i915_sysfs.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Ben Widawsky <ben@bwidawsk.net>
  25. *
  26. */
  27. #include <linux/device.h>
  28. #include <linux/module.h>
  29. #include <linux/stat.h>
  30. #include <linux/sysfs.h>
  31. #include "intel_drv.h"
  32. #include "i915_drv.h"
  33. static inline struct drm_i915_private *kdev_minor_to_i915(struct device *kdev)
  34. {
  35. struct drm_minor *minor = dev_get_drvdata(kdev);
  36. return to_i915(minor->dev);
  37. }
  38. #ifdef CONFIG_PM
  39. static u32 calc_residency(struct drm_i915_private *dev_priv,
  40. i915_reg_t reg)
  41. {
  42. return DIV_ROUND_CLOSEST_ULL(intel_rc6_residency_us(dev_priv, reg),
  43. 1000);
  44. }
  45. static ssize_t
  46. show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
  47. {
  48. return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6());
  49. }
  50. static ssize_t
  51. show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  52. {
  53. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  54. u32 rc6_residency = calc_residency(dev_priv, GEN6_GT_GFX_RC6);
  55. return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
  56. }
  57. static ssize_t
  58. show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  59. {
  60. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  61. u32 rc6p_residency = calc_residency(dev_priv, GEN6_GT_GFX_RC6p);
  62. return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
  63. }
  64. static ssize_t
  65. show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  66. {
  67. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  68. u32 rc6pp_residency = calc_residency(dev_priv, GEN6_GT_GFX_RC6pp);
  69. return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
  70. }
  71. static ssize_t
  72. show_media_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  73. {
  74. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  75. u32 rc6_residency = calc_residency(dev_priv, VLV_GT_MEDIA_RC6);
  76. return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
  77. }
  78. static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
  79. static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
  80. static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
  81. static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
  82. static DEVICE_ATTR(media_rc6_residency_ms, S_IRUGO, show_media_rc6_ms, NULL);
  83. static struct attribute *rc6_attrs[] = {
  84. &dev_attr_rc6_enable.attr,
  85. &dev_attr_rc6_residency_ms.attr,
  86. NULL
  87. };
  88. static struct attribute_group rc6_attr_group = {
  89. .name = power_group_name,
  90. .attrs = rc6_attrs
  91. };
  92. static struct attribute *rc6p_attrs[] = {
  93. &dev_attr_rc6p_residency_ms.attr,
  94. &dev_attr_rc6pp_residency_ms.attr,
  95. NULL
  96. };
  97. static struct attribute_group rc6p_attr_group = {
  98. .name = power_group_name,
  99. .attrs = rc6p_attrs
  100. };
  101. static struct attribute *media_rc6_attrs[] = {
  102. &dev_attr_media_rc6_residency_ms.attr,
  103. NULL
  104. };
  105. static struct attribute_group media_rc6_attr_group = {
  106. .name = power_group_name,
  107. .attrs = media_rc6_attrs
  108. };
  109. #endif
  110. static int l3_access_valid(struct drm_i915_private *dev_priv, loff_t offset)
  111. {
  112. if (!HAS_L3_DPF(dev_priv))
  113. return -EPERM;
  114. if (offset % 4 != 0)
  115. return -EINVAL;
  116. if (offset >= GEN7_L3LOG_SIZE)
  117. return -ENXIO;
  118. return 0;
  119. }
  120. static ssize_t
  121. i915_l3_read(struct file *filp, struct kobject *kobj,
  122. struct bin_attribute *attr, char *buf,
  123. loff_t offset, size_t count)
  124. {
  125. struct device *kdev = kobj_to_dev(kobj);
  126. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  127. struct drm_device *dev = &dev_priv->drm;
  128. int slice = (int)(uintptr_t)attr->private;
  129. int ret;
  130. count = round_down(count, 4);
  131. ret = l3_access_valid(dev_priv, offset);
  132. if (ret)
  133. return ret;
  134. count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count);
  135. ret = i915_mutex_lock_interruptible(dev);
  136. if (ret)
  137. return ret;
  138. if (dev_priv->l3_parity.remap_info[slice])
  139. memcpy(buf,
  140. dev_priv->l3_parity.remap_info[slice] + (offset/4),
  141. count);
  142. else
  143. memset(buf, 0, count);
  144. mutex_unlock(&dev->struct_mutex);
  145. return count;
  146. }
  147. static ssize_t
  148. i915_l3_write(struct file *filp, struct kobject *kobj,
  149. struct bin_attribute *attr, char *buf,
  150. loff_t offset, size_t count)
  151. {
  152. struct device *kdev = kobj_to_dev(kobj);
  153. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  154. struct drm_device *dev = &dev_priv->drm;
  155. struct i915_gem_context *ctx;
  156. int slice = (int)(uintptr_t)attr->private;
  157. u32 **remap_info;
  158. int ret;
  159. ret = l3_access_valid(dev_priv, offset);
  160. if (ret)
  161. return ret;
  162. ret = i915_mutex_lock_interruptible(dev);
  163. if (ret)
  164. return ret;
  165. remap_info = &dev_priv->l3_parity.remap_info[slice];
  166. if (!*remap_info) {
  167. *remap_info = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
  168. if (!*remap_info) {
  169. ret = -ENOMEM;
  170. goto out;
  171. }
  172. }
  173. /* TODO: Ideally we really want a GPU reset here to make sure errors
  174. * aren't propagated. Since I cannot find a stable way to reset the GPU
  175. * at this point it is left as a TODO.
  176. */
  177. memcpy(*remap_info + (offset/4), buf, count);
  178. /* NB: We defer the remapping until we switch to the context */
  179. list_for_each_entry(ctx, &dev_priv->context_list, link)
  180. ctx->remap_slice |= (1<<slice);
  181. ret = count;
  182. out:
  183. mutex_unlock(&dev->struct_mutex);
  184. return ret;
  185. }
  186. static struct bin_attribute dpf_attrs = {
  187. .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
  188. .size = GEN7_L3LOG_SIZE,
  189. .read = i915_l3_read,
  190. .write = i915_l3_write,
  191. .mmap = NULL,
  192. .private = (void *)0
  193. };
  194. static struct bin_attribute dpf_attrs_1 = {
  195. .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)},
  196. .size = GEN7_L3LOG_SIZE,
  197. .read = i915_l3_read,
  198. .write = i915_l3_write,
  199. .mmap = NULL,
  200. .private = (void *)1
  201. };
  202. static ssize_t gt_act_freq_mhz_show(struct device *kdev,
  203. struct device_attribute *attr, char *buf)
  204. {
  205. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  206. int ret;
  207. intel_runtime_pm_get(dev_priv);
  208. mutex_lock(&dev_priv->rps.hw_lock);
  209. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  210. u32 freq;
  211. freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  212. ret = intel_gpu_freq(dev_priv, (freq >> 8) & 0xff);
  213. } else {
  214. u32 rpstat = I915_READ(GEN6_RPSTAT1);
  215. if (IS_GEN9(dev_priv))
  216. ret = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  217. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  218. ret = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  219. else
  220. ret = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  221. ret = intel_gpu_freq(dev_priv, ret);
  222. }
  223. mutex_unlock(&dev_priv->rps.hw_lock);
  224. intel_runtime_pm_put(dev_priv);
  225. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  226. }
  227. static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
  228. struct device_attribute *attr, char *buf)
  229. {
  230. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  231. return snprintf(buf, PAGE_SIZE, "%d\n",
  232. intel_gpu_freq(dev_priv,
  233. dev_priv->rps.cur_freq));
  234. }
  235. static ssize_t gt_boost_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  236. {
  237. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  238. return snprintf(buf, PAGE_SIZE, "%d\n",
  239. intel_gpu_freq(dev_priv,
  240. dev_priv->rps.boost_freq));
  241. }
  242. static ssize_t gt_boost_freq_mhz_store(struct device *kdev,
  243. struct device_attribute *attr,
  244. const char *buf, size_t count)
  245. {
  246. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  247. u32 val;
  248. ssize_t ret;
  249. ret = kstrtou32(buf, 0, &val);
  250. if (ret)
  251. return ret;
  252. /* Validate against (static) hardware limits */
  253. val = intel_freq_opcode(dev_priv, val);
  254. if (val < dev_priv->rps.min_freq || val > dev_priv->rps.max_freq)
  255. return -EINVAL;
  256. mutex_lock(&dev_priv->rps.hw_lock);
  257. dev_priv->rps.boost_freq = val;
  258. mutex_unlock(&dev_priv->rps.hw_lock);
  259. return count;
  260. }
  261. static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
  262. struct device_attribute *attr, char *buf)
  263. {
  264. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  265. return snprintf(buf, PAGE_SIZE, "%d\n",
  266. intel_gpu_freq(dev_priv,
  267. dev_priv->rps.efficient_freq));
  268. }
  269. static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  270. {
  271. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  272. return snprintf(buf, PAGE_SIZE, "%d\n",
  273. intel_gpu_freq(dev_priv,
  274. dev_priv->rps.max_freq_softlimit));
  275. }
  276. static ssize_t gt_max_freq_mhz_store(struct device *kdev,
  277. struct device_attribute *attr,
  278. const char *buf, size_t count)
  279. {
  280. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  281. u32 val;
  282. ssize_t ret;
  283. ret = kstrtou32(buf, 0, &val);
  284. if (ret)
  285. return ret;
  286. intel_runtime_pm_get(dev_priv);
  287. mutex_lock(&dev_priv->rps.hw_lock);
  288. val = intel_freq_opcode(dev_priv, val);
  289. if (val < dev_priv->rps.min_freq ||
  290. val > dev_priv->rps.max_freq ||
  291. val < dev_priv->rps.min_freq_softlimit) {
  292. mutex_unlock(&dev_priv->rps.hw_lock);
  293. intel_runtime_pm_put(dev_priv);
  294. return -EINVAL;
  295. }
  296. if (val > dev_priv->rps.rp0_freq)
  297. DRM_DEBUG("User requested overclocking to %d\n",
  298. intel_gpu_freq(dev_priv, val));
  299. dev_priv->rps.max_freq_softlimit = val;
  300. val = clamp_t(int, dev_priv->rps.cur_freq,
  301. dev_priv->rps.min_freq_softlimit,
  302. dev_priv->rps.max_freq_softlimit);
  303. /* We still need *_set_rps to process the new max_delay and
  304. * update the interrupt limits and PMINTRMSK even though
  305. * frequency request may be unchanged. */
  306. ret = intel_set_rps(dev_priv, val);
  307. mutex_unlock(&dev_priv->rps.hw_lock);
  308. intel_runtime_pm_put(dev_priv);
  309. return ret ?: count;
  310. }
  311. static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  312. {
  313. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  314. return snprintf(buf, PAGE_SIZE, "%d\n",
  315. intel_gpu_freq(dev_priv,
  316. dev_priv->rps.min_freq_softlimit));
  317. }
  318. static ssize_t gt_min_freq_mhz_store(struct device *kdev,
  319. struct device_attribute *attr,
  320. const char *buf, size_t count)
  321. {
  322. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  323. u32 val;
  324. ssize_t ret;
  325. ret = kstrtou32(buf, 0, &val);
  326. if (ret)
  327. return ret;
  328. intel_runtime_pm_get(dev_priv);
  329. mutex_lock(&dev_priv->rps.hw_lock);
  330. val = intel_freq_opcode(dev_priv, val);
  331. if (val < dev_priv->rps.min_freq ||
  332. val > dev_priv->rps.max_freq ||
  333. val > dev_priv->rps.max_freq_softlimit) {
  334. mutex_unlock(&dev_priv->rps.hw_lock);
  335. intel_runtime_pm_put(dev_priv);
  336. return -EINVAL;
  337. }
  338. dev_priv->rps.min_freq_softlimit = val;
  339. val = clamp_t(int, dev_priv->rps.cur_freq,
  340. dev_priv->rps.min_freq_softlimit,
  341. dev_priv->rps.max_freq_softlimit);
  342. /* We still need *_set_rps to process the new min_delay and
  343. * update the interrupt limits and PMINTRMSK even though
  344. * frequency request may be unchanged. */
  345. ret = intel_set_rps(dev_priv, val);
  346. mutex_unlock(&dev_priv->rps.hw_lock);
  347. intel_runtime_pm_put(dev_priv);
  348. return ret ?: count;
  349. }
  350. static DEVICE_ATTR(gt_act_freq_mhz, S_IRUGO, gt_act_freq_mhz_show, NULL);
  351. static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
  352. static DEVICE_ATTR(gt_boost_freq_mhz, S_IRUGO | S_IWUSR, gt_boost_freq_mhz_show, gt_boost_freq_mhz_store);
  353. static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
  354. static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
  355. static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
  356. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
  357. static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  358. static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  359. static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  360. /* For now we have a static number of RP states */
  361. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  362. {
  363. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  364. u32 val;
  365. if (attr == &dev_attr_gt_RP0_freq_mhz)
  366. val = intel_gpu_freq(dev_priv, dev_priv->rps.rp0_freq);
  367. else if (attr == &dev_attr_gt_RP1_freq_mhz)
  368. val = intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq);
  369. else if (attr == &dev_attr_gt_RPn_freq_mhz)
  370. val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq);
  371. else
  372. BUG();
  373. return snprintf(buf, PAGE_SIZE, "%d\n", val);
  374. }
  375. static const struct attribute *gen6_attrs[] = {
  376. &dev_attr_gt_act_freq_mhz.attr,
  377. &dev_attr_gt_cur_freq_mhz.attr,
  378. &dev_attr_gt_boost_freq_mhz.attr,
  379. &dev_attr_gt_max_freq_mhz.attr,
  380. &dev_attr_gt_min_freq_mhz.attr,
  381. &dev_attr_gt_RP0_freq_mhz.attr,
  382. &dev_attr_gt_RP1_freq_mhz.attr,
  383. &dev_attr_gt_RPn_freq_mhz.attr,
  384. NULL,
  385. };
  386. static const struct attribute *vlv_attrs[] = {
  387. &dev_attr_gt_act_freq_mhz.attr,
  388. &dev_attr_gt_cur_freq_mhz.attr,
  389. &dev_attr_gt_boost_freq_mhz.attr,
  390. &dev_attr_gt_max_freq_mhz.attr,
  391. &dev_attr_gt_min_freq_mhz.attr,
  392. &dev_attr_gt_RP0_freq_mhz.attr,
  393. &dev_attr_gt_RP1_freq_mhz.attr,
  394. &dev_attr_gt_RPn_freq_mhz.attr,
  395. &dev_attr_vlv_rpe_freq_mhz.attr,
  396. NULL,
  397. };
  398. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  399. static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
  400. struct bin_attribute *attr, char *buf,
  401. loff_t off, size_t count)
  402. {
  403. struct device *kdev = kobj_to_dev(kobj);
  404. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  405. struct drm_i915_error_state_buf error_str;
  406. struct i915_gpu_state *gpu;
  407. ssize_t ret;
  408. ret = i915_error_state_buf_init(&error_str, dev_priv, count, off);
  409. if (ret)
  410. return ret;
  411. gpu = i915_first_error_state(dev_priv);
  412. ret = i915_error_state_to_str(&error_str, gpu);
  413. if (ret)
  414. goto out;
  415. ret = count < error_str.bytes ? count : error_str.bytes;
  416. memcpy(buf, error_str.buf, ret);
  417. out:
  418. i915_gpu_state_put(gpu);
  419. i915_error_state_buf_release(&error_str);
  420. return ret;
  421. }
  422. static ssize_t error_state_write(struct file *file, struct kobject *kobj,
  423. struct bin_attribute *attr, char *buf,
  424. loff_t off, size_t count)
  425. {
  426. struct device *kdev = kobj_to_dev(kobj);
  427. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  428. DRM_DEBUG_DRIVER("Resetting error state\n");
  429. i915_reset_error_state(dev_priv);
  430. return count;
  431. }
  432. static struct bin_attribute error_state_attr = {
  433. .attr.name = "error",
  434. .attr.mode = S_IRUSR | S_IWUSR,
  435. .size = 0,
  436. .read = error_state_read,
  437. .write = error_state_write,
  438. };
  439. static void i915_setup_error_capture(struct device *kdev)
  440. {
  441. if (sysfs_create_bin_file(&kdev->kobj, &error_state_attr))
  442. DRM_ERROR("error_state sysfs setup failed\n");
  443. }
  444. static void i915_teardown_error_capture(struct device *kdev)
  445. {
  446. sysfs_remove_bin_file(&kdev->kobj, &error_state_attr);
  447. }
  448. #else
  449. static void i915_setup_error_capture(struct device *kdev) {}
  450. static void i915_teardown_error_capture(struct device *kdev) {}
  451. #endif
  452. void i915_setup_sysfs(struct drm_i915_private *dev_priv)
  453. {
  454. struct device *kdev = dev_priv->drm.primary->kdev;
  455. int ret;
  456. #ifdef CONFIG_PM
  457. if (HAS_RC6(dev_priv)) {
  458. ret = sysfs_merge_group(&kdev->kobj,
  459. &rc6_attr_group);
  460. if (ret)
  461. DRM_ERROR("RC6 residency sysfs setup failed\n");
  462. }
  463. if (HAS_RC6p(dev_priv)) {
  464. ret = sysfs_merge_group(&kdev->kobj,
  465. &rc6p_attr_group);
  466. if (ret)
  467. DRM_ERROR("RC6p residency sysfs setup failed\n");
  468. }
  469. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  470. ret = sysfs_merge_group(&kdev->kobj,
  471. &media_rc6_attr_group);
  472. if (ret)
  473. DRM_ERROR("Media RC6 residency sysfs setup failed\n");
  474. }
  475. #endif
  476. if (HAS_L3_DPF(dev_priv)) {
  477. ret = device_create_bin_file(kdev, &dpf_attrs);
  478. if (ret)
  479. DRM_ERROR("l3 parity sysfs setup failed\n");
  480. if (NUM_L3_SLICES(dev_priv) > 1) {
  481. ret = device_create_bin_file(kdev,
  482. &dpf_attrs_1);
  483. if (ret)
  484. DRM_ERROR("l3 parity slice 1 setup failed\n");
  485. }
  486. }
  487. ret = 0;
  488. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  489. ret = sysfs_create_files(&kdev->kobj, vlv_attrs);
  490. else if (INTEL_GEN(dev_priv) >= 6)
  491. ret = sysfs_create_files(&kdev->kobj, gen6_attrs);
  492. if (ret)
  493. DRM_ERROR("RPS sysfs setup failed\n");
  494. i915_setup_error_capture(kdev);
  495. }
  496. void i915_teardown_sysfs(struct drm_i915_private *dev_priv)
  497. {
  498. struct device *kdev = dev_priv->drm.primary->kdev;
  499. i915_teardown_error_capture(kdev);
  500. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  501. sysfs_remove_files(&kdev->kobj, vlv_attrs);
  502. else
  503. sysfs_remove_files(&kdev->kobj, gen6_attrs);
  504. device_remove_bin_file(kdev, &dpf_attrs_1);
  505. device_remove_bin_file(kdev, &dpf_attrs);
  506. #ifdef CONFIG_PM
  507. sysfs_unmerge_group(&kdev->kobj, &rc6_attr_group);
  508. sysfs_unmerge_group(&kdev->kobj, &rc6p_attr_group);
  509. #endif
  510. }