iov_iter.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382
  1. #include <linux/export.h>
  2. #include <linux/bvec.h>
  3. #include <linux/uio.h>
  4. #include <linux/pagemap.h>
  5. #include <linux/slab.h>
  6. #include <linux/vmalloc.h>
  7. #include <linux/splice.h>
  8. #include <net/checksum.h>
  9. #define PIPE_PARANOIA /* for now */
  10. #define iterate_iovec(i, n, __v, __p, skip, STEP) { \
  11. size_t left; \
  12. size_t wanted = n; \
  13. __p = i->iov; \
  14. __v.iov_len = min(n, __p->iov_len - skip); \
  15. if (likely(__v.iov_len)) { \
  16. __v.iov_base = __p->iov_base + skip; \
  17. left = (STEP); \
  18. __v.iov_len -= left; \
  19. skip += __v.iov_len; \
  20. n -= __v.iov_len; \
  21. } else { \
  22. left = 0; \
  23. } \
  24. while (unlikely(!left && n)) { \
  25. __p++; \
  26. __v.iov_len = min(n, __p->iov_len); \
  27. if (unlikely(!__v.iov_len)) \
  28. continue; \
  29. __v.iov_base = __p->iov_base; \
  30. left = (STEP); \
  31. __v.iov_len -= left; \
  32. skip = __v.iov_len; \
  33. n -= __v.iov_len; \
  34. } \
  35. n = wanted - n; \
  36. }
  37. #define iterate_kvec(i, n, __v, __p, skip, STEP) { \
  38. size_t wanted = n; \
  39. __p = i->kvec; \
  40. __v.iov_len = min(n, __p->iov_len - skip); \
  41. if (likely(__v.iov_len)) { \
  42. __v.iov_base = __p->iov_base + skip; \
  43. (void)(STEP); \
  44. skip += __v.iov_len; \
  45. n -= __v.iov_len; \
  46. } \
  47. while (unlikely(n)) { \
  48. __p++; \
  49. __v.iov_len = min(n, __p->iov_len); \
  50. if (unlikely(!__v.iov_len)) \
  51. continue; \
  52. __v.iov_base = __p->iov_base; \
  53. (void)(STEP); \
  54. skip = __v.iov_len; \
  55. n -= __v.iov_len; \
  56. } \
  57. n = wanted; \
  58. }
  59. #define iterate_bvec(i, n, __v, __bi, skip, STEP) { \
  60. struct bvec_iter __start; \
  61. __start.bi_size = n; \
  62. __start.bi_bvec_done = skip; \
  63. __start.bi_idx = 0; \
  64. for_each_bvec(__v, i->bvec, __bi, __start) { \
  65. if (!__v.bv_len) \
  66. continue; \
  67. (void)(STEP); \
  68. } \
  69. }
  70. #define iterate_all_kinds(i, n, v, I, B, K) { \
  71. if (likely(n)) { \
  72. size_t skip = i->iov_offset; \
  73. if (unlikely(i->type & ITER_BVEC)) { \
  74. struct bio_vec v; \
  75. struct bvec_iter __bi; \
  76. iterate_bvec(i, n, v, __bi, skip, (B)) \
  77. } else if (unlikely(i->type & ITER_KVEC)) { \
  78. const struct kvec *kvec; \
  79. struct kvec v; \
  80. iterate_kvec(i, n, v, kvec, skip, (K)) \
  81. } else { \
  82. const struct iovec *iov; \
  83. struct iovec v; \
  84. iterate_iovec(i, n, v, iov, skip, (I)) \
  85. } \
  86. } \
  87. }
  88. #define iterate_and_advance(i, n, v, I, B, K) { \
  89. if (unlikely(i->count < n)) \
  90. n = i->count; \
  91. if (i->count) { \
  92. size_t skip = i->iov_offset; \
  93. if (unlikely(i->type & ITER_BVEC)) { \
  94. const struct bio_vec *bvec = i->bvec; \
  95. struct bio_vec v; \
  96. struct bvec_iter __bi; \
  97. iterate_bvec(i, n, v, __bi, skip, (B)) \
  98. i->bvec = __bvec_iter_bvec(i->bvec, __bi); \
  99. i->nr_segs -= i->bvec - bvec; \
  100. skip = __bi.bi_bvec_done; \
  101. } else if (unlikely(i->type & ITER_KVEC)) { \
  102. const struct kvec *kvec; \
  103. struct kvec v; \
  104. iterate_kvec(i, n, v, kvec, skip, (K)) \
  105. if (skip == kvec->iov_len) { \
  106. kvec++; \
  107. skip = 0; \
  108. } \
  109. i->nr_segs -= kvec - i->kvec; \
  110. i->kvec = kvec; \
  111. } else { \
  112. const struct iovec *iov; \
  113. struct iovec v; \
  114. iterate_iovec(i, n, v, iov, skip, (I)) \
  115. if (skip == iov->iov_len) { \
  116. iov++; \
  117. skip = 0; \
  118. } \
  119. i->nr_segs -= iov - i->iov; \
  120. i->iov = iov; \
  121. } \
  122. i->count -= n; \
  123. i->iov_offset = skip; \
  124. } \
  125. }
  126. static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
  127. struct iov_iter *i)
  128. {
  129. size_t skip, copy, left, wanted;
  130. const struct iovec *iov;
  131. char __user *buf;
  132. void *kaddr, *from;
  133. if (unlikely(bytes > i->count))
  134. bytes = i->count;
  135. if (unlikely(!bytes))
  136. return 0;
  137. wanted = bytes;
  138. iov = i->iov;
  139. skip = i->iov_offset;
  140. buf = iov->iov_base + skip;
  141. copy = min(bytes, iov->iov_len - skip);
  142. if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
  143. kaddr = kmap_atomic(page);
  144. from = kaddr + offset;
  145. /* first chunk, usually the only one */
  146. left = __copy_to_user_inatomic(buf, from, copy);
  147. copy -= left;
  148. skip += copy;
  149. from += copy;
  150. bytes -= copy;
  151. while (unlikely(!left && bytes)) {
  152. iov++;
  153. buf = iov->iov_base;
  154. copy = min(bytes, iov->iov_len);
  155. left = __copy_to_user_inatomic(buf, from, copy);
  156. copy -= left;
  157. skip = copy;
  158. from += copy;
  159. bytes -= copy;
  160. }
  161. if (likely(!bytes)) {
  162. kunmap_atomic(kaddr);
  163. goto done;
  164. }
  165. offset = from - kaddr;
  166. buf += copy;
  167. kunmap_atomic(kaddr);
  168. copy = min(bytes, iov->iov_len - skip);
  169. }
  170. /* Too bad - revert to non-atomic kmap */
  171. kaddr = kmap(page);
  172. from = kaddr + offset;
  173. left = __copy_to_user(buf, from, copy);
  174. copy -= left;
  175. skip += copy;
  176. from += copy;
  177. bytes -= copy;
  178. while (unlikely(!left && bytes)) {
  179. iov++;
  180. buf = iov->iov_base;
  181. copy = min(bytes, iov->iov_len);
  182. left = __copy_to_user(buf, from, copy);
  183. copy -= left;
  184. skip = copy;
  185. from += copy;
  186. bytes -= copy;
  187. }
  188. kunmap(page);
  189. done:
  190. if (skip == iov->iov_len) {
  191. iov++;
  192. skip = 0;
  193. }
  194. i->count -= wanted - bytes;
  195. i->nr_segs -= iov - i->iov;
  196. i->iov = iov;
  197. i->iov_offset = skip;
  198. return wanted - bytes;
  199. }
  200. static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
  201. struct iov_iter *i)
  202. {
  203. size_t skip, copy, left, wanted;
  204. const struct iovec *iov;
  205. char __user *buf;
  206. void *kaddr, *to;
  207. if (unlikely(bytes > i->count))
  208. bytes = i->count;
  209. if (unlikely(!bytes))
  210. return 0;
  211. wanted = bytes;
  212. iov = i->iov;
  213. skip = i->iov_offset;
  214. buf = iov->iov_base + skip;
  215. copy = min(bytes, iov->iov_len - skip);
  216. if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
  217. kaddr = kmap_atomic(page);
  218. to = kaddr + offset;
  219. /* first chunk, usually the only one */
  220. left = __copy_from_user_inatomic(to, buf, copy);
  221. copy -= left;
  222. skip += copy;
  223. to += copy;
  224. bytes -= copy;
  225. while (unlikely(!left && bytes)) {
  226. iov++;
  227. buf = iov->iov_base;
  228. copy = min(bytes, iov->iov_len);
  229. left = __copy_from_user_inatomic(to, buf, copy);
  230. copy -= left;
  231. skip = copy;
  232. to += copy;
  233. bytes -= copy;
  234. }
  235. if (likely(!bytes)) {
  236. kunmap_atomic(kaddr);
  237. goto done;
  238. }
  239. offset = to - kaddr;
  240. buf += copy;
  241. kunmap_atomic(kaddr);
  242. copy = min(bytes, iov->iov_len - skip);
  243. }
  244. /* Too bad - revert to non-atomic kmap */
  245. kaddr = kmap(page);
  246. to = kaddr + offset;
  247. left = __copy_from_user(to, buf, copy);
  248. copy -= left;
  249. skip += copy;
  250. to += copy;
  251. bytes -= copy;
  252. while (unlikely(!left && bytes)) {
  253. iov++;
  254. buf = iov->iov_base;
  255. copy = min(bytes, iov->iov_len);
  256. left = __copy_from_user(to, buf, copy);
  257. copy -= left;
  258. skip = copy;
  259. to += copy;
  260. bytes -= copy;
  261. }
  262. kunmap(page);
  263. done:
  264. if (skip == iov->iov_len) {
  265. iov++;
  266. skip = 0;
  267. }
  268. i->count -= wanted - bytes;
  269. i->nr_segs -= iov - i->iov;
  270. i->iov = iov;
  271. i->iov_offset = skip;
  272. return wanted - bytes;
  273. }
  274. #ifdef PIPE_PARANOIA
  275. static bool sanity(const struct iov_iter *i)
  276. {
  277. struct pipe_inode_info *pipe = i->pipe;
  278. int idx = i->idx;
  279. int next = pipe->curbuf + pipe->nrbufs;
  280. if (i->iov_offset) {
  281. struct pipe_buffer *p;
  282. if (unlikely(!pipe->nrbufs))
  283. goto Bad; // pipe must be non-empty
  284. if (unlikely(idx != ((next - 1) & (pipe->buffers - 1))))
  285. goto Bad; // must be at the last buffer...
  286. p = &pipe->bufs[idx];
  287. if (unlikely(p->offset + p->len != i->iov_offset))
  288. goto Bad; // ... at the end of segment
  289. } else {
  290. if (idx != (next & (pipe->buffers - 1)))
  291. goto Bad; // must be right after the last buffer
  292. }
  293. return true;
  294. Bad:
  295. printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset);
  296. printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n",
  297. pipe->curbuf, pipe->nrbufs, pipe->buffers);
  298. for (idx = 0; idx < pipe->buffers; idx++)
  299. printk(KERN_ERR "[%p %p %d %d]\n",
  300. pipe->bufs[idx].ops,
  301. pipe->bufs[idx].page,
  302. pipe->bufs[idx].offset,
  303. pipe->bufs[idx].len);
  304. WARN_ON(1);
  305. return false;
  306. }
  307. #else
  308. #define sanity(i) true
  309. #endif
  310. static inline int next_idx(int idx, struct pipe_inode_info *pipe)
  311. {
  312. return (idx + 1) & (pipe->buffers - 1);
  313. }
  314. static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
  315. struct iov_iter *i)
  316. {
  317. struct pipe_inode_info *pipe = i->pipe;
  318. struct pipe_buffer *buf;
  319. size_t off;
  320. int idx;
  321. if (unlikely(bytes > i->count))
  322. bytes = i->count;
  323. if (unlikely(!bytes))
  324. return 0;
  325. if (!sanity(i))
  326. return 0;
  327. off = i->iov_offset;
  328. idx = i->idx;
  329. buf = &pipe->bufs[idx];
  330. if (off) {
  331. if (offset == off && buf->page == page) {
  332. /* merge with the last one */
  333. buf->len += bytes;
  334. i->iov_offset += bytes;
  335. goto out;
  336. }
  337. idx = next_idx(idx, pipe);
  338. buf = &pipe->bufs[idx];
  339. }
  340. if (idx == pipe->curbuf && pipe->nrbufs)
  341. return 0;
  342. pipe->nrbufs++;
  343. buf->ops = &page_cache_pipe_buf_ops;
  344. get_page(buf->page = page);
  345. buf->offset = offset;
  346. buf->len = bytes;
  347. i->iov_offset = offset + bytes;
  348. i->idx = idx;
  349. out:
  350. i->count -= bytes;
  351. return bytes;
  352. }
  353. /*
  354. * Fault in one or more iovecs of the given iov_iter, to a maximum length of
  355. * bytes. For each iovec, fault in each page that constitutes the iovec.
  356. *
  357. * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
  358. * because it is an invalid address).
  359. */
  360. int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
  361. {
  362. size_t skip = i->iov_offset;
  363. const struct iovec *iov;
  364. int err;
  365. struct iovec v;
  366. if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
  367. iterate_iovec(i, bytes, v, iov, skip, ({
  368. err = fault_in_pages_readable(v.iov_base, v.iov_len);
  369. if (unlikely(err))
  370. return err;
  371. 0;}))
  372. }
  373. return 0;
  374. }
  375. EXPORT_SYMBOL(iov_iter_fault_in_readable);
  376. void iov_iter_init(struct iov_iter *i, int direction,
  377. const struct iovec *iov, unsigned long nr_segs,
  378. size_t count)
  379. {
  380. /* It will get better. Eventually... */
  381. if (uaccess_kernel()) {
  382. direction |= ITER_KVEC;
  383. i->type = direction;
  384. i->kvec = (struct kvec *)iov;
  385. } else {
  386. i->type = direction;
  387. i->iov = iov;
  388. }
  389. i->nr_segs = nr_segs;
  390. i->iov_offset = 0;
  391. i->count = count;
  392. }
  393. EXPORT_SYMBOL(iov_iter_init);
  394. static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
  395. {
  396. char *from = kmap_atomic(page);
  397. memcpy(to, from + offset, len);
  398. kunmap_atomic(from);
  399. }
  400. static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
  401. {
  402. char *to = kmap_atomic(page);
  403. memcpy(to + offset, from, len);
  404. kunmap_atomic(to);
  405. }
  406. static void memzero_page(struct page *page, size_t offset, size_t len)
  407. {
  408. char *addr = kmap_atomic(page);
  409. memset(addr + offset, 0, len);
  410. kunmap_atomic(addr);
  411. }
  412. static inline bool allocated(struct pipe_buffer *buf)
  413. {
  414. return buf->ops == &default_pipe_buf_ops;
  415. }
  416. static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp)
  417. {
  418. size_t off = i->iov_offset;
  419. int idx = i->idx;
  420. if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) {
  421. idx = next_idx(idx, i->pipe);
  422. off = 0;
  423. }
  424. *idxp = idx;
  425. *offp = off;
  426. }
  427. static size_t push_pipe(struct iov_iter *i, size_t size,
  428. int *idxp, size_t *offp)
  429. {
  430. struct pipe_inode_info *pipe = i->pipe;
  431. size_t off;
  432. int idx;
  433. ssize_t left;
  434. if (unlikely(size > i->count))
  435. size = i->count;
  436. if (unlikely(!size))
  437. return 0;
  438. left = size;
  439. data_start(i, &idx, &off);
  440. *idxp = idx;
  441. *offp = off;
  442. if (off) {
  443. left -= PAGE_SIZE - off;
  444. if (left <= 0) {
  445. pipe->bufs[idx].len += size;
  446. return size;
  447. }
  448. pipe->bufs[idx].len = PAGE_SIZE;
  449. idx = next_idx(idx, pipe);
  450. }
  451. while (idx != pipe->curbuf || !pipe->nrbufs) {
  452. struct page *page = alloc_page(GFP_USER);
  453. if (!page)
  454. break;
  455. pipe->nrbufs++;
  456. pipe->bufs[idx].ops = &default_pipe_buf_ops;
  457. pipe->bufs[idx].page = page;
  458. pipe->bufs[idx].offset = 0;
  459. if (left <= PAGE_SIZE) {
  460. pipe->bufs[idx].len = left;
  461. return size;
  462. }
  463. pipe->bufs[idx].len = PAGE_SIZE;
  464. left -= PAGE_SIZE;
  465. idx = next_idx(idx, pipe);
  466. }
  467. return size - left;
  468. }
  469. static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
  470. struct iov_iter *i)
  471. {
  472. struct pipe_inode_info *pipe = i->pipe;
  473. size_t n, off;
  474. int idx;
  475. if (!sanity(i))
  476. return 0;
  477. bytes = n = push_pipe(i, bytes, &idx, &off);
  478. if (unlikely(!n))
  479. return 0;
  480. for ( ; n; idx = next_idx(idx, pipe), off = 0) {
  481. size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
  482. memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk);
  483. i->idx = idx;
  484. i->iov_offset = off + chunk;
  485. n -= chunk;
  486. addr += chunk;
  487. }
  488. i->count -= bytes;
  489. return bytes;
  490. }
  491. size_t copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
  492. {
  493. const char *from = addr;
  494. if (unlikely(i->type & ITER_PIPE))
  495. return copy_pipe_to_iter(addr, bytes, i);
  496. iterate_and_advance(i, bytes, v,
  497. __copy_to_user(v.iov_base, (from += v.iov_len) - v.iov_len,
  498. v.iov_len),
  499. memcpy_to_page(v.bv_page, v.bv_offset,
  500. (from += v.bv_len) - v.bv_len, v.bv_len),
  501. memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
  502. )
  503. return bytes;
  504. }
  505. EXPORT_SYMBOL(copy_to_iter);
  506. size_t copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
  507. {
  508. char *to = addr;
  509. if (unlikely(i->type & ITER_PIPE)) {
  510. WARN_ON(1);
  511. return 0;
  512. }
  513. iterate_and_advance(i, bytes, v,
  514. __copy_from_user((to += v.iov_len) - v.iov_len, v.iov_base,
  515. v.iov_len),
  516. memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
  517. v.bv_offset, v.bv_len),
  518. memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
  519. )
  520. return bytes;
  521. }
  522. EXPORT_SYMBOL(copy_from_iter);
  523. bool copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
  524. {
  525. char *to = addr;
  526. if (unlikely(i->type & ITER_PIPE)) {
  527. WARN_ON(1);
  528. return false;
  529. }
  530. if (unlikely(i->count < bytes))
  531. return false;
  532. iterate_all_kinds(i, bytes, v, ({
  533. if (__copy_from_user((to += v.iov_len) - v.iov_len,
  534. v.iov_base, v.iov_len))
  535. return false;
  536. 0;}),
  537. memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
  538. v.bv_offset, v.bv_len),
  539. memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
  540. )
  541. iov_iter_advance(i, bytes);
  542. return true;
  543. }
  544. EXPORT_SYMBOL(copy_from_iter_full);
  545. size_t copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
  546. {
  547. char *to = addr;
  548. if (unlikely(i->type & ITER_PIPE)) {
  549. WARN_ON(1);
  550. return 0;
  551. }
  552. iterate_and_advance(i, bytes, v,
  553. __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
  554. v.iov_base, v.iov_len),
  555. memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
  556. v.bv_offset, v.bv_len),
  557. memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
  558. )
  559. return bytes;
  560. }
  561. EXPORT_SYMBOL(copy_from_iter_nocache);
  562. bool copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
  563. {
  564. char *to = addr;
  565. if (unlikely(i->type & ITER_PIPE)) {
  566. WARN_ON(1);
  567. return false;
  568. }
  569. if (unlikely(i->count < bytes))
  570. return false;
  571. iterate_all_kinds(i, bytes, v, ({
  572. if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
  573. v.iov_base, v.iov_len))
  574. return false;
  575. 0;}),
  576. memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
  577. v.bv_offset, v.bv_len),
  578. memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
  579. )
  580. iov_iter_advance(i, bytes);
  581. return true;
  582. }
  583. EXPORT_SYMBOL(copy_from_iter_full_nocache);
  584. size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
  585. struct iov_iter *i)
  586. {
  587. if (i->type & (ITER_BVEC|ITER_KVEC)) {
  588. void *kaddr = kmap_atomic(page);
  589. size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
  590. kunmap_atomic(kaddr);
  591. return wanted;
  592. } else if (likely(!(i->type & ITER_PIPE)))
  593. return copy_page_to_iter_iovec(page, offset, bytes, i);
  594. else
  595. return copy_page_to_iter_pipe(page, offset, bytes, i);
  596. }
  597. EXPORT_SYMBOL(copy_page_to_iter);
  598. size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
  599. struct iov_iter *i)
  600. {
  601. if (unlikely(i->type & ITER_PIPE)) {
  602. WARN_ON(1);
  603. return 0;
  604. }
  605. if (i->type & (ITER_BVEC|ITER_KVEC)) {
  606. void *kaddr = kmap_atomic(page);
  607. size_t wanted = copy_from_iter(kaddr + offset, bytes, i);
  608. kunmap_atomic(kaddr);
  609. return wanted;
  610. } else
  611. return copy_page_from_iter_iovec(page, offset, bytes, i);
  612. }
  613. EXPORT_SYMBOL(copy_page_from_iter);
  614. static size_t pipe_zero(size_t bytes, struct iov_iter *i)
  615. {
  616. struct pipe_inode_info *pipe = i->pipe;
  617. size_t n, off;
  618. int idx;
  619. if (!sanity(i))
  620. return 0;
  621. bytes = n = push_pipe(i, bytes, &idx, &off);
  622. if (unlikely(!n))
  623. return 0;
  624. for ( ; n; idx = next_idx(idx, pipe), off = 0) {
  625. size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
  626. memzero_page(pipe->bufs[idx].page, off, chunk);
  627. i->idx = idx;
  628. i->iov_offset = off + chunk;
  629. n -= chunk;
  630. }
  631. i->count -= bytes;
  632. return bytes;
  633. }
  634. size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
  635. {
  636. if (unlikely(i->type & ITER_PIPE))
  637. return pipe_zero(bytes, i);
  638. iterate_and_advance(i, bytes, v,
  639. __clear_user(v.iov_base, v.iov_len),
  640. memzero_page(v.bv_page, v.bv_offset, v.bv_len),
  641. memset(v.iov_base, 0, v.iov_len)
  642. )
  643. return bytes;
  644. }
  645. EXPORT_SYMBOL(iov_iter_zero);
  646. size_t iov_iter_copy_from_user_atomic(struct page *page,
  647. struct iov_iter *i, unsigned long offset, size_t bytes)
  648. {
  649. char *kaddr = kmap_atomic(page), *p = kaddr + offset;
  650. if (unlikely(i->type & ITER_PIPE)) {
  651. kunmap_atomic(kaddr);
  652. WARN_ON(1);
  653. return 0;
  654. }
  655. iterate_all_kinds(i, bytes, v,
  656. __copy_from_user_inatomic((p += v.iov_len) - v.iov_len,
  657. v.iov_base, v.iov_len),
  658. memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
  659. v.bv_offset, v.bv_len),
  660. memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
  661. )
  662. kunmap_atomic(kaddr);
  663. return bytes;
  664. }
  665. EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
  666. static inline void pipe_truncate(struct iov_iter *i)
  667. {
  668. struct pipe_inode_info *pipe = i->pipe;
  669. if (pipe->nrbufs) {
  670. size_t off = i->iov_offset;
  671. int idx = i->idx;
  672. int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1);
  673. if (off) {
  674. pipe->bufs[idx].len = off - pipe->bufs[idx].offset;
  675. idx = next_idx(idx, pipe);
  676. nrbufs++;
  677. }
  678. while (pipe->nrbufs > nrbufs) {
  679. pipe_buf_release(pipe, &pipe->bufs[idx]);
  680. idx = next_idx(idx, pipe);
  681. pipe->nrbufs--;
  682. }
  683. }
  684. }
  685. static void pipe_advance(struct iov_iter *i, size_t size)
  686. {
  687. struct pipe_inode_info *pipe = i->pipe;
  688. if (unlikely(i->count < size))
  689. size = i->count;
  690. if (size) {
  691. struct pipe_buffer *buf;
  692. size_t off = i->iov_offset, left = size;
  693. int idx = i->idx;
  694. if (off) /* make it relative to the beginning of buffer */
  695. left += off - pipe->bufs[idx].offset;
  696. while (1) {
  697. buf = &pipe->bufs[idx];
  698. if (left <= buf->len)
  699. break;
  700. left -= buf->len;
  701. idx = next_idx(idx, pipe);
  702. }
  703. i->idx = idx;
  704. i->iov_offset = buf->offset + left;
  705. }
  706. i->count -= size;
  707. /* ... and discard everything past that point */
  708. pipe_truncate(i);
  709. }
  710. void iov_iter_advance(struct iov_iter *i, size_t size)
  711. {
  712. if (unlikely(i->type & ITER_PIPE)) {
  713. pipe_advance(i, size);
  714. return;
  715. }
  716. iterate_and_advance(i, size, v, 0, 0, 0)
  717. }
  718. EXPORT_SYMBOL(iov_iter_advance);
  719. void iov_iter_revert(struct iov_iter *i, size_t unroll)
  720. {
  721. if (!unroll)
  722. return;
  723. i->count += unroll;
  724. if (unlikely(i->type & ITER_PIPE)) {
  725. struct pipe_inode_info *pipe = i->pipe;
  726. int idx = i->idx;
  727. size_t off = i->iov_offset;
  728. while (1) {
  729. size_t n = off - pipe->bufs[idx].offset;
  730. if (unroll < n) {
  731. off -= unroll;
  732. break;
  733. }
  734. unroll -= n;
  735. if (!unroll && idx == i->start_idx) {
  736. off = 0;
  737. break;
  738. }
  739. if (!idx--)
  740. idx = pipe->buffers - 1;
  741. off = pipe->bufs[idx].offset + pipe->bufs[idx].len;
  742. }
  743. i->iov_offset = off;
  744. i->idx = idx;
  745. pipe_truncate(i);
  746. return;
  747. }
  748. if (unroll <= i->iov_offset) {
  749. i->iov_offset -= unroll;
  750. return;
  751. }
  752. unroll -= i->iov_offset;
  753. if (i->type & ITER_BVEC) {
  754. const struct bio_vec *bvec = i->bvec;
  755. while (1) {
  756. size_t n = (--bvec)->bv_len;
  757. i->nr_segs++;
  758. if (unroll <= n) {
  759. i->bvec = bvec;
  760. i->iov_offset = n - unroll;
  761. return;
  762. }
  763. unroll -= n;
  764. }
  765. } else { /* same logics for iovec and kvec */
  766. const struct iovec *iov = i->iov;
  767. while (1) {
  768. size_t n = (--iov)->iov_len;
  769. i->nr_segs++;
  770. if (unroll <= n) {
  771. i->iov = iov;
  772. i->iov_offset = n - unroll;
  773. return;
  774. }
  775. unroll -= n;
  776. }
  777. }
  778. }
  779. EXPORT_SYMBOL(iov_iter_revert);
  780. /*
  781. * Return the count of just the current iov_iter segment.
  782. */
  783. size_t iov_iter_single_seg_count(const struct iov_iter *i)
  784. {
  785. if (unlikely(i->type & ITER_PIPE))
  786. return i->count; // it is a silly place, anyway
  787. if (i->nr_segs == 1)
  788. return i->count;
  789. else if (i->type & ITER_BVEC)
  790. return min(i->count, i->bvec->bv_len - i->iov_offset);
  791. else
  792. return min(i->count, i->iov->iov_len - i->iov_offset);
  793. }
  794. EXPORT_SYMBOL(iov_iter_single_seg_count);
  795. void iov_iter_kvec(struct iov_iter *i, int direction,
  796. const struct kvec *kvec, unsigned long nr_segs,
  797. size_t count)
  798. {
  799. BUG_ON(!(direction & ITER_KVEC));
  800. i->type = direction;
  801. i->kvec = kvec;
  802. i->nr_segs = nr_segs;
  803. i->iov_offset = 0;
  804. i->count = count;
  805. }
  806. EXPORT_SYMBOL(iov_iter_kvec);
  807. void iov_iter_bvec(struct iov_iter *i, int direction,
  808. const struct bio_vec *bvec, unsigned long nr_segs,
  809. size_t count)
  810. {
  811. BUG_ON(!(direction & ITER_BVEC));
  812. i->type = direction;
  813. i->bvec = bvec;
  814. i->nr_segs = nr_segs;
  815. i->iov_offset = 0;
  816. i->count = count;
  817. }
  818. EXPORT_SYMBOL(iov_iter_bvec);
  819. void iov_iter_pipe(struct iov_iter *i, int direction,
  820. struct pipe_inode_info *pipe,
  821. size_t count)
  822. {
  823. BUG_ON(direction != ITER_PIPE);
  824. WARN_ON(pipe->nrbufs == pipe->buffers);
  825. i->type = direction;
  826. i->pipe = pipe;
  827. i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
  828. i->iov_offset = 0;
  829. i->count = count;
  830. i->start_idx = i->idx;
  831. }
  832. EXPORT_SYMBOL(iov_iter_pipe);
  833. unsigned long iov_iter_alignment(const struct iov_iter *i)
  834. {
  835. unsigned long res = 0;
  836. size_t size = i->count;
  837. if (unlikely(i->type & ITER_PIPE)) {
  838. if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx]))
  839. return size | i->iov_offset;
  840. return size;
  841. }
  842. iterate_all_kinds(i, size, v,
  843. (res |= (unsigned long)v.iov_base | v.iov_len, 0),
  844. res |= v.bv_offset | v.bv_len,
  845. res |= (unsigned long)v.iov_base | v.iov_len
  846. )
  847. return res;
  848. }
  849. EXPORT_SYMBOL(iov_iter_alignment);
  850. unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
  851. {
  852. unsigned long res = 0;
  853. size_t size = i->count;
  854. if (unlikely(i->type & ITER_PIPE)) {
  855. WARN_ON(1);
  856. return ~0U;
  857. }
  858. iterate_all_kinds(i, size, v,
  859. (res |= (!res ? 0 : (unsigned long)v.iov_base) |
  860. (size != v.iov_len ? size : 0), 0),
  861. (res |= (!res ? 0 : (unsigned long)v.bv_offset) |
  862. (size != v.bv_len ? size : 0)),
  863. (res |= (!res ? 0 : (unsigned long)v.iov_base) |
  864. (size != v.iov_len ? size : 0))
  865. );
  866. return res;
  867. }
  868. EXPORT_SYMBOL(iov_iter_gap_alignment);
  869. static inline size_t __pipe_get_pages(struct iov_iter *i,
  870. size_t maxsize,
  871. struct page **pages,
  872. int idx,
  873. size_t *start)
  874. {
  875. struct pipe_inode_info *pipe = i->pipe;
  876. ssize_t n = push_pipe(i, maxsize, &idx, start);
  877. if (!n)
  878. return -EFAULT;
  879. maxsize = n;
  880. n += *start;
  881. while (n > 0) {
  882. get_page(*pages++ = pipe->bufs[idx].page);
  883. idx = next_idx(idx, pipe);
  884. n -= PAGE_SIZE;
  885. }
  886. return maxsize;
  887. }
  888. static ssize_t pipe_get_pages(struct iov_iter *i,
  889. struct page **pages, size_t maxsize, unsigned maxpages,
  890. size_t *start)
  891. {
  892. unsigned npages;
  893. size_t capacity;
  894. int idx;
  895. if (!maxsize)
  896. return 0;
  897. if (!sanity(i))
  898. return -EFAULT;
  899. data_start(i, &idx, start);
  900. /* some of this one + all after this one */
  901. npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
  902. capacity = min(npages,maxpages) * PAGE_SIZE - *start;
  903. return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start);
  904. }
  905. ssize_t iov_iter_get_pages(struct iov_iter *i,
  906. struct page **pages, size_t maxsize, unsigned maxpages,
  907. size_t *start)
  908. {
  909. if (maxsize > i->count)
  910. maxsize = i->count;
  911. if (unlikely(i->type & ITER_PIPE))
  912. return pipe_get_pages(i, pages, maxsize, maxpages, start);
  913. iterate_all_kinds(i, maxsize, v, ({
  914. unsigned long addr = (unsigned long)v.iov_base;
  915. size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
  916. int n;
  917. int res;
  918. if (len > maxpages * PAGE_SIZE)
  919. len = maxpages * PAGE_SIZE;
  920. addr &= ~(PAGE_SIZE - 1);
  921. n = DIV_ROUND_UP(len, PAGE_SIZE);
  922. res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, pages);
  923. if (unlikely(res < 0))
  924. return res;
  925. return (res == n ? len : res * PAGE_SIZE) - *start;
  926. 0;}),({
  927. /* can't be more than PAGE_SIZE */
  928. *start = v.bv_offset;
  929. get_page(*pages = v.bv_page);
  930. return v.bv_len;
  931. }),({
  932. return -EFAULT;
  933. })
  934. )
  935. return 0;
  936. }
  937. EXPORT_SYMBOL(iov_iter_get_pages);
  938. static struct page **get_pages_array(size_t n)
  939. {
  940. return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
  941. }
  942. static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
  943. struct page ***pages, size_t maxsize,
  944. size_t *start)
  945. {
  946. struct page **p;
  947. size_t n;
  948. int idx;
  949. int npages;
  950. if (!maxsize)
  951. return 0;
  952. if (!sanity(i))
  953. return -EFAULT;
  954. data_start(i, &idx, start);
  955. /* some of this one + all after this one */
  956. npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
  957. n = npages * PAGE_SIZE - *start;
  958. if (maxsize > n)
  959. maxsize = n;
  960. else
  961. npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
  962. p = get_pages_array(npages);
  963. if (!p)
  964. return -ENOMEM;
  965. n = __pipe_get_pages(i, maxsize, p, idx, start);
  966. if (n > 0)
  967. *pages = p;
  968. else
  969. kvfree(p);
  970. return n;
  971. }
  972. ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
  973. struct page ***pages, size_t maxsize,
  974. size_t *start)
  975. {
  976. struct page **p;
  977. if (maxsize > i->count)
  978. maxsize = i->count;
  979. if (unlikely(i->type & ITER_PIPE))
  980. return pipe_get_pages_alloc(i, pages, maxsize, start);
  981. iterate_all_kinds(i, maxsize, v, ({
  982. unsigned long addr = (unsigned long)v.iov_base;
  983. size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
  984. int n;
  985. int res;
  986. addr &= ~(PAGE_SIZE - 1);
  987. n = DIV_ROUND_UP(len, PAGE_SIZE);
  988. p = get_pages_array(n);
  989. if (!p)
  990. return -ENOMEM;
  991. res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, p);
  992. if (unlikely(res < 0)) {
  993. kvfree(p);
  994. return res;
  995. }
  996. *pages = p;
  997. return (res == n ? len : res * PAGE_SIZE) - *start;
  998. 0;}),({
  999. /* can't be more than PAGE_SIZE */
  1000. *start = v.bv_offset;
  1001. *pages = p = get_pages_array(1);
  1002. if (!p)
  1003. return -ENOMEM;
  1004. get_page(*p = v.bv_page);
  1005. return v.bv_len;
  1006. }),({
  1007. return -EFAULT;
  1008. })
  1009. )
  1010. return 0;
  1011. }
  1012. EXPORT_SYMBOL(iov_iter_get_pages_alloc);
  1013. size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
  1014. struct iov_iter *i)
  1015. {
  1016. char *to = addr;
  1017. __wsum sum, next;
  1018. size_t off = 0;
  1019. sum = *csum;
  1020. if (unlikely(i->type & ITER_PIPE)) {
  1021. WARN_ON(1);
  1022. return 0;
  1023. }
  1024. iterate_and_advance(i, bytes, v, ({
  1025. int err = 0;
  1026. next = csum_and_copy_from_user(v.iov_base,
  1027. (to += v.iov_len) - v.iov_len,
  1028. v.iov_len, 0, &err);
  1029. if (!err) {
  1030. sum = csum_block_add(sum, next, off);
  1031. off += v.iov_len;
  1032. }
  1033. err ? v.iov_len : 0;
  1034. }), ({
  1035. char *p = kmap_atomic(v.bv_page);
  1036. next = csum_partial_copy_nocheck(p + v.bv_offset,
  1037. (to += v.bv_len) - v.bv_len,
  1038. v.bv_len, 0);
  1039. kunmap_atomic(p);
  1040. sum = csum_block_add(sum, next, off);
  1041. off += v.bv_len;
  1042. }),({
  1043. next = csum_partial_copy_nocheck(v.iov_base,
  1044. (to += v.iov_len) - v.iov_len,
  1045. v.iov_len, 0);
  1046. sum = csum_block_add(sum, next, off);
  1047. off += v.iov_len;
  1048. })
  1049. )
  1050. *csum = sum;
  1051. return bytes;
  1052. }
  1053. EXPORT_SYMBOL(csum_and_copy_from_iter);
  1054. bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
  1055. struct iov_iter *i)
  1056. {
  1057. char *to = addr;
  1058. __wsum sum, next;
  1059. size_t off = 0;
  1060. sum = *csum;
  1061. if (unlikely(i->type & ITER_PIPE)) {
  1062. WARN_ON(1);
  1063. return false;
  1064. }
  1065. if (unlikely(i->count < bytes))
  1066. return false;
  1067. iterate_all_kinds(i, bytes, v, ({
  1068. int err = 0;
  1069. next = csum_and_copy_from_user(v.iov_base,
  1070. (to += v.iov_len) - v.iov_len,
  1071. v.iov_len, 0, &err);
  1072. if (err)
  1073. return false;
  1074. sum = csum_block_add(sum, next, off);
  1075. off += v.iov_len;
  1076. 0;
  1077. }), ({
  1078. char *p = kmap_atomic(v.bv_page);
  1079. next = csum_partial_copy_nocheck(p + v.bv_offset,
  1080. (to += v.bv_len) - v.bv_len,
  1081. v.bv_len, 0);
  1082. kunmap_atomic(p);
  1083. sum = csum_block_add(sum, next, off);
  1084. off += v.bv_len;
  1085. }),({
  1086. next = csum_partial_copy_nocheck(v.iov_base,
  1087. (to += v.iov_len) - v.iov_len,
  1088. v.iov_len, 0);
  1089. sum = csum_block_add(sum, next, off);
  1090. off += v.iov_len;
  1091. })
  1092. )
  1093. *csum = sum;
  1094. iov_iter_advance(i, bytes);
  1095. return true;
  1096. }
  1097. EXPORT_SYMBOL(csum_and_copy_from_iter_full);
  1098. size_t csum_and_copy_to_iter(const void *addr, size_t bytes, __wsum *csum,
  1099. struct iov_iter *i)
  1100. {
  1101. const char *from = addr;
  1102. __wsum sum, next;
  1103. size_t off = 0;
  1104. sum = *csum;
  1105. if (unlikely(i->type & ITER_PIPE)) {
  1106. WARN_ON(1); /* for now */
  1107. return 0;
  1108. }
  1109. iterate_and_advance(i, bytes, v, ({
  1110. int err = 0;
  1111. next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
  1112. v.iov_base,
  1113. v.iov_len, 0, &err);
  1114. if (!err) {
  1115. sum = csum_block_add(sum, next, off);
  1116. off += v.iov_len;
  1117. }
  1118. err ? v.iov_len : 0;
  1119. }), ({
  1120. char *p = kmap_atomic(v.bv_page);
  1121. next = csum_partial_copy_nocheck((from += v.bv_len) - v.bv_len,
  1122. p + v.bv_offset,
  1123. v.bv_len, 0);
  1124. kunmap_atomic(p);
  1125. sum = csum_block_add(sum, next, off);
  1126. off += v.bv_len;
  1127. }),({
  1128. next = csum_partial_copy_nocheck((from += v.iov_len) - v.iov_len,
  1129. v.iov_base,
  1130. v.iov_len, 0);
  1131. sum = csum_block_add(sum, next, off);
  1132. off += v.iov_len;
  1133. })
  1134. )
  1135. *csum = sum;
  1136. return bytes;
  1137. }
  1138. EXPORT_SYMBOL(csum_and_copy_to_iter);
  1139. int iov_iter_npages(const struct iov_iter *i, int maxpages)
  1140. {
  1141. size_t size = i->count;
  1142. int npages = 0;
  1143. if (!size)
  1144. return 0;
  1145. if (unlikely(i->type & ITER_PIPE)) {
  1146. struct pipe_inode_info *pipe = i->pipe;
  1147. size_t off;
  1148. int idx;
  1149. if (!sanity(i))
  1150. return 0;
  1151. data_start(i, &idx, &off);
  1152. /* some of this one + all after this one */
  1153. npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1;
  1154. if (npages >= maxpages)
  1155. return maxpages;
  1156. } else iterate_all_kinds(i, size, v, ({
  1157. unsigned long p = (unsigned long)v.iov_base;
  1158. npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
  1159. - p / PAGE_SIZE;
  1160. if (npages >= maxpages)
  1161. return maxpages;
  1162. 0;}),({
  1163. npages++;
  1164. if (npages >= maxpages)
  1165. return maxpages;
  1166. }),({
  1167. unsigned long p = (unsigned long)v.iov_base;
  1168. npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
  1169. - p / PAGE_SIZE;
  1170. if (npages >= maxpages)
  1171. return maxpages;
  1172. })
  1173. )
  1174. return npages;
  1175. }
  1176. EXPORT_SYMBOL(iov_iter_npages);
  1177. const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
  1178. {
  1179. *new = *old;
  1180. if (unlikely(new->type & ITER_PIPE)) {
  1181. WARN_ON(1);
  1182. return NULL;
  1183. }
  1184. if (new->type & ITER_BVEC)
  1185. return new->bvec = kmemdup(new->bvec,
  1186. new->nr_segs * sizeof(struct bio_vec),
  1187. flags);
  1188. else
  1189. /* iovec and kvec have identical layout */
  1190. return new->iov = kmemdup(new->iov,
  1191. new->nr_segs * sizeof(struct iovec),
  1192. flags);
  1193. }
  1194. EXPORT_SYMBOL(dup_iter);
  1195. /**
  1196. * import_iovec() - Copy an array of &struct iovec from userspace
  1197. * into the kernel, check that it is valid, and initialize a new
  1198. * &struct iov_iter iterator to access it.
  1199. *
  1200. * @type: One of %READ or %WRITE.
  1201. * @uvector: Pointer to the userspace array.
  1202. * @nr_segs: Number of elements in userspace array.
  1203. * @fast_segs: Number of elements in @iov.
  1204. * @iov: (input and output parameter) Pointer to pointer to (usually small
  1205. * on-stack) kernel array.
  1206. * @i: Pointer to iterator that will be initialized on success.
  1207. *
  1208. * If the array pointed to by *@iov is large enough to hold all @nr_segs,
  1209. * then this function places %NULL in *@iov on return. Otherwise, a new
  1210. * array will be allocated and the result placed in *@iov. This means that
  1211. * the caller may call kfree() on *@iov regardless of whether the small
  1212. * on-stack array was used or not (and regardless of whether this function
  1213. * returns an error or not).
  1214. *
  1215. * Return: 0 on success or negative error code on error.
  1216. */
  1217. int import_iovec(int type, const struct iovec __user * uvector,
  1218. unsigned nr_segs, unsigned fast_segs,
  1219. struct iovec **iov, struct iov_iter *i)
  1220. {
  1221. ssize_t n;
  1222. struct iovec *p;
  1223. n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
  1224. *iov, &p);
  1225. if (n < 0) {
  1226. if (p != *iov)
  1227. kfree(p);
  1228. *iov = NULL;
  1229. return n;
  1230. }
  1231. iov_iter_init(i, type, p, nr_segs, n);
  1232. *iov = p == *iov ? NULL : p;
  1233. return 0;
  1234. }
  1235. EXPORT_SYMBOL(import_iovec);
  1236. #ifdef CONFIG_COMPAT
  1237. #include <linux/compat.h>
  1238. int compat_import_iovec(int type, const struct compat_iovec __user * uvector,
  1239. unsigned nr_segs, unsigned fast_segs,
  1240. struct iovec **iov, struct iov_iter *i)
  1241. {
  1242. ssize_t n;
  1243. struct iovec *p;
  1244. n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
  1245. *iov, &p);
  1246. if (n < 0) {
  1247. if (p != *iov)
  1248. kfree(p);
  1249. *iov = NULL;
  1250. return n;
  1251. }
  1252. iov_iter_init(i, type, p, nr_segs, n);
  1253. *iov = p == *iov ? NULL : p;
  1254. return 0;
  1255. }
  1256. #endif
  1257. int import_single_range(int rw, void __user *buf, size_t len,
  1258. struct iovec *iov, struct iov_iter *i)
  1259. {
  1260. if (len > MAX_RW_COUNT)
  1261. len = MAX_RW_COUNT;
  1262. if (unlikely(!access_ok(!rw, buf, len)))
  1263. return -EFAULT;
  1264. iov->iov_base = buf;
  1265. iov->iov_len = len;
  1266. iov_iter_init(i, rw, iov, 1, len);
  1267. return 0;
  1268. }
  1269. EXPORT_SYMBOL(import_single_range);