disk-io.c 119 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static const struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61. struct btrfs_root *root);
  62. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  63. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  64. struct extent_io_tree *dirty_pages,
  65. int mark);
  66. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  67. struct extent_io_tree *pinned_extents);
  68. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  69. static void btrfs_error_commit_super(struct btrfs_root *root);
  70. /*
  71. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  72. * is complete. This is used during reads to verify checksums, and it is used
  73. * by writes to insert metadata for new file extents after IO is complete.
  74. */
  75. struct btrfs_end_io_wq {
  76. struct bio *bio;
  77. bio_end_io_t *end_io;
  78. void *private;
  79. struct btrfs_fs_info *info;
  80. int error;
  81. enum btrfs_wq_endio_type metadata;
  82. struct list_head list;
  83. struct btrfs_work work;
  84. };
  85. static struct kmem_cache *btrfs_end_io_wq_cache;
  86. int __init btrfs_end_io_wq_init(void)
  87. {
  88. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  89. sizeof(struct btrfs_end_io_wq),
  90. 0,
  91. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  92. NULL);
  93. if (!btrfs_end_io_wq_cache)
  94. return -ENOMEM;
  95. return 0;
  96. }
  97. void btrfs_end_io_wq_exit(void)
  98. {
  99. if (btrfs_end_io_wq_cache)
  100. kmem_cache_destroy(btrfs_end_io_wq_cache);
  101. }
  102. /*
  103. * async submit bios are used to offload expensive checksumming
  104. * onto the worker threads. They checksum file and metadata bios
  105. * just before they are sent down the IO stack.
  106. */
  107. struct async_submit_bio {
  108. struct inode *inode;
  109. struct bio *bio;
  110. struct list_head list;
  111. extent_submit_bio_hook_t *submit_bio_start;
  112. extent_submit_bio_hook_t *submit_bio_done;
  113. int rw;
  114. int mirror_num;
  115. unsigned long bio_flags;
  116. /*
  117. * bio_offset is optional, can be used if the pages in the bio
  118. * can't tell us where in the file the bio should go
  119. */
  120. u64 bio_offset;
  121. struct btrfs_work work;
  122. int error;
  123. };
  124. /*
  125. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  126. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  127. * the level the eb occupies in the tree.
  128. *
  129. * Different roots are used for different purposes and may nest inside each
  130. * other and they require separate keysets. As lockdep keys should be
  131. * static, assign keysets according to the purpose of the root as indicated
  132. * by btrfs_root->objectid. This ensures that all special purpose roots
  133. * have separate keysets.
  134. *
  135. * Lock-nesting across peer nodes is always done with the immediate parent
  136. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  137. * subclass to avoid triggering lockdep warning in such cases.
  138. *
  139. * The key is set by the readpage_end_io_hook after the buffer has passed
  140. * csum validation but before the pages are unlocked. It is also set by
  141. * btrfs_init_new_buffer on freshly allocated blocks.
  142. *
  143. * We also add a check to make sure the highest level of the tree is the
  144. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  145. * needs update as well.
  146. */
  147. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  148. # if BTRFS_MAX_LEVEL != 8
  149. # error
  150. # endif
  151. static struct btrfs_lockdep_keyset {
  152. u64 id; /* root objectid */
  153. const char *name_stem; /* lock name stem */
  154. char names[BTRFS_MAX_LEVEL + 1][20];
  155. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  156. } btrfs_lockdep_keysets[] = {
  157. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  158. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  159. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  160. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  161. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  162. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  163. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  164. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  165. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  166. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  167. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  168. { .id = 0, .name_stem = "tree" },
  169. };
  170. void __init btrfs_init_lockdep(void)
  171. {
  172. int i, j;
  173. /* initialize lockdep class names */
  174. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  175. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  176. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  177. snprintf(ks->names[j], sizeof(ks->names[j]),
  178. "btrfs-%s-%02d", ks->name_stem, j);
  179. }
  180. }
  181. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  182. int level)
  183. {
  184. struct btrfs_lockdep_keyset *ks;
  185. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  186. /* find the matching keyset, id 0 is the default entry */
  187. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  188. if (ks->id == objectid)
  189. break;
  190. lockdep_set_class_and_name(&eb->lock,
  191. &ks->keys[level], ks->names[level]);
  192. }
  193. #endif
  194. /*
  195. * extents on the btree inode are pretty simple, there's one extent
  196. * that covers the entire device
  197. */
  198. static struct extent_map *btree_get_extent(struct inode *inode,
  199. struct page *page, size_t pg_offset, u64 start, u64 len,
  200. int create)
  201. {
  202. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  203. struct extent_map *em;
  204. int ret;
  205. read_lock(&em_tree->lock);
  206. em = lookup_extent_mapping(em_tree, start, len);
  207. if (em) {
  208. em->bdev =
  209. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  210. read_unlock(&em_tree->lock);
  211. goto out;
  212. }
  213. read_unlock(&em_tree->lock);
  214. em = alloc_extent_map();
  215. if (!em) {
  216. em = ERR_PTR(-ENOMEM);
  217. goto out;
  218. }
  219. em->start = 0;
  220. em->len = (u64)-1;
  221. em->block_len = (u64)-1;
  222. em->block_start = 0;
  223. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  224. write_lock(&em_tree->lock);
  225. ret = add_extent_mapping(em_tree, em, 0);
  226. if (ret == -EEXIST) {
  227. free_extent_map(em);
  228. em = lookup_extent_mapping(em_tree, start, len);
  229. if (!em)
  230. em = ERR_PTR(-EIO);
  231. } else if (ret) {
  232. free_extent_map(em);
  233. em = ERR_PTR(ret);
  234. }
  235. write_unlock(&em_tree->lock);
  236. out:
  237. return em;
  238. }
  239. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  240. {
  241. return btrfs_crc32c(seed, data, len);
  242. }
  243. void btrfs_csum_final(u32 crc, char *result)
  244. {
  245. put_unaligned_le32(~crc, result);
  246. }
  247. /*
  248. * compute the csum for a btree block, and either verify it or write it
  249. * into the csum field of the block.
  250. */
  251. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  252. struct extent_buffer *buf,
  253. int verify)
  254. {
  255. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  256. char *result = NULL;
  257. unsigned long len;
  258. unsigned long cur_len;
  259. unsigned long offset = BTRFS_CSUM_SIZE;
  260. char *kaddr;
  261. unsigned long map_start;
  262. unsigned long map_len;
  263. int err;
  264. u32 crc = ~(u32)0;
  265. unsigned long inline_result;
  266. len = buf->len - offset;
  267. while (len > 0) {
  268. err = map_private_extent_buffer(buf, offset, 32,
  269. &kaddr, &map_start, &map_len);
  270. if (err)
  271. return 1;
  272. cur_len = min(len, map_len - (offset - map_start));
  273. crc = btrfs_csum_data(kaddr + offset - map_start,
  274. crc, cur_len);
  275. len -= cur_len;
  276. offset += cur_len;
  277. }
  278. if (csum_size > sizeof(inline_result)) {
  279. result = kzalloc(csum_size, GFP_NOFS);
  280. if (!result)
  281. return 1;
  282. } else {
  283. result = (char *)&inline_result;
  284. }
  285. btrfs_csum_final(crc, result);
  286. if (verify) {
  287. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  288. u32 val;
  289. u32 found = 0;
  290. memcpy(&found, result, csum_size);
  291. read_extent_buffer(buf, &val, 0, csum_size);
  292. printk_ratelimited(KERN_WARNING
  293. "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
  294. "level %d\n",
  295. fs_info->sb->s_id, buf->start,
  296. val, found, btrfs_header_level(buf));
  297. if (result != (char *)&inline_result)
  298. kfree(result);
  299. return 1;
  300. }
  301. } else {
  302. write_extent_buffer(buf, result, 0, csum_size);
  303. }
  304. if (result != (char *)&inline_result)
  305. kfree(result);
  306. return 0;
  307. }
  308. /*
  309. * we can't consider a given block up to date unless the transid of the
  310. * block matches the transid in the parent node's pointer. This is how we
  311. * detect blocks that either didn't get written at all or got written
  312. * in the wrong place.
  313. */
  314. static int verify_parent_transid(struct extent_io_tree *io_tree,
  315. struct extent_buffer *eb, u64 parent_transid,
  316. int atomic)
  317. {
  318. struct extent_state *cached_state = NULL;
  319. int ret;
  320. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  321. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  322. return 0;
  323. if (atomic)
  324. return -EAGAIN;
  325. if (need_lock) {
  326. btrfs_tree_read_lock(eb);
  327. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  328. }
  329. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  330. 0, &cached_state);
  331. if (extent_buffer_uptodate(eb) &&
  332. btrfs_header_generation(eb) == parent_transid) {
  333. ret = 0;
  334. goto out;
  335. }
  336. printk_ratelimited(KERN_ERR
  337. "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
  338. eb->fs_info->sb->s_id, eb->start,
  339. parent_transid, btrfs_header_generation(eb));
  340. ret = 1;
  341. /*
  342. * Things reading via commit roots that don't have normal protection,
  343. * like send, can have a really old block in cache that may point at a
  344. * block that has been free'd and re-allocated. So don't clear uptodate
  345. * if we find an eb that is under IO (dirty/writeback) because we could
  346. * end up reading in the stale data and then writing it back out and
  347. * making everybody very sad.
  348. */
  349. if (!extent_buffer_under_io(eb))
  350. clear_extent_buffer_uptodate(eb);
  351. out:
  352. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  353. &cached_state, GFP_NOFS);
  354. if (need_lock)
  355. btrfs_tree_read_unlock_blocking(eb);
  356. return ret;
  357. }
  358. /*
  359. * Return 0 if the superblock checksum type matches the checksum value of that
  360. * algorithm. Pass the raw disk superblock data.
  361. */
  362. static int btrfs_check_super_csum(char *raw_disk_sb)
  363. {
  364. struct btrfs_super_block *disk_sb =
  365. (struct btrfs_super_block *)raw_disk_sb;
  366. u16 csum_type = btrfs_super_csum_type(disk_sb);
  367. int ret = 0;
  368. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  369. u32 crc = ~(u32)0;
  370. const int csum_size = sizeof(crc);
  371. char result[csum_size];
  372. /*
  373. * The super_block structure does not span the whole
  374. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  375. * is filled with zeros and is included in the checkum.
  376. */
  377. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  378. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  379. btrfs_csum_final(crc, result);
  380. if (memcmp(raw_disk_sb, result, csum_size))
  381. ret = 1;
  382. }
  383. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  384. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  385. csum_type);
  386. ret = 1;
  387. }
  388. return ret;
  389. }
  390. /*
  391. * helper to read a given tree block, doing retries as required when
  392. * the checksums don't match and we have alternate mirrors to try.
  393. */
  394. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  395. struct extent_buffer *eb,
  396. u64 start, u64 parent_transid)
  397. {
  398. struct extent_io_tree *io_tree;
  399. int failed = 0;
  400. int ret;
  401. int num_copies = 0;
  402. int mirror_num = 0;
  403. int failed_mirror = 0;
  404. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  405. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  406. while (1) {
  407. ret = read_extent_buffer_pages(io_tree, eb, start,
  408. WAIT_COMPLETE,
  409. btree_get_extent, mirror_num);
  410. if (!ret) {
  411. if (!verify_parent_transid(io_tree, eb,
  412. parent_transid, 0))
  413. break;
  414. else
  415. ret = -EIO;
  416. }
  417. /*
  418. * This buffer's crc is fine, but its contents are corrupted, so
  419. * there is no reason to read the other copies, they won't be
  420. * any less wrong.
  421. */
  422. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  423. break;
  424. num_copies = btrfs_num_copies(root->fs_info,
  425. eb->start, eb->len);
  426. if (num_copies == 1)
  427. break;
  428. if (!failed_mirror) {
  429. failed = 1;
  430. failed_mirror = eb->read_mirror;
  431. }
  432. mirror_num++;
  433. if (mirror_num == failed_mirror)
  434. mirror_num++;
  435. if (mirror_num > num_copies)
  436. break;
  437. }
  438. if (failed && !ret && failed_mirror)
  439. repair_eb_io_failure(root, eb, failed_mirror);
  440. return ret;
  441. }
  442. /*
  443. * checksum a dirty tree block before IO. This has extra checks to make sure
  444. * we only fill in the checksum field in the first page of a multi-page block
  445. */
  446. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  447. {
  448. u64 start = page_offset(page);
  449. u64 found_start;
  450. struct extent_buffer *eb;
  451. eb = (struct extent_buffer *)page->private;
  452. if (page != eb->pages[0])
  453. return 0;
  454. found_start = btrfs_header_bytenr(eb);
  455. if (WARN_ON(found_start != start || !PageUptodate(page)))
  456. return 0;
  457. csum_tree_block(fs_info, eb, 0);
  458. return 0;
  459. }
  460. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  461. struct extent_buffer *eb)
  462. {
  463. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  464. u8 fsid[BTRFS_UUID_SIZE];
  465. int ret = 1;
  466. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  467. while (fs_devices) {
  468. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  469. ret = 0;
  470. break;
  471. }
  472. fs_devices = fs_devices->seed;
  473. }
  474. return ret;
  475. }
  476. #define CORRUPT(reason, eb, root, slot) \
  477. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  478. "root=%llu, slot=%d", reason, \
  479. btrfs_header_bytenr(eb), root->objectid, slot)
  480. static noinline int check_leaf(struct btrfs_root *root,
  481. struct extent_buffer *leaf)
  482. {
  483. struct btrfs_key key;
  484. struct btrfs_key leaf_key;
  485. u32 nritems = btrfs_header_nritems(leaf);
  486. int slot;
  487. if (nritems == 0)
  488. return 0;
  489. /* Check the 0 item */
  490. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  491. BTRFS_LEAF_DATA_SIZE(root)) {
  492. CORRUPT("invalid item offset size pair", leaf, root, 0);
  493. return -EIO;
  494. }
  495. /*
  496. * Check to make sure each items keys are in the correct order and their
  497. * offsets make sense. We only have to loop through nritems-1 because
  498. * we check the current slot against the next slot, which verifies the
  499. * next slot's offset+size makes sense and that the current's slot
  500. * offset is correct.
  501. */
  502. for (slot = 0; slot < nritems - 1; slot++) {
  503. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  504. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  505. /* Make sure the keys are in the right order */
  506. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  507. CORRUPT("bad key order", leaf, root, slot);
  508. return -EIO;
  509. }
  510. /*
  511. * Make sure the offset and ends are right, remember that the
  512. * item data starts at the end of the leaf and grows towards the
  513. * front.
  514. */
  515. if (btrfs_item_offset_nr(leaf, slot) !=
  516. btrfs_item_end_nr(leaf, slot + 1)) {
  517. CORRUPT("slot offset bad", leaf, root, slot);
  518. return -EIO;
  519. }
  520. /*
  521. * Check to make sure that we don't point outside of the leaf,
  522. * just incase all the items are consistent to eachother, but
  523. * all point outside of the leaf.
  524. */
  525. if (btrfs_item_end_nr(leaf, slot) >
  526. BTRFS_LEAF_DATA_SIZE(root)) {
  527. CORRUPT("slot end outside of leaf", leaf, root, slot);
  528. return -EIO;
  529. }
  530. }
  531. return 0;
  532. }
  533. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  534. u64 phy_offset, struct page *page,
  535. u64 start, u64 end, int mirror)
  536. {
  537. u64 found_start;
  538. int found_level;
  539. struct extent_buffer *eb;
  540. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  541. int ret = 0;
  542. int reads_done;
  543. if (!page->private)
  544. goto out;
  545. eb = (struct extent_buffer *)page->private;
  546. /* the pending IO might have been the only thing that kept this buffer
  547. * in memory. Make sure we have a ref for all this other checks
  548. */
  549. extent_buffer_get(eb);
  550. reads_done = atomic_dec_and_test(&eb->io_pages);
  551. if (!reads_done)
  552. goto err;
  553. eb->read_mirror = mirror;
  554. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  555. ret = -EIO;
  556. goto err;
  557. }
  558. found_start = btrfs_header_bytenr(eb);
  559. if (found_start != eb->start) {
  560. printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
  561. "%llu %llu\n",
  562. eb->fs_info->sb->s_id, found_start, eb->start);
  563. ret = -EIO;
  564. goto err;
  565. }
  566. if (check_tree_block_fsid(root->fs_info, eb)) {
  567. printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
  568. eb->fs_info->sb->s_id, eb->start);
  569. ret = -EIO;
  570. goto err;
  571. }
  572. found_level = btrfs_header_level(eb);
  573. if (found_level >= BTRFS_MAX_LEVEL) {
  574. btrfs_err(root->fs_info, "bad tree block level %d",
  575. (int)btrfs_header_level(eb));
  576. ret = -EIO;
  577. goto err;
  578. }
  579. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  580. eb, found_level);
  581. ret = csum_tree_block(root->fs_info, eb, 1);
  582. if (ret) {
  583. ret = -EIO;
  584. goto err;
  585. }
  586. /*
  587. * If this is a leaf block and it is corrupt, set the corrupt bit so
  588. * that we don't try and read the other copies of this block, just
  589. * return -EIO.
  590. */
  591. if (found_level == 0 && check_leaf(root, eb)) {
  592. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  593. ret = -EIO;
  594. }
  595. if (!ret)
  596. set_extent_buffer_uptodate(eb);
  597. err:
  598. if (reads_done &&
  599. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  600. btree_readahead_hook(root, eb, eb->start, ret);
  601. if (ret) {
  602. /*
  603. * our io error hook is going to dec the io pages
  604. * again, we have to make sure it has something
  605. * to decrement
  606. */
  607. atomic_inc(&eb->io_pages);
  608. clear_extent_buffer_uptodate(eb);
  609. }
  610. free_extent_buffer(eb);
  611. out:
  612. return ret;
  613. }
  614. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  615. {
  616. struct extent_buffer *eb;
  617. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  618. eb = (struct extent_buffer *)page->private;
  619. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  620. eb->read_mirror = failed_mirror;
  621. atomic_dec(&eb->io_pages);
  622. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  623. btree_readahead_hook(root, eb, eb->start, -EIO);
  624. return -EIO; /* we fixed nothing */
  625. }
  626. static void end_workqueue_bio(struct bio *bio)
  627. {
  628. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  629. struct btrfs_fs_info *fs_info;
  630. struct btrfs_workqueue *wq;
  631. btrfs_work_func_t func;
  632. fs_info = end_io_wq->info;
  633. end_io_wq->error = bio->bi_error;
  634. if (bio->bi_rw & REQ_WRITE) {
  635. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  636. wq = fs_info->endio_meta_write_workers;
  637. func = btrfs_endio_meta_write_helper;
  638. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  639. wq = fs_info->endio_freespace_worker;
  640. func = btrfs_freespace_write_helper;
  641. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  642. wq = fs_info->endio_raid56_workers;
  643. func = btrfs_endio_raid56_helper;
  644. } else {
  645. wq = fs_info->endio_write_workers;
  646. func = btrfs_endio_write_helper;
  647. }
  648. } else {
  649. if (unlikely(end_io_wq->metadata ==
  650. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  651. wq = fs_info->endio_repair_workers;
  652. func = btrfs_endio_repair_helper;
  653. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  654. wq = fs_info->endio_raid56_workers;
  655. func = btrfs_endio_raid56_helper;
  656. } else if (end_io_wq->metadata) {
  657. wq = fs_info->endio_meta_workers;
  658. func = btrfs_endio_meta_helper;
  659. } else {
  660. wq = fs_info->endio_workers;
  661. func = btrfs_endio_helper;
  662. }
  663. }
  664. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  665. btrfs_queue_work(wq, &end_io_wq->work);
  666. }
  667. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  668. enum btrfs_wq_endio_type metadata)
  669. {
  670. struct btrfs_end_io_wq *end_io_wq;
  671. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  672. if (!end_io_wq)
  673. return -ENOMEM;
  674. end_io_wq->private = bio->bi_private;
  675. end_io_wq->end_io = bio->bi_end_io;
  676. end_io_wq->info = info;
  677. end_io_wq->error = 0;
  678. end_io_wq->bio = bio;
  679. end_io_wq->metadata = metadata;
  680. bio->bi_private = end_io_wq;
  681. bio->bi_end_io = end_workqueue_bio;
  682. return 0;
  683. }
  684. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  685. {
  686. unsigned long limit = min_t(unsigned long,
  687. info->thread_pool_size,
  688. info->fs_devices->open_devices);
  689. return 256 * limit;
  690. }
  691. static void run_one_async_start(struct btrfs_work *work)
  692. {
  693. struct async_submit_bio *async;
  694. int ret;
  695. async = container_of(work, struct async_submit_bio, work);
  696. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  697. async->mirror_num, async->bio_flags,
  698. async->bio_offset);
  699. if (ret)
  700. async->error = ret;
  701. }
  702. static void run_one_async_done(struct btrfs_work *work)
  703. {
  704. struct btrfs_fs_info *fs_info;
  705. struct async_submit_bio *async;
  706. int limit;
  707. async = container_of(work, struct async_submit_bio, work);
  708. fs_info = BTRFS_I(async->inode)->root->fs_info;
  709. limit = btrfs_async_submit_limit(fs_info);
  710. limit = limit * 2 / 3;
  711. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  712. waitqueue_active(&fs_info->async_submit_wait))
  713. wake_up(&fs_info->async_submit_wait);
  714. /* If an error occured we just want to clean up the bio and move on */
  715. if (async->error) {
  716. async->bio->bi_error = async->error;
  717. bio_endio(async->bio);
  718. return;
  719. }
  720. async->submit_bio_done(async->inode, async->rw, async->bio,
  721. async->mirror_num, async->bio_flags,
  722. async->bio_offset);
  723. }
  724. static void run_one_async_free(struct btrfs_work *work)
  725. {
  726. struct async_submit_bio *async;
  727. async = container_of(work, struct async_submit_bio, work);
  728. kfree(async);
  729. }
  730. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  731. int rw, struct bio *bio, int mirror_num,
  732. unsigned long bio_flags,
  733. u64 bio_offset,
  734. extent_submit_bio_hook_t *submit_bio_start,
  735. extent_submit_bio_hook_t *submit_bio_done)
  736. {
  737. struct async_submit_bio *async;
  738. async = kmalloc(sizeof(*async), GFP_NOFS);
  739. if (!async)
  740. return -ENOMEM;
  741. async->inode = inode;
  742. async->rw = rw;
  743. async->bio = bio;
  744. async->mirror_num = mirror_num;
  745. async->submit_bio_start = submit_bio_start;
  746. async->submit_bio_done = submit_bio_done;
  747. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  748. run_one_async_done, run_one_async_free);
  749. async->bio_flags = bio_flags;
  750. async->bio_offset = bio_offset;
  751. async->error = 0;
  752. atomic_inc(&fs_info->nr_async_submits);
  753. if (rw & REQ_SYNC)
  754. btrfs_set_work_high_priority(&async->work);
  755. btrfs_queue_work(fs_info->workers, &async->work);
  756. while (atomic_read(&fs_info->async_submit_draining) &&
  757. atomic_read(&fs_info->nr_async_submits)) {
  758. wait_event(fs_info->async_submit_wait,
  759. (atomic_read(&fs_info->nr_async_submits) == 0));
  760. }
  761. return 0;
  762. }
  763. static int btree_csum_one_bio(struct bio *bio)
  764. {
  765. struct bio_vec *bvec;
  766. struct btrfs_root *root;
  767. int i, ret = 0;
  768. bio_for_each_segment_all(bvec, bio, i) {
  769. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  770. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  771. if (ret)
  772. break;
  773. }
  774. return ret;
  775. }
  776. static int __btree_submit_bio_start(struct inode *inode, int rw,
  777. struct bio *bio, int mirror_num,
  778. unsigned long bio_flags,
  779. u64 bio_offset)
  780. {
  781. /*
  782. * when we're called for a write, we're already in the async
  783. * submission context. Just jump into btrfs_map_bio
  784. */
  785. return btree_csum_one_bio(bio);
  786. }
  787. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  788. int mirror_num, unsigned long bio_flags,
  789. u64 bio_offset)
  790. {
  791. int ret;
  792. /*
  793. * when we're called for a write, we're already in the async
  794. * submission context. Just jump into btrfs_map_bio
  795. */
  796. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  797. if (ret) {
  798. bio->bi_error = ret;
  799. bio_endio(bio);
  800. }
  801. return ret;
  802. }
  803. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  804. {
  805. if (bio_flags & EXTENT_BIO_TREE_LOG)
  806. return 0;
  807. #ifdef CONFIG_X86
  808. if (cpu_has_xmm4_2)
  809. return 0;
  810. #endif
  811. return 1;
  812. }
  813. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  814. int mirror_num, unsigned long bio_flags,
  815. u64 bio_offset)
  816. {
  817. int async = check_async_write(inode, bio_flags);
  818. int ret;
  819. if (!(rw & REQ_WRITE)) {
  820. /*
  821. * called for a read, do the setup so that checksum validation
  822. * can happen in the async kernel threads
  823. */
  824. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  825. bio, BTRFS_WQ_ENDIO_METADATA);
  826. if (ret)
  827. goto out_w_error;
  828. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  829. mirror_num, 0);
  830. } else if (!async) {
  831. ret = btree_csum_one_bio(bio);
  832. if (ret)
  833. goto out_w_error;
  834. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  835. mirror_num, 0);
  836. } else {
  837. /*
  838. * kthread helpers are used to submit writes so that
  839. * checksumming can happen in parallel across all CPUs
  840. */
  841. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  842. inode, rw, bio, mirror_num, 0,
  843. bio_offset,
  844. __btree_submit_bio_start,
  845. __btree_submit_bio_done);
  846. }
  847. if (ret)
  848. goto out_w_error;
  849. return 0;
  850. out_w_error:
  851. bio->bi_error = ret;
  852. bio_endio(bio);
  853. return ret;
  854. }
  855. #ifdef CONFIG_MIGRATION
  856. static int btree_migratepage(struct address_space *mapping,
  857. struct page *newpage, struct page *page,
  858. enum migrate_mode mode)
  859. {
  860. /*
  861. * we can't safely write a btree page from here,
  862. * we haven't done the locking hook
  863. */
  864. if (PageDirty(page))
  865. return -EAGAIN;
  866. /*
  867. * Buffers may be managed in a filesystem specific way.
  868. * We must have no buffers or drop them.
  869. */
  870. if (page_has_private(page) &&
  871. !try_to_release_page(page, GFP_KERNEL))
  872. return -EAGAIN;
  873. return migrate_page(mapping, newpage, page, mode);
  874. }
  875. #endif
  876. static int btree_writepages(struct address_space *mapping,
  877. struct writeback_control *wbc)
  878. {
  879. struct btrfs_fs_info *fs_info;
  880. int ret;
  881. if (wbc->sync_mode == WB_SYNC_NONE) {
  882. if (wbc->for_kupdate)
  883. return 0;
  884. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  885. /* this is a bit racy, but that's ok */
  886. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  887. BTRFS_DIRTY_METADATA_THRESH);
  888. if (ret < 0)
  889. return 0;
  890. }
  891. return btree_write_cache_pages(mapping, wbc);
  892. }
  893. static int btree_readpage(struct file *file, struct page *page)
  894. {
  895. struct extent_io_tree *tree;
  896. tree = &BTRFS_I(page->mapping->host)->io_tree;
  897. return extent_read_full_page(tree, page, btree_get_extent, 0);
  898. }
  899. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  900. {
  901. if (PageWriteback(page) || PageDirty(page))
  902. return 0;
  903. return try_release_extent_buffer(page);
  904. }
  905. static void btree_invalidatepage(struct page *page, unsigned int offset,
  906. unsigned int length)
  907. {
  908. struct extent_io_tree *tree;
  909. tree = &BTRFS_I(page->mapping->host)->io_tree;
  910. extent_invalidatepage(tree, page, offset);
  911. btree_releasepage(page, GFP_NOFS);
  912. if (PagePrivate(page)) {
  913. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  914. "page private not zero on page %llu",
  915. (unsigned long long)page_offset(page));
  916. ClearPagePrivate(page);
  917. set_page_private(page, 0);
  918. page_cache_release(page);
  919. }
  920. }
  921. static int btree_set_page_dirty(struct page *page)
  922. {
  923. #ifdef DEBUG
  924. struct extent_buffer *eb;
  925. BUG_ON(!PagePrivate(page));
  926. eb = (struct extent_buffer *)page->private;
  927. BUG_ON(!eb);
  928. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  929. BUG_ON(!atomic_read(&eb->refs));
  930. btrfs_assert_tree_locked(eb);
  931. #endif
  932. return __set_page_dirty_nobuffers(page);
  933. }
  934. static const struct address_space_operations btree_aops = {
  935. .readpage = btree_readpage,
  936. .writepages = btree_writepages,
  937. .releasepage = btree_releasepage,
  938. .invalidatepage = btree_invalidatepage,
  939. #ifdef CONFIG_MIGRATION
  940. .migratepage = btree_migratepage,
  941. #endif
  942. .set_page_dirty = btree_set_page_dirty,
  943. };
  944. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  945. {
  946. struct extent_buffer *buf = NULL;
  947. struct inode *btree_inode = root->fs_info->btree_inode;
  948. buf = btrfs_find_create_tree_block(root, bytenr);
  949. if (!buf)
  950. return;
  951. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  952. buf, 0, WAIT_NONE, btree_get_extent, 0);
  953. free_extent_buffer(buf);
  954. }
  955. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  956. int mirror_num, struct extent_buffer **eb)
  957. {
  958. struct extent_buffer *buf = NULL;
  959. struct inode *btree_inode = root->fs_info->btree_inode;
  960. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  961. int ret;
  962. buf = btrfs_find_create_tree_block(root, bytenr);
  963. if (!buf)
  964. return 0;
  965. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  966. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  967. btree_get_extent, mirror_num);
  968. if (ret) {
  969. free_extent_buffer(buf);
  970. return ret;
  971. }
  972. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  973. free_extent_buffer(buf);
  974. return -EIO;
  975. } else if (extent_buffer_uptodate(buf)) {
  976. *eb = buf;
  977. } else {
  978. free_extent_buffer(buf);
  979. }
  980. return 0;
  981. }
  982. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  983. u64 bytenr)
  984. {
  985. return find_extent_buffer(fs_info, bytenr);
  986. }
  987. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  988. u64 bytenr)
  989. {
  990. if (btrfs_test_is_dummy_root(root))
  991. return alloc_test_extent_buffer(root->fs_info, bytenr);
  992. return alloc_extent_buffer(root->fs_info, bytenr);
  993. }
  994. int btrfs_write_tree_block(struct extent_buffer *buf)
  995. {
  996. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  997. buf->start + buf->len - 1);
  998. }
  999. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1000. {
  1001. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1002. buf->start, buf->start + buf->len - 1);
  1003. }
  1004. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1005. u64 parent_transid)
  1006. {
  1007. struct extent_buffer *buf = NULL;
  1008. int ret;
  1009. buf = btrfs_find_create_tree_block(root, bytenr);
  1010. if (!buf)
  1011. return ERR_PTR(-ENOMEM);
  1012. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1013. if (ret) {
  1014. free_extent_buffer(buf);
  1015. return ERR_PTR(ret);
  1016. }
  1017. return buf;
  1018. }
  1019. void clean_tree_block(struct btrfs_trans_handle *trans,
  1020. struct btrfs_fs_info *fs_info,
  1021. struct extent_buffer *buf)
  1022. {
  1023. if (btrfs_header_generation(buf) ==
  1024. fs_info->running_transaction->transid) {
  1025. btrfs_assert_tree_locked(buf);
  1026. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1027. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1028. -buf->len,
  1029. fs_info->dirty_metadata_batch);
  1030. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1031. btrfs_set_lock_blocking(buf);
  1032. clear_extent_buffer_dirty(buf);
  1033. }
  1034. }
  1035. }
  1036. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1037. {
  1038. struct btrfs_subvolume_writers *writers;
  1039. int ret;
  1040. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1041. if (!writers)
  1042. return ERR_PTR(-ENOMEM);
  1043. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1044. if (ret < 0) {
  1045. kfree(writers);
  1046. return ERR_PTR(ret);
  1047. }
  1048. init_waitqueue_head(&writers->wait);
  1049. return writers;
  1050. }
  1051. static void
  1052. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1053. {
  1054. percpu_counter_destroy(&writers->counter);
  1055. kfree(writers);
  1056. }
  1057. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1058. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1059. u64 objectid)
  1060. {
  1061. root->node = NULL;
  1062. root->commit_root = NULL;
  1063. root->sectorsize = sectorsize;
  1064. root->nodesize = nodesize;
  1065. root->stripesize = stripesize;
  1066. root->state = 0;
  1067. root->orphan_cleanup_state = 0;
  1068. root->objectid = objectid;
  1069. root->last_trans = 0;
  1070. root->highest_objectid = 0;
  1071. root->nr_delalloc_inodes = 0;
  1072. root->nr_ordered_extents = 0;
  1073. root->name = NULL;
  1074. root->inode_tree = RB_ROOT;
  1075. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1076. root->block_rsv = NULL;
  1077. root->orphan_block_rsv = NULL;
  1078. INIT_LIST_HEAD(&root->dirty_list);
  1079. INIT_LIST_HEAD(&root->root_list);
  1080. INIT_LIST_HEAD(&root->delalloc_inodes);
  1081. INIT_LIST_HEAD(&root->delalloc_root);
  1082. INIT_LIST_HEAD(&root->ordered_extents);
  1083. INIT_LIST_HEAD(&root->ordered_root);
  1084. INIT_LIST_HEAD(&root->logged_list[0]);
  1085. INIT_LIST_HEAD(&root->logged_list[1]);
  1086. spin_lock_init(&root->orphan_lock);
  1087. spin_lock_init(&root->inode_lock);
  1088. spin_lock_init(&root->delalloc_lock);
  1089. spin_lock_init(&root->ordered_extent_lock);
  1090. spin_lock_init(&root->accounting_lock);
  1091. spin_lock_init(&root->log_extents_lock[0]);
  1092. spin_lock_init(&root->log_extents_lock[1]);
  1093. mutex_init(&root->objectid_mutex);
  1094. mutex_init(&root->log_mutex);
  1095. mutex_init(&root->ordered_extent_mutex);
  1096. mutex_init(&root->delalloc_mutex);
  1097. init_waitqueue_head(&root->log_writer_wait);
  1098. init_waitqueue_head(&root->log_commit_wait[0]);
  1099. init_waitqueue_head(&root->log_commit_wait[1]);
  1100. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1101. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1102. atomic_set(&root->log_commit[0], 0);
  1103. atomic_set(&root->log_commit[1], 0);
  1104. atomic_set(&root->log_writers, 0);
  1105. atomic_set(&root->log_batch, 0);
  1106. atomic_set(&root->orphan_inodes, 0);
  1107. atomic_set(&root->refs, 1);
  1108. atomic_set(&root->will_be_snapshoted, 0);
  1109. root->log_transid = 0;
  1110. root->log_transid_committed = -1;
  1111. root->last_log_commit = 0;
  1112. if (fs_info)
  1113. extent_io_tree_init(&root->dirty_log_pages,
  1114. fs_info->btree_inode->i_mapping);
  1115. memset(&root->root_key, 0, sizeof(root->root_key));
  1116. memset(&root->root_item, 0, sizeof(root->root_item));
  1117. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1118. if (fs_info)
  1119. root->defrag_trans_start = fs_info->generation;
  1120. else
  1121. root->defrag_trans_start = 0;
  1122. root->root_key.objectid = objectid;
  1123. root->anon_dev = 0;
  1124. spin_lock_init(&root->root_item_lock);
  1125. }
  1126. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1127. {
  1128. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1129. if (root)
  1130. root->fs_info = fs_info;
  1131. return root;
  1132. }
  1133. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1134. /* Should only be used by the testing infrastructure */
  1135. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1136. {
  1137. struct btrfs_root *root;
  1138. root = btrfs_alloc_root(NULL);
  1139. if (!root)
  1140. return ERR_PTR(-ENOMEM);
  1141. __setup_root(4096, 4096, 4096, root, NULL, 1);
  1142. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1143. root->alloc_bytenr = 0;
  1144. return root;
  1145. }
  1146. #endif
  1147. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1148. struct btrfs_fs_info *fs_info,
  1149. u64 objectid)
  1150. {
  1151. struct extent_buffer *leaf;
  1152. struct btrfs_root *tree_root = fs_info->tree_root;
  1153. struct btrfs_root *root;
  1154. struct btrfs_key key;
  1155. int ret = 0;
  1156. uuid_le uuid;
  1157. root = btrfs_alloc_root(fs_info);
  1158. if (!root)
  1159. return ERR_PTR(-ENOMEM);
  1160. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1161. tree_root->stripesize, root, fs_info, objectid);
  1162. root->root_key.objectid = objectid;
  1163. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1164. root->root_key.offset = 0;
  1165. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1166. if (IS_ERR(leaf)) {
  1167. ret = PTR_ERR(leaf);
  1168. leaf = NULL;
  1169. goto fail;
  1170. }
  1171. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1172. btrfs_set_header_bytenr(leaf, leaf->start);
  1173. btrfs_set_header_generation(leaf, trans->transid);
  1174. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1175. btrfs_set_header_owner(leaf, objectid);
  1176. root->node = leaf;
  1177. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1178. BTRFS_FSID_SIZE);
  1179. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1180. btrfs_header_chunk_tree_uuid(leaf),
  1181. BTRFS_UUID_SIZE);
  1182. btrfs_mark_buffer_dirty(leaf);
  1183. root->commit_root = btrfs_root_node(root);
  1184. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1185. root->root_item.flags = 0;
  1186. root->root_item.byte_limit = 0;
  1187. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1188. btrfs_set_root_generation(&root->root_item, trans->transid);
  1189. btrfs_set_root_level(&root->root_item, 0);
  1190. btrfs_set_root_refs(&root->root_item, 1);
  1191. btrfs_set_root_used(&root->root_item, leaf->len);
  1192. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1193. btrfs_set_root_dirid(&root->root_item, 0);
  1194. uuid_le_gen(&uuid);
  1195. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1196. root->root_item.drop_level = 0;
  1197. key.objectid = objectid;
  1198. key.type = BTRFS_ROOT_ITEM_KEY;
  1199. key.offset = 0;
  1200. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1201. if (ret)
  1202. goto fail;
  1203. btrfs_tree_unlock(leaf);
  1204. return root;
  1205. fail:
  1206. if (leaf) {
  1207. btrfs_tree_unlock(leaf);
  1208. free_extent_buffer(root->commit_root);
  1209. free_extent_buffer(leaf);
  1210. }
  1211. kfree(root);
  1212. return ERR_PTR(ret);
  1213. }
  1214. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1215. struct btrfs_fs_info *fs_info)
  1216. {
  1217. struct btrfs_root *root;
  1218. struct btrfs_root *tree_root = fs_info->tree_root;
  1219. struct extent_buffer *leaf;
  1220. root = btrfs_alloc_root(fs_info);
  1221. if (!root)
  1222. return ERR_PTR(-ENOMEM);
  1223. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1224. tree_root->stripesize, root, fs_info,
  1225. BTRFS_TREE_LOG_OBJECTID);
  1226. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1227. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1228. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1229. /*
  1230. * DON'T set REF_COWS for log trees
  1231. *
  1232. * log trees do not get reference counted because they go away
  1233. * before a real commit is actually done. They do store pointers
  1234. * to file data extents, and those reference counts still get
  1235. * updated (along with back refs to the log tree).
  1236. */
  1237. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1238. NULL, 0, 0, 0);
  1239. if (IS_ERR(leaf)) {
  1240. kfree(root);
  1241. return ERR_CAST(leaf);
  1242. }
  1243. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1244. btrfs_set_header_bytenr(leaf, leaf->start);
  1245. btrfs_set_header_generation(leaf, trans->transid);
  1246. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1247. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1248. root->node = leaf;
  1249. write_extent_buffer(root->node, root->fs_info->fsid,
  1250. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1251. btrfs_mark_buffer_dirty(root->node);
  1252. btrfs_tree_unlock(root->node);
  1253. return root;
  1254. }
  1255. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1256. struct btrfs_fs_info *fs_info)
  1257. {
  1258. struct btrfs_root *log_root;
  1259. log_root = alloc_log_tree(trans, fs_info);
  1260. if (IS_ERR(log_root))
  1261. return PTR_ERR(log_root);
  1262. WARN_ON(fs_info->log_root_tree);
  1263. fs_info->log_root_tree = log_root;
  1264. return 0;
  1265. }
  1266. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1267. struct btrfs_root *root)
  1268. {
  1269. struct btrfs_root *log_root;
  1270. struct btrfs_inode_item *inode_item;
  1271. log_root = alloc_log_tree(trans, root->fs_info);
  1272. if (IS_ERR(log_root))
  1273. return PTR_ERR(log_root);
  1274. log_root->last_trans = trans->transid;
  1275. log_root->root_key.offset = root->root_key.objectid;
  1276. inode_item = &log_root->root_item.inode;
  1277. btrfs_set_stack_inode_generation(inode_item, 1);
  1278. btrfs_set_stack_inode_size(inode_item, 3);
  1279. btrfs_set_stack_inode_nlink(inode_item, 1);
  1280. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1281. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1282. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1283. WARN_ON(root->log_root);
  1284. root->log_root = log_root;
  1285. root->log_transid = 0;
  1286. root->log_transid_committed = -1;
  1287. root->last_log_commit = 0;
  1288. return 0;
  1289. }
  1290. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1291. struct btrfs_key *key)
  1292. {
  1293. struct btrfs_root *root;
  1294. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1295. struct btrfs_path *path;
  1296. u64 generation;
  1297. int ret;
  1298. path = btrfs_alloc_path();
  1299. if (!path)
  1300. return ERR_PTR(-ENOMEM);
  1301. root = btrfs_alloc_root(fs_info);
  1302. if (!root) {
  1303. ret = -ENOMEM;
  1304. goto alloc_fail;
  1305. }
  1306. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1307. tree_root->stripesize, root, fs_info, key->objectid);
  1308. ret = btrfs_find_root(tree_root, key, path,
  1309. &root->root_item, &root->root_key);
  1310. if (ret) {
  1311. if (ret > 0)
  1312. ret = -ENOENT;
  1313. goto find_fail;
  1314. }
  1315. generation = btrfs_root_generation(&root->root_item);
  1316. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1317. generation);
  1318. if (IS_ERR(root->node)) {
  1319. ret = PTR_ERR(root->node);
  1320. goto find_fail;
  1321. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1322. ret = -EIO;
  1323. free_extent_buffer(root->node);
  1324. goto find_fail;
  1325. }
  1326. root->commit_root = btrfs_root_node(root);
  1327. out:
  1328. btrfs_free_path(path);
  1329. return root;
  1330. find_fail:
  1331. kfree(root);
  1332. alloc_fail:
  1333. root = ERR_PTR(ret);
  1334. goto out;
  1335. }
  1336. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1337. struct btrfs_key *location)
  1338. {
  1339. struct btrfs_root *root;
  1340. root = btrfs_read_tree_root(tree_root, location);
  1341. if (IS_ERR(root))
  1342. return root;
  1343. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1344. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1345. btrfs_check_and_init_root_item(&root->root_item);
  1346. }
  1347. return root;
  1348. }
  1349. int btrfs_init_fs_root(struct btrfs_root *root)
  1350. {
  1351. int ret;
  1352. struct btrfs_subvolume_writers *writers;
  1353. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1354. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1355. GFP_NOFS);
  1356. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1357. ret = -ENOMEM;
  1358. goto fail;
  1359. }
  1360. writers = btrfs_alloc_subvolume_writers();
  1361. if (IS_ERR(writers)) {
  1362. ret = PTR_ERR(writers);
  1363. goto fail;
  1364. }
  1365. root->subv_writers = writers;
  1366. btrfs_init_free_ino_ctl(root);
  1367. spin_lock_init(&root->ino_cache_lock);
  1368. init_waitqueue_head(&root->ino_cache_wait);
  1369. ret = get_anon_bdev(&root->anon_dev);
  1370. if (ret)
  1371. goto free_writers;
  1372. return 0;
  1373. free_writers:
  1374. btrfs_free_subvolume_writers(root->subv_writers);
  1375. fail:
  1376. kfree(root->free_ino_ctl);
  1377. kfree(root->free_ino_pinned);
  1378. return ret;
  1379. }
  1380. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1381. u64 root_id)
  1382. {
  1383. struct btrfs_root *root;
  1384. spin_lock(&fs_info->fs_roots_radix_lock);
  1385. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1386. (unsigned long)root_id);
  1387. spin_unlock(&fs_info->fs_roots_radix_lock);
  1388. return root;
  1389. }
  1390. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1391. struct btrfs_root *root)
  1392. {
  1393. int ret;
  1394. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1395. if (ret)
  1396. return ret;
  1397. spin_lock(&fs_info->fs_roots_radix_lock);
  1398. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1399. (unsigned long)root->root_key.objectid,
  1400. root);
  1401. if (ret == 0)
  1402. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1403. spin_unlock(&fs_info->fs_roots_radix_lock);
  1404. radix_tree_preload_end();
  1405. return ret;
  1406. }
  1407. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1408. struct btrfs_key *location,
  1409. bool check_ref)
  1410. {
  1411. struct btrfs_root *root;
  1412. struct btrfs_path *path;
  1413. struct btrfs_key key;
  1414. int ret;
  1415. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1416. return fs_info->tree_root;
  1417. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1418. return fs_info->extent_root;
  1419. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1420. return fs_info->chunk_root;
  1421. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1422. return fs_info->dev_root;
  1423. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1424. return fs_info->csum_root;
  1425. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1426. return fs_info->quota_root ? fs_info->quota_root :
  1427. ERR_PTR(-ENOENT);
  1428. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1429. return fs_info->uuid_root ? fs_info->uuid_root :
  1430. ERR_PTR(-ENOENT);
  1431. again:
  1432. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1433. if (root) {
  1434. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1435. return ERR_PTR(-ENOENT);
  1436. return root;
  1437. }
  1438. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1439. if (IS_ERR(root))
  1440. return root;
  1441. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1442. ret = -ENOENT;
  1443. goto fail;
  1444. }
  1445. ret = btrfs_init_fs_root(root);
  1446. if (ret)
  1447. goto fail;
  1448. path = btrfs_alloc_path();
  1449. if (!path) {
  1450. ret = -ENOMEM;
  1451. goto fail;
  1452. }
  1453. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1454. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1455. key.offset = location->objectid;
  1456. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1457. btrfs_free_path(path);
  1458. if (ret < 0)
  1459. goto fail;
  1460. if (ret == 0)
  1461. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1462. ret = btrfs_insert_fs_root(fs_info, root);
  1463. if (ret) {
  1464. if (ret == -EEXIST) {
  1465. free_fs_root(root);
  1466. goto again;
  1467. }
  1468. goto fail;
  1469. }
  1470. return root;
  1471. fail:
  1472. free_fs_root(root);
  1473. return ERR_PTR(ret);
  1474. }
  1475. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1476. {
  1477. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1478. int ret = 0;
  1479. struct btrfs_device *device;
  1480. struct backing_dev_info *bdi;
  1481. rcu_read_lock();
  1482. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1483. if (!device->bdev)
  1484. continue;
  1485. bdi = blk_get_backing_dev_info(device->bdev);
  1486. if (bdi_congested(bdi, bdi_bits)) {
  1487. ret = 1;
  1488. break;
  1489. }
  1490. }
  1491. rcu_read_unlock();
  1492. return ret;
  1493. }
  1494. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1495. {
  1496. int err;
  1497. err = bdi_setup_and_register(bdi, "btrfs");
  1498. if (err)
  1499. return err;
  1500. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
  1501. bdi->congested_fn = btrfs_congested_fn;
  1502. bdi->congested_data = info;
  1503. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1504. return 0;
  1505. }
  1506. /*
  1507. * called by the kthread helper functions to finally call the bio end_io
  1508. * functions. This is where read checksum verification actually happens
  1509. */
  1510. static void end_workqueue_fn(struct btrfs_work *work)
  1511. {
  1512. struct bio *bio;
  1513. struct btrfs_end_io_wq *end_io_wq;
  1514. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1515. bio = end_io_wq->bio;
  1516. bio->bi_error = end_io_wq->error;
  1517. bio->bi_private = end_io_wq->private;
  1518. bio->bi_end_io = end_io_wq->end_io;
  1519. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1520. bio_endio(bio);
  1521. }
  1522. static int cleaner_kthread(void *arg)
  1523. {
  1524. struct btrfs_root *root = arg;
  1525. int again;
  1526. struct btrfs_trans_handle *trans;
  1527. do {
  1528. again = 0;
  1529. /* Make the cleaner go to sleep early. */
  1530. if (btrfs_need_cleaner_sleep(root))
  1531. goto sleep;
  1532. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1533. goto sleep;
  1534. /*
  1535. * Avoid the problem that we change the status of the fs
  1536. * during the above check and trylock.
  1537. */
  1538. if (btrfs_need_cleaner_sleep(root)) {
  1539. mutex_unlock(&root->fs_info->cleaner_mutex);
  1540. goto sleep;
  1541. }
  1542. btrfs_run_delayed_iputs(root);
  1543. again = btrfs_clean_one_deleted_snapshot(root);
  1544. mutex_unlock(&root->fs_info->cleaner_mutex);
  1545. /*
  1546. * The defragger has dealt with the R/O remount and umount,
  1547. * needn't do anything special here.
  1548. */
  1549. btrfs_run_defrag_inodes(root->fs_info);
  1550. /*
  1551. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1552. * with relocation (btrfs_relocate_chunk) and relocation
  1553. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1554. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1555. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1556. * unused block groups.
  1557. */
  1558. btrfs_delete_unused_bgs(root->fs_info);
  1559. sleep:
  1560. if (!try_to_freeze() && !again) {
  1561. set_current_state(TASK_INTERRUPTIBLE);
  1562. if (!kthread_should_stop())
  1563. schedule();
  1564. __set_current_state(TASK_RUNNING);
  1565. }
  1566. } while (!kthread_should_stop());
  1567. /*
  1568. * Transaction kthread is stopped before us and wakes us up.
  1569. * However we might have started a new transaction and COWed some
  1570. * tree blocks when deleting unused block groups for example. So
  1571. * make sure we commit the transaction we started to have a clean
  1572. * shutdown when evicting the btree inode - if it has dirty pages
  1573. * when we do the final iput() on it, eviction will trigger a
  1574. * writeback for it which will fail with null pointer dereferences
  1575. * since work queues and other resources were already released and
  1576. * destroyed by the time the iput/eviction/writeback is made.
  1577. */
  1578. trans = btrfs_attach_transaction(root);
  1579. if (IS_ERR(trans)) {
  1580. if (PTR_ERR(trans) != -ENOENT)
  1581. btrfs_err(root->fs_info,
  1582. "cleaner transaction attach returned %ld",
  1583. PTR_ERR(trans));
  1584. } else {
  1585. int ret;
  1586. ret = btrfs_commit_transaction(trans, root);
  1587. if (ret)
  1588. btrfs_err(root->fs_info,
  1589. "cleaner open transaction commit returned %d",
  1590. ret);
  1591. }
  1592. return 0;
  1593. }
  1594. static int transaction_kthread(void *arg)
  1595. {
  1596. struct btrfs_root *root = arg;
  1597. struct btrfs_trans_handle *trans;
  1598. struct btrfs_transaction *cur;
  1599. u64 transid;
  1600. unsigned long now;
  1601. unsigned long delay;
  1602. bool cannot_commit;
  1603. do {
  1604. cannot_commit = false;
  1605. delay = HZ * root->fs_info->commit_interval;
  1606. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1607. spin_lock(&root->fs_info->trans_lock);
  1608. cur = root->fs_info->running_transaction;
  1609. if (!cur) {
  1610. spin_unlock(&root->fs_info->trans_lock);
  1611. goto sleep;
  1612. }
  1613. now = get_seconds();
  1614. if (cur->state < TRANS_STATE_BLOCKED &&
  1615. (now < cur->start_time ||
  1616. now - cur->start_time < root->fs_info->commit_interval)) {
  1617. spin_unlock(&root->fs_info->trans_lock);
  1618. delay = HZ * 5;
  1619. goto sleep;
  1620. }
  1621. transid = cur->transid;
  1622. spin_unlock(&root->fs_info->trans_lock);
  1623. /* If the file system is aborted, this will always fail. */
  1624. trans = btrfs_attach_transaction(root);
  1625. if (IS_ERR(trans)) {
  1626. if (PTR_ERR(trans) != -ENOENT)
  1627. cannot_commit = true;
  1628. goto sleep;
  1629. }
  1630. if (transid == trans->transid) {
  1631. btrfs_commit_transaction(trans, root);
  1632. } else {
  1633. btrfs_end_transaction(trans, root);
  1634. }
  1635. sleep:
  1636. wake_up_process(root->fs_info->cleaner_kthread);
  1637. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1638. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1639. &root->fs_info->fs_state)))
  1640. btrfs_cleanup_transaction(root);
  1641. if (!try_to_freeze()) {
  1642. set_current_state(TASK_INTERRUPTIBLE);
  1643. if (!kthread_should_stop() &&
  1644. (!btrfs_transaction_blocked(root->fs_info) ||
  1645. cannot_commit))
  1646. schedule_timeout(delay);
  1647. __set_current_state(TASK_RUNNING);
  1648. }
  1649. } while (!kthread_should_stop());
  1650. return 0;
  1651. }
  1652. /*
  1653. * this will find the highest generation in the array of
  1654. * root backups. The index of the highest array is returned,
  1655. * or -1 if we can't find anything.
  1656. *
  1657. * We check to make sure the array is valid by comparing the
  1658. * generation of the latest root in the array with the generation
  1659. * in the super block. If they don't match we pitch it.
  1660. */
  1661. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1662. {
  1663. u64 cur;
  1664. int newest_index = -1;
  1665. struct btrfs_root_backup *root_backup;
  1666. int i;
  1667. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1668. root_backup = info->super_copy->super_roots + i;
  1669. cur = btrfs_backup_tree_root_gen(root_backup);
  1670. if (cur == newest_gen)
  1671. newest_index = i;
  1672. }
  1673. /* check to see if we actually wrapped around */
  1674. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1675. root_backup = info->super_copy->super_roots;
  1676. cur = btrfs_backup_tree_root_gen(root_backup);
  1677. if (cur == newest_gen)
  1678. newest_index = 0;
  1679. }
  1680. return newest_index;
  1681. }
  1682. /*
  1683. * find the oldest backup so we know where to store new entries
  1684. * in the backup array. This will set the backup_root_index
  1685. * field in the fs_info struct
  1686. */
  1687. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1688. u64 newest_gen)
  1689. {
  1690. int newest_index = -1;
  1691. newest_index = find_newest_super_backup(info, newest_gen);
  1692. /* if there was garbage in there, just move along */
  1693. if (newest_index == -1) {
  1694. info->backup_root_index = 0;
  1695. } else {
  1696. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1697. }
  1698. }
  1699. /*
  1700. * copy all the root pointers into the super backup array.
  1701. * this will bump the backup pointer by one when it is
  1702. * done
  1703. */
  1704. static void backup_super_roots(struct btrfs_fs_info *info)
  1705. {
  1706. int next_backup;
  1707. struct btrfs_root_backup *root_backup;
  1708. int last_backup;
  1709. next_backup = info->backup_root_index;
  1710. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1711. BTRFS_NUM_BACKUP_ROOTS;
  1712. /*
  1713. * just overwrite the last backup if we're at the same generation
  1714. * this happens only at umount
  1715. */
  1716. root_backup = info->super_for_commit->super_roots + last_backup;
  1717. if (btrfs_backup_tree_root_gen(root_backup) ==
  1718. btrfs_header_generation(info->tree_root->node))
  1719. next_backup = last_backup;
  1720. root_backup = info->super_for_commit->super_roots + next_backup;
  1721. /*
  1722. * make sure all of our padding and empty slots get zero filled
  1723. * regardless of which ones we use today
  1724. */
  1725. memset(root_backup, 0, sizeof(*root_backup));
  1726. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1727. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1728. btrfs_set_backup_tree_root_gen(root_backup,
  1729. btrfs_header_generation(info->tree_root->node));
  1730. btrfs_set_backup_tree_root_level(root_backup,
  1731. btrfs_header_level(info->tree_root->node));
  1732. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1733. btrfs_set_backup_chunk_root_gen(root_backup,
  1734. btrfs_header_generation(info->chunk_root->node));
  1735. btrfs_set_backup_chunk_root_level(root_backup,
  1736. btrfs_header_level(info->chunk_root->node));
  1737. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1738. btrfs_set_backup_extent_root_gen(root_backup,
  1739. btrfs_header_generation(info->extent_root->node));
  1740. btrfs_set_backup_extent_root_level(root_backup,
  1741. btrfs_header_level(info->extent_root->node));
  1742. /*
  1743. * we might commit during log recovery, which happens before we set
  1744. * the fs_root. Make sure it is valid before we fill it in.
  1745. */
  1746. if (info->fs_root && info->fs_root->node) {
  1747. btrfs_set_backup_fs_root(root_backup,
  1748. info->fs_root->node->start);
  1749. btrfs_set_backup_fs_root_gen(root_backup,
  1750. btrfs_header_generation(info->fs_root->node));
  1751. btrfs_set_backup_fs_root_level(root_backup,
  1752. btrfs_header_level(info->fs_root->node));
  1753. }
  1754. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1755. btrfs_set_backup_dev_root_gen(root_backup,
  1756. btrfs_header_generation(info->dev_root->node));
  1757. btrfs_set_backup_dev_root_level(root_backup,
  1758. btrfs_header_level(info->dev_root->node));
  1759. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1760. btrfs_set_backup_csum_root_gen(root_backup,
  1761. btrfs_header_generation(info->csum_root->node));
  1762. btrfs_set_backup_csum_root_level(root_backup,
  1763. btrfs_header_level(info->csum_root->node));
  1764. btrfs_set_backup_total_bytes(root_backup,
  1765. btrfs_super_total_bytes(info->super_copy));
  1766. btrfs_set_backup_bytes_used(root_backup,
  1767. btrfs_super_bytes_used(info->super_copy));
  1768. btrfs_set_backup_num_devices(root_backup,
  1769. btrfs_super_num_devices(info->super_copy));
  1770. /*
  1771. * if we don't copy this out to the super_copy, it won't get remembered
  1772. * for the next commit
  1773. */
  1774. memcpy(&info->super_copy->super_roots,
  1775. &info->super_for_commit->super_roots,
  1776. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1777. }
  1778. /*
  1779. * this copies info out of the root backup array and back into
  1780. * the in-memory super block. It is meant to help iterate through
  1781. * the array, so you send it the number of backups you've already
  1782. * tried and the last backup index you used.
  1783. *
  1784. * this returns -1 when it has tried all the backups
  1785. */
  1786. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1787. struct btrfs_super_block *super,
  1788. int *num_backups_tried, int *backup_index)
  1789. {
  1790. struct btrfs_root_backup *root_backup;
  1791. int newest = *backup_index;
  1792. if (*num_backups_tried == 0) {
  1793. u64 gen = btrfs_super_generation(super);
  1794. newest = find_newest_super_backup(info, gen);
  1795. if (newest == -1)
  1796. return -1;
  1797. *backup_index = newest;
  1798. *num_backups_tried = 1;
  1799. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1800. /* we've tried all the backups, all done */
  1801. return -1;
  1802. } else {
  1803. /* jump to the next oldest backup */
  1804. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1805. BTRFS_NUM_BACKUP_ROOTS;
  1806. *backup_index = newest;
  1807. *num_backups_tried += 1;
  1808. }
  1809. root_backup = super->super_roots + newest;
  1810. btrfs_set_super_generation(super,
  1811. btrfs_backup_tree_root_gen(root_backup));
  1812. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1813. btrfs_set_super_root_level(super,
  1814. btrfs_backup_tree_root_level(root_backup));
  1815. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1816. /*
  1817. * fixme: the total bytes and num_devices need to match or we should
  1818. * need a fsck
  1819. */
  1820. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1821. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1822. return 0;
  1823. }
  1824. /* helper to cleanup workers */
  1825. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1826. {
  1827. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1828. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1829. btrfs_destroy_workqueue(fs_info->workers);
  1830. btrfs_destroy_workqueue(fs_info->endio_workers);
  1831. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1832. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1833. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1834. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1835. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1836. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1837. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1838. btrfs_destroy_workqueue(fs_info->submit_workers);
  1839. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1840. btrfs_destroy_workqueue(fs_info->caching_workers);
  1841. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1842. btrfs_destroy_workqueue(fs_info->flush_workers);
  1843. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1844. btrfs_destroy_workqueue(fs_info->extent_workers);
  1845. }
  1846. static void free_root_extent_buffers(struct btrfs_root *root)
  1847. {
  1848. if (root) {
  1849. free_extent_buffer(root->node);
  1850. free_extent_buffer(root->commit_root);
  1851. root->node = NULL;
  1852. root->commit_root = NULL;
  1853. }
  1854. }
  1855. /* helper to cleanup tree roots */
  1856. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1857. {
  1858. free_root_extent_buffers(info->tree_root);
  1859. free_root_extent_buffers(info->dev_root);
  1860. free_root_extent_buffers(info->extent_root);
  1861. free_root_extent_buffers(info->csum_root);
  1862. free_root_extent_buffers(info->quota_root);
  1863. free_root_extent_buffers(info->uuid_root);
  1864. if (chunk_root)
  1865. free_root_extent_buffers(info->chunk_root);
  1866. }
  1867. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1868. {
  1869. int ret;
  1870. struct btrfs_root *gang[8];
  1871. int i;
  1872. while (!list_empty(&fs_info->dead_roots)) {
  1873. gang[0] = list_entry(fs_info->dead_roots.next,
  1874. struct btrfs_root, root_list);
  1875. list_del(&gang[0]->root_list);
  1876. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1877. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1878. } else {
  1879. free_extent_buffer(gang[0]->node);
  1880. free_extent_buffer(gang[0]->commit_root);
  1881. btrfs_put_fs_root(gang[0]);
  1882. }
  1883. }
  1884. while (1) {
  1885. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1886. (void **)gang, 0,
  1887. ARRAY_SIZE(gang));
  1888. if (!ret)
  1889. break;
  1890. for (i = 0; i < ret; i++)
  1891. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1892. }
  1893. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1894. btrfs_free_log_root_tree(NULL, fs_info);
  1895. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1896. fs_info->pinned_extents);
  1897. }
  1898. }
  1899. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1900. {
  1901. mutex_init(&fs_info->scrub_lock);
  1902. atomic_set(&fs_info->scrubs_running, 0);
  1903. atomic_set(&fs_info->scrub_pause_req, 0);
  1904. atomic_set(&fs_info->scrubs_paused, 0);
  1905. atomic_set(&fs_info->scrub_cancel_req, 0);
  1906. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1907. fs_info->scrub_workers_refcnt = 0;
  1908. }
  1909. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1910. {
  1911. spin_lock_init(&fs_info->balance_lock);
  1912. mutex_init(&fs_info->balance_mutex);
  1913. atomic_set(&fs_info->balance_running, 0);
  1914. atomic_set(&fs_info->balance_pause_req, 0);
  1915. atomic_set(&fs_info->balance_cancel_req, 0);
  1916. fs_info->balance_ctl = NULL;
  1917. init_waitqueue_head(&fs_info->balance_wait_q);
  1918. }
  1919. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  1920. struct btrfs_root *tree_root)
  1921. {
  1922. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1923. set_nlink(fs_info->btree_inode, 1);
  1924. /*
  1925. * we set the i_size on the btree inode to the max possible int.
  1926. * the real end of the address space is determined by all of
  1927. * the devices in the system
  1928. */
  1929. fs_info->btree_inode->i_size = OFFSET_MAX;
  1930. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1931. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1932. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1933. fs_info->btree_inode->i_mapping);
  1934. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1935. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1936. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1937. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1938. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1939. sizeof(struct btrfs_key));
  1940. set_bit(BTRFS_INODE_DUMMY,
  1941. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1942. btrfs_insert_inode_hash(fs_info->btree_inode);
  1943. }
  1944. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1945. {
  1946. fs_info->dev_replace.lock_owner = 0;
  1947. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1948. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1949. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1950. mutex_init(&fs_info->dev_replace.lock);
  1951. init_waitqueue_head(&fs_info->replace_wait);
  1952. }
  1953. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1954. {
  1955. spin_lock_init(&fs_info->qgroup_lock);
  1956. mutex_init(&fs_info->qgroup_ioctl_lock);
  1957. fs_info->qgroup_tree = RB_ROOT;
  1958. fs_info->qgroup_op_tree = RB_ROOT;
  1959. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1960. fs_info->qgroup_seq = 1;
  1961. fs_info->quota_enabled = 0;
  1962. fs_info->pending_quota_state = 0;
  1963. fs_info->qgroup_ulist = NULL;
  1964. mutex_init(&fs_info->qgroup_rescan_lock);
  1965. }
  1966. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1967. struct btrfs_fs_devices *fs_devices)
  1968. {
  1969. int max_active = fs_info->thread_pool_size;
  1970. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1971. fs_info->workers =
  1972. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  1973. max_active, 16);
  1974. fs_info->delalloc_workers =
  1975. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  1976. fs_info->flush_workers =
  1977. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  1978. fs_info->caching_workers =
  1979. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  1980. /*
  1981. * a higher idle thresh on the submit workers makes it much more
  1982. * likely that bios will be send down in a sane order to the
  1983. * devices
  1984. */
  1985. fs_info->submit_workers =
  1986. btrfs_alloc_workqueue("submit", flags,
  1987. min_t(u64, fs_devices->num_devices,
  1988. max_active), 64);
  1989. fs_info->fixup_workers =
  1990. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  1991. /*
  1992. * endios are largely parallel and should have a very
  1993. * low idle thresh
  1994. */
  1995. fs_info->endio_workers =
  1996. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  1997. fs_info->endio_meta_workers =
  1998. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  1999. fs_info->endio_meta_write_workers =
  2000. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2001. fs_info->endio_raid56_workers =
  2002. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2003. fs_info->endio_repair_workers =
  2004. btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
  2005. fs_info->rmw_workers =
  2006. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2007. fs_info->endio_write_workers =
  2008. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2009. fs_info->endio_freespace_worker =
  2010. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2011. fs_info->delayed_workers =
  2012. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  2013. fs_info->readahead_workers =
  2014. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2015. fs_info->qgroup_rescan_workers =
  2016. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  2017. fs_info->extent_workers =
  2018. btrfs_alloc_workqueue("extent-refs", flags,
  2019. min_t(u64, fs_devices->num_devices,
  2020. max_active), 8);
  2021. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2022. fs_info->submit_workers && fs_info->flush_workers &&
  2023. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2024. fs_info->endio_meta_write_workers &&
  2025. fs_info->endio_repair_workers &&
  2026. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2027. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2028. fs_info->caching_workers && fs_info->readahead_workers &&
  2029. fs_info->fixup_workers && fs_info->delayed_workers &&
  2030. fs_info->extent_workers &&
  2031. fs_info->qgroup_rescan_workers)) {
  2032. return -ENOMEM;
  2033. }
  2034. return 0;
  2035. }
  2036. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2037. struct btrfs_fs_devices *fs_devices)
  2038. {
  2039. int ret;
  2040. struct btrfs_root *tree_root = fs_info->tree_root;
  2041. struct btrfs_root *log_tree_root;
  2042. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2043. u64 bytenr = btrfs_super_log_root(disk_super);
  2044. if (fs_devices->rw_devices == 0) {
  2045. printk(KERN_WARNING "BTRFS: log replay required "
  2046. "on RO media\n");
  2047. return -EIO;
  2048. }
  2049. log_tree_root = btrfs_alloc_root(fs_info);
  2050. if (!log_tree_root)
  2051. return -ENOMEM;
  2052. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2053. tree_root->stripesize, log_tree_root, fs_info,
  2054. BTRFS_TREE_LOG_OBJECTID);
  2055. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2056. fs_info->generation + 1);
  2057. if (IS_ERR(log_tree_root->node)) {
  2058. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2059. ret = PTR_ERR(log_tree_root->node);
  2060. kfree(log_tree_root);
  2061. return ret;
  2062. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2063. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2064. free_extent_buffer(log_tree_root->node);
  2065. kfree(log_tree_root);
  2066. return -EIO;
  2067. }
  2068. /* returns with log_tree_root freed on success */
  2069. ret = btrfs_recover_log_trees(log_tree_root);
  2070. if (ret) {
  2071. btrfs_error(tree_root->fs_info, ret,
  2072. "Failed to recover log tree");
  2073. free_extent_buffer(log_tree_root->node);
  2074. kfree(log_tree_root);
  2075. return ret;
  2076. }
  2077. if (fs_info->sb->s_flags & MS_RDONLY) {
  2078. ret = btrfs_commit_super(tree_root);
  2079. if (ret)
  2080. return ret;
  2081. }
  2082. return 0;
  2083. }
  2084. static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
  2085. struct btrfs_root *tree_root)
  2086. {
  2087. struct btrfs_root *root;
  2088. struct btrfs_key location;
  2089. int ret;
  2090. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2091. location.type = BTRFS_ROOT_ITEM_KEY;
  2092. location.offset = 0;
  2093. root = btrfs_read_tree_root(tree_root, &location);
  2094. if (IS_ERR(root))
  2095. return PTR_ERR(root);
  2096. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2097. fs_info->extent_root = root;
  2098. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2099. root = btrfs_read_tree_root(tree_root, &location);
  2100. if (IS_ERR(root))
  2101. return PTR_ERR(root);
  2102. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2103. fs_info->dev_root = root;
  2104. btrfs_init_devices_late(fs_info);
  2105. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2106. root = btrfs_read_tree_root(tree_root, &location);
  2107. if (IS_ERR(root))
  2108. return PTR_ERR(root);
  2109. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2110. fs_info->csum_root = root;
  2111. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2112. root = btrfs_read_tree_root(tree_root, &location);
  2113. if (!IS_ERR(root)) {
  2114. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2115. fs_info->quota_enabled = 1;
  2116. fs_info->pending_quota_state = 1;
  2117. fs_info->quota_root = root;
  2118. }
  2119. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2120. root = btrfs_read_tree_root(tree_root, &location);
  2121. if (IS_ERR(root)) {
  2122. ret = PTR_ERR(root);
  2123. if (ret != -ENOENT)
  2124. return ret;
  2125. } else {
  2126. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2127. fs_info->uuid_root = root;
  2128. }
  2129. return 0;
  2130. }
  2131. int open_ctree(struct super_block *sb,
  2132. struct btrfs_fs_devices *fs_devices,
  2133. char *options)
  2134. {
  2135. u32 sectorsize;
  2136. u32 nodesize;
  2137. u32 stripesize;
  2138. u64 generation;
  2139. u64 features;
  2140. struct btrfs_key location;
  2141. struct buffer_head *bh;
  2142. struct btrfs_super_block *disk_super;
  2143. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2144. struct btrfs_root *tree_root;
  2145. struct btrfs_root *chunk_root;
  2146. int ret;
  2147. int err = -EINVAL;
  2148. int num_backups_tried = 0;
  2149. int backup_index = 0;
  2150. int max_active;
  2151. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  2152. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  2153. if (!tree_root || !chunk_root) {
  2154. err = -ENOMEM;
  2155. goto fail;
  2156. }
  2157. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2158. if (ret) {
  2159. err = ret;
  2160. goto fail;
  2161. }
  2162. ret = setup_bdi(fs_info, &fs_info->bdi);
  2163. if (ret) {
  2164. err = ret;
  2165. goto fail_srcu;
  2166. }
  2167. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2168. if (ret) {
  2169. err = ret;
  2170. goto fail_bdi;
  2171. }
  2172. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  2173. (1 + ilog2(nr_cpu_ids));
  2174. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2175. if (ret) {
  2176. err = ret;
  2177. goto fail_dirty_metadata_bytes;
  2178. }
  2179. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2180. if (ret) {
  2181. err = ret;
  2182. goto fail_delalloc_bytes;
  2183. }
  2184. fs_info->btree_inode = new_inode(sb);
  2185. if (!fs_info->btree_inode) {
  2186. err = -ENOMEM;
  2187. goto fail_bio_counter;
  2188. }
  2189. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2190. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2191. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2192. INIT_LIST_HEAD(&fs_info->trans_list);
  2193. INIT_LIST_HEAD(&fs_info->dead_roots);
  2194. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2195. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2196. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2197. spin_lock_init(&fs_info->delalloc_root_lock);
  2198. spin_lock_init(&fs_info->trans_lock);
  2199. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2200. spin_lock_init(&fs_info->delayed_iput_lock);
  2201. spin_lock_init(&fs_info->defrag_inodes_lock);
  2202. spin_lock_init(&fs_info->free_chunk_lock);
  2203. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2204. spin_lock_init(&fs_info->super_lock);
  2205. spin_lock_init(&fs_info->qgroup_op_lock);
  2206. spin_lock_init(&fs_info->buffer_lock);
  2207. spin_lock_init(&fs_info->unused_bgs_lock);
  2208. rwlock_init(&fs_info->tree_mod_log_lock);
  2209. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2210. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2211. mutex_init(&fs_info->reloc_mutex);
  2212. mutex_init(&fs_info->delalloc_root_mutex);
  2213. seqlock_init(&fs_info->profiles_lock);
  2214. init_rwsem(&fs_info->delayed_iput_sem);
  2215. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2216. INIT_LIST_HEAD(&fs_info->space_info);
  2217. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2218. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2219. btrfs_mapping_init(&fs_info->mapping_tree);
  2220. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2221. BTRFS_BLOCK_RSV_GLOBAL);
  2222. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2223. BTRFS_BLOCK_RSV_DELALLOC);
  2224. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2225. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2226. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2227. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2228. BTRFS_BLOCK_RSV_DELOPS);
  2229. atomic_set(&fs_info->nr_async_submits, 0);
  2230. atomic_set(&fs_info->async_delalloc_pages, 0);
  2231. atomic_set(&fs_info->async_submit_draining, 0);
  2232. atomic_set(&fs_info->nr_async_bios, 0);
  2233. atomic_set(&fs_info->defrag_running, 0);
  2234. atomic_set(&fs_info->qgroup_op_seq, 0);
  2235. atomic64_set(&fs_info->tree_mod_seq, 0);
  2236. fs_info->sb = sb;
  2237. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2238. fs_info->metadata_ratio = 0;
  2239. fs_info->defrag_inodes = RB_ROOT;
  2240. fs_info->free_chunk_space = 0;
  2241. fs_info->tree_mod_log = RB_ROOT;
  2242. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2243. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2244. /* readahead state */
  2245. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  2246. spin_lock_init(&fs_info->reada_lock);
  2247. fs_info->thread_pool_size = min_t(unsigned long,
  2248. num_online_cpus() + 2, 8);
  2249. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2250. spin_lock_init(&fs_info->ordered_root_lock);
  2251. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2252. GFP_NOFS);
  2253. if (!fs_info->delayed_root) {
  2254. err = -ENOMEM;
  2255. goto fail_iput;
  2256. }
  2257. btrfs_init_delayed_root(fs_info->delayed_root);
  2258. btrfs_init_scrub(fs_info);
  2259. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2260. fs_info->check_integrity_print_mask = 0;
  2261. #endif
  2262. btrfs_init_balance(fs_info);
  2263. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2264. sb->s_blocksize = 4096;
  2265. sb->s_blocksize_bits = blksize_bits(4096);
  2266. sb->s_bdi = &fs_info->bdi;
  2267. btrfs_init_btree_inode(fs_info, tree_root);
  2268. spin_lock_init(&fs_info->block_group_cache_lock);
  2269. fs_info->block_group_cache_tree = RB_ROOT;
  2270. fs_info->first_logical_byte = (u64)-1;
  2271. extent_io_tree_init(&fs_info->freed_extents[0],
  2272. fs_info->btree_inode->i_mapping);
  2273. extent_io_tree_init(&fs_info->freed_extents[1],
  2274. fs_info->btree_inode->i_mapping);
  2275. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2276. fs_info->do_barriers = 1;
  2277. mutex_init(&fs_info->ordered_operations_mutex);
  2278. mutex_init(&fs_info->tree_log_mutex);
  2279. mutex_init(&fs_info->chunk_mutex);
  2280. mutex_init(&fs_info->transaction_kthread_mutex);
  2281. mutex_init(&fs_info->cleaner_mutex);
  2282. mutex_init(&fs_info->volume_mutex);
  2283. mutex_init(&fs_info->ro_block_group_mutex);
  2284. init_rwsem(&fs_info->commit_root_sem);
  2285. init_rwsem(&fs_info->cleanup_work_sem);
  2286. init_rwsem(&fs_info->subvol_sem);
  2287. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2288. btrfs_init_dev_replace_locks(fs_info);
  2289. btrfs_init_qgroup(fs_info);
  2290. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2291. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2292. init_waitqueue_head(&fs_info->transaction_throttle);
  2293. init_waitqueue_head(&fs_info->transaction_wait);
  2294. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2295. init_waitqueue_head(&fs_info->async_submit_wait);
  2296. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2297. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2298. if (ret) {
  2299. err = ret;
  2300. goto fail_alloc;
  2301. }
  2302. __setup_root(4096, 4096, 4096, tree_root,
  2303. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2304. invalidate_bdev(fs_devices->latest_bdev);
  2305. /*
  2306. * Read super block and check the signature bytes only
  2307. */
  2308. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2309. if (!bh) {
  2310. err = -EINVAL;
  2311. goto fail_alloc;
  2312. }
  2313. /*
  2314. * We want to check superblock checksum, the type is stored inside.
  2315. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2316. */
  2317. if (btrfs_check_super_csum(bh->b_data)) {
  2318. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2319. err = -EINVAL;
  2320. goto fail_alloc;
  2321. }
  2322. /*
  2323. * super_copy is zeroed at allocation time and we never touch the
  2324. * following bytes up to INFO_SIZE, the checksum is calculated from
  2325. * the whole block of INFO_SIZE
  2326. */
  2327. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2328. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2329. sizeof(*fs_info->super_for_commit));
  2330. brelse(bh);
  2331. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2332. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2333. if (ret) {
  2334. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2335. err = -EINVAL;
  2336. goto fail_alloc;
  2337. }
  2338. disk_super = fs_info->super_copy;
  2339. if (!btrfs_super_root(disk_super))
  2340. goto fail_alloc;
  2341. /* check FS state, whether FS is broken. */
  2342. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2343. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2344. /*
  2345. * run through our array of backup supers and setup
  2346. * our ring pointer to the oldest one
  2347. */
  2348. generation = btrfs_super_generation(disk_super);
  2349. find_oldest_super_backup(fs_info, generation);
  2350. /*
  2351. * In the long term, we'll store the compression type in the super
  2352. * block, and it'll be used for per file compression control.
  2353. */
  2354. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2355. ret = btrfs_parse_options(tree_root, options);
  2356. if (ret) {
  2357. err = ret;
  2358. goto fail_alloc;
  2359. }
  2360. features = btrfs_super_incompat_flags(disk_super) &
  2361. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2362. if (features) {
  2363. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2364. "unsupported optional features (%Lx).\n",
  2365. features);
  2366. err = -EINVAL;
  2367. goto fail_alloc;
  2368. }
  2369. /*
  2370. * Leafsize and nodesize were always equal, this is only a sanity check.
  2371. */
  2372. if (le32_to_cpu(disk_super->__unused_leafsize) !=
  2373. btrfs_super_nodesize(disk_super)) {
  2374. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2375. "blocksizes don't match. node %d leaf %d\n",
  2376. btrfs_super_nodesize(disk_super),
  2377. le32_to_cpu(disk_super->__unused_leafsize));
  2378. err = -EINVAL;
  2379. goto fail_alloc;
  2380. }
  2381. if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2382. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2383. "blocksize (%d) was too large\n",
  2384. btrfs_super_nodesize(disk_super));
  2385. err = -EINVAL;
  2386. goto fail_alloc;
  2387. }
  2388. features = btrfs_super_incompat_flags(disk_super);
  2389. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2390. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2391. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2392. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2393. printk(KERN_INFO "BTRFS: has skinny extents\n");
  2394. /*
  2395. * flag our filesystem as having big metadata blocks if
  2396. * they are bigger than the page size
  2397. */
  2398. if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
  2399. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2400. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2401. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2402. }
  2403. nodesize = btrfs_super_nodesize(disk_super);
  2404. sectorsize = btrfs_super_sectorsize(disk_super);
  2405. stripesize = btrfs_super_stripesize(disk_super);
  2406. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2407. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2408. /*
  2409. * mixed block groups end up with duplicate but slightly offset
  2410. * extent buffers for the same range. It leads to corruptions
  2411. */
  2412. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2413. (sectorsize != nodesize)) {
  2414. printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
  2415. "are not allowed for mixed block groups on %s\n",
  2416. sb->s_id);
  2417. goto fail_alloc;
  2418. }
  2419. /*
  2420. * Needn't use the lock because there is no other task which will
  2421. * update the flag.
  2422. */
  2423. btrfs_set_super_incompat_flags(disk_super, features);
  2424. features = btrfs_super_compat_ro_flags(disk_super) &
  2425. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2426. if (!(sb->s_flags & MS_RDONLY) && features) {
  2427. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2428. "unsupported option features (%Lx).\n",
  2429. features);
  2430. err = -EINVAL;
  2431. goto fail_alloc;
  2432. }
  2433. max_active = fs_info->thread_pool_size;
  2434. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2435. if (ret) {
  2436. err = ret;
  2437. goto fail_sb_buffer;
  2438. }
  2439. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2440. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2441. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2442. tree_root->nodesize = nodesize;
  2443. tree_root->sectorsize = sectorsize;
  2444. tree_root->stripesize = stripesize;
  2445. sb->s_blocksize = sectorsize;
  2446. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2447. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2448. printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
  2449. goto fail_sb_buffer;
  2450. }
  2451. if (sectorsize != PAGE_SIZE) {
  2452. printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
  2453. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2454. goto fail_sb_buffer;
  2455. }
  2456. mutex_lock(&fs_info->chunk_mutex);
  2457. ret = btrfs_read_sys_array(tree_root);
  2458. mutex_unlock(&fs_info->chunk_mutex);
  2459. if (ret) {
  2460. printk(KERN_ERR "BTRFS: failed to read the system "
  2461. "array on %s\n", sb->s_id);
  2462. goto fail_sb_buffer;
  2463. }
  2464. generation = btrfs_super_chunk_root_generation(disk_super);
  2465. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2466. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2467. chunk_root->node = read_tree_block(chunk_root,
  2468. btrfs_super_chunk_root(disk_super),
  2469. generation);
  2470. if (IS_ERR(chunk_root->node) ||
  2471. !extent_buffer_uptodate(chunk_root->node)) {
  2472. printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
  2473. sb->s_id);
  2474. if (!IS_ERR(chunk_root->node))
  2475. free_extent_buffer(chunk_root->node);
  2476. chunk_root->node = NULL;
  2477. goto fail_tree_roots;
  2478. }
  2479. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2480. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2481. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2482. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2483. ret = btrfs_read_chunk_tree(chunk_root);
  2484. if (ret) {
  2485. printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
  2486. sb->s_id);
  2487. goto fail_tree_roots;
  2488. }
  2489. /*
  2490. * keep the device that is marked to be the target device for the
  2491. * dev_replace procedure
  2492. */
  2493. btrfs_close_extra_devices(fs_devices, 0);
  2494. if (!fs_devices->latest_bdev) {
  2495. printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
  2496. sb->s_id);
  2497. goto fail_tree_roots;
  2498. }
  2499. retry_root_backup:
  2500. generation = btrfs_super_generation(disk_super);
  2501. tree_root->node = read_tree_block(tree_root,
  2502. btrfs_super_root(disk_super),
  2503. generation);
  2504. if (IS_ERR(tree_root->node) ||
  2505. !extent_buffer_uptodate(tree_root->node)) {
  2506. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2507. sb->s_id);
  2508. if (!IS_ERR(tree_root->node))
  2509. free_extent_buffer(tree_root->node);
  2510. tree_root->node = NULL;
  2511. goto recovery_tree_root;
  2512. }
  2513. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2514. tree_root->commit_root = btrfs_root_node(tree_root);
  2515. btrfs_set_root_refs(&tree_root->root_item, 1);
  2516. ret = btrfs_read_roots(fs_info, tree_root);
  2517. if (ret)
  2518. goto recovery_tree_root;
  2519. fs_info->generation = generation;
  2520. fs_info->last_trans_committed = generation;
  2521. ret = btrfs_recover_balance(fs_info);
  2522. if (ret) {
  2523. printk(KERN_ERR "BTRFS: failed to recover balance\n");
  2524. goto fail_block_groups;
  2525. }
  2526. ret = btrfs_init_dev_stats(fs_info);
  2527. if (ret) {
  2528. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2529. ret);
  2530. goto fail_block_groups;
  2531. }
  2532. ret = btrfs_init_dev_replace(fs_info);
  2533. if (ret) {
  2534. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2535. goto fail_block_groups;
  2536. }
  2537. btrfs_close_extra_devices(fs_devices, 1);
  2538. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2539. if (ret) {
  2540. pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
  2541. goto fail_block_groups;
  2542. }
  2543. ret = btrfs_sysfs_add_device(fs_devices);
  2544. if (ret) {
  2545. pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
  2546. goto fail_fsdev_sysfs;
  2547. }
  2548. ret = btrfs_sysfs_add_one(fs_info);
  2549. if (ret) {
  2550. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2551. goto fail_fsdev_sysfs;
  2552. }
  2553. ret = btrfs_init_space_info(fs_info);
  2554. if (ret) {
  2555. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2556. goto fail_sysfs;
  2557. }
  2558. ret = btrfs_read_block_groups(fs_info->extent_root);
  2559. if (ret) {
  2560. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2561. goto fail_sysfs;
  2562. }
  2563. fs_info->num_tolerated_disk_barrier_failures =
  2564. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2565. if (fs_info->fs_devices->missing_devices >
  2566. fs_info->num_tolerated_disk_barrier_failures &&
  2567. !(sb->s_flags & MS_RDONLY)) {
  2568. pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
  2569. fs_info->fs_devices->missing_devices,
  2570. fs_info->num_tolerated_disk_barrier_failures);
  2571. goto fail_sysfs;
  2572. }
  2573. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2574. "btrfs-cleaner");
  2575. if (IS_ERR(fs_info->cleaner_kthread))
  2576. goto fail_sysfs;
  2577. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2578. tree_root,
  2579. "btrfs-transaction");
  2580. if (IS_ERR(fs_info->transaction_kthread))
  2581. goto fail_cleaner;
  2582. if (!btrfs_test_opt(tree_root, SSD) &&
  2583. !btrfs_test_opt(tree_root, NOSSD) &&
  2584. !fs_info->fs_devices->rotating) {
  2585. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2586. "mode\n");
  2587. btrfs_set_opt(fs_info->mount_opt, SSD);
  2588. }
  2589. /*
  2590. * Mount does not set all options immediatelly, we can do it now and do
  2591. * not have to wait for transaction commit
  2592. */
  2593. btrfs_apply_pending_changes(fs_info);
  2594. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2595. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2596. ret = btrfsic_mount(tree_root, fs_devices,
  2597. btrfs_test_opt(tree_root,
  2598. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2599. 1 : 0,
  2600. fs_info->check_integrity_print_mask);
  2601. if (ret)
  2602. printk(KERN_WARNING "BTRFS: failed to initialize"
  2603. " integrity check module %s\n", sb->s_id);
  2604. }
  2605. #endif
  2606. ret = btrfs_read_qgroup_config(fs_info);
  2607. if (ret)
  2608. goto fail_trans_kthread;
  2609. /* do not make disk changes in broken FS */
  2610. if (btrfs_super_log_root(disk_super) != 0) {
  2611. ret = btrfs_replay_log(fs_info, fs_devices);
  2612. if (ret) {
  2613. err = ret;
  2614. goto fail_qgroup;
  2615. }
  2616. }
  2617. ret = btrfs_find_orphan_roots(tree_root);
  2618. if (ret)
  2619. goto fail_qgroup;
  2620. if (!(sb->s_flags & MS_RDONLY)) {
  2621. ret = btrfs_cleanup_fs_roots(fs_info);
  2622. if (ret)
  2623. goto fail_qgroup;
  2624. mutex_lock(&fs_info->cleaner_mutex);
  2625. ret = btrfs_recover_relocation(tree_root);
  2626. mutex_unlock(&fs_info->cleaner_mutex);
  2627. if (ret < 0) {
  2628. printk(KERN_WARNING
  2629. "BTRFS: failed to recover relocation\n");
  2630. err = -EINVAL;
  2631. goto fail_qgroup;
  2632. }
  2633. }
  2634. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2635. location.type = BTRFS_ROOT_ITEM_KEY;
  2636. location.offset = 0;
  2637. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2638. if (IS_ERR(fs_info->fs_root)) {
  2639. err = PTR_ERR(fs_info->fs_root);
  2640. goto fail_qgroup;
  2641. }
  2642. if (sb->s_flags & MS_RDONLY)
  2643. return 0;
  2644. down_read(&fs_info->cleanup_work_sem);
  2645. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2646. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2647. up_read(&fs_info->cleanup_work_sem);
  2648. close_ctree(tree_root);
  2649. return ret;
  2650. }
  2651. up_read(&fs_info->cleanup_work_sem);
  2652. ret = btrfs_resume_balance_async(fs_info);
  2653. if (ret) {
  2654. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2655. close_ctree(tree_root);
  2656. return ret;
  2657. }
  2658. ret = btrfs_resume_dev_replace_async(fs_info);
  2659. if (ret) {
  2660. pr_warn("BTRFS: failed to resume dev_replace\n");
  2661. close_ctree(tree_root);
  2662. return ret;
  2663. }
  2664. btrfs_qgroup_rescan_resume(fs_info);
  2665. if (!fs_info->uuid_root) {
  2666. pr_info("BTRFS: creating UUID tree\n");
  2667. ret = btrfs_create_uuid_tree(fs_info);
  2668. if (ret) {
  2669. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2670. ret);
  2671. close_ctree(tree_root);
  2672. return ret;
  2673. }
  2674. } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
  2675. fs_info->generation !=
  2676. btrfs_super_uuid_tree_generation(disk_super)) {
  2677. pr_info("BTRFS: checking UUID tree\n");
  2678. ret = btrfs_check_uuid_tree(fs_info);
  2679. if (ret) {
  2680. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2681. ret);
  2682. close_ctree(tree_root);
  2683. return ret;
  2684. }
  2685. } else {
  2686. fs_info->update_uuid_tree_gen = 1;
  2687. }
  2688. fs_info->open = 1;
  2689. return 0;
  2690. fail_qgroup:
  2691. btrfs_free_qgroup_config(fs_info);
  2692. fail_trans_kthread:
  2693. kthread_stop(fs_info->transaction_kthread);
  2694. btrfs_cleanup_transaction(fs_info->tree_root);
  2695. btrfs_free_fs_roots(fs_info);
  2696. fail_cleaner:
  2697. kthread_stop(fs_info->cleaner_kthread);
  2698. /*
  2699. * make sure we're done with the btree inode before we stop our
  2700. * kthreads
  2701. */
  2702. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2703. fail_sysfs:
  2704. btrfs_sysfs_remove_one(fs_info);
  2705. fail_fsdev_sysfs:
  2706. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2707. fail_block_groups:
  2708. btrfs_put_block_group_cache(fs_info);
  2709. btrfs_free_block_groups(fs_info);
  2710. fail_tree_roots:
  2711. free_root_pointers(fs_info, 1);
  2712. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2713. fail_sb_buffer:
  2714. btrfs_stop_all_workers(fs_info);
  2715. fail_alloc:
  2716. fail_iput:
  2717. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2718. iput(fs_info->btree_inode);
  2719. fail_bio_counter:
  2720. percpu_counter_destroy(&fs_info->bio_counter);
  2721. fail_delalloc_bytes:
  2722. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2723. fail_dirty_metadata_bytes:
  2724. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2725. fail_bdi:
  2726. bdi_destroy(&fs_info->bdi);
  2727. fail_srcu:
  2728. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2729. fail:
  2730. btrfs_free_stripe_hash_table(fs_info);
  2731. btrfs_close_devices(fs_info->fs_devices);
  2732. return err;
  2733. recovery_tree_root:
  2734. if (!btrfs_test_opt(tree_root, RECOVERY))
  2735. goto fail_tree_roots;
  2736. free_root_pointers(fs_info, 0);
  2737. /* don't use the log in recovery mode, it won't be valid */
  2738. btrfs_set_super_log_root(disk_super, 0);
  2739. /* we can't trust the free space cache either */
  2740. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2741. ret = next_root_backup(fs_info, fs_info->super_copy,
  2742. &num_backups_tried, &backup_index);
  2743. if (ret == -1)
  2744. goto fail_block_groups;
  2745. goto retry_root_backup;
  2746. }
  2747. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2748. {
  2749. if (uptodate) {
  2750. set_buffer_uptodate(bh);
  2751. } else {
  2752. struct btrfs_device *device = (struct btrfs_device *)
  2753. bh->b_private;
  2754. printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
  2755. "I/O error on %s\n",
  2756. rcu_str_deref(device->name));
  2757. /* note, we dont' set_buffer_write_io_error because we have
  2758. * our own ways of dealing with the IO errors
  2759. */
  2760. clear_buffer_uptodate(bh);
  2761. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2762. }
  2763. unlock_buffer(bh);
  2764. put_bh(bh);
  2765. }
  2766. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2767. {
  2768. struct buffer_head *bh;
  2769. struct buffer_head *latest = NULL;
  2770. struct btrfs_super_block *super;
  2771. int i;
  2772. u64 transid = 0;
  2773. u64 bytenr;
  2774. /* we would like to check all the supers, but that would make
  2775. * a btrfs mount succeed after a mkfs from a different FS.
  2776. * So, we need to add a special mount option to scan for
  2777. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2778. */
  2779. for (i = 0; i < 1; i++) {
  2780. bytenr = btrfs_sb_offset(i);
  2781. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2782. i_size_read(bdev->bd_inode))
  2783. break;
  2784. bh = __bread(bdev, bytenr / 4096,
  2785. BTRFS_SUPER_INFO_SIZE);
  2786. if (!bh)
  2787. continue;
  2788. super = (struct btrfs_super_block *)bh->b_data;
  2789. if (btrfs_super_bytenr(super) != bytenr ||
  2790. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2791. brelse(bh);
  2792. continue;
  2793. }
  2794. if (!latest || btrfs_super_generation(super) > transid) {
  2795. brelse(latest);
  2796. latest = bh;
  2797. transid = btrfs_super_generation(super);
  2798. } else {
  2799. brelse(bh);
  2800. }
  2801. }
  2802. return latest;
  2803. }
  2804. /*
  2805. * this should be called twice, once with wait == 0 and
  2806. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2807. * we write are pinned.
  2808. *
  2809. * They are released when wait == 1 is done.
  2810. * max_mirrors must be the same for both runs, and it indicates how
  2811. * many supers on this one device should be written.
  2812. *
  2813. * max_mirrors == 0 means to write them all.
  2814. */
  2815. static int write_dev_supers(struct btrfs_device *device,
  2816. struct btrfs_super_block *sb,
  2817. int do_barriers, int wait, int max_mirrors)
  2818. {
  2819. struct buffer_head *bh;
  2820. int i;
  2821. int ret;
  2822. int errors = 0;
  2823. u32 crc;
  2824. u64 bytenr;
  2825. if (max_mirrors == 0)
  2826. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2827. for (i = 0; i < max_mirrors; i++) {
  2828. bytenr = btrfs_sb_offset(i);
  2829. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2830. device->commit_total_bytes)
  2831. break;
  2832. if (wait) {
  2833. bh = __find_get_block(device->bdev, bytenr / 4096,
  2834. BTRFS_SUPER_INFO_SIZE);
  2835. if (!bh) {
  2836. errors++;
  2837. continue;
  2838. }
  2839. wait_on_buffer(bh);
  2840. if (!buffer_uptodate(bh))
  2841. errors++;
  2842. /* drop our reference */
  2843. brelse(bh);
  2844. /* drop the reference from the wait == 0 run */
  2845. brelse(bh);
  2846. continue;
  2847. } else {
  2848. btrfs_set_super_bytenr(sb, bytenr);
  2849. crc = ~(u32)0;
  2850. crc = btrfs_csum_data((char *)sb +
  2851. BTRFS_CSUM_SIZE, crc,
  2852. BTRFS_SUPER_INFO_SIZE -
  2853. BTRFS_CSUM_SIZE);
  2854. btrfs_csum_final(crc, sb->csum);
  2855. /*
  2856. * one reference for us, and we leave it for the
  2857. * caller
  2858. */
  2859. bh = __getblk(device->bdev, bytenr / 4096,
  2860. BTRFS_SUPER_INFO_SIZE);
  2861. if (!bh) {
  2862. printk(KERN_ERR "BTRFS: couldn't get super "
  2863. "buffer head for bytenr %Lu\n", bytenr);
  2864. errors++;
  2865. continue;
  2866. }
  2867. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2868. /* one reference for submit_bh */
  2869. get_bh(bh);
  2870. set_buffer_uptodate(bh);
  2871. lock_buffer(bh);
  2872. bh->b_end_io = btrfs_end_buffer_write_sync;
  2873. bh->b_private = device;
  2874. }
  2875. /*
  2876. * we fua the first super. The others we allow
  2877. * to go down lazy.
  2878. */
  2879. if (i == 0)
  2880. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2881. else
  2882. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2883. if (ret)
  2884. errors++;
  2885. }
  2886. return errors < i ? 0 : -1;
  2887. }
  2888. /*
  2889. * endio for the write_dev_flush, this will wake anyone waiting
  2890. * for the barrier when it is done
  2891. */
  2892. static void btrfs_end_empty_barrier(struct bio *bio)
  2893. {
  2894. if (bio->bi_private)
  2895. complete(bio->bi_private);
  2896. bio_put(bio);
  2897. }
  2898. /*
  2899. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2900. * sent down. With wait == 1, it waits for the previous flush.
  2901. *
  2902. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2903. * capable
  2904. */
  2905. static int write_dev_flush(struct btrfs_device *device, int wait)
  2906. {
  2907. struct bio *bio;
  2908. int ret = 0;
  2909. if (device->nobarriers)
  2910. return 0;
  2911. if (wait) {
  2912. bio = device->flush_bio;
  2913. if (!bio)
  2914. return 0;
  2915. wait_for_completion(&device->flush_wait);
  2916. if (bio->bi_error) {
  2917. ret = bio->bi_error;
  2918. btrfs_dev_stat_inc_and_print(device,
  2919. BTRFS_DEV_STAT_FLUSH_ERRS);
  2920. }
  2921. /* drop the reference from the wait == 0 run */
  2922. bio_put(bio);
  2923. device->flush_bio = NULL;
  2924. return ret;
  2925. }
  2926. /*
  2927. * one reference for us, and we leave it for the
  2928. * caller
  2929. */
  2930. device->flush_bio = NULL;
  2931. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2932. if (!bio)
  2933. return -ENOMEM;
  2934. bio->bi_end_io = btrfs_end_empty_barrier;
  2935. bio->bi_bdev = device->bdev;
  2936. init_completion(&device->flush_wait);
  2937. bio->bi_private = &device->flush_wait;
  2938. device->flush_bio = bio;
  2939. bio_get(bio);
  2940. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2941. return 0;
  2942. }
  2943. /*
  2944. * send an empty flush down to each device in parallel,
  2945. * then wait for them
  2946. */
  2947. static int barrier_all_devices(struct btrfs_fs_info *info)
  2948. {
  2949. struct list_head *head;
  2950. struct btrfs_device *dev;
  2951. int errors_send = 0;
  2952. int errors_wait = 0;
  2953. int ret;
  2954. /* send down all the barriers */
  2955. head = &info->fs_devices->devices;
  2956. list_for_each_entry_rcu(dev, head, dev_list) {
  2957. if (dev->missing)
  2958. continue;
  2959. if (!dev->bdev) {
  2960. errors_send++;
  2961. continue;
  2962. }
  2963. if (!dev->in_fs_metadata || !dev->writeable)
  2964. continue;
  2965. ret = write_dev_flush(dev, 0);
  2966. if (ret)
  2967. errors_send++;
  2968. }
  2969. /* wait for all the barriers */
  2970. list_for_each_entry_rcu(dev, head, dev_list) {
  2971. if (dev->missing)
  2972. continue;
  2973. if (!dev->bdev) {
  2974. errors_wait++;
  2975. continue;
  2976. }
  2977. if (!dev->in_fs_metadata || !dev->writeable)
  2978. continue;
  2979. ret = write_dev_flush(dev, 1);
  2980. if (ret)
  2981. errors_wait++;
  2982. }
  2983. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2984. errors_wait > info->num_tolerated_disk_barrier_failures)
  2985. return -EIO;
  2986. return 0;
  2987. }
  2988. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  2989. {
  2990. if ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2991. BTRFS_BLOCK_GROUP_RAID0 |
  2992. BTRFS_AVAIL_ALLOC_BIT_SINGLE)) ||
  2993. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0))
  2994. return 0;
  2995. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2996. BTRFS_BLOCK_GROUP_RAID5 |
  2997. BTRFS_BLOCK_GROUP_RAID10))
  2998. return 1;
  2999. if (flags & BTRFS_BLOCK_GROUP_RAID6)
  3000. return 2;
  3001. pr_warn("BTRFS: unknown raid type: %llu\n", flags);
  3002. return 0;
  3003. }
  3004. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3005. struct btrfs_fs_info *fs_info)
  3006. {
  3007. struct btrfs_ioctl_space_info space;
  3008. struct btrfs_space_info *sinfo;
  3009. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3010. BTRFS_BLOCK_GROUP_SYSTEM,
  3011. BTRFS_BLOCK_GROUP_METADATA,
  3012. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3013. int i;
  3014. int c;
  3015. int num_tolerated_disk_barrier_failures =
  3016. (int)fs_info->fs_devices->num_devices;
  3017. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3018. struct btrfs_space_info *tmp;
  3019. sinfo = NULL;
  3020. rcu_read_lock();
  3021. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3022. if (tmp->flags == types[i]) {
  3023. sinfo = tmp;
  3024. break;
  3025. }
  3026. }
  3027. rcu_read_unlock();
  3028. if (!sinfo)
  3029. continue;
  3030. down_read(&sinfo->groups_sem);
  3031. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3032. u64 flags;
  3033. if (list_empty(&sinfo->block_groups[c]))
  3034. continue;
  3035. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3036. &space);
  3037. if (space.total_bytes == 0 || space.used_bytes == 0)
  3038. continue;
  3039. flags = space.flags;
  3040. num_tolerated_disk_barrier_failures = min(
  3041. num_tolerated_disk_barrier_failures,
  3042. btrfs_get_num_tolerated_disk_barrier_failures(
  3043. flags));
  3044. }
  3045. up_read(&sinfo->groups_sem);
  3046. }
  3047. return num_tolerated_disk_barrier_failures;
  3048. }
  3049. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3050. {
  3051. struct list_head *head;
  3052. struct btrfs_device *dev;
  3053. struct btrfs_super_block *sb;
  3054. struct btrfs_dev_item *dev_item;
  3055. int ret;
  3056. int do_barriers;
  3057. int max_errors;
  3058. int total_errors = 0;
  3059. u64 flags;
  3060. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  3061. backup_super_roots(root->fs_info);
  3062. sb = root->fs_info->super_for_commit;
  3063. dev_item = &sb->dev_item;
  3064. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3065. head = &root->fs_info->fs_devices->devices;
  3066. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3067. if (do_barriers) {
  3068. ret = barrier_all_devices(root->fs_info);
  3069. if (ret) {
  3070. mutex_unlock(
  3071. &root->fs_info->fs_devices->device_list_mutex);
  3072. btrfs_error(root->fs_info, ret,
  3073. "errors while submitting device barriers.");
  3074. return ret;
  3075. }
  3076. }
  3077. list_for_each_entry_rcu(dev, head, dev_list) {
  3078. if (!dev->bdev) {
  3079. total_errors++;
  3080. continue;
  3081. }
  3082. if (!dev->in_fs_metadata || !dev->writeable)
  3083. continue;
  3084. btrfs_set_stack_device_generation(dev_item, 0);
  3085. btrfs_set_stack_device_type(dev_item, dev->type);
  3086. btrfs_set_stack_device_id(dev_item, dev->devid);
  3087. btrfs_set_stack_device_total_bytes(dev_item,
  3088. dev->commit_total_bytes);
  3089. btrfs_set_stack_device_bytes_used(dev_item,
  3090. dev->commit_bytes_used);
  3091. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3092. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3093. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3094. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3095. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3096. flags = btrfs_super_flags(sb);
  3097. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3098. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3099. if (ret)
  3100. total_errors++;
  3101. }
  3102. if (total_errors > max_errors) {
  3103. btrfs_err(root->fs_info, "%d errors while writing supers",
  3104. total_errors);
  3105. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3106. /* FUA is masked off if unsupported and can't be the reason */
  3107. btrfs_error(root->fs_info, -EIO,
  3108. "%d errors while writing supers", total_errors);
  3109. return -EIO;
  3110. }
  3111. total_errors = 0;
  3112. list_for_each_entry_rcu(dev, head, dev_list) {
  3113. if (!dev->bdev)
  3114. continue;
  3115. if (!dev->in_fs_metadata || !dev->writeable)
  3116. continue;
  3117. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3118. if (ret)
  3119. total_errors++;
  3120. }
  3121. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3122. if (total_errors > max_errors) {
  3123. btrfs_error(root->fs_info, -EIO,
  3124. "%d errors while writing supers", total_errors);
  3125. return -EIO;
  3126. }
  3127. return 0;
  3128. }
  3129. int write_ctree_super(struct btrfs_trans_handle *trans,
  3130. struct btrfs_root *root, int max_mirrors)
  3131. {
  3132. return write_all_supers(root, max_mirrors);
  3133. }
  3134. /* Drop a fs root from the radix tree and free it. */
  3135. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3136. struct btrfs_root *root)
  3137. {
  3138. spin_lock(&fs_info->fs_roots_radix_lock);
  3139. radix_tree_delete(&fs_info->fs_roots_radix,
  3140. (unsigned long)root->root_key.objectid);
  3141. spin_unlock(&fs_info->fs_roots_radix_lock);
  3142. if (btrfs_root_refs(&root->root_item) == 0)
  3143. synchronize_srcu(&fs_info->subvol_srcu);
  3144. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3145. btrfs_free_log(NULL, root);
  3146. if (root->free_ino_pinned)
  3147. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3148. if (root->free_ino_ctl)
  3149. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3150. free_fs_root(root);
  3151. }
  3152. static void free_fs_root(struct btrfs_root *root)
  3153. {
  3154. iput(root->ino_cache_inode);
  3155. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3156. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3157. root->orphan_block_rsv = NULL;
  3158. if (root->anon_dev)
  3159. free_anon_bdev(root->anon_dev);
  3160. if (root->subv_writers)
  3161. btrfs_free_subvolume_writers(root->subv_writers);
  3162. free_extent_buffer(root->node);
  3163. free_extent_buffer(root->commit_root);
  3164. kfree(root->free_ino_ctl);
  3165. kfree(root->free_ino_pinned);
  3166. kfree(root->name);
  3167. btrfs_put_fs_root(root);
  3168. }
  3169. void btrfs_free_fs_root(struct btrfs_root *root)
  3170. {
  3171. free_fs_root(root);
  3172. }
  3173. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3174. {
  3175. u64 root_objectid = 0;
  3176. struct btrfs_root *gang[8];
  3177. int i = 0;
  3178. int err = 0;
  3179. unsigned int ret = 0;
  3180. int index;
  3181. while (1) {
  3182. index = srcu_read_lock(&fs_info->subvol_srcu);
  3183. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3184. (void **)gang, root_objectid,
  3185. ARRAY_SIZE(gang));
  3186. if (!ret) {
  3187. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3188. break;
  3189. }
  3190. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3191. for (i = 0; i < ret; i++) {
  3192. /* Avoid to grab roots in dead_roots */
  3193. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3194. gang[i] = NULL;
  3195. continue;
  3196. }
  3197. /* grab all the search result for later use */
  3198. gang[i] = btrfs_grab_fs_root(gang[i]);
  3199. }
  3200. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3201. for (i = 0; i < ret; i++) {
  3202. if (!gang[i])
  3203. continue;
  3204. root_objectid = gang[i]->root_key.objectid;
  3205. err = btrfs_orphan_cleanup(gang[i]);
  3206. if (err)
  3207. break;
  3208. btrfs_put_fs_root(gang[i]);
  3209. }
  3210. root_objectid++;
  3211. }
  3212. /* release the uncleaned roots due to error */
  3213. for (; i < ret; i++) {
  3214. if (gang[i])
  3215. btrfs_put_fs_root(gang[i]);
  3216. }
  3217. return err;
  3218. }
  3219. int btrfs_commit_super(struct btrfs_root *root)
  3220. {
  3221. struct btrfs_trans_handle *trans;
  3222. mutex_lock(&root->fs_info->cleaner_mutex);
  3223. btrfs_run_delayed_iputs(root);
  3224. mutex_unlock(&root->fs_info->cleaner_mutex);
  3225. wake_up_process(root->fs_info->cleaner_kthread);
  3226. /* wait until ongoing cleanup work done */
  3227. down_write(&root->fs_info->cleanup_work_sem);
  3228. up_write(&root->fs_info->cleanup_work_sem);
  3229. trans = btrfs_join_transaction(root);
  3230. if (IS_ERR(trans))
  3231. return PTR_ERR(trans);
  3232. return btrfs_commit_transaction(trans, root);
  3233. }
  3234. void close_ctree(struct btrfs_root *root)
  3235. {
  3236. struct btrfs_fs_info *fs_info = root->fs_info;
  3237. int ret;
  3238. fs_info->closing = 1;
  3239. smp_mb();
  3240. /* wait for the uuid_scan task to finish */
  3241. down(&fs_info->uuid_tree_rescan_sem);
  3242. /* avoid complains from lockdep et al., set sem back to initial state */
  3243. up(&fs_info->uuid_tree_rescan_sem);
  3244. /* pause restriper - we want to resume on mount */
  3245. btrfs_pause_balance(fs_info);
  3246. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3247. btrfs_scrub_cancel(fs_info);
  3248. /* wait for any defraggers to finish */
  3249. wait_event(fs_info->transaction_wait,
  3250. (atomic_read(&fs_info->defrag_running) == 0));
  3251. /* clear out the rbtree of defraggable inodes */
  3252. btrfs_cleanup_defrag_inodes(fs_info);
  3253. cancel_work_sync(&fs_info->async_reclaim_work);
  3254. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3255. /*
  3256. * If the cleaner thread is stopped and there are
  3257. * block groups queued for removal, the deletion will be
  3258. * skipped when we quit the cleaner thread.
  3259. */
  3260. btrfs_delete_unused_bgs(root->fs_info);
  3261. ret = btrfs_commit_super(root);
  3262. if (ret)
  3263. btrfs_err(fs_info, "commit super ret %d", ret);
  3264. }
  3265. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3266. btrfs_error_commit_super(root);
  3267. kthread_stop(fs_info->transaction_kthread);
  3268. kthread_stop(fs_info->cleaner_kthread);
  3269. fs_info->closing = 2;
  3270. smp_mb();
  3271. btrfs_free_qgroup_config(fs_info);
  3272. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3273. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3274. percpu_counter_sum(&fs_info->delalloc_bytes));
  3275. }
  3276. btrfs_sysfs_remove_one(fs_info);
  3277. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3278. btrfs_free_fs_roots(fs_info);
  3279. btrfs_put_block_group_cache(fs_info);
  3280. btrfs_free_block_groups(fs_info);
  3281. /*
  3282. * we must make sure there is not any read request to
  3283. * submit after we stopping all workers.
  3284. */
  3285. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3286. btrfs_stop_all_workers(fs_info);
  3287. fs_info->open = 0;
  3288. free_root_pointers(fs_info, 1);
  3289. iput(fs_info->btree_inode);
  3290. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3291. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3292. btrfsic_unmount(root, fs_info->fs_devices);
  3293. #endif
  3294. btrfs_close_devices(fs_info->fs_devices);
  3295. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3296. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3297. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3298. percpu_counter_destroy(&fs_info->bio_counter);
  3299. bdi_destroy(&fs_info->bdi);
  3300. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3301. btrfs_free_stripe_hash_table(fs_info);
  3302. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3303. root->orphan_block_rsv = NULL;
  3304. lock_chunks(root);
  3305. while (!list_empty(&fs_info->pinned_chunks)) {
  3306. struct extent_map *em;
  3307. em = list_first_entry(&fs_info->pinned_chunks,
  3308. struct extent_map, list);
  3309. list_del_init(&em->list);
  3310. free_extent_map(em);
  3311. }
  3312. unlock_chunks(root);
  3313. }
  3314. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3315. int atomic)
  3316. {
  3317. int ret;
  3318. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3319. ret = extent_buffer_uptodate(buf);
  3320. if (!ret)
  3321. return ret;
  3322. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3323. parent_transid, atomic);
  3324. if (ret == -EAGAIN)
  3325. return ret;
  3326. return !ret;
  3327. }
  3328. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3329. {
  3330. return set_extent_buffer_uptodate(buf);
  3331. }
  3332. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3333. {
  3334. struct btrfs_root *root;
  3335. u64 transid = btrfs_header_generation(buf);
  3336. int was_dirty;
  3337. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3338. /*
  3339. * This is a fast path so only do this check if we have sanity tests
  3340. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3341. * outside of the sanity tests.
  3342. */
  3343. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3344. return;
  3345. #endif
  3346. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3347. btrfs_assert_tree_locked(buf);
  3348. if (transid != root->fs_info->generation)
  3349. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3350. "found %llu running %llu\n",
  3351. buf->start, transid, root->fs_info->generation);
  3352. was_dirty = set_extent_buffer_dirty(buf);
  3353. if (!was_dirty)
  3354. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3355. buf->len,
  3356. root->fs_info->dirty_metadata_batch);
  3357. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3358. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3359. btrfs_print_leaf(root, buf);
  3360. ASSERT(0);
  3361. }
  3362. #endif
  3363. }
  3364. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3365. int flush_delayed)
  3366. {
  3367. /*
  3368. * looks as though older kernels can get into trouble with
  3369. * this code, they end up stuck in balance_dirty_pages forever
  3370. */
  3371. int ret;
  3372. if (current->flags & PF_MEMALLOC)
  3373. return;
  3374. if (flush_delayed)
  3375. btrfs_balance_delayed_items(root);
  3376. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3377. BTRFS_DIRTY_METADATA_THRESH);
  3378. if (ret > 0) {
  3379. balance_dirty_pages_ratelimited(
  3380. root->fs_info->btree_inode->i_mapping);
  3381. }
  3382. return;
  3383. }
  3384. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3385. {
  3386. __btrfs_btree_balance_dirty(root, 1);
  3387. }
  3388. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3389. {
  3390. __btrfs_btree_balance_dirty(root, 0);
  3391. }
  3392. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3393. {
  3394. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3395. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3396. }
  3397. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3398. int read_only)
  3399. {
  3400. struct btrfs_super_block *sb = fs_info->super_copy;
  3401. int ret = 0;
  3402. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3403. printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
  3404. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3405. ret = -EINVAL;
  3406. }
  3407. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3408. printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
  3409. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3410. ret = -EINVAL;
  3411. }
  3412. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3413. printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
  3414. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3415. ret = -EINVAL;
  3416. }
  3417. /*
  3418. * The common minimum, we don't know if we can trust the nodesize/sectorsize
  3419. * items yet, they'll be verified later. Issue just a warning.
  3420. */
  3421. if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
  3422. printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
  3423. btrfs_super_root(sb));
  3424. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
  3425. printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
  3426. btrfs_super_chunk_root(sb));
  3427. if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
  3428. printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
  3429. btrfs_super_log_root(sb));
  3430. /*
  3431. * Check the lower bound, the alignment and other constraints are
  3432. * checked later.
  3433. */
  3434. if (btrfs_super_nodesize(sb) < 4096) {
  3435. printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
  3436. btrfs_super_nodesize(sb));
  3437. ret = -EINVAL;
  3438. }
  3439. if (btrfs_super_sectorsize(sb) < 4096) {
  3440. printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
  3441. btrfs_super_sectorsize(sb));
  3442. ret = -EINVAL;
  3443. }
  3444. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3445. printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
  3446. fs_info->fsid, sb->dev_item.fsid);
  3447. ret = -EINVAL;
  3448. }
  3449. /*
  3450. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3451. * done later
  3452. */
  3453. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3454. printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
  3455. btrfs_super_num_devices(sb));
  3456. if (btrfs_super_num_devices(sb) == 0) {
  3457. printk(KERN_ERR "BTRFS: number of devices is 0\n");
  3458. ret = -EINVAL;
  3459. }
  3460. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3461. printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
  3462. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3463. ret = -EINVAL;
  3464. }
  3465. /*
  3466. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3467. * and one chunk
  3468. */
  3469. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3470. printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
  3471. btrfs_super_sys_array_size(sb),
  3472. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3473. ret = -EINVAL;
  3474. }
  3475. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3476. + sizeof(struct btrfs_chunk)) {
  3477. printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
  3478. btrfs_super_sys_array_size(sb),
  3479. sizeof(struct btrfs_disk_key)
  3480. + sizeof(struct btrfs_chunk));
  3481. ret = -EINVAL;
  3482. }
  3483. /*
  3484. * The generation is a global counter, we'll trust it more than the others
  3485. * but it's still possible that it's the one that's wrong.
  3486. */
  3487. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3488. printk(KERN_WARNING
  3489. "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
  3490. btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
  3491. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3492. && btrfs_super_cache_generation(sb) != (u64)-1)
  3493. printk(KERN_WARNING
  3494. "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
  3495. btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
  3496. return ret;
  3497. }
  3498. static void btrfs_error_commit_super(struct btrfs_root *root)
  3499. {
  3500. mutex_lock(&root->fs_info->cleaner_mutex);
  3501. btrfs_run_delayed_iputs(root);
  3502. mutex_unlock(&root->fs_info->cleaner_mutex);
  3503. down_write(&root->fs_info->cleanup_work_sem);
  3504. up_write(&root->fs_info->cleanup_work_sem);
  3505. /* cleanup FS via transaction */
  3506. btrfs_cleanup_transaction(root);
  3507. }
  3508. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3509. {
  3510. struct btrfs_ordered_extent *ordered;
  3511. spin_lock(&root->ordered_extent_lock);
  3512. /*
  3513. * This will just short circuit the ordered completion stuff which will
  3514. * make sure the ordered extent gets properly cleaned up.
  3515. */
  3516. list_for_each_entry(ordered, &root->ordered_extents,
  3517. root_extent_list)
  3518. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3519. spin_unlock(&root->ordered_extent_lock);
  3520. }
  3521. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3522. {
  3523. struct btrfs_root *root;
  3524. struct list_head splice;
  3525. INIT_LIST_HEAD(&splice);
  3526. spin_lock(&fs_info->ordered_root_lock);
  3527. list_splice_init(&fs_info->ordered_roots, &splice);
  3528. while (!list_empty(&splice)) {
  3529. root = list_first_entry(&splice, struct btrfs_root,
  3530. ordered_root);
  3531. list_move_tail(&root->ordered_root,
  3532. &fs_info->ordered_roots);
  3533. spin_unlock(&fs_info->ordered_root_lock);
  3534. btrfs_destroy_ordered_extents(root);
  3535. cond_resched();
  3536. spin_lock(&fs_info->ordered_root_lock);
  3537. }
  3538. spin_unlock(&fs_info->ordered_root_lock);
  3539. }
  3540. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3541. struct btrfs_root *root)
  3542. {
  3543. struct rb_node *node;
  3544. struct btrfs_delayed_ref_root *delayed_refs;
  3545. struct btrfs_delayed_ref_node *ref;
  3546. int ret = 0;
  3547. delayed_refs = &trans->delayed_refs;
  3548. spin_lock(&delayed_refs->lock);
  3549. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3550. spin_unlock(&delayed_refs->lock);
  3551. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3552. return ret;
  3553. }
  3554. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3555. struct btrfs_delayed_ref_head *head;
  3556. struct btrfs_delayed_ref_node *tmp;
  3557. bool pin_bytes = false;
  3558. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3559. href_node);
  3560. if (!mutex_trylock(&head->mutex)) {
  3561. atomic_inc(&head->node.refs);
  3562. spin_unlock(&delayed_refs->lock);
  3563. mutex_lock(&head->mutex);
  3564. mutex_unlock(&head->mutex);
  3565. btrfs_put_delayed_ref(&head->node);
  3566. spin_lock(&delayed_refs->lock);
  3567. continue;
  3568. }
  3569. spin_lock(&head->lock);
  3570. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3571. list) {
  3572. ref->in_tree = 0;
  3573. list_del(&ref->list);
  3574. atomic_dec(&delayed_refs->num_entries);
  3575. btrfs_put_delayed_ref(ref);
  3576. }
  3577. if (head->must_insert_reserved)
  3578. pin_bytes = true;
  3579. btrfs_free_delayed_extent_op(head->extent_op);
  3580. delayed_refs->num_heads--;
  3581. if (head->processing == 0)
  3582. delayed_refs->num_heads_ready--;
  3583. atomic_dec(&delayed_refs->num_entries);
  3584. head->node.in_tree = 0;
  3585. rb_erase(&head->href_node, &delayed_refs->href_root);
  3586. spin_unlock(&head->lock);
  3587. spin_unlock(&delayed_refs->lock);
  3588. mutex_unlock(&head->mutex);
  3589. if (pin_bytes)
  3590. btrfs_pin_extent(root, head->node.bytenr,
  3591. head->node.num_bytes, 1);
  3592. btrfs_put_delayed_ref(&head->node);
  3593. cond_resched();
  3594. spin_lock(&delayed_refs->lock);
  3595. }
  3596. spin_unlock(&delayed_refs->lock);
  3597. return ret;
  3598. }
  3599. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3600. {
  3601. struct btrfs_inode *btrfs_inode;
  3602. struct list_head splice;
  3603. INIT_LIST_HEAD(&splice);
  3604. spin_lock(&root->delalloc_lock);
  3605. list_splice_init(&root->delalloc_inodes, &splice);
  3606. while (!list_empty(&splice)) {
  3607. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3608. delalloc_inodes);
  3609. list_del_init(&btrfs_inode->delalloc_inodes);
  3610. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3611. &btrfs_inode->runtime_flags);
  3612. spin_unlock(&root->delalloc_lock);
  3613. btrfs_invalidate_inodes(btrfs_inode->root);
  3614. spin_lock(&root->delalloc_lock);
  3615. }
  3616. spin_unlock(&root->delalloc_lock);
  3617. }
  3618. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3619. {
  3620. struct btrfs_root *root;
  3621. struct list_head splice;
  3622. INIT_LIST_HEAD(&splice);
  3623. spin_lock(&fs_info->delalloc_root_lock);
  3624. list_splice_init(&fs_info->delalloc_roots, &splice);
  3625. while (!list_empty(&splice)) {
  3626. root = list_first_entry(&splice, struct btrfs_root,
  3627. delalloc_root);
  3628. list_del_init(&root->delalloc_root);
  3629. root = btrfs_grab_fs_root(root);
  3630. BUG_ON(!root);
  3631. spin_unlock(&fs_info->delalloc_root_lock);
  3632. btrfs_destroy_delalloc_inodes(root);
  3633. btrfs_put_fs_root(root);
  3634. spin_lock(&fs_info->delalloc_root_lock);
  3635. }
  3636. spin_unlock(&fs_info->delalloc_root_lock);
  3637. }
  3638. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3639. struct extent_io_tree *dirty_pages,
  3640. int mark)
  3641. {
  3642. int ret;
  3643. struct extent_buffer *eb;
  3644. u64 start = 0;
  3645. u64 end;
  3646. while (1) {
  3647. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3648. mark, NULL);
  3649. if (ret)
  3650. break;
  3651. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3652. while (start <= end) {
  3653. eb = btrfs_find_tree_block(root->fs_info, start);
  3654. start += root->nodesize;
  3655. if (!eb)
  3656. continue;
  3657. wait_on_extent_buffer_writeback(eb);
  3658. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3659. &eb->bflags))
  3660. clear_extent_buffer_dirty(eb);
  3661. free_extent_buffer_stale(eb);
  3662. }
  3663. }
  3664. return ret;
  3665. }
  3666. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3667. struct extent_io_tree *pinned_extents)
  3668. {
  3669. struct extent_io_tree *unpin;
  3670. u64 start;
  3671. u64 end;
  3672. int ret;
  3673. bool loop = true;
  3674. unpin = pinned_extents;
  3675. again:
  3676. while (1) {
  3677. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3678. EXTENT_DIRTY, NULL);
  3679. if (ret)
  3680. break;
  3681. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3682. btrfs_error_unpin_extent_range(root, start, end);
  3683. cond_resched();
  3684. }
  3685. if (loop) {
  3686. if (unpin == &root->fs_info->freed_extents[0])
  3687. unpin = &root->fs_info->freed_extents[1];
  3688. else
  3689. unpin = &root->fs_info->freed_extents[0];
  3690. loop = false;
  3691. goto again;
  3692. }
  3693. return 0;
  3694. }
  3695. static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
  3696. struct btrfs_fs_info *fs_info)
  3697. {
  3698. struct btrfs_ordered_extent *ordered;
  3699. spin_lock(&fs_info->trans_lock);
  3700. while (!list_empty(&cur_trans->pending_ordered)) {
  3701. ordered = list_first_entry(&cur_trans->pending_ordered,
  3702. struct btrfs_ordered_extent,
  3703. trans_list);
  3704. list_del_init(&ordered->trans_list);
  3705. spin_unlock(&fs_info->trans_lock);
  3706. btrfs_put_ordered_extent(ordered);
  3707. spin_lock(&fs_info->trans_lock);
  3708. }
  3709. spin_unlock(&fs_info->trans_lock);
  3710. }
  3711. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3712. struct btrfs_root *root)
  3713. {
  3714. btrfs_destroy_delayed_refs(cur_trans, root);
  3715. cur_trans->state = TRANS_STATE_COMMIT_START;
  3716. wake_up(&root->fs_info->transaction_blocked_wait);
  3717. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3718. wake_up(&root->fs_info->transaction_wait);
  3719. btrfs_free_pending_ordered(cur_trans, root->fs_info);
  3720. btrfs_destroy_delayed_inodes(root);
  3721. btrfs_assert_delayed_root_empty(root);
  3722. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3723. EXTENT_DIRTY);
  3724. btrfs_destroy_pinned_extent(root,
  3725. root->fs_info->pinned_extents);
  3726. cur_trans->state =TRANS_STATE_COMPLETED;
  3727. wake_up(&cur_trans->commit_wait);
  3728. /*
  3729. memset(cur_trans, 0, sizeof(*cur_trans));
  3730. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3731. */
  3732. }
  3733. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3734. {
  3735. struct btrfs_transaction *t;
  3736. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3737. spin_lock(&root->fs_info->trans_lock);
  3738. while (!list_empty(&root->fs_info->trans_list)) {
  3739. t = list_first_entry(&root->fs_info->trans_list,
  3740. struct btrfs_transaction, list);
  3741. if (t->state >= TRANS_STATE_COMMIT_START) {
  3742. atomic_inc(&t->use_count);
  3743. spin_unlock(&root->fs_info->trans_lock);
  3744. btrfs_wait_for_commit(root, t->transid);
  3745. btrfs_put_transaction(t);
  3746. spin_lock(&root->fs_info->trans_lock);
  3747. continue;
  3748. }
  3749. if (t == root->fs_info->running_transaction) {
  3750. t->state = TRANS_STATE_COMMIT_DOING;
  3751. spin_unlock(&root->fs_info->trans_lock);
  3752. /*
  3753. * We wait for 0 num_writers since we don't hold a trans
  3754. * handle open currently for this transaction.
  3755. */
  3756. wait_event(t->writer_wait,
  3757. atomic_read(&t->num_writers) == 0);
  3758. } else {
  3759. spin_unlock(&root->fs_info->trans_lock);
  3760. }
  3761. btrfs_cleanup_one_transaction(t, root);
  3762. spin_lock(&root->fs_info->trans_lock);
  3763. if (t == root->fs_info->running_transaction)
  3764. root->fs_info->running_transaction = NULL;
  3765. list_del_init(&t->list);
  3766. spin_unlock(&root->fs_info->trans_lock);
  3767. btrfs_put_transaction(t);
  3768. trace_btrfs_transaction_commit(root);
  3769. spin_lock(&root->fs_info->trans_lock);
  3770. }
  3771. spin_unlock(&root->fs_info->trans_lock);
  3772. btrfs_destroy_all_ordered_extents(root->fs_info);
  3773. btrfs_destroy_delayed_inodes(root);
  3774. btrfs_assert_delayed_root_empty(root);
  3775. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3776. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3777. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3778. return 0;
  3779. }
  3780. static const struct extent_io_ops btree_extent_io_ops = {
  3781. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3782. .readpage_io_failed_hook = btree_io_failed_hook,
  3783. .submit_bio_hook = btree_submit_bio_hook,
  3784. /* note we're sharing with inode.c for the merge bio hook */
  3785. .merge_bio_hook = btrfs_merge_bio_hook,
  3786. };