. m[0] = m[1];
  2545. m[1] = m[2];
  2546. m[2] = rttm;
  2547. if (now - m[0].ts > wlen) {
  2548. m[0] = m[1];
  2549. m[1] = rttm;
  2550. if (now - m[0].ts > wlen)
  2551. m[0] = rttm;
  2552. }
  2553. } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
  2554. /* Passed a quarter of the window without a new min so
  2555. * take 2nd choice from the 2nd quarter of the window.
  2556. */
  2557. m[2] = m[1] = rttm;
  2558. } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
  2559. /* Passed half the window without a new min so take the 3rd
  2560. * choice from the last half of the window.
  2561. */
  2562. m[2] = rttm;
  2563. }
  2564. }
  2565. static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2566. long seq_rtt_us, long sack_rtt_us,
  2567. long ca_rtt_us)
  2568. {
  2569. const struct tcp_sock *tp = tcp_sk(sk);
  2570. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2571. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2572. * Karn's algorithm forbids taking RTT if some retransmitted data
  2573. * is acked (RFC6298).
  2574. */
  2575. if (seq_rtt_us < 0)
  2576. seq_rtt_us = sack_rtt_us;
  2577. /* RTTM Rule: A TSecr value received in a segment is used to
  2578. * update the averaged RTT measurement only if the segment
  2579. * acknowledges some new data, i.e., only if it advances the
  2580. * left edge of the send window.
  2581. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2582. */
  2583. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2584. flag & FLAG_ACKED)
  2585. seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
  2586. tp->rx_opt.rcv_tsecr);
  2587. if (seq_rtt_us < 0)
  2588. return false;
  2589. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2590. * always taken together with ACK, SACK, or TS-opts. Any negative
  2591. * values will be skipped with the seq_rtt_us < 0 check above.
  2592. */
  2593. tcp_update_rtt_min(sk, ca_rtt_us);
  2594. tcp_rtt_estimator(sk, seq_rtt_us);
  2595. tcp_set_rto(sk);
  2596. /* RFC6298: only reset backoff on valid RTT measurement. */
  2597. inet_csk(sk)->icsk_backoff = 0;
  2598. return true;
  2599. }
  2600. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2601. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2602. {
  2603. long rtt_us = -1L;
  2604. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
  2605. struct skb_mstamp now;
  2606. skb_mstamp_get(&now);
  2607. rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
  2608. }
  2609. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
  2610. }
  2611. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2612. {
  2613. const struct inet_connection_sock *icsk = inet_csk(sk);
  2614. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2615. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2616. }
  2617. /* Restart timer after forward progress on connection.
  2618. * RFC2988 recommends to restart timer to now+rto.
  2619. */
  2620. void tcp_rearm_rto(struct sock *sk)
  2621. {
  2622. const struct inet_connection_sock *icsk = inet_csk(sk);
  2623. struct tcp_sock *tp = tcp_sk(sk);
  2624. /* If the retrans timer is currently being used by Fast Open
  2625. * for SYN-ACK retrans purpose, stay put.
  2626. */
  2627. if (tp->fastopen_rsk)
  2628. return;
  2629. if (!tp->packets_out) {
  2630. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2631. } else {
  2632. u32 rto = inet_csk(sk)->icsk_rto;
  2633. /* Offset the time elapsed after installing regular RTO */
  2634. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2635. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2636. struct sk_buff *skb = tcp_write_queue_head(sk);
  2637. const u32 rto_time_stamp =
  2638. tcp_skb_timestamp(skb) + rto;
  2639. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2640. /* delta may not be positive if the socket is locked
  2641. * when the retrans timer fires and is rescheduled.
  2642. */
  2643. if (delta > 0)
  2644. rto = delta;
  2645. }
  2646. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2647. TCP_RTO_MAX);
  2648. }
  2649. }
  2650. /* This function is called when the delayed ER timer fires. TCP enters
  2651. * fast recovery and performs fast-retransmit.
  2652. */
  2653. void tcp_resume_early_retransmit(struct sock *sk)
  2654. {
  2655. struct tcp_sock *tp = tcp_sk(sk);
  2656. tcp_rearm_rto(sk);
  2657. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2658. if (!tp->do_early_retrans)
  2659. return;
  2660. tcp_enter_recovery(sk, false);
  2661. tcp_update_scoreboard(sk, 1);
  2662. tcp_xmit_retransmit_queue(sk);
  2663. }
  2664. /* If we get here, the whole TSO packet has not been acked. */
  2665. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2666. {
  2667. struct tcp_sock *tp = tcp_sk(sk);
  2668. u32 packets_acked;
  2669. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2670. packets_acked = tcp_skb_pcount(skb);
  2671. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2672. return 0;
  2673. packets_acked -= tcp_skb_pcount(skb);
  2674. if (packets_acked) {
  2675. BUG_ON(tcp_skb_pcount(skb) == 0);
  2676. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2677. }
  2678. return packets_acked;
  2679. }
  2680. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2681. u32 prior_snd_una)
  2682. {
  2683. const struct skb_shared_info *shinfo;
  2684. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2685. if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
  2686. return;
  2687. shinfo = skb_shinfo(skb);
  2688. if (!before(shinfo->tskey, prior_snd_una) &&
  2689. before(shinfo->tskey, tcp_sk(sk)->snd_una))
  2690. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2691. }
  2692. /* Remove acknowledged frames from the retransmission queue. If our packet
  2693. * is before the ack sequence we can discard it as it's confirmed to have
  2694. * arrived at the other end.
  2695. */
  2696. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2697. u32 prior_snd_una, int *acked,
  2698. struct tcp_sacktag_state *sack)
  2699. {
  2700. const struct inet_connection_sock *icsk = inet_csk(sk);
  2701. struct skb_mstamp first_ackt, last_ackt, now;
  2702. struct tcp_sock *tp = tcp_sk(sk);
  2703. u32 prior_sacked = tp->sacked_out;
  2704. u32 reord = tp->packets_out;
  2705. bool fully_acked = true;
  2706. long sack_rtt_us = -1L;
  2707. long seq_rtt_us = -1L;
  2708. long ca_rtt_us = -1L;
  2709. struct sk_buff *skb;
  2710. u32 pkts_acked = 0;
  2711. bool rtt_update;
  2712. int flag = 0;
  2713. first_ackt.v64 = 0;
  2714. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2715. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2716. u8 sacked = scb->sacked;
  2717. u32 acked_pcount;
  2718. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2719. /* Determine how many packets and what bytes were acked, tso and else */
  2720. if (after(scb->end_seq, tp->snd_una)) {
  2721. if (tcp_skb_pcount(skb) == 1 ||
  2722. !after(tp->snd_una, scb->seq))
  2723. break;
  2724. acked_pcount = tcp_tso_acked(sk, skb);
  2725. if (!acked_pcount)
  2726. break;
  2727. fully_acked = false;
  2728. } else {
  2729. /* Speedup tcp_unlink_write_queue() and next loop */
  2730. prefetchw(skb->next);
  2731. acked_pcount = tcp_skb_pcount(skb);
  2732. }
  2733. if (unlikely(sacked & TCPCB_RETRANS)) {
  2734. if (sacked & TCPCB_SACKED_RETRANS)
  2735. tp->retrans_out -= acked_pcount;
  2736. flag |= FLAG_RETRANS_DATA_ACKED;
  2737. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2738. last_ackt = skb->skb_mstamp;
  2739. WARN_ON_ONCE(last_ackt.v64 == 0);
  2740. if (!first_ackt.v64)
  2741. first_ackt = last_ackt;
  2742. reord = min(pkts_acked, reord);
  2743. if (!after(scb->end_seq, tp->high_seq))
  2744. flag |= FLAG_ORIG_SACK_ACKED;
  2745. }
  2746. if (sacked & TCPCB_SACKED_ACKED) {
  2747. tp->sacked_out -= acked_pcount;
  2748. } else if (tcp_is_sack(tp)) {
  2749. tp->delivered += acked_pcount;
  2750. if (!tcp_skb_spurious_retrans(tp, skb))
  2751. tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
  2752. }
  2753. if (sacked & TCPCB_LOST)
  2754. tp->lost_out -= acked_pcount;
  2755. tp->packets_out -= acked_pcount;
  2756. pkts_acked += acked_pcount;
  2757. /* Initial outgoing SYN's get put onto the write_queue
  2758. * just like anything else we transmit. It is not
  2759. * true data, and if we misinform our callers that
  2760. * this ACK acks real data, we will erroneously exit
  2761. * connection startup slow start one packet too
  2762. * quickly. This is severely frowned upon behavior.
  2763. */
  2764. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2765. flag |= FLAG_DATA_ACKED;
  2766. } else {
  2767. flag |= FLAG_SYN_ACKED;
  2768. tp->retrans_stamp = 0;
  2769. }
  2770. if (!fully_acked)
  2771. break;
  2772. tcp_unlink_write_queue(skb, sk);
  2773. sk_wmem_free_skb(sk, skb);
  2774. if (unlikely(skb == tp->retransmit_skb_hint))
  2775. tp->retransmit_skb_hint = NULL;
  2776. if (unlikely(skb == tp->lost_skb_hint))
  2777. tp->lost_skb_hint = NULL;
  2778. }
  2779. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2780. tp->snd_up = tp->snd_una;
  2781. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2782. flag |= FLAG_SACK_RENEGING;
  2783. skb_mstamp_get(&now);
  2784. if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2785. seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
  2786. ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
  2787. }
  2788. if (sack->first_sackt.v64) {
  2789. sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
  2790. ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
  2791. }
  2792. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2793. ca_rtt_us);
  2794. if (flag & FLAG_ACKED) {
  2795. tcp_rearm_rto(sk);
  2796. if (unlikely(icsk->icsk_mtup.probe_size &&
  2797. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2798. tcp_mtup_probe_success(sk);
  2799. }
  2800. if (tcp_is_reno(tp)) {
  2801. tcp_remove_reno_sacks(sk, pkts_acked);
  2802. } else {
  2803. int delta;
  2804. /* Non-retransmitted hole got filled? That's reordering */
  2805. if (reord < prior_fackets)
  2806. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2807. delta = tcp_is_fack(tp) ? pkts_acked :
  2808. prior_sacked - tp->sacked_out;
  2809. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2810. }
  2811. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2812. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2813. sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
  2814. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2815. * after when the head was last (re)transmitted. Otherwise the
  2816. * timeout may continue to extend in loss recovery.
  2817. */
  2818. tcp_rearm_rto(sk);
  2819. }
  2820. if (icsk->icsk_ca_ops->pkts_acked) {
  2821. struct ack_sample sample = { .pkts_acked = pkts_acked,
  2822. .rtt_us = ca_rtt_us };
  2823. icsk->icsk_ca_ops->pkts_acked(sk, &sample);
  2824. }
  2825. #if FASTRETRANS_DEBUG > 0
  2826. WARN_ON((int)tp->sacked_out < 0);
  2827. WARN_ON((int)tp->lost_out < 0);
  2828. WARN_ON((int)tp->retrans_out < 0);
  2829. if (!tp->packets_out && tcp_is_sack(tp)) {
  2830. icsk = inet_csk(sk);
  2831. if (tp->lost_out) {
  2832. pr_debug("Leak l=%u %d\n",
  2833. tp->lost_out, icsk->icsk_ca_state);
  2834. tp->lost_out = 0;
  2835. }
  2836. if (tp->sacked_out) {
  2837. pr_debug("Leak s=%u %d\n",
  2838. tp->sacked_out, icsk->icsk_ca_state);
  2839. tp->sacked_out = 0;
  2840. }
  2841. if (tp->retrans_out) {
  2842. pr_debug("Leak r=%u %d\n",
  2843. tp->retrans_out, icsk->icsk_ca_state);
  2844. tp->retrans_out = 0;
  2845. }
  2846. }
  2847. #endif
  2848. *acked = pkts_acked;
  2849. return flag;
  2850. }
  2851. static void tcp_ack_probe(struct sock *sk)
  2852. {
  2853. const struct tcp_sock *tp = tcp_sk(sk);
  2854. struct inet_connection_sock *icsk = inet_csk(sk);
  2855. /* Was it a usable window open? */
  2856. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2857. icsk->icsk_backoff = 0;
  2858. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2859. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2860. * This function is not for random using!
  2861. */
  2862. } else {
  2863. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2864. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2865. when, TCP_RTO_MAX);
  2866. }
  2867. }
  2868. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2869. {
  2870. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2871. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2872. }
  2873. /* Decide wheather to run the increase function of congestion control. */
  2874. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2875. {
  2876. /* If reordering is high then always grow cwnd whenever data is
  2877. * delivered regardless of its ordering. Otherwise stay conservative
  2878. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2879. * new SACK or ECE mark may first advance cwnd here and later reduce
  2880. * cwnd in tcp_fastretrans_alert() based on more states.
  2881. */
  2882. if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
  2883. return flag & FLAG_FORWARD_PROGRESS;
  2884. return flag & FLAG_DATA_ACKED;
  2885. }
  2886. /* The "ultimate" congestion control function that aims to replace the rigid
  2887. * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
  2888. * It's called toward the end of processing an ACK with precise rate
  2889. * information. All transmission or retransmission are delayed afterwards.
  2890. */
  2891. static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
  2892. int flag)
  2893. {
  2894. if (tcp_in_cwnd_reduction(sk)) {
  2895. /* Reduce cwnd if state mandates */
  2896. tcp_cwnd_reduction(sk, acked_sacked, flag);
  2897. } else if (tcp_may_raise_cwnd(sk, flag)) {
  2898. /* Advance cwnd if state allows */
  2899. tcp_cong_avoid(sk, ack, acked_sacked);
  2900. }
  2901. tcp_update_pacing_rate(sk);
  2902. }
  2903. /* Check that window update is acceptable.
  2904. * The function assumes that snd_una<=ack<=snd_next.
  2905. */
  2906. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2907. const u32 ack, const u32 ack_seq,
  2908. const u32 nwin)
  2909. {
  2910. return after(ack, tp->snd_una) ||
  2911. after(ack_seq, tp->snd_wl1) ||
  2912. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2913. }
  2914. /* If we update tp->snd_una, also update tp->bytes_acked */
  2915. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2916. {
  2917. u32 delta = ack - tp->snd_una;
  2918. sock_owned_by_me((struct sock *)tp);
  2919. u64_stats_update_begin_raw(&tp->syncp);
  2920. tp->bytes_acked += delta;
  2921. u64_stats_update_end_raw(&tp->syncp);
  2922. tp->snd_una = ack;
  2923. }
  2924. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2925. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2926. {
  2927. u32 delta = seq - tp->rcv_nxt;
  2928. sock_owned_by_me((struct sock *)tp);
  2929. u64_stats_update_begin_raw(&tp->syncp);
  2930. tp->bytes_received += delta;
  2931. u64_stats_update_end_raw(&tp->syncp);
  2932. tp->rcv_nxt = seq;
  2933. }
  2934. /* Update our send window.
  2935. *
  2936. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2937. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2938. */
  2939. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2940. u32 ack_seq)
  2941. {
  2942. struct tcp_sock *tp = tcp_sk(sk);
  2943. int flag = 0;
  2944. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2945. if (likely(!tcp_hdr(skb)->syn))
  2946. nwin <<= tp->rx_opt.snd_wscale;
  2947. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2948. flag |= FLAG_WIN_UPDATE;
  2949. tcp_update_wl(tp, ack_seq);
  2950. if (tp->snd_wnd != nwin) {
  2951. tp->snd_wnd = nwin;
  2952. /* Note, it is the only place, where
  2953. * fast path is recovered for sending TCP.
  2954. */
  2955. tp->pred_flags = 0;
  2956. tcp_fast_path_check(sk);
  2957. if (tcp_send_head(sk))
  2958. tcp_slow_start_after_idle_check(sk);
  2959. if (nwin > tp->max_window) {
  2960. tp->max_window = nwin;
  2961. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2962. }
  2963. }
  2964. }
  2965. tcp_snd_una_update(tp, ack);
  2966. return flag;
  2967. }
  2968. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2969. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2970. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2971. * attacks that send repeated SYNs or ACKs for the same connection. To
  2972. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2973. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2974. */
  2975. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2976. int mib_idx, u32 *last_oow_ack_time)
  2977. {
  2978. /* Data packets without SYNs are not likely part of an ACK loop. */
  2979. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2980. !tcp_hdr(skb)->syn)
  2981. goto not_rate_limited;
  2982. if (*last_oow_ack_time) {
  2983. s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
  2984. if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
  2985. NET_INC_STATS(net, mib_idx);
  2986. return true; /* rate-limited: don't send yet! */
  2987. }
  2988. }
  2989. *last_oow_ack_time = tcp_time_stamp;
  2990. not_rate_limited:
  2991. return false; /* not rate-limited: go ahead, send dupack now! */
  2992. }
  2993. /* RFC 5961 7 [ACK Throttling] */
  2994. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2995. {
  2996. /* unprotected vars, we dont care of overwrites */
  2997. static u32 challenge_timestamp;
  2998. static unsigned int challenge_count;
  2999. struct tcp_sock *tp = tcp_sk(sk);
  3000. u32 now;
  3001. /* First check our per-socket dupack rate limit. */
  3002. if (tcp_oow_rate_limited(sock_net(sk), skb,
  3003. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  3004. &tp->last_oow_ack_time))
  3005. return;
  3006. /* Then check the check host-wide RFC 5961 rate limit. */
  3007. now = jiffies / HZ;
  3008. if (now != challenge_timestamp) {
  3009. challenge_timestamp = now;
  3010. challenge_count = 0;
  3011. }
  3012. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  3013. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  3014. tcp_send_ack(sk);
  3015. }
  3016. }
  3017. static void tcp_store_ts_recent(struct tcp_sock *tp)
  3018. {
  3019. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3020. tp->rx_opt.ts_recent_stamp = get_seconds();
  3021. }
  3022. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3023. {
  3024. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3025. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3026. * extra check below makes sure this can only happen
  3027. * for pure ACK frames. -DaveM
  3028. *
  3029. * Not only, also it occurs for expired timestamps.
  3030. */
  3031. if (tcp_paws_check(&tp->rx_opt, 0))
  3032. tcp_store_ts_recent(tp);
  3033. }
  3034. }
  3035. /* This routine deals with acks during a TLP episode.
  3036. * We mark the end of a TLP episode on receiving TLP dupack or when
  3037. * ack is after tlp_high_seq.
  3038. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  3039. */
  3040. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  3041. {
  3042. struct tcp_sock *tp = tcp_sk(sk);
  3043. if (before(ack, tp->tlp_high_seq))
  3044. return;
  3045. if (flag & FLAG_DSACKING_ACK) {
  3046. /* This DSACK means original and TLP probe arrived; no loss */
  3047. tp->tlp_high_seq = 0;
  3048. } else if (after(ack, tp->tlp_high_seq)) {
  3049. /* ACK advances: there was a loss, so reduce cwnd. Reset
  3050. * tlp_high_seq in tcp_init_cwnd_reduction()
  3051. */
  3052. tcp_init_cwnd_reduction(sk);
  3053. tcp_set_ca_state(sk, TCP_CA_CWR);
  3054. tcp_end_cwnd_reduction(sk);
  3055. tcp_try_keep_open(sk);
  3056. NET_INC_STATS(sock_net(sk),
  3057. LINUX_MIB_TCPLOSSPROBERECOVERY);
  3058. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  3059. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  3060. /* Pure dupack: original and TLP probe arrived; no loss */
  3061. tp->tlp_high_seq = 0;
  3062. }
  3063. }
  3064. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3065. {
  3066. const struct inet_connection_sock *icsk = inet_csk(sk);
  3067. if (icsk->icsk_ca_ops->in_ack_event)
  3068. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3069. }
  3070. /* Congestion control has updated the cwnd already. So if we're in
  3071. * loss recovery then now we do any new sends (for FRTO) or
  3072. * retransmits (for CA_Loss or CA_recovery) that make sense.
  3073. */
  3074. static void tcp_xmit_recovery(struct sock *sk, int rexmit)
  3075. {
  3076. struct tcp_sock *tp = tcp_sk(sk);
  3077. if (rexmit == REXMIT_NONE)
  3078. return;
  3079. if (unlikely(rexmit == 2)) {
  3080. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  3081. TCP_NAGLE_OFF);
  3082. if (after(tp->snd_nxt, tp->high_seq))
  3083. return;
  3084. tp->frto = 0;
  3085. }
  3086. tcp_xmit_retransmit_queue(sk);
  3087. }
  3088. /* This routine deals with incoming acks, but not outgoing ones. */
  3089. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3090. {
  3091. struct inet_connection_sock *icsk = inet_csk(sk);
  3092. struct tcp_sock *tp = tcp_sk(sk);
  3093. struct tcp_sacktag_state sack_state;
  3094. u32 prior_snd_una = tp->snd_una;
  3095. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3096. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3097. bool is_dupack = false;
  3098. u32 prior_fackets;
  3099. int prior_packets = tp->packets_out;
  3100. u32 prior_delivered = tp->delivered;
  3101. int acked = 0; /* Number of packets newly acked */
  3102. int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
  3103. sack_state.first_sackt.v64 = 0;
  3104. /* We very likely will need to access write queue head. */
  3105. prefetchw(sk->sk_write_queue.next);
  3106. /* If the ack is older than previous acks
  3107. * then we can probably ignore it.
  3108. */
  3109. if (before(ack, prior_snd_una)) {
  3110. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3111. if (before(ack, prior_snd_una - tp->max_window)) {
  3112. tcp_send_challenge_ack(sk, skb);
  3113. return -1;
  3114. }
  3115. goto old_ack;
  3116. }
  3117. /* If the ack includes data we haven't sent yet, discard
  3118. * this segment (RFC793 Section 3.9).
  3119. */
  3120. if (after(ack, tp->snd_nxt))
  3121. goto invalid_ack;
  3122. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  3123. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  3124. tcp_rearm_rto(sk);
  3125. if (after(ack, prior_snd_una)) {
  3126. flag |= FLAG_SND_UNA_ADVANCED;
  3127. icsk->icsk_retransmits = 0;
  3128. }
  3129. prior_fackets = tp->fackets_out;
  3130. /* ts_recent update must be made after we are sure that the packet
  3131. * is in window.
  3132. */
  3133. if (flag & FLAG_UPDATE_TS_RECENT)
  3134. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3135. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3136. /* Window is constant, pure forward advance.
  3137. * No more checks are required.
  3138. * Note, we use the fact that SND.UNA>=SND.WL2.
  3139. */
  3140. tcp_update_wl(tp, ack_seq);
  3141. tcp_snd_una_update(tp, ack);
  3142. flag |= FLAG_WIN_UPDATE;
  3143. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3144. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3145. } else {
  3146. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3147. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3148. flag |= FLAG_DATA;
  3149. else
  3150. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3151. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3152. if (TCP_SKB_CB(skb)->sacked)
  3153. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3154. &sack_state);
  3155. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3156. flag |= FLAG_ECE;
  3157. ack_ev_flags |= CA_ACK_ECE;
  3158. }
  3159. if (flag & FLAG_WIN_UPDATE)
  3160. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3161. tcp_in_ack_event(sk, ack_ev_flags);
  3162. }
  3163. /* We passed data and got it acked, remove any soft error
  3164. * log. Something worked...
  3165. */
  3166. sk->sk_err_soft = 0;
  3167. icsk->icsk_probes_out = 0;
  3168. tp->rcv_tstamp = tcp_time_stamp;
  3169. if (!prior_packets)
  3170. goto no_queue;
  3171. /* See if we can take anything off of the retransmit queue. */
  3172. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
  3173. &sack_state);
  3174. if (tcp_ack_is_dubious(sk, flag)) {
  3175. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3176. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3177. }
  3178. if (tp->tlp_high_seq)
  3179. tcp_process_tlp_ack(sk, ack, flag);
  3180. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3181. struct dst_entry *dst = __sk_dst_get(sk);
  3182. if (dst)
  3183. dst_confirm(dst);
  3184. }
  3185. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  3186. tcp_schedule_loss_probe(sk);
  3187. tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
  3188. tcp_xmit_recovery(sk, rexmit);
  3189. return 1;
  3190. no_queue:
  3191. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3192. if (flag & FLAG_DSACKING_ACK)
  3193. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3194. /* If this ack opens up a zero window, clear backoff. It was
  3195. * being used to time the probes, and is probably far higher than
  3196. * it needs to be for normal retransmission.
  3197. */
  3198. if (tcp_send_head(sk))
  3199. tcp_ack_probe(sk);
  3200. if (tp->tlp_high_seq)
  3201. tcp_process_tlp_ack(sk, ack, flag);
  3202. return 1;
  3203. invalid_ack:
  3204. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3205. return -1;
  3206. old_ack:
  3207. /* If data was SACKed, tag it and see if we should send more data.
  3208. * If data was DSACKed, see if we can undo a cwnd reduction.
  3209. */
  3210. if (TCP_SKB_CB(skb)->sacked) {
  3211. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3212. &sack_state);
  3213. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3214. tcp_xmit_recovery(sk, rexmit);
  3215. }
  3216. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3217. return 0;
  3218. }
  3219. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3220. bool syn, struct tcp_fastopen_cookie *foc,
  3221. bool exp_opt)
  3222. {
  3223. /* Valid only in SYN or SYN-ACK with an even length. */
  3224. if (!foc || !syn || len < 0 || (len & 1))
  3225. return;
  3226. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3227. len <= TCP_FASTOPEN_COOKIE_MAX)
  3228. memcpy(foc->val, cookie, len);
  3229. else if (len != 0)
  3230. len = -1;
  3231. foc->len = len;
  3232. foc->exp = exp_opt;
  3233. }
  3234. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3235. * But, this can also be called on packets in the established flow when
  3236. * the fast version below fails.
  3237. */
  3238. void tcp_parse_options(const struct sk_buff *skb,
  3239. struct tcp_options_received *opt_rx, int estab,
  3240. struct tcp_fastopen_cookie *foc)
  3241. {
  3242. const unsigned char *ptr;
  3243. const struct tcphdr *th = tcp_hdr(skb);
  3244. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3245. ptr = (const unsigned char *)(th + 1);
  3246. opt_rx->saw_tstamp = 0;
  3247. while (length > 0) {
  3248. int opcode = *ptr++;
  3249. int opsize;
  3250. switch (opcode) {
  3251. case TCPOPT_EOL:
  3252. return;
  3253. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3254. length--;
  3255. continue;
  3256. default:
  3257. opsize = *ptr++;
  3258. if (opsize < 2) /* "silly options" */
  3259. return;
  3260. if (opsize > length)
  3261. return; /* don't parse partial options */
  3262. switch (opcode) {
  3263. case TCPOPT_MSS:
  3264. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3265. u16 in_mss = get_unaligned_be16(ptr);
  3266. if (in_mss) {
  3267. if (opt_rx->user_mss &&
  3268. opt_rx->user_mss < in_mss)
  3269. in_mss = opt_rx->user_mss;
  3270. opt_rx->mss_clamp = in_mss;
  3271. }
  3272. }
  3273. break;
  3274. case TCPOPT_WINDOW:
  3275. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3276. !estab && sysctl_tcp_window_scaling) {
  3277. __u8 snd_wscale = *(__u8 *)ptr;
  3278. opt_rx->wscale_ok = 1;
  3279. if (snd_wscale > 14) {
  3280. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3281. __func__,
  3282. snd_wscale);
  3283. snd_wscale = 14;
  3284. }
  3285. opt_rx->snd_wscale = snd_wscale;
  3286. }
  3287. break;
  3288. case TCPOPT_TIMESTAMP:
  3289. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3290. ((estab && opt_rx->tstamp_ok) ||
  3291. (!estab && sysctl_tcp_timestamps))) {
  3292. opt_rx->saw_tstamp = 1;
  3293. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3294. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3295. }
  3296. break;
  3297. case TCPOPT_SACK_PERM:
  3298. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3299. !estab && sysctl_tcp_sack) {
  3300. opt_rx->sack_ok = TCP_SACK_SEEN;
  3301. tcp_sack_reset(opt_rx);
  3302. }
  3303. break;
  3304. case TCPOPT_SACK:
  3305. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3306. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3307. opt_rx->sack_ok) {
  3308. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3309. }
  3310. break;
  3311. #ifdef CONFIG_TCP_MD5SIG
  3312. case TCPOPT_MD5SIG:
  3313. /*
  3314. * The MD5 Hash has already been
  3315. * checked (see tcp_v{4,6}_do_rcv()).
  3316. */
  3317. break;
  3318. #endif
  3319. case TCPOPT_FASTOPEN:
  3320. tcp_parse_fastopen_option(
  3321. opsize - TCPOLEN_FASTOPEN_BASE,
  3322. ptr, th->syn, foc, false);
  3323. break;
  3324. case TCPOPT_EXP:
  3325. /* Fast Open option shares code 254 using a
  3326. * 16 bits magic number.
  3327. */
  3328. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3329. get_unaligned_be16(ptr) ==
  3330. TCPOPT_FASTOPEN_MAGIC)
  3331. tcp_parse_fastopen_option(opsize -
  3332. TCPOLEN_EXP_FASTOPEN_BASE,
  3333. ptr + 2, th->syn, foc, true);
  3334. break;
  3335. }
  3336. ptr += opsize-2;
  3337. length -= opsize;
  3338. }
  3339. }
  3340. }
  3341. EXPORT_SYMBOL(tcp_parse_options);
  3342. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3343. {
  3344. const __be32 *ptr = (const __be32 *)(th + 1);
  3345. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3346. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3347. tp->rx_opt.saw_tstamp = 1;
  3348. ++ptr;
  3349. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3350. ++ptr;
  3351. if (*ptr)
  3352. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3353. else
  3354. tp->rx_opt.rcv_tsecr = 0;
  3355. return true;
  3356. }
  3357. return false;
  3358. }
  3359. /* Fast parse options. This hopes to only see timestamps.
  3360. * If it is wrong it falls back on tcp_parse_options().
  3361. */
  3362. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3363. const struct tcphdr *th, struct tcp_sock *tp)
  3364. {
  3365. /* In the spirit of fast parsing, compare doff directly to constant
  3366. * values. Because equality is used, short doff can be ignored here.
  3367. */
  3368. if (th->doff == (sizeof(*th) / 4)) {
  3369. tp->rx_opt.saw_tstamp = 0;
  3370. return false;
  3371. } else if (tp->rx_opt.tstamp_ok &&
  3372. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3373. if (tcp_parse_aligned_timestamp(tp, th))
  3374. return true;
  3375. }
  3376. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3377. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3378. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3379. return true;
  3380. }
  3381. #ifdef CONFIG_TCP_MD5SIG
  3382. /*
  3383. * Parse MD5 Signature option
  3384. */
  3385. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3386. {
  3387. int length = (th->doff << 2) - sizeof(*th);
  3388. const u8 *ptr = (const u8 *)(th + 1);
  3389. /* If the TCP option is too short, we can short cut */
  3390. if (length < TCPOLEN_MD5SIG)
  3391. return NULL;
  3392. while (length > 0) {
  3393. int opcode = *ptr++;
  3394. int opsize;
  3395. switch (opcode) {
  3396. case TCPOPT_EOL:
  3397. return NULL;
  3398. case TCPOPT_NOP:
  3399. length--;
  3400. continue;
  3401. default:
  3402. opsize = *ptr++;
  3403. if (opsize < 2 || opsize > length)
  3404. return NULL;
  3405. if (opcode == TCPOPT_MD5SIG)
  3406. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3407. }
  3408. ptr += opsize - 2;
  3409. length -= opsize;
  3410. }
  3411. return NULL;
  3412. }
  3413. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3414. #endif
  3415. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3416. *
  3417. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3418. * it can pass through stack. So, the following predicate verifies that
  3419. * this segment is not used for anything but congestion avoidance or
  3420. * fast retransmit. Moreover, we even are able to eliminate most of such
  3421. * second order effects, if we apply some small "replay" window (~RTO)
  3422. * to timestamp space.
  3423. *
  3424. * All these measures still do not guarantee that we reject wrapped ACKs
  3425. * on networks with high bandwidth, when sequence space is recycled fastly,
  3426. * but it guarantees that such events will be very rare and do not affect
  3427. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3428. * buggy extension.
  3429. *
  3430. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3431. * states that events when retransmit arrives after original data are rare.
  3432. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3433. * the biggest problem on large power networks even with minor reordering.
  3434. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3435. * up to bandwidth of 18Gigabit/sec. 8) ]
  3436. */
  3437. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3438. {
  3439. const struct tcp_sock *tp = tcp_sk(sk);
  3440. const struct tcphdr *th = tcp_hdr(skb);
  3441. u32 seq = TCP_SKB_CB(skb)->seq;
  3442. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3443. return (/* 1. Pure ACK with correct sequence number. */
  3444. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3445. /* 2. ... and duplicate ACK. */
  3446. ack == tp->snd_una &&
  3447. /* 3. ... and does not update window. */
  3448. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3449. /* 4. ... and sits in replay window. */
  3450. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3451. }
  3452. static inline bool tcp_paws_discard(const struct sock *sk,
  3453. const struct sk_buff *skb)
  3454. {
  3455. const struct tcp_sock *tp = tcp_sk(sk);
  3456. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3457. !tcp_disordered_ack(sk, skb);
  3458. }
  3459. /* Check segment sequence number for validity.
  3460. *
  3461. * Segment controls are considered valid, if the segment
  3462. * fits to the window after truncation to the window. Acceptability
  3463. * of data (and SYN, FIN, of course) is checked separately.
  3464. * See tcp_data_queue(), for example.
  3465. *
  3466. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3467. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3468. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3469. * (borrowed from freebsd)
  3470. */
  3471. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3472. {
  3473. return !before(end_seq, tp->rcv_wup) &&
  3474. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3475. }
  3476. /* When we get a reset we do this. */
  3477. void tcp_reset(struct sock *sk)
  3478. {
  3479. /* We want the right error as BSD sees it (and indeed as we do). */
  3480. switch (sk->sk_state) {
  3481. case TCP_SYN_SENT:
  3482. sk->sk_err = ECONNREFUSED;
  3483. break;
  3484. case TCP_CLOSE_WAIT:
  3485. sk->sk_err = EPIPE;
  3486. break;
  3487. case TCP_CLOSE:
  3488. return;
  3489. default:
  3490. sk->sk_err = ECONNRESET;
  3491. }
  3492. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3493. smp_wmb();
  3494. if (!sock_flag(sk, SOCK_DEAD))
  3495. sk->sk_error_report(sk);
  3496. tcp_done(sk);
  3497. }
  3498. /*
  3499. * Process the FIN bit. This now behaves as it is supposed to work
  3500. * and the FIN takes effect when it is validly part of sequence
  3501. * space. Not before when we get holes.
  3502. *
  3503. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3504. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3505. * TIME-WAIT)
  3506. *
  3507. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3508. * close and we go into CLOSING (and later onto TIME-WAIT)
  3509. *
  3510. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3511. */
  3512. void tcp_fin(struct sock *sk)
  3513. {
  3514. struct tcp_sock *tp = tcp_sk(sk);
  3515. inet_csk_schedule_ack(sk);
  3516. sk->sk_shutdown |= RCV_SHUTDOWN;
  3517. sock_set_flag(sk, SOCK_DONE);
  3518. switch (sk->sk_state) {
  3519. case TCP_SYN_RECV:
  3520. case TCP_ESTABLISHED:
  3521. /* Move to CLOSE_WAIT */
  3522. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3523. inet_csk(sk)->icsk_ack.pingpong = 1;
  3524. break;
  3525. case TCP_CLOSE_WAIT:
  3526. case TCP_CLOSING:
  3527. /* Received a retransmission of the FIN, do
  3528. * nothing.
  3529. */
  3530. break;
  3531. case TCP_LAST_ACK:
  3532. /* RFC793: Remain in the LAST-ACK state. */
  3533. break;
  3534. case TCP_FIN_WAIT1:
  3535. /* This case occurs when a simultaneous close
  3536. * happens, we must ack the received FIN and
  3537. * enter the CLOSING state.
  3538. */
  3539. tcp_send_ack(sk);
  3540. tcp_set_state(sk, TCP_CLOSING);
  3541. break;
  3542. case TCP_FIN_WAIT2:
  3543. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3544. tcp_send_ack(sk);
  3545. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3546. break;
  3547. default:
  3548. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3549. * cases we should never reach this piece of code.
  3550. */
  3551. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3552. __func__, sk->sk_state);
  3553. break;
  3554. }
  3555. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3556. * Probably, we should reset in this case. For now drop them.
  3557. */
  3558. __skb_queue_purge(&tp->out_of_order_queue);
  3559. if (tcp_is_sack(tp))
  3560. tcp_sack_reset(&tp->rx_opt);
  3561. sk_mem_reclaim(sk);
  3562. if (!sock_flag(sk, SOCK_DEAD)) {
  3563. sk->sk_state_change(sk);
  3564. /* Do not send POLL_HUP for half duplex close. */
  3565. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3566. sk->sk_state == TCP_CLOSE)
  3567. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3568. else
  3569. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3570. }
  3571. }
  3572. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3573. u32 end_seq)
  3574. {
  3575. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3576. if (before(seq, sp->start_seq))
  3577. sp->start_seq = seq;
  3578. if (after(end_seq, sp->end_seq))
  3579. sp->end_seq = end_seq;
  3580. return true;
  3581. }
  3582. return false;
  3583. }
  3584. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3585. {
  3586. struct tcp_sock *tp = tcp_sk(sk);
  3587. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3588. int mib_idx;
  3589. if (before(seq, tp->rcv_nxt))
  3590. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3591. else
  3592. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3593. NET_INC_STATS(sock_net(sk), mib_idx);
  3594. tp->rx_opt.dsack = 1;
  3595. tp->duplicate_sack[0].start_seq = seq;
  3596. tp->duplicate_sack[0].end_seq = end_seq;
  3597. }
  3598. }
  3599. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3600. {
  3601. struct tcp_sock *tp = tcp_sk(sk);
  3602. if (!tp->rx_opt.dsack)
  3603. tcp_dsack_set(sk, seq, end_seq);
  3604. else
  3605. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3606. }
  3607. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3608. {
  3609. struct tcp_sock *tp = tcp_sk(sk);
  3610. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3611. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3612. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3613. tcp_enter_quickack_mode(sk);
  3614. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3615. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3616. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3617. end_seq = tp->rcv_nxt;
  3618. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3619. }
  3620. }
  3621. tcp_send_ack(sk);
  3622. }
  3623. /* These routines update the SACK block as out-of-order packets arrive or
  3624. * in-order packets close up the sequence space.
  3625. */
  3626. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3627. {
  3628. int this_sack;
  3629. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3630. struct tcp_sack_block *swalk = sp + 1;
  3631. /* See if the recent change to the first SACK eats into
  3632. * or hits the sequence space of other SACK blocks, if so coalesce.
  3633. */
  3634. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3635. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3636. int i;
  3637. /* Zap SWALK, by moving every further SACK up by one slot.
  3638. * Decrease num_sacks.
  3639. */
  3640. tp->rx_opt.num_sacks--;
  3641. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3642. sp[i] = sp[i + 1];
  3643. continue;
  3644. }
  3645. this_sack++, swalk++;
  3646. }
  3647. }
  3648. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3649. {
  3650. struct tcp_sock *tp = tcp_sk(sk);
  3651. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3652. int cur_sacks = tp->rx_opt.num_sacks;
  3653. int this_sack;
  3654. if (!cur_sacks)
  3655. goto new_sack;
  3656. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3657. if (tcp_sack_extend(sp, seq, end_seq)) {
  3658. /* Rotate this_sack to the first one. */
  3659. for (; this_sack > 0; this_sack--, sp--)
  3660. swap(*sp, *(sp - 1));
  3661. if (cur_sacks > 1)
  3662. tcp_sack_maybe_coalesce(tp);
  3663. return;
  3664. }
  3665. }
  3666. /* Could not find an adjacent existing SACK, build a new one,
  3667. * put it at the front, and shift everyone else down. We
  3668. * always know there is at least one SACK present already here.
  3669. *
  3670. * If the sack array is full, forget about the last one.
  3671. */
  3672. if (this_sack >= TCP_NUM_SACKS) {
  3673. this_sack--;
  3674. tp->rx_opt.num_sacks--;
  3675. sp--;
  3676. }
  3677. for (; this_sack > 0; this_sack--, sp--)
  3678. *sp = *(sp - 1);
  3679. new_sack:
  3680. /* Build the new head SACK, and we're done. */
  3681. sp->start_seq = seq;
  3682. sp->end_seq = end_seq;
  3683. tp->rx_opt.num_sacks++;
  3684. }
  3685. /* RCV.NXT advances, some SACKs should be eaten. */
  3686. static void tcp_sack_remove(struct tcp_sock *tp)
  3687. {
  3688. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3689. int num_sacks = tp->rx_opt.num_sacks;
  3690. int this_sack;
  3691. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3692. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3693. tp->rx_opt.num_sacks = 0;
  3694. return;
  3695. }
  3696. for (this_sack = 0; this_sack < num_sacks;) {
  3697. /* Check if the start of the sack is covered by RCV.NXT. */
  3698. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3699. int i;
  3700. /* RCV.NXT must cover all the block! */
  3701. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3702. /* Zap this SACK, by moving forward any other SACKS. */
  3703. for (i = this_sack+1; i < num_sacks; i++)
  3704. tp->selective_acks[i-1] = tp->selective_acks[i];
  3705. num_sacks--;
  3706. continue;
  3707. }
  3708. this_sack++;
  3709. sp++;
  3710. }
  3711. tp->rx_opt.num_sacks = num_sacks;
  3712. }
  3713. /**
  3714. * tcp_try_coalesce - try to merge skb to prior one
  3715. * @sk: socket
  3716. * @to: prior buffer
  3717. * @from: buffer to add in queue
  3718. * @fragstolen: pointer to boolean
  3719. *
  3720. * Before queueing skb @from after @to, try to merge them
  3721. * to reduce overall memory use and queue lengths, if cost is small.
  3722. * Packets in ofo or receive queues can stay a long time.
  3723. * Better try to coalesce them right now to avoid future collapses.
  3724. * Returns true if caller should free @from instead of queueing it
  3725. */
  3726. static bool tcp_try_coalesce(struct sock *sk,
  3727. struct sk_buff *to,
  3728. struct sk_buff *from,
  3729. bool *fragstolen)
  3730. {
  3731. int delta;
  3732. *fragstolen = false;
  3733. /* Its possible this segment overlaps with prior segment in queue */
  3734. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3735. return false;
  3736. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3737. return false;
  3738. atomic_add(delta, &sk->sk_rmem_alloc);
  3739. sk_mem_charge(sk, delta);
  3740. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3741. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3742. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3743. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3744. return true;
  3745. }
  3746. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3747. {
  3748. sk_drops_add(sk, skb);
  3749. __kfree_skb(skb);
  3750. }
  3751. /* This one checks to see if we can put data from the
  3752. * out_of_order queue into the receive_queue.
  3753. */
  3754. static void tcp_ofo_queue(struct sock *sk)
  3755. {
  3756. struct tcp_sock *tp = tcp_sk(sk);
  3757. __u32 dsack_high = tp->rcv_nxt;
  3758. struct sk_buff *skb, *tail;
  3759. bool fragstolen, eaten;
  3760. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3761. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3762. break;
  3763. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3764. __u32 dsack = dsack_high;
  3765. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3766. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3767. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3768. }
  3769. __skb_unlink(skb, &tp->out_of_order_queue);
  3770. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3771. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3772. tcp_drop(sk, skb);
  3773. continue;
  3774. }
  3775. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3776. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3777. TCP_SKB_CB(skb)->end_seq);
  3778. tail = skb_peek_tail(&sk->sk_receive_queue);
  3779. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3780. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3781. if (!eaten)
  3782. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3783. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3784. tcp_fin(sk);
  3785. if (eaten)
  3786. kfree_skb_partial(skb, fragstolen);
  3787. }
  3788. }
  3789. static bool tcp_prune_ofo_queue(struct sock *sk);
  3790. static int tcp_prune_queue(struct sock *sk);
  3791. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3792. unsigned int size)
  3793. {
  3794. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3795. !sk_rmem_schedule(sk, skb, size)) {
  3796. if (tcp_prune_queue(sk) < 0)
  3797. return -1;
  3798. if (!sk_rmem_schedule(sk, skb, size)) {
  3799. if (!tcp_prune_ofo_queue(sk))
  3800. return -1;
  3801. if (!sk_rmem_schedule(sk, skb, size))
  3802. return -1;
  3803. }
  3804. }
  3805. return 0;
  3806. }
  3807. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3808. {
  3809. struct tcp_sock *tp = tcp_sk(sk);
  3810. struct sk_buff *skb1;
  3811. u32 seq, end_seq;
  3812. tcp_ecn_check_ce(tp, skb);
  3813. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3814. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3815. tcp_drop(sk, skb);
  3816. return;
  3817. }
  3818. /* Disable header prediction. */
  3819. tp->pred_flags = 0;
  3820. inet_csk_schedule_ack(sk);
  3821. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3822. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3823. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3824. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3825. if (!skb1) {
  3826. /* Initial out of order segment, build 1 SACK. */
  3827. if (tcp_is_sack(tp)) {
  3828. tp->rx_opt.num_sacks = 1;
  3829. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3830. tp->selective_acks[0].end_seq =
  3831. TCP_SKB_CB(skb)->end_seq;
  3832. }
  3833. __skb_queue_head(&tp->out_of_order_queue, skb);
  3834. goto end;
  3835. }
  3836. seq = TCP_SKB_CB(skb)->seq;
  3837. end_seq = TCP_SKB_CB(skb)->end_seq;
  3838. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3839. bool fragstolen;
  3840. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3841. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3842. } else {
  3843. tcp_grow_window(sk, skb);
  3844. kfree_skb_partial(skb, fragstolen);
  3845. skb = NULL;
  3846. }
  3847. if (!tp->rx_opt.num_sacks ||
  3848. tp->selective_acks[0].end_seq != seq)
  3849. goto add_sack;
  3850. /* Common case: data arrive in order after hole. */
  3851. tp->selective_acks[0].end_seq = end_seq;
  3852. goto end;
  3853. }
  3854. /* Find place to insert this segment. */
  3855. while (1) {
  3856. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3857. break;
  3858. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3859. skb1 = NULL;
  3860. break;
  3861. }
  3862. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3863. }
  3864. /* Do skb overlap to previous one? */
  3865. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3866. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3867. /* All the bits are present. Drop. */
  3868. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3869. tcp_drop(sk, skb);
  3870. skb = NULL;
  3871. tcp_dsack_set(sk, seq, end_seq);
  3872. goto add_sack;
  3873. }
  3874. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3875. /* Partial overlap. */
  3876. tcp_dsack_set(sk, seq,
  3877. TCP_SKB_CB(skb1)->end_seq);
  3878. } else {
  3879. if (skb_queue_is_first(&tp->out_of_order_queue,
  3880. skb1))
  3881. skb1 = NULL;
  3882. else
  3883. skb1 = skb_queue_prev(
  3884. &tp->out_of_order_queue,
  3885. skb1);
  3886. }
  3887. }
  3888. if (!skb1)
  3889. __skb_queue_head(&tp->out_of_order_queue, skb);
  3890. else
  3891. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3892. /* And clean segments covered by new one as whole. */
  3893. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3894. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3895. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3896. break;
  3897. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3898. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3899. end_seq);
  3900. break;
  3901. }
  3902. __skb_unlink(skb1, &tp->out_of_order_queue);
  3903. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3904. TCP_SKB_CB(skb1)->end_seq);
  3905. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3906. tcp_drop(sk, skb1);
  3907. }
  3908. add_sack:
  3909. if (tcp_is_sack(tp))
  3910. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3911. end:
  3912. if (skb) {
  3913. tcp_grow_window(sk, skb);
  3914. skb_set_owner_r(skb, sk);
  3915. }
  3916. }
  3917. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3918. bool *fragstolen)
  3919. {
  3920. int eaten;
  3921. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3922. __skb_pull(skb, hdrlen);
  3923. eaten = (tail &&
  3924. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3925. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3926. if (!eaten) {
  3927. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3928. skb_set_owner_r(skb, sk);
  3929. }
  3930. return eaten;
  3931. }
  3932. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3933. {
  3934. struct sk_buff *skb;
  3935. int err = -ENOMEM;
  3936. int data_len = 0;
  3937. bool fragstolen;
  3938. if (size == 0)
  3939. return 0;
  3940. if (size > PAGE_SIZE) {
  3941. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  3942. data_len = npages << PAGE_SHIFT;
  3943. size = data_len + (size & ~PAGE_MASK);
  3944. }
  3945. skb = alloc_skb_with_frags(size - data_len, data_len,
  3946. PAGE_ALLOC_COSTLY_ORDER,
  3947. &err, sk->sk_allocation);
  3948. if (!skb)
  3949. goto err;
  3950. skb_put(skb, size - data_len);
  3951. skb->data_len = data_len;
  3952. skb->len = size;
  3953. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3954. goto err_free;
  3955. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  3956. if (err)
  3957. goto err_free;
  3958. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3959. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3960. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3961. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3962. WARN_ON_ONCE(fragstolen); /* should not happen */
  3963. __kfree_skb(skb);
  3964. }
  3965. return size;
  3966. err_free:
  3967. kfree_skb(skb);
  3968. err:
  3969. return err;
  3970. }
  3971. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3972. {
  3973. struct tcp_sock *tp = tcp_sk(sk);
  3974. bool fragstolen = false;
  3975. int eaten = -1;
  3976. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  3977. __kfree_skb(skb);
  3978. return;
  3979. }
  3980. skb_dst_drop(skb);
  3981. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3982. tcp_ecn_accept_cwr(tp, skb);
  3983. tp->rx_opt.dsack = 0;
  3984. /* Queue data for delivery to the user.
  3985. * Packets in sequence go to the receive queue.
  3986. * Out of sequence packets to the out_of_order_queue.
  3987. */
  3988. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3989. if (tcp_receive_window(tp) == 0)
  3990. goto out_of_window;
  3991. /* Ok. In sequence. In window. */
  3992. if (tp->ucopy.task == current &&
  3993. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3994. sock_owned_by_user(sk) && !tp->urg_data) {
  3995. int chunk = min_t(unsigned int, skb->len,
  3996. tp->ucopy.len);
  3997. __set_current_state(TASK_RUNNING);
  3998. if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
  3999. tp->ucopy.len -= chunk;
  4000. tp->copied_seq += chunk;
  4001. eaten = (chunk == skb->len);
  4002. tcp_rcv_space_adjust(sk);
  4003. }
  4004. }
  4005. if (eaten <= 0) {
  4006. queue_and_out:
  4007. if (eaten < 0) {
  4008. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  4009. sk_forced_mem_schedule(sk, skb->truesize);
  4010. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4011. goto drop;
  4012. }
  4013. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4014. }
  4015. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4016. if (skb->len)
  4017. tcp_event_data_recv(sk, skb);
  4018. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  4019. tcp_fin(sk);
  4020. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4021. tcp_ofo_queue(sk);
  4022. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4023. * gap in queue is filled.
  4024. */
  4025. if (skb_queue_empty(&tp->out_of_order_queue))
  4026. inet_csk(sk)->icsk_ack.pingpong = 0;
  4027. }
  4028. if (tp->rx_opt.num_sacks)
  4029. tcp_sack_remove(tp);
  4030. tcp_fast_path_check(sk);
  4031. if (eaten > 0)
  4032. kfree_skb_partial(skb, fragstolen);
  4033. if (!sock_flag(sk, SOCK_DEAD))
  4034. sk->sk_data_ready(sk);
  4035. return;
  4036. }
  4037. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4038. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4039. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4040. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4041. out_of_window:
  4042. tcp_enter_quickack_mode(sk);
  4043. inet_csk_schedule_ack(sk);
  4044. drop:
  4045. tcp_drop(sk, skb);
  4046. return;
  4047. }
  4048. /* Out of window. F.e. zero window probe. */
  4049. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4050. goto out_of_window;
  4051. tcp_enter_quickack_mode(sk);
  4052. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4053. /* Partial packet, seq < rcv_next < end_seq */
  4054. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4055. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4056. TCP_SKB_CB(skb)->end_seq);
  4057. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4058. /* If window is closed, drop tail of packet. But after
  4059. * remembering D-SACK for its head made in previous line.
  4060. */
  4061. if (!tcp_receive_window(tp))
  4062. goto out_of_window;
  4063. goto queue_and_out;
  4064. }
  4065. tcp_data_queue_ofo(sk, skb);
  4066. }
  4067. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4068. struct sk_buff_head *list)
  4069. {
  4070. struct sk_buff *next = NULL;
  4071. if (!skb_queue_is_last(list, skb))
  4072. next = skb_queue_next(list, skb);
  4073. __skb_unlink(skb, list);
  4074. __kfree_skb(skb);
  4075. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4076. return next;
  4077. }
  4078. /* Collapse contiguous sequence of skbs head..tail with
  4079. * sequence numbers start..end.
  4080. *
  4081. * If tail is NULL, this means until the end of the list.
  4082. *
  4083. * Segments with FIN/SYN are not collapsed (only because this
  4084. * simplifies code)
  4085. */
  4086. static void
  4087. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4088. struct sk_buff *head, struct sk_buff *tail,
  4089. u32 start, u32 end)
  4090. {
  4091. struct sk_buff *skb, *n;
  4092. bool end_of_skbs;
  4093. /* First, check that queue is collapsible and find
  4094. * the point where collapsing can be useful. */
  4095. skb = head;
  4096. restart:
  4097. end_of_skbs = true;
  4098. skb_queue_walk_from_safe(list, skb, n) {
  4099. if (skb == tail)
  4100. break;
  4101. /* No new bits? It is possible on ofo queue. */
  4102. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4103. skb = tcp_collapse_one(sk, skb, list);
  4104. if (!skb)
  4105. break;
  4106. goto restart;
  4107. }
  4108. /* The first skb to collapse is:
  4109. * - not SYN/FIN and
  4110. * - bloated or contains data before "start" or
  4111. * overlaps to the next one.
  4112. */
  4113. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4114. (tcp_win_from_space(skb->truesize) > skb->len ||
  4115. before(TCP_SKB_CB(skb)->seq, start))) {
  4116. end_of_skbs = false;
  4117. break;
  4118. }
  4119. if (!skb_queue_is_last(list, skb)) {
  4120. struct sk_buff *next = skb_queue_next(list, skb);
  4121. if (next != tail &&
  4122. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4123. end_of_skbs = false;
  4124. break;
  4125. }
  4126. }
  4127. /* Decided to skip this, advance start seq. */
  4128. start = TCP_SKB_CB(skb)->end_seq;
  4129. }
  4130. if (end_of_skbs ||
  4131. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4132. return;
  4133. while (before(start, end)) {
  4134. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4135. struct sk_buff *nskb;
  4136. nskb = alloc_skb(copy, GFP_ATOMIC);
  4137. if (!nskb)
  4138. return;
  4139. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4140. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4141. __skb_queue_before(list, skb, nskb);
  4142. skb_set_owner_r(nskb, sk);
  4143. /* Copy data, releasing collapsed skbs. */
  4144. while (copy > 0) {
  4145. int offset = start - TCP_SKB_CB(skb)->seq;
  4146. int size = TCP_SKB_CB(skb)->end_seq - start;
  4147. BUG_ON(offset < 0);
  4148. if (size > 0) {
  4149. size = min(copy, size);
  4150. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4151. BUG();
  4152. TCP_SKB_CB(nskb)->end_seq += size;
  4153. copy -= size;
  4154. start += size;
  4155. }
  4156. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4157. skb = tcp_collapse_one(sk, skb, list);
  4158. if (!skb ||
  4159. skb == tail ||
  4160. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4161. return;
  4162. }
  4163. }
  4164. }
  4165. }
  4166. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4167. * and tcp_collapse() them until all the queue is collapsed.
  4168. */
  4169. static void tcp_collapse_ofo_queue(struct sock *sk)
  4170. {
  4171. struct tcp_sock *tp = tcp_sk(sk);
  4172. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4173. struct sk_buff *head;
  4174. u32 start, end;
  4175. if (!skb)
  4176. return;
  4177. start = TCP_SKB_CB(skb)->seq;
  4178. end = TCP_SKB_CB(skb)->end_seq;
  4179. head = skb;
  4180. for (;;) {
  4181. struct sk_buff *next = NULL;
  4182. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4183. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4184. skb = next;
  4185. /* Segment is terminated when we see gap or when
  4186. * we are at the end of all the queue. */
  4187. if (!skb ||
  4188. after(TCP_SKB_CB(skb)->seq, end) ||
  4189. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4190. tcp_collapse(sk, &tp->out_of_order_queue,
  4191. head, skb, start, end);
  4192. head = skb;
  4193. if (!skb)
  4194. break;
  4195. /* Start new segment */
  4196. start = TCP_SKB_CB(skb)->seq;
  4197. end = TCP_SKB_CB(skb)->end_seq;
  4198. } else {
  4199. if (before(TCP_SKB_CB(skb)->seq, start))
  4200. start = TCP_SKB_CB(skb)->seq;
  4201. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4202. end = TCP_SKB_CB(skb)->end_seq;
  4203. }
  4204. }
  4205. }
  4206. /*
  4207. * Purge the out-of-order queue.
  4208. * Return true if queue was pruned.
  4209. */
  4210. static bool tcp_prune_ofo_queue(struct sock *sk)
  4211. {
  4212. struct tcp_sock *tp = tcp_sk(sk);
  4213. bool res = false;
  4214. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4215. NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4216. __skb_queue_purge(&tp->out_of_order_queue);
  4217. /* Reset SACK state. A conforming SACK implementation will
  4218. * do the same at a timeout based retransmit. When a connection
  4219. * is in a sad state like this, we care only about integrity
  4220. * of the connection not performance.
  4221. */
  4222. if (tp->rx_opt.sack_ok)
  4223. tcp_sack_reset(&tp->rx_opt);
  4224. sk_mem_reclaim(sk);
  4225. res = true;
  4226. }
  4227. return res;
  4228. }
  4229. /* Reduce allocated memory if we can, trying to get
  4230. * the socket within its memory limits again.
  4231. *
  4232. * Return less than zero if we should start dropping frames
  4233. * until the socket owning process reads some of the data
  4234. * to stabilize the situation.
  4235. */
  4236. static int tcp_prune_queue(struct sock *sk)
  4237. {
  4238. struct tcp_sock *tp = tcp_sk(sk);
  4239. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4240. NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4241. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4242. tcp_clamp_window(sk);
  4243. else if (tcp_under_memory_pressure(sk))
  4244. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4245. tcp_collapse_ofo_queue(sk);
  4246. if (!skb_queue_empty(&sk->sk_receive_queue))
  4247. tcp_collapse(sk, &sk->sk_receive_queue,
  4248. skb_peek(&sk->sk_receive_queue),
  4249. NULL,
  4250. tp->copied_seq, tp->rcv_nxt);
  4251. sk_mem_reclaim(sk);
  4252. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4253. return 0;
  4254. /* Collapsing did not help, destructive actions follow.
  4255. * This must not ever occur. */
  4256. tcp_prune_ofo_queue(sk);
  4257. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4258. return 0;
  4259. /* If we are really being abused, tell the caller to silently
  4260. * drop receive data on the floor. It will get retransmitted
  4261. * and hopefully then we'll have sufficient space.
  4262. */
  4263. NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4264. /* Massive buffer overcommit. */
  4265. tp->pred_flags = 0;
  4266. return -1;
  4267. }
  4268. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4269. {
  4270. const struct tcp_sock *tp = tcp_sk(sk);
  4271. /* If the user specified a specific send buffer setting, do
  4272. * not modify it.
  4273. */
  4274. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4275. return false;
  4276. /* If we are under global TCP memory pressure, do not expand. */
  4277. if (tcp_under_memory_pressure(sk))
  4278. return false;
  4279. /* If we are under soft global TCP memory pressure, do not expand. */
  4280. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4281. return false;
  4282. /* If we filled the congestion window, do not expand. */
  4283. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4284. return false;
  4285. return true;
  4286. }
  4287. /* When incoming ACK allowed to free some skb from write_queue,
  4288. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4289. * on the exit from tcp input handler.
  4290. *
  4291. * PROBLEM: sndbuf expansion does not work well with largesend.
  4292. */
  4293. static void tcp_new_space(struct sock *sk)
  4294. {
  4295. struct tcp_sock *tp = tcp_sk(sk);
  4296. if (tcp_should_expand_sndbuf(sk)) {
  4297. tcp_sndbuf_expand(sk);
  4298. tp->snd_cwnd_stamp = tcp_time_stamp;
  4299. }
  4300. sk->sk_write_space(sk);
  4301. }
  4302. static void tcp_check_space(struct sock *sk)
  4303. {
  4304. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4305. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4306. /* pairs with tcp_poll() */
  4307. smp_mb__after_atomic();
  4308. if (sk->sk_socket &&
  4309. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4310. tcp_new_space(sk);
  4311. }
  4312. }
  4313. static inline void tcp_data_snd_check(struct sock *sk)
  4314. {
  4315. tcp_push_pending_frames(sk);
  4316. tcp_check_space(sk);
  4317. }
  4318. /*
  4319. * Check if sending an ack is needed.
  4320. */
  4321. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4322. {
  4323. struct tcp_sock *tp = tcp_sk(sk);
  4324. /* More than one full frame received... */
  4325. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4326. /* ... and right edge of window advances far enough.
  4327. * (tcp_recvmsg() will send ACK otherwise). Or...
  4328. */
  4329. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4330. /* We ACK each frame or... */
  4331. tcp_in_quickack_mode(sk) ||
  4332. /* We have out of order data. */
  4333. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4334. /* Then ack it now */
  4335. tcp_send_ack(sk);
  4336. } else {
  4337. /* Else, send delayed ack. */
  4338. tcp_send_delayed_ack(sk);
  4339. }
  4340. }
  4341. static inline void tcp_ack_snd_check(struct sock *sk)
  4342. {
  4343. if (!inet_csk_ack_scheduled(sk)) {
  4344. /* We sent a data segment already. */
  4345. return;
  4346. }
  4347. __tcp_ack_snd_check(sk, 1);
  4348. }
  4349. /*
  4350. * This routine is only called when we have urgent data
  4351. * signaled. Its the 'slow' part of tcp_urg. It could be
  4352. * moved inline now as tcp_urg is only called from one
  4353. * place. We handle URGent data wrong. We have to - as
  4354. * BSD still doesn't use the correction from RFC961.
  4355. * For 1003.1g we should support a new option TCP_STDURG to permit
  4356. * either form (or just set the sysctl tcp_stdurg).
  4357. */
  4358. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4359. {
  4360. struct tcp_sock *tp = tcp_sk(sk);
  4361. u32 ptr = ntohs(th->urg_ptr);
  4362. if (ptr && !sysctl_tcp_stdurg)
  4363. ptr--;
  4364. ptr += ntohl(th->seq);
  4365. /* Ignore urgent data that we've already seen and read. */
  4366. if (after(tp->copied_seq, ptr))
  4367. return;
  4368. /* Do not replay urg ptr.
  4369. *
  4370. * NOTE: interesting situation not covered by specs.
  4371. * Misbehaving sender may send urg ptr, pointing to segment,
  4372. * which we already have in ofo queue. We are not able to fetch
  4373. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4374. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4375. * situations. But it is worth to think about possibility of some
  4376. * DoSes using some hypothetical application level deadlock.
  4377. */
  4378. if (before(ptr, tp->rcv_nxt))
  4379. return;
  4380. /* Do we already have a newer (or duplicate) urgent pointer? */
  4381. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4382. return;
  4383. /* Tell the world about our new urgent pointer. */
  4384. sk_send_sigurg(sk);
  4385. /* We may be adding urgent data when the last byte read was
  4386. * urgent. To do this requires some care. We cannot just ignore
  4387. * tp->copied_seq since we would read the last urgent byte again
  4388. * as data, nor can we alter copied_seq until this data arrives
  4389. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4390. *
  4391. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4392. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4393. * and expect that both A and B disappear from stream. This is _wrong_.
  4394. * Though this happens in BSD with high probability, this is occasional.
  4395. * Any application relying on this is buggy. Note also, that fix "works"
  4396. * only in this artificial test. Insert some normal data between A and B and we will
  4397. * decline of BSD again. Verdict: it is better to remove to trap
  4398. * buggy users.
  4399. */
  4400. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4401. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4402. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4403. tp->copied_seq++;
  4404. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4405. __skb_unlink(skb, &sk->sk_receive_queue);
  4406. __kfree_skb(skb);
  4407. }
  4408. }
  4409. tp->urg_data = TCP_URG_NOTYET;
  4410. tp->urg_seq = ptr;
  4411. /* Disable header prediction. */
  4412. tp->pred_flags = 0;
  4413. }
  4414. /* This is the 'fast' part of urgent handling. */
  4415. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4416. {
  4417. struct tcp_sock *tp = tcp_sk(sk);
  4418. /* Check if we get a new urgent pointer - normally not. */
  4419. if (th->urg)
  4420. tcp_check_urg(sk, th);
  4421. /* Do we wait for any urgent data? - normally not... */
  4422. if (tp->urg_data == TCP_URG_NOTYET) {
  4423. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4424. th->syn;
  4425. /* Is the urgent pointer pointing into this packet? */
  4426. if (ptr < skb->len) {
  4427. u8 tmp;
  4428. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4429. BUG();
  4430. tp->urg_data = TCP_URG_VALID | tmp;
  4431. if (!sock_flag(sk, SOCK_DEAD))
  4432. sk->sk_data_ready(sk);
  4433. }
  4434. }
  4435. }
  4436. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4437. {
  4438. struct tcp_sock *tp = tcp_sk(sk);
  4439. int chunk = skb->len - hlen;
  4440. int err;
  4441. if (skb_csum_unnecessary(skb))
  4442. err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
  4443. else
  4444. err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
  4445. if (!err) {
  4446. tp->ucopy.len -= chunk;
  4447. tp->copied_seq += chunk;
  4448. tcp_rcv_space_adjust(sk);
  4449. }
  4450. return err;
  4451. }
  4452. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4453. * play significant role here.
  4454. */
  4455. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4456. const struct tcphdr *th, int syn_inerr)
  4457. {
  4458. struct tcp_sock *tp = tcp_sk(sk);
  4459. /* RFC1323: H1. Apply PAWS check first. */
  4460. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4461. tcp_paws_discard(sk, skb)) {
  4462. if (!th->rst) {
  4463. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4464. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4465. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4466. &tp->last_oow_ack_time))
  4467. tcp_send_dupack(sk, skb);
  4468. goto discard;
  4469. }
  4470. /* Reset is accepted even if it did not pass PAWS. */
  4471. }
  4472. /* Step 1: check sequence number */
  4473. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4474. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4475. * (RST) segments are validated by checking their SEQ-fields."
  4476. * And page 69: "If an incoming segment is not acceptable,
  4477. * an acknowledgment should be sent in reply (unless the RST
  4478. * bit is set, if so drop the segment and return)".
  4479. */
  4480. if (!th->rst) {
  4481. if (th->syn)
  4482. goto syn_challenge;
  4483. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4484. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4485. &tp->last_oow_ack_time))
  4486. tcp_send_dupack(sk, skb);
  4487. }
  4488. goto discard;
  4489. }
  4490. /* Step 2: check RST bit */
  4491. if (th->rst) {
  4492. /* RFC 5961 3.2 :
  4493. * If sequence number exactly matches RCV.NXT, then
  4494. * RESET the connection
  4495. * else
  4496. * Send a challenge ACK
  4497. */
  4498. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4499. tcp_reset(sk);
  4500. else
  4501. tcp_send_challenge_ack(sk, skb);
  4502. goto discard;
  4503. }
  4504. /* step 3: check security and precedence [ignored] */
  4505. /* step 4: Check for a SYN
  4506. * RFC 5961 4.2 : Send a challenge ack
  4507. */
  4508. if (th->syn) {
  4509. syn_challenge:
  4510. if (syn_inerr)
  4511. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4512. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4513. tcp_send_challenge_ack(sk, skb);
  4514. goto discard;
  4515. }
  4516. return true;
  4517. discard:
  4518. tcp_drop(sk, skb);
  4519. return false;
  4520. }
  4521. /*
  4522. * TCP receive function for the ESTABLISHED state.
  4523. *
  4524. * It is split into a fast path and a slow path. The fast path is
  4525. * disabled when:
  4526. * - A zero window was announced from us - zero window probing
  4527. * is only handled properly in the slow path.
  4528. * - Out of order segments arrived.
  4529. * - Urgent data is expected.
  4530. * - There is no buffer space left
  4531. * - Unexpected TCP flags/window values/header lengths are received
  4532. * (detected by checking the TCP header against pred_flags)
  4533. * - Data is sent in both directions. Fast path only supports pure senders
  4534. * or pure receivers (this means either the sequence number or the ack
  4535. * value must stay constant)
  4536. * - Unexpected TCP option.
  4537. *
  4538. * When these conditions are not satisfied it drops into a standard
  4539. * receive procedure patterned after RFC793 to handle all cases.
  4540. * The first three cases are guaranteed by proper pred_flags setting,
  4541. * the rest is checked inline. Fast processing is turned on in
  4542. * tcp_data_queue when everything is OK.
  4543. */
  4544. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4545. const struct tcphdr *th, unsigned int len)
  4546. {
  4547. struct tcp_sock *tp = tcp_sk(sk);
  4548. if (unlikely(!sk->sk_rx_dst))
  4549. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4550. /*
  4551. * Header prediction.
  4552. * The code loosely follows the one in the famous
  4553. * "30 instruction TCP receive" Van Jacobson mail.
  4554. *
  4555. * Van's trick is to deposit buffers into socket queue
  4556. * on a device interrupt, to call tcp_recv function
  4557. * on the receive process context and checksum and copy
  4558. * the buffer to user space. smart...
  4559. *
  4560. * Our current scheme is not silly either but we take the
  4561. * extra cost of the net_bh soft interrupt processing...
  4562. * We do checksum and copy also but from device to kernel.
  4563. */
  4564. tp->rx_opt.saw_tstamp = 0;
  4565. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4566. * if header_prediction is to be made
  4567. * 'S' will always be tp->tcp_header_len >> 2
  4568. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4569. * turn it off (when there are holes in the receive
  4570. * space for instance)
  4571. * PSH flag is ignored.
  4572. */
  4573. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4574. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4575. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4576. int tcp_header_len = tp->tcp_header_len;
  4577. /* Timestamp header prediction: tcp_header_len
  4578. * is automatically equal to th->doff*4 due to pred_flags
  4579. * match.
  4580. */
  4581. /* Check timestamp */
  4582. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4583. /* No? Slow path! */
  4584. if (!tcp_parse_aligned_timestamp(tp, th))
  4585. goto slow_path;
  4586. /* If PAWS failed, check it more carefully in slow path */
  4587. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4588. goto slow_path;
  4589. /* DO NOT update ts_recent here, if checksum fails
  4590. * and timestamp was corrupted part, it will result
  4591. * in a hung connection since we will drop all
  4592. * future packets due to the PAWS test.
  4593. */
  4594. }
  4595. if (len <= tcp_header_len) {
  4596. /* Bulk data transfer: sender */
  4597. if (len == tcp_header_len) {
  4598. /* Predicted packet is in window by definition.
  4599. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4600. * Hence, check seq<=rcv_wup reduces to:
  4601. */
  4602. if (tcp_header_len ==
  4603. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4604. tp->rcv_nxt == tp->rcv_wup)
  4605. tcp_store_ts_recent(tp);
  4606. /* We know that such packets are checksummed
  4607. * on entry.
  4608. */
  4609. tcp_ack(sk, skb, 0);
  4610. __kfree_skb(skb);
  4611. tcp_data_snd_check(sk);
  4612. return;
  4613. } else { /* Header too small */
  4614. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4615. goto discard;
  4616. }
  4617. } else {
  4618. int eaten = 0;
  4619. bool fragstolen = false;
  4620. if (tp->ucopy.task == current &&
  4621. tp->copied_seq == tp->rcv_nxt &&
  4622. len - tcp_header_len <= tp->ucopy.len &&
  4623. sock_owned_by_user(sk)) {
  4624. __set_current_state(TASK_RUNNING);
  4625. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
  4626. /* Predicted packet is in window by definition.
  4627. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4628. * Hence, check seq<=rcv_wup reduces to:
  4629. */
  4630. if (tcp_header_len ==
  4631. (sizeof(struct tcphdr) +
  4632. TCPOLEN_TSTAMP_ALIGNED) &&
  4633. tp->rcv_nxt == tp->rcv_wup)
  4634. tcp_store_ts_recent(tp);
  4635. tcp_rcv_rtt_measure_ts(sk, skb);
  4636. __skb_pull(skb, tcp_header_len);
  4637. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4638. NET_INC_STATS(sock_net(sk),
  4639. LINUX_MIB_TCPHPHITSTOUSER);
  4640. eaten = 1;
  4641. }
  4642. }
  4643. if (!eaten) {
  4644. if (tcp_checksum_complete(skb))
  4645. goto csum_error;
  4646. if ((int)skb->truesize > sk->sk_forward_alloc)
  4647. goto step5;
  4648. /* Predicted packet is in window by definition.
  4649. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4650. * Hence, check seq<=rcv_wup reduces to:
  4651. */
  4652. if (tcp_header_len ==
  4653. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4654. tp->rcv_nxt == tp->rcv_wup)
  4655. tcp_store_ts_recent(tp);
  4656. tcp_rcv_rtt_measure_ts(sk, skb);
  4657. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4658. /* Bulk data transfer: receiver */
  4659. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4660. &fragstolen);
  4661. }
  4662. tcp_event_data_recv(sk, skb);
  4663. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4664. /* Well, only one small jumplet in fast path... */
  4665. tcp_ack(sk, skb, FLAG_DATA);
  4666. tcp_data_snd_check(sk);
  4667. if (!inet_csk_ack_scheduled(sk))
  4668. goto no_ack;
  4669. }
  4670. __tcp_ack_snd_check(sk, 0);
  4671. no_ack:
  4672. if (eaten)
  4673. kfree_skb_partial(skb, fragstolen);
  4674. sk->sk_data_ready(sk);
  4675. return;
  4676. }
  4677. }
  4678. slow_path:
  4679. if (len < (th->doff << 2) || tcp_checksum_complete(skb))
  4680. goto csum_error;
  4681. if (!th->ack && !th->rst && !th->syn)
  4682. goto discard;
  4683. /*
  4684. * Standard slow path.
  4685. */
  4686. if (!tcp_validate_incoming(sk, skb, th, 1))
  4687. return;
  4688. step5:
  4689. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4690. goto discard;
  4691. tcp_rcv_rtt_measure_ts(sk, skb);
  4692. /* Process urgent data. */
  4693. tcp_urg(sk, skb, th);
  4694. /* step 7: process the segment text */
  4695. tcp_data_queue(sk, skb);
  4696. tcp_data_snd_check(sk);
  4697. tcp_ack_snd_check(sk);
  4698. return;
  4699. csum_error:
  4700. TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
  4701. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4702. discard:
  4703. tcp_drop(sk, skb);
  4704. }
  4705. EXPORT_SYMBOL(tcp_rcv_established);
  4706. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4707. {
  4708. struct tcp_sock *tp = tcp_sk(sk);
  4709. struct inet_connection_sock *icsk = inet_csk(sk);
  4710. tcp_set_state(sk, TCP_ESTABLISHED);
  4711. if (skb) {
  4712. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4713. security_inet_conn_established(sk, skb);
  4714. }
  4715. /* Make sure socket is routed, for correct metrics. */
  4716. icsk->icsk_af_ops->rebuild_header(sk);
  4717. tcp_init_metrics(sk);
  4718. tcp_init_congestion_control(sk);
  4719. /* Prevent spurious tcp_cwnd_restart() on first data
  4720. * packet.
  4721. */
  4722. tp->lsndtime = tcp_time_stamp;
  4723. tcp_init_buffer_space(sk);
  4724. if (sock_flag(sk, SOCK_KEEPOPEN))
  4725. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4726. if (!tp->rx_opt.snd_wscale)
  4727. __tcp_fast_path_on(tp, tp->snd_wnd);
  4728. else
  4729. tp->pred_flags = 0;
  4730. if (!sock_flag(sk, SOCK_DEAD)) {
  4731. sk->sk_state_change(sk);
  4732. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4733. }
  4734. }
  4735. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4736. struct tcp_fastopen_cookie *cookie)
  4737. {
  4738. struct tcp_sock *tp = tcp_sk(sk);
  4739. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4740. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4741. bool syn_drop = false;
  4742. if (mss == tp->rx_opt.user_mss) {
  4743. struct tcp_options_received opt;
  4744. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4745. tcp_clear_options(&opt);
  4746. opt.user_mss = opt.mss_clamp = 0;
  4747. tcp_parse_options(synack, &opt, 0, NULL);
  4748. mss = opt.mss_clamp;
  4749. }
  4750. if (!tp->syn_fastopen) {
  4751. /* Ignore an unsolicited cookie */
  4752. cookie->len = -1;
  4753. } else if (tp->total_retrans) {
  4754. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4755. * acknowledges data. Presumably the remote received only
  4756. * the retransmitted (regular) SYNs: either the original
  4757. * SYN-data or the corresponding SYN-ACK was dropped.
  4758. */
  4759. syn_drop = (cookie->len < 0 && data);
  4760. } else if (cookie->len < 0 && !tp->syn_data) {
  4761. /* We requested a cookie but didn't get it. If we did not use
  4762. * the (old) exp opt format then try so next time (try_exp=1).
  4763. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4764. */
  4765. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4766. }
  4767. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4768. if (data) { /* Retransmit unacked data in SYN */
  4769. tcp_for_write_queue_from(data, sk) {
  4770. if (data == tcp_send_head(sk) ||
  4771. __tcp_retransmit_skb(sk, data, 1))
  4772. break;
  4773. }
  4774. tcp_rearm_rto(sk);
  4775. NET_INC_STATS(sock_net(sk),
  4776. LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4777. return true;
  4778. }
  4779. tp->syn_data_acked = tp->syn_data;
  4780. if (tp->syn_data_acked)
  4781. NET_INC_STATS(sock_net(sk),
  4782. LINUX_MIB_TCPFASTOPENACTIVE);
  4783. tcp_fastopen_add_skb(sk, synack);
  4784. return false;
  4785. }
  4786. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4787. const struct tcphdr *th)
  4788. {
  4789. struct inet_connection_sock *icsk = inet_csk(sk);
  4790. struct tcp_sock *tp = tcp_sk(sk);
  4791. struct tcp_fastopen_cookie foc = { .len = -1 };
  4792. int saved_clamp = tp->rx_opt.mss_clamp;
  4793. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4794. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4795. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4796. if (th->ack) {
  4797. /* rfc793:
  4798. * "If the state is SYN-SENT then
  4799. * first check the ACK bit
  4800. * If the ACK bit is set
  4801. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4802. * a reset (unless the RST bit is set, if so drop
  4803. * the segment and return)"
  4804. */
  4805. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4806. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4807. goto reset_and_undo;
  4808. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4809. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4810. tcp_time_stamp)) {
  4811. NET_INC_STATS(sock_net(sk),
  4812. LINUX_MIB_PAWSACTIVEREJECTED);
  4813. goto reset_and_undo;
  4814. }
  4815. /* Now ACK is acceptable.
  4816. *
  4817. * "If the RST bit is set
  4818. * If the ACK was acceptable then signal the user "error:
  4819. * connection reset", drop the segment, enter CLOSED state,
  4820. * delete TCB, and return."
  4821. */
  4822. if (th->rst) {
  4823. tcp_reset(sk);
  4824. goto discard;
  4825. }
  4826. /* rfc793:
  4827. * "fifth, if neither of the SYN or RST bits is set then
  4828. * drop the segment and return."
  4829. *
  4830. * See note below!
  4831. * --ANK(990513)
  4832. */
  4833. if (!th->syn)
  4834. goto discard_and_undo;
  4835. /* rfc793:
  4836. * "If the SYN bit is on ...
  4837. * are acceptable then ...
  4838. * (our SYN has been ACKed), change the connection
  4839. * state to ESTABLISHED..."
  4840. */
  4841. tcp_ecn_rcv_synack(tp, th);
  4842. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4843. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4844. /* Ok.. it's good. Set up sequence numbers and
  4845. * move to established.
  4846. */
  4847. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4848. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4849. /* RFC1323: The window in SYN & SYN/ACK segments is
  4850. * never scaled.
  4851. */
  4852. tp->snd_wnd = ntohs(th->window);
  4853. if (!tp->rx_opt.wscale_ok) {
  4854. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4855. tp->window_clamp = min(tp->window_clamp, 65535U);
  4856. }
  4857. if (tp->rx_opt.saw_tstamp) {
  4858. tp->rx_opt.tstamp_ok = 1;
  4859. tp->tcp_header_len =
  4860. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4861. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4862. tcp_store_ts_recent(tp);
  4863. } else {
  4864. tp->tcp_header_len = sizeof(struct tcphdr);
  4865. }
  4866. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4867. tcp_enable_fack(tp);
  4868. tcp_mtup_init(sk);
  4869. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4870. tcp_initialize_rcv_mss(sk);
  4871. /* Remember, tcp_poll() does not lock socket!
  4872. * Change state from SYN-SENT only after copied_seq
  4873. * is initialized. */
  4874. tp->copied_seq = tp->rcv_nxt;
  4875. smp_mb();
  4876. tcp_finish_connect(sk, skb);
  4877. if ((tp->syn_fastopen || tp->syn_data) &&
  4878. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4879. return -1;
  4880. if (sk->sk_write_pending ||
  4881. icsk->icsk_accept_queue.rskq_defer_accept ||
  4882. icsk->icsk_ack.pingpong) {
  4883. /* Save one ACK. Data will be ready after
  4884. * several ticks, if write_pending is set.
  4885. *
  4886. * It may be deleted, but with this feature tcpdumps
  4887. * look so _wonderfully_ clever, that I was not able
  4888. * to stand against the temptation 8) --ANK
  4889. */
  4890. inet_csk_schedule_ack(sk);
  4891. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4892. tcp_enter_quickack_mode(sk);
  4893. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4894. TCP_DELACK_MAX, TCP_RTO_MAX);
  4895. discard:
  4896. tcp_drop(sk, skb);
  4897. return 0;
  4898. } else {
  4899. tcp_send_ack(sk);
  4900. }
  4901. return -1;
  4902. }
  4903. /* No ACK in the segment */
  4904. if (th->rst) {
  4905. /* rfc793:
  4906. * "If the RST bit is set
  4907. *
  4908. * Otherwise (no ACK) drop the segment and return."
  4909. */
  4910. goto discard_and_undo;
  4911. }
  4912. /* PAWS check. */
  4913. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4914. tcp_paws_reject(&tp->rx_opt, 0))
  4915. goto discard_and_undo;
  4916. if (th->syn) {
  4917. /* We see SYN without ACK. It is attempt of
  4918. * simultaneous connect with crossed SYNs.
  4919. * Particularly, it can be connect to self.
  4920. */
  4921. tcp_set_state(sk, TCP_SYN_RECV);
  4922. if (tp->rx_opt.saw_tstamp) {
  4923. tp->rx_opt.tstamp_ok = 1;
  4924. tcp_store_ts_recent(tp);
  4925. tp->tcp_header_len =
  4926. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4927. } else {
  4928. tp->tcp_header_len = sizeof(struct tcphdr);
  4929. }
  4930. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4931. tp->copied_seq = tp->rcv_nxt;
  4932. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4933. /* RFC1323: The window in SYN & SYN/ACK segments is
  4934. * never scaled.
  4935. */
  4936. tp->snd_wnd = ntohs(th->window);
  4937. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4938. tp->max_window = tp->snd_wnd;
  4939. tcp_ecn_rcv_syn(tp, th);
  4940. tcp_mtup_init(sk);
  4941. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4942. tcp_initialize_rcv_mss(sk);
  4943. tcp_send_synack(sk);
  4944. #if 0
  4945. /* Note, we could accept data and URG from this segment.
  4946. * There are no obstacles to make this (except that we must
  4947. * either change tcp_recvmsg() to prevent it from returning data
  4948. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4949. *
  4950. * However, if we ignore data in ACKless segments sometimes,
  4951. * we have no reasons to accept it sometimes.
  4952. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4953. * is not flawless. So, discard packet for sanity.
  4954. * Uncomment this return to process the data.
  4955. */
  4956. return -1;
  4957. #else
  4958. goto discard;
  4959. #endif
  4960. }
  4961. /* "fifth, if neither of the SYN or RST bits is set then
  4962. * drop the segment and return."
  4963. */
  4964. discard_and_undo:
  4965. tcp_clear_options(&tp->rx_opt);
  4966. tp->rx_opt.mss_clamp = saved_clamp;
  4967. goto discard;
  4968. reset_and_undo:
  4969. tcp_clear_options(&tp->rx_opt);
  4970. tp->rx_opt.mss_clamp = saved_clamp;
  4971. return 1;
  4972. }
  4973. /*
  4974. * This function implements the receiving procedure of RFC 793 for
  4975. * all states except ESTABLISHED and TIME_WAIT.
  4976. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4977. * address independent.
  4978. */
  4979. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  4980. {
  4981. struct tcp_sock *tp = tcp_sk(sk);
  4982. struct inet_connection_sock *icsk = inet_csk(sk);
  4983. const struct tcphdr *th = tcp_hdr(skb);
  4984. struct request_sock *req;
  4985. int queued = 0;
  4986. bool acceptable;
  4987. switch (sk->sk_state) {
  4988. case TCP_CLOSE:
  4989. goto discard;
  4990. case TCP_LISTEN:
  4991. if (th->ack)
  4992. return 1;
  4993. if (th->rst)
  4994. goto discard;
  4995. if (th->syn) {
  4996. if (th->fin)
  4997. goto discard;
  4998. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4999. return 1;
  5000. consume_skb(skb);
  5001. return 0;
  5002. }
  5003. goto discard;
  5004. case TCP_SYN_SENT:
  5005. tp->rx_opt.saw_tstamp = 0;
  5006. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  5007. if (queued >= 0)
  5008. return queued;
  5009. /* Do step6 onward by hand. */
  5010. tcp_urg(sk, skb, th);
  5011. __kfree_skb(skb);
  5012. tcp_data_snd_check(sk);
  5013. return 0;
  5014. }
  5015. tp->rx_opt.saw_tstamp = 0;
  5016. req = tp->fastopen_rsk;
  5017. if (req) {
  5018. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5019. sk->sk_state != TCP_FIN_WAIT1);
  5020. if (!tcp_check_req(sk, skb, req, true))
  5021. goto discard;
  5022. }
  5023. if (!th->ack && !th->rst && !th->syn)
  5024. goto discard;
  5025. if (!tcp_validate_incoming(sk, skb, th, 0))
  5026. return 0;
  5027. /* step 5: check the ACK field */
  5028. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5029. FLAG_UPDATE_TS_RECENT) > 0;
  5030. switch (sk->sk_state) {
  5031. case TCP_SYN_RECV:
  5032. if (!acceptable)
  5033. return 1;
  5034. if (!tp->srtt_us)
  5035. tcp_synack_rtt_meas(sk, req);
  5036. /* Once we leave TCP_SYN_RECV, we no longer need req
  5037. * so release it.
  5038. */
  5039. if (req) {
  5040. tp->total_retrans = req->num_retrans;
  5041. reqsk_fastopen_remove(sk, req, false);
  5042. } else {
  5043. /* Make sure socket is routed, for correct metrics. */
  5044. icsk->icsk_af_ops->rebuild_header(sk);
  5045. tcp_init_congestion_control(sk);
  5046. tcp_mtup_init(sk);
  5047. tp->copied_seq = tp->rcv_nxt;
  5048. tcp_init_buffer_space(sk);
  5049. }
  5050. smp_mb();
  5051. tcp_set_state(sk, TCP_ESTABLISHED);
  5052. sk->sk_state_change(sk);
  5053. /* Note, that this wakeup is only for marginal crossed SYN case.
  5054. * Passively open sockets are not waked up, because
  5055. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5056. */
  5057. if (sk->sk_socket)
  5058. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5059. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5060. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5061. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5062. if (tp->rx_opt.tstamp_ok)
  5063. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5064. if (req) {
  5065. /* Re-arm the timer because data may have been sent out.
  5066. * This is similar to the regular data transmission case
  5067. * when new data has just been ack'ed.
  5068. *
  5069. * (TFO) - we could try to be more aggressive and
  5070. * retransmitting any data sooner based on when they
  5071. * are sent out.
  5072. */
  5073. tcp_rearm_rto(sk);
  5074. } else
  5075. tcp_init_metrics(sk);
  5076. tcp_update_pacing_rate(sk);
  5077. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5078. tp->lsndtime = tcp_time_stamp;
  5079. tcp_initialize_rcv_mss(sk);
  5080. tcp_fast_path_on(tp);
  5081. break;
  5082. case TCP_FIN_WAIT1: {
  5083. struct dst_entry *dst;
  5084. int tmo;
  5085. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5086. * Fast Open socket and this is the first acceptable
  5087. * ACK we have received, this would have acknowledged
  5088. * our SYNACK so stop the SYNACK timer.
  5089. */
  5090. if (req) {
  5091. /* Return RST if ack_seq is invalid.
  5092. * Note that RFC793 only says to generate a
  5093. * DUPACK for it but for TCP Fast Open it seems
  5094. * better to treat this case like TCP_SYN_RECV
  5095. * above.
  5096. */
  5097. if (!acceptable)
  5098. return 1;
  5099. /* We no longer need the request sock. */
  5100. reqsk_fastopen_remove(sk, req, false);
  5101. tcp_rearm_rto(sk);
  5102. }
  5103. if (tp->snd_una != tp->write_seq)
  5104. break;
  5105. tcp_set_state(sk, TCP_FIN_WAIT2);
  5106. sk->sk_shutdown |= SEND_SHUTDOWN;
  5107. dst = __sk_dst_get(sk);
  5108. if (dst)
  5109. dst_confirm(dst);
  5110. if (!sock_flag(sk, SOCK_DEAD)) {
  5111. /* Wake up lingering close() */
  5112. sk->sk_state_change(sk);
  5113. break;
  5114. }
  5115. if (tp->linger2 < 0 ||
  5116. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5117. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5118. tcp_done(sk);
  5119. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5120. return 1;
  5121. }
  5122. tmo = tcp_fin_time(sk);
  5123. if (tmo > TCP_TIMEWAIT_LEN) {
  5124. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5125. } else if (th->fin || sock_owned_by_user(sk)) {
  5126. /* Bad case. We could lose such FIN otherwise.
  5127. * It is not a big problem, but it looks confusing
  5128. * and not so rare event. We still can lose it now,
  5129. * if it spins in bh_lock_sock(), but it is really
  5130. * marginal case.
  5131. */
  5132. inet_csk_reset_keepalive_timer(sk, tmo);
  5133. } else {
  5134. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5135. goto discard;
  5136. }
  5137. break;
  5138. }
  5139. case TCP_CLOSING:
  5140. if (tp->snd_una == tp->write_seq) {
  5141. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5142. goto discard;
  5143. }
  5144. break;
  5145. case TCP_LAST_ACK:
  5146. if (tp->snd_una == tp->write_seq) {
  5147. tcp_update_metrics(sk);
  5148. tcp_done(sk);
  5149. goto discard;
  5150. }
  5151. break;
  5152. }
  5153. /* step 6: check the URG bit */
  5154. tcp_urg(sk, skb, th);
  5155. /* step 7: process the segment text */
  5156. switch (sk->sk_state) {
  5157. case TCP_CLOSE_WAIT:
  5158. case TCP_CLOSING:
  5159. case TCP_LAST_ACK:
  5160. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5161. break;
  5162. case TCP_FIN_WAIT1:
  5163. case TCP_FIN_WAIT2:
  5164. /* RFC 793 says to queue data in these states,
  5165. * RFC 1122 says we MUST send a reset.
  5166. * BSD 4.4 also does reset.
  5167. */
  5168. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5169. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5170. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5171. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5172. tcp_reset(sk);
  5173. return 1;
  5174. }
  5175. }
  5176. /* Fall through */
  5177. case TCP_ESTABLISHED:
  5178. tcp_data_queue(sk, skb);
  5179. queued = 1;
  5180. break;
  5181. }
  5182. /* tcp_data could move socket to TIME-WAIT */
  5183. if (sk->sk_state != TCP_CLOSE) {
  5184. tcp_data_snd_check(sk);
  5185. tcp_ack_snd_check(sk);
  5186. }
  5187. if (!queued) {
  5188. discard:
  5189. tcp_drop(sk, skb);
  5190. }
  5191. return 0;
  5192. }
  5193. EXPORT_SYMBOL(tcp_rcv_state_process);
  5194. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5195. {
  5196. struct inet_request_sock *ireq = inet_rsk(req);
  5197. if (family == AF_INET)
  5198. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5199. &ireq->ir_rmt_addr, port);
  5200. #if IS_ENABLED(CONFIG_IPV6)
  5201. else if (family == AF_INET6)
  5202. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5203. &ireq->ir_v6_rmt_addr, port);
  5204. #endif
  5205. }
  5206. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5207. *
  5208. * If we receive a SYN packet with these bits set, it means a
  5209. * network is playing bad games with TOS bits. In order to
  5210. * avoid possible false congestion notifications, we disable
  5211. * TCP ECN negotiation.
  5212. *
  5213. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5214. * congestion control: Linux DCTCP asserts ECT on all packets,
  5215. * including SYN, which is most optimal solution; however,
  5216. * others, such as FreeBSD do not.
  5217. */
  5218. static void tcp_ecn_create_request(struct request_sock *req,
  5219. const struct sk_buff *skb,
  5220. const struct sock *listen_sk,
  5221. const struct dst_entry *dst)
  5222. {
  5223. const struct tcphdr *th = tcp_hdr(skb);
  5224. const struct net *net = sock_net(listen_sk);
  5225. bool th_ecn = th->ece && th->cwr;
  5226. bool ect, ecn_ok;
  5227. u32 ecn_ok_dst;
  5228. if (!th_ecn)
  5229. return;
  5230. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5231. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5232. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5233. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5234. (ecn_ok_dst & DST_FEATURE_ECN_CA))
  5235. inet_rsk(req)->ecn_ok = 1;
  5236. }
  5237. static void tcp_openreq_init(struct request_sock *req,
  5238. const struct tcp_options_received *rx_opt,
  5239. struct sk_buff *skb, const struct sock *sk)
  5240. {
  5241. struct inet_request_sock *ireq = inet_rsk(req);
  5242. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5243. req->cookie_ts = 0;
  5244. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5245. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5246. skb_mstamp_get(&tcp_rsk(req)->snt_synack);
  5247. tcp_rsk(req)->last_oow_ack_time = 0;
  5248. req->mss = rx_opt->mss_clamp;
  5249. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5250. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5251. ireq->sack_ok = rx_opt->sack_ok;
  5252. ireq->snd_wscale = rx_opt->snd_wscale;
  5253. ireq->wscale_ok = rx_opt->wscale_ok;
  5254. ireq->acked = 0;
  5255. ireq->ecn_ok = 0;
  5256. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5257. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5258. ireq->ir_mark = inet_request_mark(sk, skb);
  5259. }
  5260. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5261. struct sock *sk_listener,
  5262. bool attach_listener)
  5263. {
  5264. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5265. attach_listener);
  5266. if (req) {
  5267. struct inet_request_sock *ireq = inet_rsk(req);
  5268. kmemcheck_annotate_bitfield(ireq, flags);
  5269. ireq->opt = NULL;
  5270. atomic64_set(&ireq->ir_cookie, 0);
  5271. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5272. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5273. ireq->ireq_family = sk_listener->sk_family;
  5274. }
  5275. return req;
  5276. }
  5277. EXPORT_SYMBOL(inet_reqsk_alloc);
  5278. /*
  5279. * Return true if a syncookie should be sent
  5280. */
  5281. static bool tcp_syn_flood_action(const struct sock *sk,
  5282. const struct sk_buff *skb,
  5283. const char *proto)
  5284. {
  5285. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5286. const char *msg = "Dropping request";
  5287. bool want_cookie = false;
  5288. struct net *net = sock_net(sk);
  5289. #ifdef CONFIG_SYN_COOKIES
  5290. if (net->ipv4.sysctl_tcp_syncookies) {
  5291. msg = "Sending cookies";
  5292. want_cookie = true;
  5293. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5294. } else
  5295. #endif
  5296. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5297. if (!queue->synflood_warned &&
  5298. net->ipv4.sysctl_tcp_syncookies != 2 &&
  5299. xchg(&queue->synflood_warned, 1) == 0)
  5300. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5301. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5302. return want_cookie;
  5303. }
  5304. static void tcp_reqsk_record_syn(const struct sock *sk,
  5305. struct request_sock *req,
  5306. const struct sk_buff *skb)
  5307. {
  5308. if (tcp_sk(sk)->save_syn) {
  5309. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5310. u32 *copy;
  5311. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5312. if (copy) {
  5313. copy[0] = len;
  5314. memcpy(&copy[1], skb_network_header(skb), len);
  5315. req->saved_syn = copy;
  5316. }
  5317. }
  5318. }
  5319. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5320. const struct tcp_request_sock_ops *af_ops,
  5321. struct sock *sk, struct sk_buff *skb)
  5322. {
  5323. struct tcp_fastopen_cookie foc = { .len = -1 };
  5324. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5325. struct tcp_options_received tmp_opt;
  5326. struct tcp_sock *tp = tcp_sk(sk);
  5327. struct net *net = sock_net(sk);
  5328. struct sock *fastopen_sk = NULL;
  5329. struct dst_entry *dst = NULL;
  5330. struct request_sock *req;
  5331. bool want_cookie = false;
  5332. struct flowi fl;
  5333. /* TW buckets are converted to open requests without
  5334. * limitations, they conserve resources and peer is
  5335. * evidently real one.
  5336. */
  5337. if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
  5338. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5339. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5340. if (!want_cookie)
  5341. goto drop;
  5342. }
  5343. /* Accept backlog is full. If we have already queued enough
  5344. * of warm entries in syn queue, drop request. It is better than
  5345. * clogging syn queue with openreqs with exponentially increasing
  5346. * timeout.
  5347. */
  5348. if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
  5349. NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5350. goto drop;
  5351. }
  5352. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5353. if (!req)
  5354. goto drop;
  5355. tcp_rsk(req)->af_specific = af_ops;
  5356. tcp_clear_options(&tmp_opt);
  5357. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5358. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5359. tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
  5360. if (want_cookie && !tmp_opt.saw_tstamp)
  5361. tcp_clear_options(&tmp_opt);
  5362. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5363. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5364. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5365. inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
  5366. af_ops->init_req(req, sk, skb);
  5367. if (security_inet_conn_request(sk, skb, req))
  5368. goto drop_and_free;
  5369. if (!want_cookie && !isn) {
  5370. /* VJ's idea. We save last timestamp seen
  5371. * from the destination in peer table, when entering
  5372. * state TIME-WAIT, and check against it before
  5373. * accepting new connection request.
  5374. *
  5375. * If "isn" is not zero, this request hit alive
  5376. * timewait bucket, so that all the necessary checks
  5377. * are made in the function processing timewait state.
  5378. */
  5379. if (tcp_death_row.sysctl_tw_recycle) {
  5380. bool strict;
  5381. dst = af_ops->route_req(sk, &fl, req, &strict);
  5382. if (dst && strict &&
  5383. !tcp_peer_is_proven(req, dst, true,
  5384. tmp_opt.saw_tstamp)) {
  5385. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
  5386. goto drop_and_release;
  5387. }
  5388. }
  5389. /* Kill the following clause, if you dislike this way. */
  5390. else if (!net->ipv4.sysctl_tcp_syncookies &&
  5391. (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5392. (sysctl_max_syn_backlog >> 2)) &&
  5393. !tcp_peer_is_proven(req, dst, false,
  5394. tmp_opt.saw_tstamp)) {
  5395. /* Without syncookies last quarter of
  5396. * backlog is filled with destinations,
  5397. * proven to be alive.
  5398. * It means that we continue to communicate
  5399. * to destinations, already remembered
  5400. * to the moment of synflood.
  5401. */
  5402. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5403. rsk_ops->family);
  5404. goto drop_and_release;
  5405. }
  5406. isn = af_ops->init_seq(skb);
  5407. }
  5408. if (!dst) {
  5409. dst = af_ops->route_req(sk, &fl, req, NULL);
  5410. if (!dst)
  5411. goto drop_and_free;
  5412. }
  5413. tcp_ecn_create_request(req, skb, sk, dst);
  5414. if (want_cookie) {
  5415. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5416. req->cookie_ts = tmp_opt.tstamp_ok;
  5417. if (!tmp_opt.tstamp_ok)
  5418. inet_rsk(req)->ecn_ok = 0;
  5419. }
  5420. tcp_rsk(req)->snt_isn = isn;
  5421. tcp_rsk(req)->txhash = net_tx_rndhash();
  5422. tcp_openreq_init_rwin(req, sk, dst);
  5423. if (!want_cookie) {
  5424. tcp_reqsk_record_syn(sk, req, skb);
  5425. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
  5426. }
  5427. if (fastopen_sk) {
  5428. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5429. &foc, TCP_SYNACK_FASTOPEN);
  5430. /* Add the child socket directly into the accept queue */
  5431. inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
  5432. sk->sk_data_ready(sk);
  5433. bh_unlock_sock(fastopen_sk);
  5434. sock_put(fastopen_sk);
  5435. } else {
  5436. tcp_rsk(req)->tfo_listener = false;
  5437. if (!want_cookie)
  5438. inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
  5439. af_ops->send_synack(sk, dst, &fl, req, &foc,
  5440. !want_cookie ? TCP_SYNACK_NORMAL :
  5441. TCP_SYNACK_COOKIE);
  5442. if (want_cookie) {
  5443. reqsk_free(req);
  5444. return 0;
  5445. }
  5446. }
  5447. reqsk_put(req);
  5448. return 0;
  5449. drop_and_release:
  5450. dst_release(dst);
  5451. drop_and_free:
  5452. reqsk_free(req);
  5453. drop:
  5454. tcp_listendrop(sk);
  5455. return 0;
  5456. }
  5457. EXPORT_SYMBOL(tcp_conn_request);