stm32-hash.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651
  1. /*
  2. * This file is part of STM32 Crypto driver for Linux.
  3. *
  4. * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
  5. * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
  6. *
  7. * License terms: GPL V2.0.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License version 2 as published by
  11. * the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
  16. * details.
  17. *
  18. * You should have received a copy of the GNU General Public License along with
  19. * this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include <linux/clk.h>
  23. #include <linux/crypto.h>
  24. #include <linux/delay.h>
  25. #include <linux/dmaengine.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/io.h>
  28. #include <linux/iopoll.h>
  29. #include <linux/kernel.h>
  30. #include <linux/module.h>
  31. #include <linux/of_device.h>
  32. #include <linux/platform_device.h>
  33. #include <linux/pm_runtime.h>
  34. #include <linux/reset.h>
  35. #include <crypto/engine.h>
  36. #include <crypto/hash.h>
  37. #include <crypto/md5.h>
  38. #include <crypto/scatterwalk.h>
  39. #include <crypto/sha.h>
  40. #include <crypto/internal/hash.h>
  41. #define HASH_CR 0x00
  42. #define HASH_DIN 0x04
  43. #define HASH_STR 0x08
  44. #define HASH_IMR 0x20
  45. #define HASH_SR 0x24
  46. #define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
  47. #define HASH_HREG(x) (0x310 + ((x) * 0x04))
  48. #define HASH_HWCFGR 0x3F0
  49. #define HASH_VER 0x3F4
  50. #define HASH_ID 0x3F8
  51. /* Control Register */
  52. #define HASH_CR_INIT BIT(2)
  53. #define HASH_CR_DMAE BIT(3)
  54. #define HASH_CR_DATATYPE_POS 4
  55. #define HASH_CR_MODE BIT(6)
  56. #define HASH_CR_MDMAT BIT(13)
  57. #define HASH_CR_DMAA BIT(14)
  58. #define HASH_CR_LKEY BIT(16)
  59. #define HASH_CR_ALGO_SHA1 0x0
  60. #define HASH_CR_ALGO_MD5 0x80
  61. #define HASH_CR_ALGO_SHA224 0x40000
  62. #define HASH_CR_ALGO_SHA256 0x40080
  63. /* Interrupt */
  64. #define HASH_DINIE BIT(0)
  65. #define HASH_DCIE BIT(1)
  66. /* Interrupt Mask */
  67. #define HASH_MASK_CALC_COMPLETION BIT(0)
  68. #define HASH_MASK_DATA_INPUT BIT(1)
  69. /* Context swap register */
  70. #define HASH_CSR_REGISTER_NUMBER 53
  71. /* Status Flags */
  72. #define HASH_SR_DATA_INPUT_READY BIT(0)
  73. #define HASH_SR_OUTPUT_READY BIT(1)
  74. #define HASH_SR_DMA_ACTIVE BIT(2)
  75. #define HASH_SR_BUSY BIT(3)
  76. /* STR Register */
  77. #define HASH_STR_NBLW_MASK GENMASK(4, 0)
  78. #define HASH_STR_DCAL BIT(8)
  79. #define HASH_FLAGS_INIT BIT(0)
  80. #define HASH_FLAGS_OUTPUT_READY BIT(1)
  81. #define HASH_FLAGS_CPU BIT(2)
  82. #define HASH_FLAGS_DMA_READY BIT(3)
  83. #define HASH_FLAGS_DMA_ACTIVE BIT(4)
  84. #define HASH_FLAGS_HMAC_INIT BIT(5)
  85. #define HASH_FLAGS_HMAC_FINAL BIT(6)
  86. #define HASH_FLAGS_HMAC_KEY BIT(7)
  87. #define HASH_FLAGS_FINAL BIT(15)
  88. #define HASH_FLAGS_FINUP BIT(16)
  89. #define HASH_FLAGS_ALGO_MASK GENMASK(21, 18)
  90. #define HASH_FLAGS_MD5 BIT(18)
  91. #define HASH_FLAGS_SHA1 BIT(19)
  92. #define HASH_FLAGS_SHA224 BIT(20)
  93. #define HASH_FLAGS_SHA256 BIT(21)
  94. #define HASH_FLAGS_ERRORS BIT(22)
  95. #define HASH_FLAGS_HMAC BIT(23)
  96. #define HASH_OP_UPDATE 1
  97. #define HASH_OP_FINAL 2
  98. enum stm32_hash_data_format {
  99. HASH_DATA_32_BITS = 0x0,
  100. HASH_DATA_16_BITS = 0x1,
  101. HASH_DATA_8_BITS = 0x2,
  102. HASH_DATA_1_BIT = 0x3
  103. };
  104. #define HASH_BUFLEN 256
  105. #define HASH_LONG_KEY 64
  106. #define HASH_MAX_KEY_SIZE (SHA256_BLOCK_SIZE * 8)
  107. #define HASH_QUEUE_LENGTH 16
  108. #define HASH_DMA_THRESHOLD 50
  109. #define HASH_AUTOSUSPEND_DELAY 50
  110. struct stm32_hash_ctx {
  111. struct crypto_engine_ctx enginectx;
  112. struct stm32_hash_dev *hdev;
  113. unsigned long flags;
  114. u8 key[HASH_MAX_KEY_SIZE];
  115. int keylen;
  116. };
  117. struct stm32_hash_request_ctx {
  118. struct stm32_hash_dev *hdev;
  119. unsigned long flags;
  120. unsigned long op;
  121. u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
  122. size_t digcnt;
  123. size_t bufcnt;
  124. size_t buflen;
  125. /* DMA */
  126. struct scatterlist *sg;
  127. unsigned int offset;
  128. unsigned int total;
  129. struct scatterlist sg_key;
  130. dma_addr_t dma_addr;
  131. size_t dma_ct;
  132. int nents;
  133. u8 data_type;
  134. u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
  135. /* Export Context */
  136. u32 *hw_context;
  137. };
  138. struct stm32_hash_algs_info {
  139. struct ahash_alg *algs_list;
  140. size_t size;
  141. };
  142. struct stm32_hash_pdata {
  143. struct stm32_hash_algs_info *algs_info;
  144. size_t algs_info_size;
  145. };
  146. struct stm32_hash_dev {
  147. struct list_head list;
  148. struct device *dev;
  149. struct clk *clk;
  150. struct reset_control *rst;
  151. void __iomem *io_base;
  152. phys_addr_t phys_base;
  153. u32 dma_mode;
  154. u32 dma_maxburst;
  155. spinlock_t lock; /* lock to protect queue */
  156. struct ahash_request *req;
  157. struct crypto_engine *engine;
  158. int err;
  159. unsigned long flags;
  160. struct dma_chan *dma_lch;
  161. struct completion dma_completion;
  162. const struct stm32_hash_pdata *pdata;
  163. };
  164. struct stm32_hash_drv {
  165. struct list_head dev_list;
  166. spinlock_t lock; /* List protection access */
  167. };
  168. static struct stm32_hash_drv stm32_hash = {
  169. .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
  170. .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
  171. };
  172. static void stm32_hash_dma_callback(void *param);
  173. static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
  174. {
  175. return readl_relaxed(hdev->io_base + offset);
  176. }
  177. static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
  178. u32 offset, u32 value)
  179. {
  180. writel_relaxed(value, hdev->io_base + offset);
  181. }
  182. static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
  183. {
  184. u32 status;
  185. return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
  186. !(status & HASH_SR_BUSY), 10, 10000);
  187. }
  188. static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
  189. {
  190. u32 reg;
  191. reg = stm32_hash_read(hdev, HASH_STR);
  192. reg &= ~(HASH_STR_NBLW_MASK);
  193. reg |= (8U * ((length) % 4U));
  194. stm32_hash_write(hdev, HASH_STR, reg);
  195. }
  196. static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
  197. {
  198. struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
  199. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  200. u32 reg;
  201. int keylen = ctx->keylen;
  202. void *key = ctx->key;
  203. if (keylen) {
  204. stm32_hash_set_nblw(hdev, keylen);
  205. while (keylen > 0) {
  206. stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
  207. keylen -= 4;
  208. key += 4;
  209. }
  210. reg = stm32_hash_read(hdev, HASH_STR);
  211. reg |= HASH_STR_DCAL;
  212. stm32_hash_write(hdev, HASH_STR, reg);
  213. return -EINPROGRESS;
  214. }
  215. return 0;
  216. }
  217. static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
  218. {
  219. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  220. struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
  221. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  222. u32 reg = HASH_CR_INIT;
  223. if (!(hdev->flags & HASH_FLAGS_INIT)) {
  224. switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
  225. case HASH_FLAGS_MD5:
  226. reg |= HASH_CR_ALGO_MD5;
  227. break;
  228. case HASH_FLAGS_SHA1:
  229. reg |= HASH_CR_ALGO_SHA1;
  230. break;
  231. case HASH_FLAGS_SHA224:
  232. reg |= HASH_CR_ALGO_SHA224;
  233. break;
  234. case HASH_FLAGS_SHA256:
  235. reg |= HASH_CR_ALGO_SHA256;
  236. break;
  237. default:
  238. reg |= HASH_CR_ALGO_MD5;
  239. }
  240. reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
  241. if (rctx->flags & HASH_FLAGS_HMAC) {
  242. hdev->flags |= HASH_FLAGS_HMAC;
  243. reg |= HASH_CR_MODE;
  244. if (ctx->keylen > HASH_LONG_KEY)
  245. reg |= HASH_CR_LKEY;
  246. }
  247. stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
  248. stm32_hash_write(hdev, HASH_CR, reg);
  249. hdev->flags |= HASH_FLAGS_INIT;
  250. dev_dbg(hdev->dev, "Write Control %x\n", reg);
  251. }
  252. }
  253. static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
  254. {
  255. size_t count;
  256. while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
  257. count = min(rctx->sg->length - rctx->offset, rctx->total);
  258. count = min(count, rctx->buflen - rctx->bufcnt);
  259. if (count <= 0) {
  260. if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
  261. rctx->sg = sg_next(rctx->sg);
  262. continue;
  263. } else {
  264. break;
  265. }
  266. }
  267. scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
  268. rctx->offset, count, 0);
  269. rctx->bufcnt += count;
  270. rctx->offset += count;
  271. rctx->total -= count;
  272. if (rctx->offset == rctx->sg->length) {
  273. rctx->sg = sg_next(rctx->sg);
  274. if (rctx->sg)
  275. rctx->offset = 0;
  276. else
  277. rctx->total = 0;
  278. }
  279. }
  280. }
  281. static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
  282. const u8 *buf, size_t length, int final)
  283. {
  284. unsigned int count, len32;
  285. const u32 *buffer = (const u32 *)buf;
  286. u32 reg;
  287. if (final)
  288. hdev->flags |= HASH_FLAGS_FINAL;
  289. len32 = DIV_ROUND_UP(length, sizeof(u32));
  290. dev_dbg(hdev->dev, "%s: length: %d, final: %x len32 %i\n",
  291. __func__, length, final, len32);
  292. hdev->flags |= HASH_FLAGS_CPU;
  293. stm32_hash_write_ctrl(hdev);
  294. if (stm32_hash_wait_busy(hdev))
  295. return -ETIMEDOUT;
  296. if ((hdev->flags & HASH_FLAGS_HMAC) &&
  297. (hdev->flags & ~HASH_FLAGS_HMAC_KEY)) {
  298. hdev->flags |= HASH_FLAGS_HMAC_KEY;
  299. stm32_hash_write_key(hdev);
  300. if (stm32_hash_wait_busy(hdev))
  301. return -ETIMEDOUT;
  302. }
  303. for (count = 0; count < len32; count++)
  304. stm32_hash_write(hdev, HASH_DIN, buffer[count]);
  305. if (final) {
  306. stm32_hash_set_nblw(hdev, length);
  307. reg = stm32_hash_read(hdev, HASH_STR);
  308. reg |= HASH_STR_DCAL;
  309. stm32_hash_write(hdev, HASH_STR, reg);
  310. if (hdev->flags & HASH_FLAGS_HMAC) {
  311. if (stm32_hash_wait_busy(hdev))
  312. return -ETIMEDOUT;
  313. stm32_hash_write_key(hdev);
  314. }
  315. return -EINPROGRESS;
  316. }
  317. return 0;
  318. }
  319. static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
  320. {
  321. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  322. int bufcnt, err = 0, final;
  323. dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
  324. final = (rctx->flags & HASH_FLAGS_FINUP);
  325. while ((rctx->total >= rctx->buflen) ||
  326. (rctx->bufcnt + rctx->total >= rctx->buflen)) {
  327. stm32_hash_append_sg(rctx);
  328. bufcnt = rctx->bufcnt;
  329. rctx->bufcnt = 0;
  330. err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
  331. }
  332. stm32_hash_append_sg(rctx);
  333. if (final) {
  334. bufcnt = rctx->bufcnt;
  335. rctx->bufcnt = 0;
  336. err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
  337. (rctx->flags & HASH_FLAGS_FINUP));
  338. }
  339. return err;
  340. }
  341. static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
  342. struct scatterlist *sg, int length, int mdma)
  343. {
  344. struct dma_async_tx_descriptor *in_desc;
  345. dma_cookie_t cookie;
  346. u32 reg;
  347. int err;
  348. in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
  349. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
  350. DMA_CTRL_ACK);
  351. if (!in_desc) {
  352. dev_err(hdev->dev, "dmaengine_prep_slave error\n");
  353. return -ENOMEM;
  354. }
  355. reinit_completion(&hdev->dma_completion);
  356. in_desc->callback = stm32_hash_dma_callback;
  357. in_desc->callback_param = hdev;
  358. hdev->flags |= HASH_FLAGS_FINAL;
  359. hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
  360. reg = stm32_hash_read(hdev, HASH_CR);
  361. if (mdma)
  362. reg |= HASH_CR_MDMAT;
  363. else
  364. reg &= ~HASH_CR_MDMAT;
  365. reg |= HASH_CR_DMAE;
  366. stm32_hash_write(hdev, HASH_CR, reg);
  367. stm32_hash_set_nblw(hdev, length);
  368. cookie = dmaengine_submit(in_desc);
  369. err = dma_submit_error(cookie);
  370. if (err)
  371. return -ENOMEM;
  372. dma_async_issue_pending(hdev->dma_lch);
  373. if (!wait_for_completion_interruptible_timeout(&hdev->dma_completion,
  374. msecs_to_jiffies(100)))
  375. err = -ETIMEDOUT;
  376. if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
  377. NULL, NULL) != DMA_COMPLETE)
  378. err = -ETIMEDOUT;
  379. if (err) {
  380. dev_err(hdev->dev, "DMA Error %i\n", err);
  381. dmaengine_terminate_all(hdev->dma_lch);
  382. return err;
  383. }
  384. return -EINPROGRESS;
  385. }
  386. static void stm32_hash_dma_callback(void *param)
  387. {
  388. struct stm32_hash_dev *hdev = param;
  389. complete(&hdev->dma_completion);
  390. hdev->flags |= HASH_FLAGS_DMA_READY;
  391. }
  392. static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
  393. {
  394. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  395. struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
  396. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  397. int err;
  398. if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
  399. err = stm32_hash_write_key(hdev);
  400. if (stm32_hash_wait_busy(hdev))
  401. return -ETIMEDOUT;
  402. } else {
  403. if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
  404. sg_init_one(&rctx->sg_key, ctx->key,
  405. ALIGN(ctx->keylen, sizeof(u32)));
  406. rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
  407. DMA_TO_DEVICE);
  408. if (rctx->dma_ct == 0) {
  409. dev_err(hdev->dev, "dma_map_sg error\n");
  410. return -ENOMEM;
  411. }
  412. err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
  413. dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
  414. }
  415. return err;
  416. }
  417. static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
  418. {
  419. struct dma_slave_config dma_conf;
  420. int err;
  421. memset(&dma_conf, 0, sizeof(dma_conf));
  422. dma_conf.direction = DMA_MEM_TO_DEV;
  423. dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
  424. dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  425. dma_conf.src_maxburst = hdev->dma_maxburst;
  426. dma_conf.dst_maxburst = hdev->dma_maxburst;
  427. dma_conf.device_fc = false;
  428. hdev->dma_lch = dma_request_slave_channel(hdev->dev, "in");
  429. if (!hdev->dma_lch) {
  430. dev_err(hdev->dev, "Couldn't acquire a slave DMA channel.\n");
  431. return -EBUSY;
  432. }
  433. err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
  434. if (err) {
  435. dma_release_channel(hdev->dma_lch);
  436. hdev->dma_lch = NULL;
  437. dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
  438. return err;
  439. }
  440. init_completion(&hdev->dma_completion);
  441. return 0;
  442. }
  443. static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
  444. {
  445. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  446. struct scatterlist sg[1], *tsg;
  447. int err = 0, len = 0, reg, ncp = 0;
  448. unsigned int i;
  449. u32 *buffer = (void *)rctx->buffer;
  450. rctx->sg = hdev->req->src;
  451. rctx->total = hdev->req->nbytes;
  452. rctx->nents = sg_nents(rctx->sg);
  453. if (rctx->nents < 0)
  454. return -EINVAL;
  455. stm32_hash_write_ctrl(hdev);
  456. if (hdev->flags & HASH_FLAGS_HMAC) {
  457. err = stm32_hash_hmac_dma_send(hdev);
  458. if (err != -EINPROGRESS)
  459. return err;
  460. }
  461. for_each_sg(rctx->sg, tsg, rctx->nents, i) {
  462. len = sg->length;
  463. sg[0] = *tsg;
  464. if (sg_is_last(sg)) {
  465. if (hdev->dma_mode == 1) {
  466. len = (ALIGN(sg->length, 16) - 16);
  467. ncp = sg_pcopy_to_buffer(
  468. rctx->sg, rctx->nents,
  469. rctx->buffer, sg->length - len,
  470. rctx->total - sg->length + len);
  471. sg->length = len;
  472. } else {
  473. if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
  474. len = sg->length;
  475. sg->length = ALIGN(sg->length,
  476. sizeof(u32));
  477. }
  478. }
  479. }
  480. rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
  481. DMA_TO_DEVICE);
  482. if (rctx->dma_ct == 0) {
  483. dev_err(hdev->dev, "dma_map_sg error\n");
  484. return -ENOMEM;
  485. }
  486. err = stm32_hash_xmit_dma(hdev, sg, len,
  487. !sg_is_last(sg));
  488. dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
  489. if (err == -ENOMEM)
  490. return err;
  491. }
  492. if (hdev->dma_mode == 1) {
  493. if (stm32_hash_wait_busy(hdev))
  494. return -ETIMEDOUT;
  495. reg = stm32_hash_read(hdev, HASH_CR);
  496. reg &= ~HASH_CR_DMAE;
  497. reg |= HASH_CR_DMAA;
  498. stm32_hash_write(hdev, HASH_CR, reg);
  499. if (ncp) {
  500. memset(buffer + ncp, 0,
  501. DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
  502. writesl(hdev->io_base + HASH_DIN, buffer,
  503. DIV_ROUND_UP(ncp, sizeof(u32)));
  504. }
  505. stm32_hash_set_nblw(hdev, ncp);
  506. reg = stm32_hash_read(hdev, HASH_STR);
  507. reg |= HASH_STR_DCAL;
  508. stm32_hash_write(hdev, HASH_STR, reg);
  509. err = -EINPROGRESS;
  510. }
  511. if (hdev->flags & HASH_FLAGS_HMAC) {
  512. if (stm32_hash_wait_busy(hdev))
  513. return -ETIMEDOUT;
  514. err = stm32_hash_hmac_dma_send(hdev);
  515. }
  516. return err;
  517. }
  518. static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
  519. {
  520. struct stm32_hash_dev *hdev = NULL, *tmp;
  521. spin_lock_bh(&stm32_hash.lock);
  522. if (!ctx->hdev) {
  523. list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
  524. hdev = tmp;
  525. break;
  526. }
  527. ctx->hdev = hdev;
  528. } else {
  529. hdev = ctx->hdev;
  530. }
  531. spin_unlock_bh(&stm32_hash.lock);
  532. return hdev;
  533. }
  534. static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
  535. {
  536. struct scatterlist *sg;
  537. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  538. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  539. int i;
  540. if (req->nbytes <= HASH_DMA_THRESHOLD)
  541. return false;
  542. if (sg_nents(req->src) > 1) {
  543. if (hdev->dma_mode == 1)
  544. return false;
  545. for_each_sg(req->src, sg, sg_nents(req->src), i) {
  546. if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
  547. (!sg_is_last(sg)))
  548. return false;
  549. }
  550. }
  551. if (req->src->offset % 4)
  552. return false;
  553. return true;
  554. }
  555. static int stm32_hash_init(struct ahash_request *req)
  556. {
  557. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  558. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  559. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  560. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  561. rctx->hdev = hdev;
  562. rctx->flags = HASH_FLAGS_CPU;
  563. rctx->digcnt = crypto_ahash_digestsize(tfm);
  564. switch (rctx->digcnt) {
  565. case MD5_DIGEST_SIZE:
  566. rctx->flags |= HASH_FLAGS_MD5;
  567. break;
  568. case SHA1_DIGEST_SIZE:
  569. rctx->flags |= HASH_FLAGS_SHA1;
  570. break;
  571. case SHA224_DIGEST_SIZE:
  572. rctx->flags |= HASH_FLAGS_SHA224;
  573. break;
  574. case SHA256_DIGEST_SIZE:
  575. rctx->flags |= HASH_FLAGS_SHA256;
  576. break;
  577. default:
  578. return -EINVAL;
  579. }
  580. rctx->bufcnt = 0;
  581. rctx->buflen = HASH_BUFLEN;
  582. rctx->total = 0;
  583. rctx->offset = 0;
  584. rctx->data_type = HASH_DATA_8_BITS;
  585. memset(rctx->buffer, 0, HASH_BUFLEN);
  586. if (ctx->flags & HASH_FLAGS_HMAC)
  587. rctx->flags |= HASH_FLAGS_HMAC;
  588. dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
  589. return 0;
  590. }
  591. static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
  592. {
  593. return stm32_hash_update_cpu(hdev);
  594. }
  595. static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
  596. {
  597. struct ahash_request *req = hdev->req;
  598. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  599. int err;
  600. int buflen = rctx->bufcnt;
  601. rctx->bufcnt = 0;
  602. if (!(rctx->flags & HASH_FLAGS_CPU))
  603. err = stm32_hash_dma_send(hdev);
  604. else
  605. err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
  606. return err;
  607. }
  608. static void stm32_hash_copy_hash(struct ahash_request *req)
  609. {
  610. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  611. u32 *hash = (u32 *)rctx->digest;
  612. unsigned int i, hashsize;
  613. switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
  614. case HASH_FLAGS_MD5:
  615. hashsize = MD5_DIGEST_SIZE;
  616. break;
  617. case HASH_FLAGS_SHA1:
  618. hashsize = SHA1_DIGEST_SIZE;
  619. break;
  620. case HASH_FLAGS_SHA224:
  621. hashsize = SHA224_DIGEST_SIZE;
  622. break;
  623. case HASH_FLAGS_SHA256:
  624. hashsize = SHA256_DIGEST_SIZE;
  625. break;
  626. default:
  627. return;
  628. }
  629. for (i = 0; i < hashsize / sizeof(u32); i++)
  630. hash[i] = be32_to_cpu(stm32_hash_read(rctx->hdev,
  631. HASH_HREG(i)));
  632. }
  633. static int stm32_hash_finish(struct ahash_request *req)
  634. {
  635. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  636. if (!req->result)
  637. return -EINVAL;
  638. memcpy(req->result, rctx->digest, rctx->digcnt);
  639. return 0;
  640. }
  641. static void stm32_hash_finish_req(struct ahash_request *req, int err)
  642. {
  643. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  644. struct stm32_hash_dev *hdev = rctx->hdev;
  645. if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
  646. stm32_hash_copy_hash(req);
  647. err = stm32_hash_finish(req);
  648. hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
  649. HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
  650. HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
  651. HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
  652. HASH_FLAGS_HMAC_KEY);
  653. } else {
  654. rctx->flags |= HASH_FLAGS_ERRORS;
  655. }
  656. pm_runtime_mark_last_busy(hdev->dev);
  657. pm_runtime_put_autosuspend(hdev->dev);
  658. crypto_finalize_hash_request(hdev->engine, req, err);
  659. }
  660. static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
  661. struct stm32_hash_request_ctx *rctx)
  662. {
  663. pm_runtime_get_sync(hdev->dev);
  664. if (!(HASH_FLAGS_INIT & hdev->flags)) {
  665. stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
  666. stm32_hash_write(hdev, HASH_STR, 0);
  667. stm32_hash_write(hdev, HASH_DIN, 0);
  668. stm32_hash_write(hdev, HASH_IMR, 0);
  669. hdev->err = 0;
  670. }
  671. return 0;
  672. }
  673. static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
  674. static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
  675. static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
  676. struct ahash_request *req)
  677. {
  678. return crypto_transfer_hash_request_to_engine(hdev->engine, req);
  679. }
  680. static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
  681. {
  682. struct ahash_request *req = container_of(areq, struct ahash_request,
  683. base);
  684. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  685. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  686. struct stm32_hash_request_ctx *rctx;
  687. if (!hdev)
  688. return -ENODEV;
  689. hdev->req = req;
  690. rctx = ahash_request_ctx(req);
  691. dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
  692. rctx->op, req->nbytes);
  693. return stm32_hash_hw_init(hdev, rctx);
  694. }
  695. static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
  696. {
  697. struct ahash_request *req = container_of(areq, struct ahash_request,
  698. base);
  699. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  700. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  701. struct stm32_hash_request_ctx *rctx;
  702. int err = 0;
  703. if (!hdev)
  704. return -ENODEV;
  705. hdev->req = req;
  706. rctx = ahash_request_ctx(req);
  707. if (rctx->op == HASH_OP_UPDATE)
  708. err = stm32_hash_update_req(hdev);
  709. else if (rctx->op == HASH_OP_FINAL)
  710. err = stm32_hash_final_req(hdev);
  711. if (err != -EINPROGRESS)
  712. /* done task will not finish it, so do it here */
  713. stm32_hash_finish_req(req, err);
  714. return 0;
  715. }
  716. static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
  717. {
  718. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  719. struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  720. struct stm32_hash_dev *hdev = ctx->hdev;
  721. rctx->op = op;
  722. return stm32_hash_handle_queue(hdev, req);
  723. }
  724. static int stm32_hash_update(struct ahash_request *req)
  725. {
  726. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  727. if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
  728. return 0;
  729. rctx->total = req->nbytes;
  730. rctx->sg = req->src;
  731. rctx->offset = 0;
  732. if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
  733. stm32_hash_append_sg(rctx);
  734. return 0;
  735. }
  736. return stm32_hash_enqueue(req, HASH_OP_UPDATE);
  737. }
  738. static int stm32_hash_final(struct ahash_request *req)
  739. {
  740. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  741. rctx->flags |= HASH_FLAGS_FINUP;
  742. return stm32_hash_enqueue(req, HASH_OP_FINAL);
  743. }
  744. static int stm32_hash_finup(struct ahash_request *req)
  745. {
  746. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  747. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  748. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  749. int err1, err2;
  750. rctx->flags |= HASH_FLAGS_FINUP;
  751. if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
  752. rctx->flags &= ~HASH_FLAGS_CPU;
  753. err1 = stm32_hash_update(req);
  754. if (err1 == -EINPROGRESS || err1 == -EBUSY)
  755. return err1;
  756. /*
  757. * final() has to be always called to cleanup resources
  758. * even if update() failed, except EINPROGRESS
  759. */
  760. err2 = stm32_hash_final(req);
  761. return err1 ?: err2;
  762. }
  763. static int stm32_hash_digest(struct ahash_request *req)
  764. {
  765. return stm32_hash_init(req) ?: stm32_hash_finup(req);
  766. }
  767. static int stm32_hash_export(struct ahash_request *req, void *out)
  768. {
  769. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  770. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  771. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  772. u32 *preg;
  773. unsigned int i;
  774. pm_runtime_get_sync(hdev->dev);
  775. while (!(stm32_hash_read(hdev, HASH_SR) & HASH_SR_DATA_INPUT_READY))
  776. cpu_relax();
  777. rctx->hw_context = kmalloc_array(3 + HASH_CSR_REGISTER_NUMBER,
  778. sizeof(u32),
  779. GFP_KERNEL);
  780. preg = rctx->hw_context;
  781. *preg++ = stm32_hash_read(hdev, HASH_IMR);
  782. *preg++ = stm32_hash_read(hdev, HASH_STR);
  783. *preg++ = stm32_hash_read(hdev, HASH_CR);
  784. for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
  785. *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
  786. pm_runtime_mark_last_busy(hdev->dev);
  787. pm_runtime_put_autosuspend(hdev->dev);
  788. memcpy(out, rctx, sizeof(*rctx));
  789. return 0;
  790. }
  791. static int stm32_hash_import(struct ahash_request *req, const void *in)
  792. {
  793. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  794. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  795. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  796. const u32 *preg = in;
  797. u32 reg;
  798. unsigned int i;
  799. memcpy(rctx, in, sizeof(*rctx));
  800. preg = rctx->hw_context;
  801. pm_runtime_get_sync(hdev->dev);
  802. stm32_hash_write(hdev, HASH_IMR, *preg++);
  803. stm32_hash_write(hdev, HASH_STR, *preg++);
  804. stm32_hash_write(hdev, HASH_CR, *preg);
  805. reg = *preg++ | HASH_CR_INIT;
  806. stm32_hash_write(hdev, HASH_CR, reg);
  807. for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
  808. stm32_hash_write(hdev, HASH_CSR(i), *preg++);
  809. pm_runtime_mark_last_busy(hdev->dev);
  810. pm_runtime_put_autosuspend(hdev->dev);
  811. kfree(rctx->hw_context);
  812. return 0;
  813. }
  814. static int stm32_hash_setkey(struct crypto_ahash *tfm,
  815. const u8 *key, unsigned int keylen)
  816. {
  817. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  818. if (keylen <= HASH_MAX_KEY_SIZE) {
  819. memcpy(ctx->key, key, keylen);
  820. ctx->keylen = keylen;
  821. } else {
  822. return -ENOMEM;
  823. }
  824. return 0;
  825. }
  826. static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
  827. const char *algs_hmac_name)
  828. {
  829. struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  830. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  831. sizeof(struct stm32_hash_request_ctx));
  832. ctx->keylen = 0;
  833. if (algs_hmac_name)
  834. ctx->flags |= HASH_FLAGS_HMAC;
  835. ctx->enginectx.op.do_one_request = stm32_hash_one_request;
  836. ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
  837. ctx->enginectx.op.unprepare_request = NULL;
  838. return 0;
  839. }
  840. static int stm32_hash_cra_init(struct crypto_tfm *tfm)
  841. {
  842. return stm32_hash_cra_init_algs(tfm, NULL);
  843. }
  844. static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
  845. {
  846. return stm32_hash_cra_init_algs(tfm, "md5");
  847. }
  848. static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
  849. {
  850. return stm32_hash_cra_init_algs(tfm, "sha1");
  851. }
  852. static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
  853. {
  854. return stm32_hash_cra_init_algs(tfm, "sha224");
  855. }
  856. static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
  857. {
  858. return stm32_hash_cra_init_algs(tfm, "sha256");
  859. }
  860. static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
  861. {
  862. struct stm32_hash_dev *hdev = dev_id;
  863. if (HASH_FLAGS_CPU & hdev->flags) {
  864. if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
  865. hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
  866. goto finish;
  867. }
  868. } else if (HASH_FLAGS_DMA_READY & hdev->flags) {
  869. if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
  870. hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
  871. goto finish;
  872. }
  873. }
  874. return IRQ_HANDLED;
  875. finish:
  876. /* Finish current request */
  877. stm32_hash_finish_req(hdev->req, 0);
  878. return IRQ_HANDLED;
  879. }
  880. static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
  881. {
  882. struct stm32_hash_dev *hdev = dev_id;
  883. u32 reg;
  884. reg = stm32_hash_read(hdev, HASH_SR);
  885. if (reg & HASH_SR_OUTPUT_READY) {
  886. reg &= ~HASH_SR_OUTPUT_READY;
  887. stm32_hash_write(hdev, HASH_SR, reg);
  888. hdev->flags |= HASH_FLAGS_OUTPUT_READY;
  889. /* Disable IT*/
  890. stm32_hash_write(hdev, HASH_IMR, 0);
  891. return IRQ_WAKE_THREAD;
  892. }
  893. return IRQ_NONE;
  894. }
  895. static struct ahash_alg algs_md5_sha1[] = {
  896. {
  897. .init = stm32_hash_init,
  898. .update = stm32_hash_update,
  899. .final = stm32_hash_final,
  900. .finup = stm32_hash_finup,
  901. .digest = stm32_hash_digest,
  902. .export = stm32_hash_export,
  903. .import = stm32_hash_import,
  904. .halg = {
  905. .digestsize = MD5_DIGEST_SIZE,
  906. .statesize = sizeof(struct stm32_hash_request_ctx),
  907. .base = {
  908. .cra_name = "md5",
  909. .cra_driver_name = "stm32-md5",
  910. .cra_priority = 200,
  911. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  912. CRYPTO_ALG_ASYNC |
  913. CRYPTO_ALG_KERN_DRIVER_ONLY,
  914. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  915. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  916. .cra_alignmask = 3,
  917. .cra_init = stm32_hash_cra_init,
  918. .cra_module = THIS_MODULE,
  919. }
  920. }
  921. },
  922. {
  923. .init = stm32_hash_init,
  924. .update = stm32_hash_update,
  925. .final = stm32_hash_final,
  926. .finup = stm32_hash_finup,
  927. .digest = stm32_hash_digest,
  928. .export = stm32_hash_export,
  929. .import = stm32_hash_import,
  930. .setkey = stm32_hash_setkey,
  931. .halg = {
  932. .digestsize = MD5_DIGEST_SIZE,
  933. .statesize = sizeof(struct stm32_hash_request_ctx),
  934. .base = {
  935. .cra_name = "hmac(md5)",
  936. .cra_driver_name = "stm32-hmac-md5",
  937. .cra_priority = 200,
  938. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  939. CRYPTO_ALG_ASYNC |
  940. CRYPTO_ALG_KERN_DRIVER_ONLY,
  941. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  942. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  943. .cra_alignmask = 3,
  944. .cra_init = stm32_hash_cra_md5_init,
  945. .cra_module = THIS_MODULE,
  946. }
  947. }
  948. },
  949. {
  950. .init = stm32_hash_init,
  951. .update = stm32_hash_update,
  952. .final = stm32_hash_final,
  953. .finup = stm32_hash_finup,
  954. .digest = stm32_hash_digest,
  955. .export = stm32_hash_export,
  956. .import = stm32_hash_import,
  957. .halg = {
  958. .digestsize = SHA1_DIGEST_SIZE,
  959. .statesize = sizeof(struct stm32_hash_request_ctx),
  960. .base = {
  961. .cra_name = "sha1",
  962. .cra_driver_name = "stm32-sha1",
  963. .cra_priority = 200,
  964. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  965. CRYPTO_ALG_ASYNC |
  966. CRYPTO_ALG_KERN_DRIVER_ONLY,
  967. .cra_blocksize = SHA1_BLOCK_SIZE,
  968. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  969. .cra_alignmask = 3,
  970. .cra_init = stm32_hash_cra_init,
  971. .cra_module = THIS_MODULE,
  972. }
  973. }
  974. },
  975. {
  976. .init = stm32_hash_init,
  977. .update = stm32_hash_update,
  978. .final = stm32_hash_final,
  979. .finup = stm32_hash_finup,
  980. .digest = stm32_hash_digest,
  981. .export = stm32_hash_export,
  982. .import = stm32_hash_import,
  983. .setkey = stm32_hash_setkey,
  984. .halg = {
  985. .digestsize = SHA1_DIGEST_SIZE,
  986. .statesize = sizeof(struct stm32_hash_request_ctx),
  987. .base = {
  988. .cra_name = "hmac(sha1)",
  989. .cra_driver_name = "stm32-hmac-sha1",
  990. .cra_priority = 200,
  991. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  992. CRYPTO_ALG_ASYNC |
  993. CRYPTO_ALG_KERN_DRIVER_ONLY,
  994. .cra_blocksize = SHA1_BLOCK_SIZE,
  995. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  996. .cra_alignmask = 3,
  997. .cra_init = stm32_hash_cra_sha1_init,
  998. .cra_module = THIS_MODULE,
  999. }
  1000. }
  1001. },
  1002. };
  1003. static struct ahash_alg algs_sha224_sha256[] = {
  1004. {
  1005. .init = stm32_hash_init,
  1006. .update = stm32_hash_update,
  1007. .final = stm32_hash_final,
  1008. .finup = stm32_hash_finup,
  1009. .digest = stm32_hash_digest,
  1010. .export = stm32_hash_export,
  1011. .import = stm32_hash_import,
  1012. .halg = {
  1013. .digestsize = SHA224_DIGEST_SIZE,
  1014. .statesize = sizeof(struct stm32_hash_request_ctx),
  1015. .base = {
  1016. .cra_name = "sha224",
  1017. .cra_driver_name = "stm32-sha224",
  1018. .cra_priority = 200,
  1019. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  1020. CRYPTO_ALG_ASYNC |
  1021. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1022. .cra_blocksize = SHA224_BLOCK_SIZE,
  1023. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1024. .cra_alignmask = 3,
  1025. .cra_init = stm32_hash_cra_init,
  1026. .cra_module = THIS_MODULE,
  1027. }
  1028. }
  1029. },
  1030. {
  1031. .init = stm32_hash_init,
  1032. .update = stm32_hash_update,
  1033. .final = stm32_hash_final,
  1034. .finup = stm32_hash_finup,
  1035. .digest = stm32_hash_digest,
  1036. .setkey = stm32_hash_setkey,
  1037. .export = stm32_hash_export,
  1038. .import = stm32_hash_import,
  1039. .halg = {
  1040. .digestsize = SHA224_DIGEST_SIZE,
  1041. .statesize = sizeof(struct stm32_hash_request_ctx),
  1042. .base = {
  1043. .cra_name = "hmac(sha224)",
  1044. .cra_driver_name = "stm32-hmac-sha224",
  1045. .cra_priority = 200,
  1046. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  1047. CRYPTO_ALG_ASYNC |
  1048. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1049. .cra_blocksize = SHA224_BLOCK_SIZE,
  1050. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1051. .cra_alignmask = 3,
  1052. .cra_init = stm32_hash_cra_sha224_init,
  1053. .cra_module = THIS_MODULE,
  1054. }
  1055. }
  1056. },
  1057. {
  1058. .init = stm32_hash_init,
  1059. .update = stm32_hash_update,
  1060. .final = stm32_hash_final,
  1061. .finup = stm32_hash_finup,
  1062. .digest = stm32_hash_digest,
  1063. .export = stm32_hash_export,
  1064. .import = stm32_hash_import,
  1065. .halg = {
  1066. .digestsize = SHA256_DIGEST_SIZE,
  1067. .statesize = sizeof(struct stm32_hash_request_ctx),
  1068. .base = {
  1069. .cra_name = "sha256",
  1070. .cra_driver_name = "stm32-sha256",
  1071. .cra_priority = 200,
  1072. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  1073. CRYPTO_ALG_ASYNC |
  1074. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1075. .cra_blocksize = SHA256_BLOCK_SIZE,
  1076. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1077. .cra_alignmask = 3,
  1078. .cra_init = stm32_hash_cra_init,
  1079. .cra_module = THIS_MODULE,
  1080. }
  1081. }
  1082. },
  1083. {
  1084. .init = stm32_hash_init,
  1085. .update = stm32_hash_update,
  1086. .final = stm32_hash_final,
  1087. .finup = stm32_hash_finup,
  1088. .digest = stm32_hash_digest,
  1089. .export = stm32_hash_export,
  1090. .import = stm32_hash_import,
  1091. .setkey = stm32_hash_setkey,
  1092. .halg = {
  1093. .digestsize = SHA256_DIGEST_SIZE,
  1094. .statesize = sizeof(struct stm32_hash_request_ctx),
  1095. .base = {
  1096. .cra_name = "hmac(sha256)",
  1097. .cra_driver_name = "stm32-hmac-sha256",
  1098. .cra_priority = 200,
  1099. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  1100. CRYPTO_ALG_ASYNC |
  1101. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1102. .cra_blocksize = SHA256_BLOCK_SIZE,
  1103. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1104. .cra_alignmask = 3,
  1105. .cra_init = stm32_hash_cra_sha256_init,
  1106. .cra_module = THIS_MODULE,
  1107. }
  1108. }
  1109. },
  1110. };
  1111. static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
  1112. {
  1113. unsigned int i, j;
  1114. int err;
  1115. for (i = 0; i < hdev->pdata->algs_info_size; i++) {
  1116. for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
  1117. err = crypto_register_ahash(
  1118. &hdev->pdata->algs_info[i].algs_list[j]);
  1119. if (err)
  1120. goto err_algs;
  1121. }
  1122. }
  1123. return 0;
  1124. err_algs:
  1125. dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
  1126. for (; i--; ) {
  1127. for (; j--;)
  1128. crypto_unregister_ahash(
  1129. &hdev->pdata->algs_info[i].algs_list[j]);
  1130. }
  1131. return err;
  1132. }
  1133. static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
  1134. {
  1135. unsigned int i, j;
  1136. for (i = 0; i < hdev->pdata->algs_info_size; i++) {
  1137. for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
  1138. crypto_unregister_ahash(
  1139. &hdev->pdata->algs_info[i].algs_list[j]);
  1140. }
  1141. return 0;
  1142. }
  1143. static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
  1144. {
  1145. .algs_list = algs_md5_sha1,
  1146. .size = ARRAY_SIZE(algs_md5_sha1),
  1147. },
  1148. };
  1149. static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
  1150. .algs_info = stm32_hash_algs_info_stm32f4,
  1151. .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
  1152. };
  1153. static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
  1154. {
  1155. .algs_list = algs_md5_sha1,
  1156. .size = ARRAY_SIZE(algs_md5_sha1),
  1157. },
  1158. {
  1159. .algs_list = algs_sha224_sha256,
  1160. .size = ARRAY_SIZE(algs_sha224_sha256),
  1161. },
  1162. };
  1163. static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
  1164. .algs_info = stm32_hash_algs_info_stm32f7,
  1165. .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
  1166. };
  1167. static const struct of_device_id stm32_hash_of_match[] = {
  1168. {
  1169. .compatible = "st,stm32f456-hash",
  1170. .data = &stm32_hash_pdata_stm32f4,
  1171. },
  1172. {
  1173. .compatible = "st,stm32f756-hash",
  1174. .data = &stm32_hash_pdata_stm32f7,
  1175. },
  1176. {},
  1177. };
  1178. MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
  1179. static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
  1180. struct device *dev)
  1181. {
  1182. hdev->pdata = of_device_get_match_data(dev);
  1183. if (!hdev->pdata) {
  1184. dev_err(dev, "no compatible OF match\n");
  1185. return -EINVAL;
  1186. }
  1187. if (of_property_read_u32(dev->of_node, "dma-maxburst",
  1188. &hdev->dma_maxburst)) {
  1189. dev_info(dev, "dma-maxburst not specified, using 0\n");
  1190. hdev->dma_maxburst = 0;
  1191. }
  1192. return 0;
  1193. }
  1194. static int stm32_hash_probe(struct platform_device *pdev)
  1195. {
  1196. struct stm32_hash_dev *hdev;
  1197. struct device *dev = &pdev->dev;
  1198. struct resource *res;
  1199. int ret, irq;
  1200. hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
  1201. if (!hdev)
  1202. return -ENOMEM;
  1203. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1204. hdev->io_base = devm_ioremap_resource(dev, res);
  1205. if (IS_ERR(hdev->io_base))
  1206. return PTR_ERR(hdev->io_base);
  1207. hdev->phys_base = res->start;
  1208. ret = stm32_hash_get_of_match(hdev, dev);
  1209. if (ret)
  1210. return ret;
  1211. irq = platform_get_irq(pdev, 0);
  1212. if (irq < 0) {
  1213. dev_err(dev, "Cannot get IRQ resource\n");
  1214. return irq;
  1215. }
  1216. ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
  1217. stm32_hash_irq_thread, IRQF_ONESHOT,
  1218. dev_name(dev), hdev);
  1219. if (ret) {
  1220. dev_err(dev, "Cannot grab IRQ\n");
  1221. return ret;
  1222. }
  1223. hdev->clk = devm_clk_get(&pdev->dev, NULL);
  1224. if (IS_ERR(hdev->clk)) {
  1225. dev_err(dev, "failed to get clock for hash (%lu)\n",
  1226. PTR_ERR(hdev->clk));
  1227. return PTR_ERR(hdev->clk);
  1228. }
  1229. ret = clk_prepare_enable(hdev->clk);
  1230. if (ret) {
  1231. dev_err(dev, "failed to enable hash clock (%d)\n", ret);
  1232. return ret;
  1233. }
  1234. pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
  1235. pm_runtime_use_autosuspend(dev);
  1236. pm_runtime_get_noresume(dev);
  1237. pm_runtime_set_active(dev);
  1238. pm_runtime_enable(dev);
  1239. hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
  1240. if (!IS_ERR(hdev->rst)) {
  1241. reset_control_assert(hdev->rst);
  1242. udelay(2);
  1243. reset_control_deassert(hdev->rst);
  1244. }
  1245. hdev->dev = dev;
  1246. platform_set_drvdata(pdev, hdev);
  1247. ret = stm32_hash_dma_init(hdev);
  1248. if (ret)
  1249. dev_dbg(dev, "DMA mode not available\n");
  1250. spin_lock(&stm32_hash.lock);
  1251. list_add_tail(&hdev->list, &stm32_hash.dev_list);
  1252. spin_unlock(&stm32_hash.lock);
  1253. /* Initialize crypto engine */
  1254. hdev->engine = crypto_engine_alloc_init(dev, 1);
  1255. if (!hdev->engine) {
  1256. ret = -ENOMEM;
  1257. goto err_engine;
  1258. }
  1259. ret = crypto_engine_start(hdev->engine);
  1260. if (ret)
  1261. goto err_engine_start;
  1262. hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
  1263. /* Register algos */
  1264. ret = stm32_hash_register_algs(hdev);
  1265. if (ret)
  1266. goto err_algs;
  1267. dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
  1268. stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
  1269. pm_runtime_put_sync(dev);
  1270. return 0;
  1271. err_algs:
  1272. err_engine_start:
  1273. crypto_engine_exit(hdev->engine);
  1274. err_engine:
  1275. spin_lock(&stm32_hash.lock);
  1276. list_del(&hdev->list);
  1277. spin_unlock(&stm32_hash.lock);
  1278. if (hdev->dma_lch)
  1279. dma_release_channel(hdev->dma_lch);
  1280. pm_runtime_disable(dev);
  1281. pm_runtime_put_noidle(dev);
  1282. clk_disable_unprepare(hdev->clk);
  1283. return ret;
  1284. }
  1285. static int stm32_hash_remove(struct platform_device *pdev)
  1286. {
  1287. static struct stm32_hash_dev *hdev;
  1288. int ret;
  1289. hdev = platform_get_drvdata(pdev);
  1290. if (!hdev)
  1291. return -ENODEV;
  1292. ret = pm_runtime_get_sync(hdev->dev);
  1293. if (ret < 0)
  1294. return ret;
  1295. stm32_hash_unregister_algs(hdev);
  1296. crypto_engine_exit(hdev->engine);
  1297. spin_lock(&stm32_hash.lock);
  1298. list_del(&hdev->list);
  1299. spin_unlock(&stm32_hash.lock);
  1300. if (hdev->dma_lch)
  1301. dma_release_channel(hdev->dma_lch);
  1302. pm_runtime_disable(hdev->dev);
  1303. pm_runtime_put_noidle(hdev->dev);
  1304. clk_disable_unprepare(hdev->clk);
  1305. return 0;
  1306. }
  1307. #ifdef CONFIG_PM
  1308. static int stm32_hash_runtime_suspend(struct device *dev)
  1309. {
  1310. struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
  1311. clk_disable_unprepare(hdev->clk);
  1312. return 0;
  1313. }
  1314. static int stm32_hash_runtime_resume(struct device *dev)
  1315. {
  1316. struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
  1317. int ret;
  1318. ret = clk_prepare_enable(hdev->clk);
  1319. if (ret) {
  1320. dev_err(hdev->dev, "Failed to prepare_enable clock\n");
  1321. return ret;
  1322. }
  1323. return 0;
  1324. }
  1325. #endif
  1326. static const struct dev_pm_ops stm32_hash_pm_ops = {
  1327. SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
  1328. pm_runtime_force_resume)
  1329. SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
  1330. stm32_hash_runtime_resume, NULL)
  1331. };
  1332. static struct platform_driver stm32_hash_driver = {
  1333. .probe = stm32_hash_probe,
  1334. .remove = stm32_hash_remove,
  1335. .driver = {
  1336. .name = "stm32-hash",
  1337. .pm = &stm32_hash_pm_ops,
  1338. .of_match_table = stm32_hash_of_match,
  1339. }
  1340. };
  1341. module_platform_driver(stm32_hash_driver);
  1342. MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
  1343. MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
  1344. MODULE_LICENSE("GPL v2");