segment.c 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include "f2fs.h"
  20. #include "segment.h"
  21. #include "node.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. #define __reverse_ffz(x) __reverse_ffs(~(x))
  25. static struct kmem_cache *discard_entry_slab;
  26. static struct kmem_cache *discard_cmd_slab;
  27. static struct kmem_cache *sit_entry_set_slab;
  28. static struct kmem_cache *inmem_entry_slab;
  29. static unsigned long __reverse_ulong(unsigned char *str)
  30. {
  31. unsigned long tmp = 0;
  32. int shift = 24, idx = 0;
  33. #if BITS_PER_LONG == 64
  34. shift = 56;
  35. #endif
  36. while (shift >= 0) {
  37. tmp |= (unsigned long)str[idx++] << shift;
  38. shift -= BITS_PER_BYTE;
  39. }
  40. return tmp;
  41. }
  42. /*
  43. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  44. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  45. */
  46. static inline unsigned long __reverse_ffs(unsigned long word)
  47. {
  48. int num = 0;
  49. #if BITS_PER_LONG == 64
  50. if ((word & 0xffffffff00000000UL) == 0)
  51. num += 32;
  52. else
  53. word >>= 32;
  54. #endif
  55. if ((word & 0xffff0000) == 0)
  56. num += 16;
  57. else
  58. word >>= 16;
  59. if ((word & 0xff00) == 0)
  60. num += 8;
  61. else
  62. word >>= 8;
  63. if ((word & 0xf0) == 0)
  64. num += 4;
  65. else
  66. word >>= 4;
  67. if ((word & 0xc) == 0)
  68. num += 2;
  69. else
  70. word >>= 2;
  71. if ((word & 0x2) == 0)
  72. num += 1;
  73. return num;
  74. }
  75. /*
  76. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  77. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  78. * @size must be integral times of unsigned long.
  79. * Example:
  80. * MSB <--> LSB
  81. * f2fs_set_bit(0, bitmap) => 1000 0000
  82. * f2fs_set_bit(7, bitmap) => 0000 0001
  83. */
  84. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  85. unsigned long size, unsigned long offset)
  86. {
  87. const unsigned long *p = addr + BIT_WORD(offset);
  88. unsigned long result = size;
  89. unsigned long tmp;
  90. if (offset >= size)
  91. return size;
  92. size -= (offset & ~(BITS_PER_LONG - 1));
  93. offset %= BITS_PER_LONG;
  94. while (1) {
  95. if (*p == 0)
  96. goto pass;
  97. tmp = __reverse_ulong((unsigned char *)p);
  98. tmp &= ~0UL >> offset;
  99. if (size < BITS_PER_LONG)
  100. tmp &= (~0UL << (BITS_PER_LONG - size));
  101. if (tmp)
  102. goto found;
  103. pass:
  104. if (size <= BITS_PER_LONG)
  105. break;
  106. size -= BITS_PER_LONG;
  107. offset = 0;
  108. p++;
  109. }
  110. return result;
  111. found:
  112. return result - size + __reverse_ffs(tmp);
  113. }
  114. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  115. unsigned long size, unsigned long offset)
  116. {
  117. const unsigned long *p = addr + BIT_WORD(offset);
  118. unsigned long result = size;
  119. unsigned long tmp;
  120. if (offset >= size)
  121. return size;
  122. size -= (offset & ~(BITS_PER_LONG - 1));
  123. offset %= BITS_PER_LONG;
  124. while (1) {
  125. if (*p == ~0UL)
  126. goto pass;
  127. tmp = __reverse_ulong((unsigned char *)p);
  128. if (offset)
  129. tmp |= ~0UL << (BITS_PER_LONG - offset);
  130. if (size < BITS_PER_LONG)
  131. tmp |= ~0UL >> size;
  132. if (tmp != ~0UL)
  133. goto found;
  134. pass:
  135. if (size <= BITS_PER_LONG)
  136. break;
  137. size -= BITS_PER_LONG;
  138. offset = 0;
  139. p++;
  140. }
  141. return result;
  142. found:
  143. return result - size + __reverse_ffz(tmp);
  144. }
  145. void register_inmem_page(struct inode *inode, struct page *page)
  146. {
  147. struct f2fs_inode_info *fi = F2FS_I(inode);
  148. struct inmem_pages *new;
  149. f2fs_trace_pid(page);
  150. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  151. SetPagePrivate(page);
  152. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  153. /* add atomic page indices to the list */
  154. new->page = page;
  155. INIT_LIST_HEAD(&new->list);
  156. /* increase reference count with clean state */
  157. mutex_lock(&fi->inmem_lock);
  158. get_page(page);
  159. list_add_tail(&new->list, &fi->inmem_pages);
  160. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  161. mutex_unlock(&fi->inmem_lock);
  162. trace_f2fs_register_inmem_page(page, INMEM);
  163. }
  164. static int __revoke_inmem_pages(struct inode *inode,
  165. struct list_head *head, bool drop, bool recover)
  166. {
  167. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  168. struct inmem_pages *cur, *tmp;
  169. int err = 0;
  170. list_for_each_entry_safe(cur, tmp, head, list) {
  171. struct page *page = cur->page;
  172. if (drop)
  173. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  174. lock_page(page);
  175. if (recover) {
  176. struct dnode_of_data dn;
  177. struct node_info ni;
  178. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  179. set_new_dnode(&dn, inode, NULL, NULL, 0);
  180. if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
  181. err = -EAGAIN;
  182. goto next;
  183. }
  184. get_node_info(sbi, dn.nid, &ni);
  185. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  186. cur->old_addr, ni.version, true, true);
  187. f2fs_put_dnode(&dn);
  188. }
  189. next:
  190. /* we don't need to invalidate this in the sccessful status */
  191. if (drop || recover)
  192. ClearPageUptodate(page);
  193. set_page_private(page, 0);
  194. ClearPagePrivate(page);
  195. f2fs_put_page(page, 1);
  196. list_del(&cur->list);
  197. kmem_cache_free(inmem_entry_slab, cur);
  198. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  199. }
  200. return err;
  201. }
  202. void drop_inmem_pages(struct inode *inode)
  203. {
  204. struct f2fs_inode_info *fi = F2FS_I(inode);
  205. mutex_lock(&fi->inmem_lock);
  206. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  207. mutex_unlock(&fi->inmem_lock);
  208. clear_inode_flag(inode, FI_ATOMIC_FILE);
  209. stat_dec_atomic_write(inode);
  210. }
  211. static int __commit_inmem_pages(struct inode *inode,
  212. struct list_head *revoke_list)
  213. {
  214. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  215. struct f2fs_inode_info *fi = F2FS_I(inode);
  216. struct inmem_pages *cur, *tmp;
  217. struct f2fs_io_info fio = {
  218. .sbi = sbi,
  219. .type = DATA,
  220. .op = REQ_OP_WRITE,
  221. .op_flags = REQ_SYNC | REQ_PRIO,
  222. .encrypted_page = NULL,
  223. };
  224. pgoff_t last_idx = ULONG_MAX;
  225. int err = 0;
  226. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  227. struct page *page = cur->page;
  228. lock_page(page);
  229. if (page->mapping == inode->i_mapping) {
  230. trace_f2fs_commit_inmem_page(page, INMEM);
  231. set_page_dirty(page);
  232. f2fs_wait_on_page_writeback(page, DATA, true);
  233. if (clear_page_dirty_for_io(page)) {
  234. inode_dec_dirty_pages(inode);
  235. remove_dirty_inode(inode);
  236. }
  237. fio.page = page;
  238. err = do_write_data_page(&fio);
  239. if (err) {
  240. unlock_page(page);
  241. break;
  242. }
  243. /* record old blkaddr for revoking */
  244. cur->old_addr = fio.old_blkaddr;
  245. last_idx = page->index;
  246. }
  247. unlock_page(page);
  248. list_move_tail(&cur->list, revoke_list);
  249. }
  250. if (last_idx != ULONG_MAX)
  251. f2fs_submit_merged_bio_cond(sbi, inode, 0, last_idx,
  252. DATA, WRITE);
  253. if (!err)
  254. __revoke_inmem_pages(inode, revoke_list, false, false);
  255. return err;
  256. }
  257. int commit_inmem_pages(struct inode *inode)
  258. {
  259. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  260. struct f2fs_inode_info *fi = F2FS_I(inode);
  261. struct list_head revoke_list;
  262. int err;
  263. INIT_LIST_HEAD(&revoke_list);
  264. f2fs_balance_fs(sbi, true);
  265. f2fs_lock_op(sbi);
  266. set_inode_flag(inode, FI_ATOMIC_COMMIT);
  267. mutex_lock(&fi->inmem_lock);
  268. err = __commit_inmem_pages(inode, &revoke_list);
  269. if (err) {
  270. int ret;
  271. /*
  272. * try to revoke all committed pages, but still we could fail
  273. * due to no memory or other reason, if that happened, EAGAIN
  274. * will be returned, which means in such case, transaction is
  275. * already not integrity, caller should use journal to do the
  276. * recovery or rewrite & commit last transaction. For other
  277. * error number, revoking was done by filesystem itself.
  278. */
  279. ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
  280. if (ret)
  281. err = ret;
  282. /* drop all uncommitted pages */
  283. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  284. }
  285. mutex_unlock(&fi->inmem_lock);
  286. clear_inode_flag(inode, FI_ATOMIC_COMMIT);
  287. f2fs_unlock_op(sbi);
  288. return err;
  289. }
  290. /*
  291. * This function balances dirty node and dentry pages.
  292. * In addition, it controls garbage collection.
  293. */
  294. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  295. {
  296. #ifdef CONFIG_F2FS_FAULT_INJECTION
  297. if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
  298. f2fs_show_injection_info(FAULT_CHECKPOINT);
  299. f2fs_stop_checkpoint(sbi, false);
  300. }
  301. #endif
  302. if (!need)
  303. return;
  304. /* balance_fs_bg is able to be pending */
  305. if (excess_cached_nats(sbi))
  306. f2fs_balance_fs_bg(sbi);
  307. /*
  308. * We should do GC or end up with checkpoint, if there are so many dirty
  309. * dir/node pages without enough free segments.
  310. */
  311. if (has_not_enough_free_secs(sbi, 0, 0)) {
  312. mutex_lock(&sbi->gc_mutex);
  313. f2fs_gc(sbi, false, false);
  314. }
  315. }
  316. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  317. {
  318. /* try to shrink extent cache when there is no enough memory */
  319. if (!available_free_memory(sbi, EXTENT_CACHE))
  320. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  321. /* check the # of cached NAT entries */
  322. if (!available_free_memory(sbi, NAT_ENTRIES))
  323. try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  324. if (!available_free_memory(sbi, FREE_NIDS))
  325. try_to_free_nids(sbi, MAX_FREE_NIDS);
  326. else
  327. build_free_nids(sbi, false, false);
  328. if (!is_idle(sbi))
  329. return;
  330. /* checkpoint is the only way to shrink partial cached entries */
  331. if (!available_free_memory(sbi, NAT_ENTRIES) ||
  332. !available_free_memory(sbi, INO_ENTRIES) ||
  333. excess_prefree_segs(sbi) ||
  334. excess_dirty_nats(sbi) ||
  335. f2fs_time_over(sbi, CP_TIME)) {
  336. if (test_opt(sbi, DATA_FLUSH)) {
  337. struct blk_plug plug;
  338. blk_start_plug(&plug);
  339. sync_dirty_inodes(sbi, FILE_INODE);
  340. blk_finish_plug(&plug);
  341. }
  342. f2fs_sync_fs(sbi->sb, true);
  343. stat_inc_bg_cp_count(sbi->stat_info);
  344. }
  345. }
  346. static int __submit_flush_wait(struct block_device *bdev)
  347. {
  348. struct bio *bio = f2fs_bio_alloc(0);
  349. int ret;
  350. bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
  351. bio->bi_bdev = bdev;
  352. ret = submit_bio_wait(bio);
  353. bio_put(bio);
  354. return ret;
  355. }
  356. static int submit_flush_wait(struct f2fs_sb_info *sbi)
  357. {
  358. int ret = __submit_flush_wait(sbi->sb->s_bdev);
  359. int i;
  360. if (sbi->s_ndevs && !ret) {
  361. for (i = 1; i < sbi->s_ndevs; i++) {
  362. trace_f2fs_issue_flush(FDEV(i).bdev,
  363. test_opt(sbi, NOBARRIER),
  364. test_opt(sbi, FLUSH_MERGE));
  365. ret = __submit_flush_wait(FDEV(i).bdev);
  366. if (ret)
  367. break;
  368. }
  369. }
  370. return ret;
  371. }
  372. static int issue_flush_thread(void *data)
  373. {
  374. struct f2fs_sb_info *sbi = data;
  375. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  376. wait_queue_head_t *q = &fcc->flush_wait_queue;
  377. repeat:
  378. if (kthread_should_stop())
  379. return 0;
  380. if (!llist_empty(&fcc->issue_list)) {
  381. struct flush_cmd *cmd, *next;
  382. int ret;
  383. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  384. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  385. ret = submit_flush_wait(sbi);
  386. llist_for_each_entry_safe(cmd, next,
  387. fcc->dispatch_list, llnode) {
  388. cmd->ret = ret;
  389. complete(&cmd->wait);
  390. }
  391. fcc->dispatch_list = NULL;
  392. }
  393. wait_event_interruptible(*q,
  394. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  395. goto repeat;
  396. }
  397. int f2fs_issue_flush(struct f2fs_sb_info *sbi)
  398. {
  399. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  400. struct flush_cmd cmd;
  401. if (test_opt(sbi, NOBARRIER))
  402. return 0;
  403. if (!test_opt(sbi, FLUSH_MERGE))
  404. return submit_flush_wait(sbi);
  405. if (!atomic_read(&fcc->submit_flush)) {
  406. int ret;
  407. atomic_inc(&fcc->submit_flush);
  408. ret = submit_flush_wait(sbi);
  409. atomic_dec(&fcc->submit_flush);
  410. return ret;
  411. }
  412. init_completion(&cmd.wait);
  413. atomic_inc(&fcc->submit_flush);
  414. llist_add(&cmd.llnode, &fcc->issue_list);
  415. if (!fcc->dispatch_list)
  416. wake_up(&fcc->flush_wait_queue);
  417. if (fcc->f2fs_issue_flush) {
  418. wait_for_completion(&cmd.wait);
  419. atomic_dec(&fcc->submit_flush);
  420. } else {
  421. llist_del_all(&fcc->issue_list);
  422. atomic_set(&fcc->submit_flush, 0);
  423. }
  424. return cmd.ret;
  425. }
  426. int create_flush_cmd_control(struct f2fs_sb_info *sbi)
  427. {
  428. dev_t dev = sbi->sb->s_bdev->bd_dev;
  429. struct flush_cmd_control *fcc;
  430. int err = 0;
  431. if (SM_I(sbi)->fcc_info) {
  432. fcc = SM_I(sbi)->fcc_info;
  433. goto init_thread;
  434. }
  435. fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
  436. if (!fcc)
  437. return -ENOMEM;
  438. atomic_set(&fcc->submit_flush, 0);
  439. init_waitqueue_head(&fcc->flush_wait_queue);
  440. init_llist_head(&fcc->issue_list);
  441. SM_I(sbi)->fcc_info = fcc;
  442. init_thread:
  443. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  444. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  445. if (IS_ERR(fcc->f2fs_issue_flush)) {
  446. err = PTR_ERR(fcc->f2fs_issue_flush);
  447. kfree(fcc);
  448. SM_I(sbi)->fcc_info = NULL;
  449. return err;
  450. }
  451. return err;
  452. }
  453. void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  454. {
  455. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  456. if (fcc && fcc->f2fs_issue_flush) {
  457. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  458. fcc->f2fs_issue_flush = NULL;
  459. kthread_stop(flush_thread);
  460. }
  461. if (free) {
  462. kfree(fcc);
  463. SM_I(sbi)->fcc_info = NULL;
  464. }
  465. }
  466. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  467. enum dirty_type dirty_type)
  468. {
  469. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  470. /* need not be added */
  471. if (IS_CURSEG(sbi, segno))
  472. return;
  473. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  474. dirty_i->nr_dirty[dirty_type]++;
  475. if (dirty_type == DIRTY) {
  476. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  477. enum dirty_type t = sentry->type;
  478. if (unlikely(t >= DIRTY)) {
  479. f2fs_bug_on(sbi, 1);
  480. return;
  481. }
  482. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  483. dirty_i->nr_dirty[t]++;
  484. }
  485. }
  486. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  487. enum dirty_type dirty_type)
  488. {
  489. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  490. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  491. dirty_i->nr_dirty[dirty_type]--;
  492. if (dirty_type == DIRTY) {
  493. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  494. enum dirty_type t = sentry->type;
  495. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  496. dirty_i->nr_dirty[t]--;
  497. if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
  498. clear_bit(GET_SECNO(sbi, segno),
  499. dirty_i->victim_secmap);
  500. }
  501. }
  502. /*
  503. * Should not occur error such as -ENOMEM.
  504. * Adding dirty entry into seglist is not critical operation.
  505. * If a given segment is one of current working segments, it won't be added.
  506. */
  507. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  508. {
  509. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  510. unsigned short valid_blocks;
  511. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  512. return;
  513. mutex_lock(&dirty_i->seglist_lock);
  514. valid_blocks = get_valid_blocks(sbi, segno, 0);
  515. if (valid_blocks == 0) {
  516. __locate_dirty_segment(sbi, segno, PRE);
  517. __remove_dirty_segment(sbi, segno, DIRTY);
  518. } else if (valid_blocks < sbi->blocks_per_seg) {
  519. __locate_dirty_segment(sbi, segno, DIRTY);
  520. } else {
  521. /* Recovery routine with SSR needs this */
  522. __remove_dirty_segment(sbi, segno, DIRTY);
  523. }
  524. mutex_unlock(&dirty_i->seglist_lock);
  525. }
  526. static void __add_discard_cmd(struct f2fs_sb_info *sbi,
  527. struct bio *bio, block_t lstart, block_t len)
  528. {
  529. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  530. struct list_head *cmd_list = &(dcc->discard_cmd_list);
  531. struct discard_cmd *dc;
  532. dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
  533. INIT_LIST_HEAD(&dc->list);
  534. dc->bio = bio;
  535. bio->bi_private = dc;
  536. dc->lstart = lstart;
  537. dc->len = len;
  538. dc->state = D_PREP;
  539. init_completion(&dc->wait);
  540. mutex_lock(&dcc->cmd_lock);
  541. list_add_tail(&dc->list, cmd_list);
  542. mutex_unlock(&dcc->cmd_lock);
  543. }
  544. static void __remove_discard_cmd(struct f2fs_sb_info *sbi, struct discard_cmd *dc)
  545. {
  546. int err = dc->bio->bi_error;
  547. if (dc->state == D_DONE)
  548. atomic_dec(&(SM_I(sbi)->dcc_info->submit_discard));
  549. if (err == -EOPNOTSUPP)
  550. err = 0;
  551. if (err)
  552. f2fs_msg(sbi->sb, KERN_INFO,
  553. "Issue discard failed, ret: %d", err);
  554. bio_put(dc->bio);
  555. list_del(&dc->list);
  556. kmem_cache_free(discard_cmd_slab, dc);
  557. }
  558. /* This should be covered by global mutex, &sit_i->sentry_lock */
  559. void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
  560. {
  561. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  562. struct list_head *wait_list = &(dcc->discard_cmd_list);
  563. struct discard_cmd *dc, *tmp;
  564. struct blk_plug plug;
  565. mutex_lock(&dcc->cmd_lock);
  566. blk_start_plug(&plug);
  567. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  568. if (blkaddr == NULL_ADDR) {
  569. if (dc->state == D_PREP) {
  570. dc->state = D_SUBMIT;
  571. submit_bio(dc->bio);
  572. atomic_inc(&dcc->submit_discard);
  573. }
  574. continue;
  575. }
  576. if (dc->lstart <= blkaddr && blkaddr < dc->lstart + dc->len) {
  577. if (dc->state == D_SUBMIT)
  578. wait_for_completion_io(&dc->wait);
  579. else
  580. __remove_discard_cmd(sbi, dc);
  581. }
  582. }
  583. blk_finish_plug(&plug);
  584. /* this comes from f2fs_put_super */
  585. if (blkaddr == NULL_ADDR) {
  586. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  587. wait_for_completion_io(&dc->wait);
  588. __remove_discard_cmd(sbi, dc);
  589. }
  590. }
  591. mutex_unlock(&dcc->cmd_lock);
  592. }
  593. static void f2fs_submit_discard_endio(struct bio *bio)
  594. {
  595. struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
  596. complete(&dc->wait);
  597. dc->state = D_DONE;
  598. }
  599. static int issue_discard_thread(void *data)
  600. {
  601. struct f2fs_sb_info *sbi = data;
  602. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  603. wait_queue_head_t *q = &dcc->discard_wait_queue;
  604. struct list_head *cmd_list = &dcc->discard_cmd_list;
  605. struct discard_cmd *dc, *tmp;
  606. struct blk_plug plug;
  607. int iter = 0;
  608. repeat:
  609. if (kthread_should_stop())
  610. return 0;
  611. blk_start_plug(&plug);
  612. mutex_lock(&dcc->cmd_lock);
  613. list_for_each_entry_safe(dc, tmp, cmd_list, list) {
  614. if (dc->state == D_PREP) {
  615. dc->state = D_SUBMIT;
  616. submit_bio(dc->bio);
  617. atomic_inc(&dcc->submit_discard);
  618. if (iter++ > DISCARD_ISSUE_RATE)
  619. break;
  620. } else if (dc->state == D_DONE) {
  621. __remove_discard_cmd(sbi, dc);
  622. }
  623. }
  624. mutex_unlock(&dcc->cmd_lock);
  625. blk_finish_plug(&plug);
  626. iter = 0;
  627. congestion_wait(BLK_RW_SYNC, HZ/50);
  628. wait_event_interruptible(*q,
  629. kthread_should_stop() || !list_empty(&dcc->discard_cmd_list));
  630. goto repeat;
  631. }
  632. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  633. static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi,
  634. struct block_device *bdev, block_t blkstart, block_t blklen)
  635. {
  636. struct bio *bio = NULL;
  637. block_t lblkstart = blkstart;
  638. int err;
  639. trace_f2fs_issue_discard(bdev, blkstart, blklen);
  640. if (sbi->s_ndevs) {
  641. int devi = f2fs_target_device_index(sbi, blkstart);
  642. blkstart -= FDEV(devi).start_blk;
  643. }
  644. err = __blkdev_issue_discard(bdev,
  645. SECTOR_FROM_BLOCK(blkstart),
  646. SECTOR_FROM_BLOCK(blklen),
  647. GFP_NOFS, 0, &bio);
  648. if (!err && bio) {
  649. bio->bi_end_io = f2fs_submit_discard_endio;
  650. bio->bi_opf |= REQ_SYNC;
  651. __add_discard_cmd(sbi, bio, lblkstart, blklen);
  652. wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue);
  653. }
  654. return err;
  655. }
  656. #ifdef CONFIG_BLK_DEV_ZONED
  657. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  658. struct block_device *bdev, block_t blkstart, block_t blklen)
  659. {
  660. sector_t sector, nr_sects;
  661. int devi = 0;
  662. if (sbi->s_ndevs) {
  663. devi = f2fs_target_device_index(sbi, blkstart);
  664. blkstart -= FDEV(devi).start_blk;
  665. }
  666. /*
  667. * We need to know the type of the zone: for conventional zones,
  668. * use regular discard if the drive supports it. For sequential
  669. * zones, reset the zone write pointer.
  670. */
  671. switch (get_blkz_type(sbi, bdev, blkstart)) {
  672. case BLK_ZONE_TYPE_CONVENTIONAL:
  673. if (!blk_queue_discard(bdev_get_queue(bdev)))
  674. return 0;
  675. return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
  676. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  677. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  678. sector = SECTOR_FROM_BLOCK(blkstart);
  679. nr_sects = SECTOR_FROM_BLOCK(blklen);
  680. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  681. nr_sects != bdev_zone_sectors(bdev)) {
  682. f2fs_msg(sbi->sb, KERN_INFO,
  683. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  684. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  685. blkstart, blklen);
  686. return -EIO;
  687. }
  688. trace_f2fs_issue_reset_zone(bdev, blkstart);
  689. return blkdev_reset_zones(bdev, sector,
  690. nr_sects, GFP_NOFS);
  691. default:
  692. /* Unknown zone type: broken device ? */
  693. return -EIO;
  694. }
  695. }
  696. #endif
  697. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  698. struct block_device *bdev, block_t blkstart, block_t blklen)
  699. {
  700. #ifdef CONFIG_BLK_DEV_ZONED
  701. if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
  702. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  703. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  704. #endif
  705. return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
  706. }
  707. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  708. block_t blkstart, block_t blklen)
  709. {
  710. sector_t start = blkstart, len = 0;
  711. struct block_device *bdev;
  712. struct seg_entry *se;
  713. unsigned int offset;
  714. block_t i;
  715. int err = 0;
  716. bdev = f2fs_target_device(sbi, blkstart, NULL);
  717. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  718. if (i != start) {
  719. struct block_device *bdev2 =
  720. f2fs_target_device(sbi, i, NULL);
  721. if (bdev2 != bdev) {
  722. err = __issue_discard_async(sbi, bdev,
  723. start, len);
  724. if (err)
  725. return err;
  726. bdev = bdev2;
  727. start = i;
  728. len = 0;
  729. }
  730. }
  731. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  732. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  733. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  734. sbi->discard_blks--;
  735. }
  736. if (len)
  737. err = __issue_discard_async(sbi, bdev, start, len);
  738. return err;
  739. }
  740. static void __add_discard_entry(struct f2fs_sb_info *sbi,
  741. struct cp_control *cpc, struct seg_entry *se,
  742. unsigned int start, unsigned int end)
  743. {
  744. struct list_head *head = &SM_I(sbi)->dcc_info->discard_entry_list;
  745. struct discard_entry *new, *last;
  746. if (!list_empty(head)) {
  747. last = list_last_entry(head, struct discard_entry, list);
  748. if (START_BLOCK(sbi, cpc->trim_start) + start ==
  749. last->blkaddr + last->len &&
  750. last->len < MAX_DISCARD_BLOCKS(sbi)) {
  751. last->len += end - start;
  752. goto done;
  753. }
  754. }
  755. new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
  756. INIT_LIST_HEAD(&new->list);
  757. new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
  758. new->len = end - start;
  759. list_add_tail(&new->list, head);
  760. done:
  761. SM_I(sbi)->dcc_info->nr_discards += end - start;
  762. }
  763. static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
  764. bool check_only)
  765. {
  766. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  767. int max_blocks = sbi->blocks_per_seg;
  768. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  769. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  770. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  771. unsigned long *discard_map = (unsigned long *)se->discard_map;
  772. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  773. unsigned int start = 0, end = -1;
  774. bool force = (cpc->reason == CP_DISCARD);
  775. int i;
  776. if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
  777. return false;
  778. if (!force) {
  779. if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
  780. SM_I(sbi)->dcc_info->nr_discards >=
  781. SM_I(sbi)->dcc_info->max_discards)
  782. return false;
  783. }
  784. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  785. for (i = 0; i < entries; i++)
  786. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  787. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  788. while (force || SM_I(sbi)->dcc_info->nr_discards <=
  789. SM_I(sbi)->dcc_info->max_discards) {
  790. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  791. if (start >= max_blocks)
  792. break;
  793. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  794. if (force && start && end != max_blocks
  795. && (end - start) < cpc->trim_minlen)
  796. continue;
  797. if (check_only)
  798. return true;
  799. __add_discard_entry(sbi, cpc, se, start, end);
  800. }
  801. return false;
  802. }
  803. void release_discard_addrs(struct f2fs_sb_info *sbi)
  804. {
  805. struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list);
  806. struct discard_entry *entry, *this;
  807. /* drop caches */
  808. list_for_each_entry_safe(entry, this, head, list) {
  809. list_del(&entry->list);
  810. kmem_cache_free(discard_entry_slab, entry);
  811. }
  812. }
  813. /*
  814. * Should call clear_prefree_segments after checkpoint is done.
  815. */
  816. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  817. {
  818. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  819. unsigned int segno;
  820. mutex_lock(&dirty_i->seglist_lock);
  821. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  822. __set_test_and_free(sbi, segno);
  823. mutex_unlock(&dirty_i->seglist_lock);
  824. }
  825. void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  826. {
  827. struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list);
  828. struct discard_entry *entry, *this;
  829. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  830. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  831. unsigned int start = 0, end = -1;
  832. unsigned int secno, start_segno;
  833. bool force = (cpc->reason == CP_DISCARD);
  834. mutex_lock(&dirty_i->seglist_lock);
  835. while (1) {
  836. int i;
  837. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  838. if (start >= MAIN_SEGS(sbi))
  839. break;
  840. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  841. start + 1);
  842. for (i = start; i < end; i++)
  843. clear_bit(i, prefree_map);
  844. dirty_i->nr_dirty[PRE] -= end - start;
  845. if (!test_opt(sbi, DISCARD))
  846. continue;
  847. if (force && start >= cpc->trim_start &&
  848. (end - 1) <= cpc->trim_end)
  849. continue;
  850. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  851. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  852. (end - start) << sbi->log_blocks_per_seg);
  853. continue;
  854. }
  855. next:
  856. secno = GET_SECNO(sbi, start);
  857. start_segno = secno * sbi->segs_per_sec;
  858. if (!IS_CURSEC(sbi, secno) &&
  859. !get_valid_blocks(sbi, start, sbi->segs_per_sec))
  860. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  861. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  862. start = start_segno + sbi->segs_per_sec;
  863. if (start < end)
  864. goto next;
  865. else
  866. end = start - 1;
  867. }
  868. mutex_unlock(&dirty_i->seglist_lock);
  869. /* send small discards */
  870. list_for_each_entry_safe(entry, this, head, list) {
  871. if (force && entry->len < cpc->trim_minlen)
  872. goto skip;
  873. f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
  874. cpc->trimmed += entry->len;
  875. skip:
  876. list_del(&entry->list);
  877. SM_I(sbi)->dcc_info->nr_discards -= entry->len;
  878. kmem_cache_free(discard_entry_slab, entry);
  879. }
  880. }
  881. static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
  882. {
  883. dev_t dev = sbi->sb->s_bdev->bd_dev;
  884. struct discard_cmd_control *dcc;
  885. int err = 0;
  886. if (SM_I(sbi)->dcc_info) {
  887. dcc = SM_I(sbi)->dcc_info;
  888. goto init_thread;
  889. }
  890. dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
  891. if (!dcc)
  892. return -ENOMEM;
  893. INIT_LIST_HEAD(&dcc->discard_entry_list);
  894. INIT_LIST_HEAD(&dcc->discard_cmd_list);
  895. mutex_init(&dcc->cmd_lock);
  896. atomic_set(&dcc->submit_discard, 0);
  897. dcc->nr_discards = 0;
  898. dcc->max_discards = 0;
  899. init_waitqueue_head(&dcc->discard_wait_queue);
  900. SM_I(sbi)->dcc_info = dcc;
  901. init_thread:
  902. dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
  903. "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
  904. if (IS_ERR(dcc->f2fs_issue_discard)) {
  905. err = PTR_ERR(dcc->f2fs_issue_discard);
  906. kfree(dcc);
  907. SM_I(sbi)->dcc_info = NULL;
  908. return err;
  909. }
  910. return err;
  911. }
  912. static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi, bool free)
  913. {
  914. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  915. if (dcc && dcc->f2fs_issue_discard) {
  916. struct task_struct *discard_thread = dcc->f2fs_issue_discard;
  917. dcc->f2fs_issue_discard = NULL;
  918. kthread_stop(discard_thread);
  919. }
  920. if (free) {
  921. kfree(dcc);
  922. SM_I(sbi)->dcc_info = NULL;
  923. }
  924. }
  925. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  926. {
  927. struct sit_info *sit_i = SIT_I(sbi);
  928. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  929. sit_i->dirty_sentries++;
  930. return false;
  931. }
  932. return true;
  933. }
  934. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  935. unsigned int segno, int modified)
  936. {
  937. struct seg_entry *se = get_seg_entry(sbi, segno);
  938. se->type = type;
  939. if (modified)
  940. __mark_sit_entry_dirty(sbi, segno);
  941. }
  942. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  943. {
  944. struct seg_entry *se;
  945. unsigned int segno, offset;
  946. long int new_vblocks;
  947. segno = GET_SEGNO(sbi, blkaddr);
  948. se = get_seg_entry(sbi, segno);
  949. new_vblocks = se->valid_blocks + del;
  950. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  951. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  952. (new_vblocks > sbi->blocks_per_seg)));
  953. se->valid_blocks = new_vblocks;
  954. se->mtime = get_mtime(sbi);
  955. SIT_I(sbi)->max_mtime = se->mtime;
  956. /* Update valid block bitmap */
  957. if (del > 0) {
  958. if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) {
  959. #ifdef CONFIG_F2FS_CHECK_FS
  960. if (f2fs_test_and_set_bit(offset,
  961. se->cur_valid_map_mir))
  962. f2fs_bug_on(sbi, 1);
  963. else
  964. WARN_ON(1);
  965. #else
  966. f2fs_bug_on(sbi, 1);
  967. #endif
  968. }
  969. if (f2fs_discard_en(sbi) &&
  970. !f2fs_test_and_set_bit(offset, se->discard_map))
  971. sbi->discard_blks--;
  972. /* don't overwrite by SSR to keep node chain */
  973. if (se->type == CURSEG_WARM_NODE) {
  974. if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
  975. se->ckpt_valid_blocks++;
  976. }
  977. } else {
  978. if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) {
  979. #ifdef CONFIG_F2FS_CHECK_FS
  980. if (!f2fs_test_and_clear_bit(offset,
  981. se->cur_valid_map_mir))
  982. f2fs_bug_on(sbi, 1);
  983. else
  984. WARN_ON(1);
  985. #else
  986. f2fs_bug_on(sbi, 1);
  987. #endif
  988. }
  989. if (f2fs_discard_en(sbi) &&
  990. f2fs_test_and_clear_bit(offset, se->discard_map))
  991. sbi->discard_blks++;
  992. }
  993. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  994. se->ckpt_valid_blocks += del;
  995. __mark_sit_entry_dirty(sbi, segno);
  996. /* update total number of valid blocks to be written in ckpt area */
  997. SIT_I(sbi)->written_valid_blocks += del;
  998. if (sbi->segs_per_sec > 1)
  999. get_sec_entry(sbi, segno)->valid_blocks += del;
  1000. }
  1001. void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
  1002. {
  1003. update_sit_entry(sbi, new, 1);
  1004. if (GET_SEGNO(sbi, old) != NULL_SEGNO)
  1005. update_sit_entry(sbi, old, -1);
  1006. locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
  1007. locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
  1008. }
  1009. void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  1010. {
  1011. unsigned int segno = GET_SEGNO(sbi, addr);
  1012. struct sit_info *sit_i = SIT_I(sbi);
  1013. f2fs_bug_on(sbi, addr == NULL_ADDR);
  1014. if (addr == NEW_ADDR)
  1015. return;
  1016. /* add it into sit main buffer */
  1017. mutex_lock(&sit_i->sentry_lock);
  1018. update_sit_entry(sbi, addr, -1);
  1019. /* add it into dirty seglist */
  1020. locate_dirty_segment(sbi, segno);
  1021. mutex_unlock(&sit_i->sentry_lock);
  1022. }
  1023. bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  1024. {
  1025. struct sit_info *sit_i = SIT_I(sbi);
  1026. unsigned int segno, offset;
  1027. struct seg_entry *se;
  1028. bool is_cp = false;
  1029. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1030. return true;
  1031. mutex_lock(&sit_i->sentry_lock);
  1032. segno = GET_SEGNO(sbi, blkaddr);
  1033. se = get_seg_entry(sbi, segno);
  1034. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1035. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1036. is_cp = true;
  1037. mutex_unlock(&sit_i->sentry_lock);
  1038. return is_cp;
  1039. }
  1040. /*
  1041. * This function should be resided under the curseg_mutex lock
  1042. */
  1043. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  1044. struct f2fs_summary *sum)
  1045. {
  1046. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1047. void *addr = curseg->sum_blk;
  1048. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  1049. memcpy(addr, sum, sizeof(struct f2fs_summary));
  1050. }
  1051. /*
  1052. * Calculate the number of current summary pages for writing
  1053. */
  1054. int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  1055. {
  1056. int valid_sum_count = 0;
  1057. int i, sum_in_page;
  1058. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1059. if (sbi->ckpt->alloc_type[i] == SSR)
  1060. valid_sum_count += sbi->blocks_per_seg;
  1061. else {
  1062. if (for_ra)
  1063. valid_sum_count += le16_to_cpu(
  1064. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  1065. else
  1066. valid_sum_count += curseg_blkoff(sbi, i);
  1067. }
  1068. }
  1069. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  1070. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  1071. if (valid_sum_count <= sum_in_page)
  1072. return 1;
  1073. else if ((valid_sum_count - sum_in_page) <=
  1074. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  1075. return 2;
  1076. return 3;
  1077. }
  1078. /*
  1079. * Caller should put this summary page
  1080. */
  1081. struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  1082. {
  1083. return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
  1084. }
  1085. void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
  1086. {
  1087. struct page *page = grab_meta_page(sbi, blk_addr);
  1088. void *dst = page_address(page);
  1089. if (src)
  1090. memcpy(dst, src, PAGE_SIZE);
  1091. else
  1092. memset(dst, 0, PAGE_SIZE);
  1093. set_page_dirty(page);
  1094. f2fs_put_page(page, 1);
  1095. }
  1096. static void write_sum_page(struct f2fs_sb_info *sbi,
  1097. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  1098. {
  1099. update_meta_page(sbi, (void *)sum_blk, blk_addr);
  1100. }
  1101. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  1102. int type, block_t blk_addr)
  1103. {
  1104. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1105. struct page *page = grab_meta_page(sbi, blk_addr);
  1106. struct f2fs_summary_block *src = curseg->sum_blk;
  1107. struct f2fs_summary_block *dst;
  1108. dst = (struct f2fs_summary_block *)page_address(page);
  1109. mutex_lock(&curseg->curseg_mutex);
  1110. down_read(&curseg->journal_rwsem);
  1111. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  1112. up_read(&curseg->journal_rwsem);
  1113. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  1114. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  1115. mutex_unlock(&curseg->curseg_mutex);
  1116. set_page_dirty(page);
  1117. f2fs_put_page(page, 1);
  1118. }
  1119. /*
  1120. * Find a new segment from the free segments bitmap to right order
  1121. * This function should be returned with success, otherwise BUG
  1122. */
  1123. static void get_new_segment(struct f2fs_sb_info *sbi,
  1124. unsigned int *newseg, bool new_sec, int dir)
  1125. {
  1126. struct free_segmap_info *free_i = FREE_I(sbi);
  1127. unsigned int segno, secno, zoneno;
  1128. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  1129. unsigned int hint = *newseg / sbi->segs_per_sec;
  1130. unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
  1131. unsigned int left_start = hint;
  1132. bool init = true;
  1133. int go_left = 0;
  1134. int i;
  1135. spin_lock(&free_i->segmap_lock);
  1136. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  1137. segno = find_next_zero_bit(free_i->free_segmap,
  1138. (hint + 1) * sbi->segs_per_sec, *newseg + 1);
  1139. if (segno < (hint + 1) * sbi->segs_per_sec)
  1140. goto got_it;
  1141. }
  1142. find_other_zone:
  1143. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  1144. if (secno >= MAIN_SECS(sbi)) {
  1145. if (dir == ALLOC_RIGHT) {
  1146. secno = find_next_zero_bit(free_i->free_secmap,
  1147. MAIN_SECS(sbi), 0);
  1148. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1149. } else {
  1150. go_left = 1;
  1151. left_start = hint - 1;
  1152. }
  1153. }
  1154. if (go_left == 0)
  1155. goto skip_left;
  1156. while (test_bit(left_start, free_i->free_secmap)) {
  1157. if (left_start > 0) {
  1158. left_start--;
  1159. continue;
  1160. }
  1161. left_start = find_next_zero_bit(free_i->free_secmap,
  1162. MAIN_SECS(sbi), 0);
  1163. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1164. break;
  1165. }
  1166. secno = left_start;
  1167. skip_left:
  1168. hint = secno;
  1169. segno = secno * sbi->segs_per_sec;
  1170. zoneno = secno / sbi->secs_per_zone;
  1171. /* give up on finding another zone */
  1172. if (!init)
  1173. goto got_it;
  1174. if (sbi->secs_per_zone == 1)
  1175. goto got_it;
  1176. if (zoneno == old_zoneno)
  1177. goto got_it;
  1178. if (dir == ALLOC_LEFT) {
  1179. if (!go_left && zoneno + 1 >= total_zones)
  1180. goto got_it;
  1181. if (go_left && zoneno == 0)
  1182. goto got_it;
  1183. }
  1184. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1185. if (CURSEG_I(sbi, i)->zone == zoneno)
  1186. break;
  1187. if (i < NR_CURSEG_TYPE) {
  1188. /* zone is in user, try another */
  1189. if (go_left)
  1190. hint = zoneno * sbi->secs_per_zone - 1;
  1191. else if (zoneno + 1 >= total_zones)
  1192. hint = 0;
  1193. else
  1194. hint = (zoneno + 1) * sbi->secs_per_zone;
  1195. init = false;
  1196. goto find_other_zone;
  1197. }
  1198. got_it:
  1199. /* set it as dirty segment in free segmap */
  1200. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1201. __set_inuse(sbi, segno);
  1202. *newseg = segno;
  1203. spin_unlock(&free_i->segmap_lock);
  1204. }
  1205. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  1206. {
  1207. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1208. struct summary_footer *sum_footer;
  1209. curseg->segno = curseg->next_segno;
  1210. curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
  1211. curseg->next_blkoff = 0;
  1212. curseg->next_segno = NULL_SEGNO;
  1213. sum_footer = &(curseg->sum_blk->footer);
  1214. memset(sum_footer, 0, sizeof(struct summary_footer));
  1215. if (IS_DATASEG(type))
  1216. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  1217. if (IS_NODESEG(type))
  1218. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  1219. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  1220. }
  1221. /*
  1222. * Allocate a current working segment.
  1223. * This function always allocates a free segment in LFS manner.
  1224. */
  1225. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  1226. {
  1227. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1228. unsigned int segno = curseg->segno;
  1229. int dir = ALLOC_LEFT;
  1230. write_sum_page(sbi, curseg->sum_blk,
  1231. GET_SUM_BLOCK(sbi, segno));
  1232. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  1233. dir = ALLOC_RIGHT;
  1234. if (test_opt(sbi, NOHEAP))
  1235. dir = ALLOC_RIGHT;
  1236. get_new_segment(sbi, &segno, new_sec, dir);
  1237. curseg->next_segno = segno;
  1238. reset_curseg(sbi, type, 1);
  1239. curseg->alloc_type = LFS;
  1240. }
  1241. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  1242. struct curseg_info *seg, block_t start)
  1243. {
  1244. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  1245. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1246. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  1247. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1248. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1249. int i, pos;
  1250. for (i = 0; i < entries; i++)
  1251. target_map[i] = ckpt_map[i] | cur_map[i];
  1252. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  1253. seg->next_blkoff = pos;
  1254. }
  1255. /*
  1256. * If a segment is written by LFS manner, next block offset is just obtained
  1257. * by increasing the current block offset. However, if a segment is written by
  1258. * SSR manner, next block offset obtained by calling __next_free_blkoff
  1259. */
  1260. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  1261. struct curseg_info *seg)
  1262. {
  1263. if (seg->alloc_type == SSR)
  1264. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  1265. else
  1266. seg->next_blkoff++;
  1267. }
  1268. /*
  1269. * This function always allocates a used segment(from dirty seglist) by SSR
  1270. * manner, so it should recover the existing segment information of valid blocks
  1271. */
  1272. static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
  1273. {
  1274. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1275. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1276. unsigned int new_segno = curseg->next_segno;
  1277. struct f2fs_summary_block *sum_node;
  1278. struct page *sum_page;
  1279. write_sum_page(sbi, curseg->sum_blk,
  1280. GET_SUM_BLOCK(sbi, curseg->segno));
  1281. __set_test_and_inuse(sbi, new_segno);
  1282. mutex_lock(&dirty_i->seglist_lock);
  1283. __remove_dirty_segment(sbi, new_segno, PRE);
  1284. __remove_dirty_segment(sbi, new_segno, DIRTY);
  1285. mutex_unlock(&dirty_i->seglist_lock);
  1286. reset_curseg(sbi, type, 1);
  1287. curseg->alloc_type = SSR;
  1288. __next_free_blkoff(sbi, curseg, 0);
  1289. if (reuse) {
  1290. sum_page = get_sum_page(sbi, new_segno);
  1291. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  1292. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  1293. f2fs_put_page(sum_page, 1);
  1294. }
  1295. }
  1296. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  1297. {
  1298. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1299. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  1300. int i, cnt;
  1301. bool reversed = false;
  1302. /* need_SSR() already forces to do this */
  1303. if (v_ops->get_victim(sbi, &(curseg)->next_segno, BG_GC, type, SSR))
  1304. return 1;
  1305. /* For node segments, let's do SSR more intensively */
  1306. if (IS_NODESEG(type)) {
  1307. if (type >= CURSEG_WARM_NODE) {
  1308. reversed = true;
  1309. i = CURSEG_COLD_NODE;
  1310. } else {
  1311. i = CURSEG_HOT_NODE;
  1312. }
  1313. cnt = NR_CURSEG_NODE_TYPE;
  1314. } else {
  1315. if (type >= CURSEG_WARM_DATA) {
  1316. reversed = true;
  1317. i = CURSEG_COLD_DATA;
  1318. } else {
  1319. i = CURSEG_HOT_DATA;
  1320. }
  1321. cnt = NR_CURSEG_DATA_TYPE;
  1322. }
  1323. for (; cnt-- > 0; reversed ? i-- : i++) {
  1324. if (i == type)
  1325. continue;
  1326. if (v_ops->get_victim(sbi, &(curseg)->next_segno,
  1327. BG_GC, i, SSR))
  1328. return 1;
  1329. }
  1330. return 0;
  1331. }
  1332. /*
  1333. * flush out current segment and replace it with new segment
  1334. * This function should be returned with success, otherwise BUG
  1335. */
  1336. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  1337. int type, bool force)
  1338. {
  1339. if (force)
  1340. new_curseg(sbi, type, true);
  1341. else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
  1342. type == CURSEG_WARM_NODE)
  1343. new_curseg(sbi, type, false);
  1344. else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
  1345. change_curseg(sbi, type, true);
  1346. else
  1347. new_curseg(sbi, type, false);
  1348. stat_inc_seg_type(sbi, CURSEG_I(sbi, type));
  1349. }
  1350. void allocate_new_segments(struct f2fs_sb_info *sbi)
  1351. {
  1352. struct curseg_info *curseg;
  1353. unsigned int old_segno;
  1354. int i;
  1355. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1356. curseg = CURSEG_I(sbi, i);
  1357. old_segno = curseg->segno;
  1358. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  1359. locate_dirty_segment(sbi, old_segno);
  1360. }
  1361. }
  1362. static const struct segment_allocation default_salloc_ops = {
  1363. .allocate_segment = allocate_segment_by_default,
  1364. };
  1365. bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1366. {
  1367. __u64 trim_start = cpc->trim_start;
  1368. bool has_candidate = false;
  1369. mutex_lock(&SIT_I(sbi)->sentry_lock);
  1370. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
  1371. if (add_discard_addrs(sbi, cpc, true)) {
  1372. has_candidate = true;
  1373. break;
  1374. }
  1375. }
  1376. mutex_unlock(&SIT_I(sbi)->sentry_lock);
  1377. cpc->trim_start = trim_start;
  1378. return has_candidate;
  1379. }
  1380. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  1381. {
  1382. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  1383. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  1384. unsigned int start_segno, end_segno;
  1385. struct cp_control cpc;
  1386. int err = 0;
  1387. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  1388. return -EINVAL;
  1389. cpc.trimmed = 0;
  1390. if (end <= MAIN_BLKADDR(sbi))
  1391. goto out;
  1392. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  1393. f2fs_msg(sbi->sb, KERN_WARNING,
  1394. "Found FS corruption, run fsck to fix.");
  1395. goto out;
  1396. }
  1397. /* start/end segment number in main_area */
  1398. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  1399. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  1400. GET_SEGNO(sbi, end);
  1401. cpc.reason = CP_DISCARD;
  1402. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  1403. /* do checkpoint to issue discard commands safely */
  1404. for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
  1405. cpc.trim_start = start_segno;
  1406. if (sbi->discard_blks == 0)
  1407. break;
  1408. else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
  1409. cpc.trim_end = end_segno;
  1410. else
  1411. cpc.trim_end = min_t(unsigned int,
  1412. rounddown(start_segno +
  1413. BATCHED_TRIM_SEGMENTS(sbi),
  1414. sbi->segs_per_sec) - 1, end_segno);
  1415. mutex_lock(&sbi->gc_mutex);
  1416. err = write_checkpoint(sbi, &cpc);
  1417. mutex_unlock(&sbi->gc_mutex);
  1418. if (err)
  1419. break;
  1420. schedule();
  1421. }
  1422. out:
  1423. range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
  1424. return err;
  1425. }
  1426. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  1427. {
  1428. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1429. if (curseg->next_blkoff < sbi->blocks_per_seg)
  1430. return true;
  1431. return false;
  1432. }
  1433. static int __get_segment_type_2(struct page *page, enum page_type p_type)
  1434. {
  1435. if (p_type == DATA)
  1436. return CURSEG_HOT_DATA;
  1437. else
  1438. return CURSEG_HOT_NODE;
  1439. }
  1440. static int __get_segment_type_4(struct page *page, enum page_type p_type)
  1441. {
  1442. if (p_type == DATA) {
  1443. struct inode *inode = page->mapping->host;
  1444. if (S_ISDIR(inode->i_mode))
  1445. return CURSEG_HOT_DATA;
  1446. else
  1447. return CURSEG_COLD_DATA;
  1448. } else {
  1449. if (IS_DNODE(page) && is_cold_node(page))
  1450. return CURSEG_WARM_NODE;
  1451. else
  1452. return CURSEG_COLD_NODE;
  1453. }
  1454. }
  1455. static int __get_segment_type_6(struct page *page, enum page_type p_type)
  1456. {
  1457. if (p_type == DATA) {
  1458. struct inode *inode = page->mapping->host;
  1459. if (S_ISDIR(inode->i_mode))
  1460. return CURSEG_HOT_DATA;
  1461. else if (is_cold_data(page) || file_is_cold(inode))
  1462. return CURSEG_COLD_DATA;
  1463. else
  1464. return CURSEG_WARM_DATA;
  1465. } else {
  1466. if (IS_DNODE(page))
  1467. return is_cold_node(page) ? CURSEG_WARM_NODE :
  1468. CURSEG_HOT_NODE;
  1469. else
  1470. return CURSEG_COLD_NODE;
  1471. }
  1472. }
  1473. static int __get_segment_type(struct page *page, enum page_type p_type)
  1474. {
  1475. switch (F2FS_P_SB(page)->active_logs) {
  1476. case 2:
  1477. return __get_segment_type_2(page, p_type);
  1478. case 4:
  1479. return __get_segment_type_4(page, p_type);
  1480. }
  1481. /* NR_CURSEG_TYPE(6) logs by default */
  1482. f2fs_bug_on(F2FS_P_SB(page),
  1483. F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
  1484. return __get_segment_type_6(page, p_type);
  1485. }
  1486. void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  1487. block_t old_blkaddr, block_t *new_blkaddr,
  1488. struct f2fs_summary *sum, int type)
  1489. {
  1490. struct sit_info *sit_i = SIT_I(sbi);
  1491. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1492. mutex_lock(&curseg->curseg_mutex);
  1493. mutex_lock(&sit_i->sentry_lock);
  1494. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  1495. f2fs_wait_discard_bio(sbi, *new_blkaddr);
  1496. /*
  1497. * __add_sum_entry should be resided under the curseg_mutex
  1498. * because, this function updates a summary entry in the
  1499. * current summary block.
  1500. */
  1501. __add_sum_entry(sbi, type, sum);
  1502. __refresh_next_blkoff(sbi, curseg);
  1503. stat_inc_block_count(sbi, curseg);
  1504. /*
  1505. * SIT information should be updated before segment allocation,
  1506. * since SSR needs latest valid block information.
  1507. */
  1508. refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
  1509. if (!__has_curseg_space(sbi, type))
  1510. sit_i->s_ops->allocate_segment(sbi, type, false);
  1511. mutex_unlock(&sit_i->sentry_lock);
  1512. if (page && IS_NODESEG(type))
  1513. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  1514. mutex_unlock(&curseg->curseg_mutex);
  1515. }
  1516. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  1517. {
  1518. int type = __get_segment_type(fio->page, fio->type);
  1519. int err;
  1520. if (fio->type == NODE || fio->type == DATA)
  1521. mutex_lock(&fio->sbi->wio_mutex[fio->type]);
  1522. reallocate:
  1523. allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  1524. &fio->new_blkaddr, sum, type);
  1525. /* writeout dirty page into bdev */
  1526. err = f2fs_submit_page_mbio(fio);
  1527. if (err == -EAGAIN) {
  1528. fio->old_blkaddr = fio->new_blkaddr;
  1529. goto reallocate;
  1530. }
  1531. if (fio->type == NODE || fio->type == DATA)
  1532. mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
  1533. }
  1534. void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
  1535. {
  1536. struct f2fs_io_info fio = {
  1537. .sbi = sbi,
  1538. .type = META,
  1539. .op = REQ_OP_WRITE,
  1540. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  1541. .old_blkaddr = page->index,
  1542. .new_blkaddr = page->index,
  1543. .page = page,
  1544. .encrypted_page = NULL,
  1545. };
  1546. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  1547. fio.op_flags &= ~REQ_META;
  1548. set_page_writeback(page);
  1549. f2fs_submit_page_mbio(&fio);
  1550. }
  1551. void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  1552. {
  1553. struct f2fs_summary sum;
  1554. set_summary(&sum, nid, 0, 0);
  1555. do_write_page(&sum, fio);
  1556. }
  1557. void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
  1558. {
  1559. struct f2fs_sb_info *sbi = fio->sbi;
  1560. struct f2fs_summary sum;
  1561. struct node_info ni;
  1562. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  1563. get_node_info(sbi, dn->nid, &ni);
  1564. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  1565. do_write_page(&sum, fio);
  1566. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  1567. }
  1568. void rewrite_data_page(struct f2fs_io_info *fio)
  1569. {
  1570. fio->new_blkaddr = fio->old_blkaddr;
  1571. stat_inc_inplace_blocks(fio->sbi);
  1572. f2fs_submit_page_mbio(fio);
  1573. }
  1574. void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  1575. block_t old_blkaddr, block_t new_blkaddr,
  1576. bool recover_curseg, bool recover_newaddr)
  1577. {
  1578. struct sit_info *sit_i = SIT_I(sbi);
  1579. struct curseg_info *curseg;
  1580. unsigned int segno, old_cursegno;
  1581. struct seg_entry *se;
  1582. int type;
  1583. unsigned short old_blkoff;
  1584. segno = GET_SEGNO(sbi, new_blkaddr);
  1585. se = get_seg_entry(sbi, segno);
  1586. type = se->type;
  1587. if (!recover_curseg) {
  1588. /* for recovery flow */
  1589. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  1590. if (old_blkaddr == NULL_ADDR)
  1591. type = CURSEG_COLD_DATA;
  1592. else
  1593. type = CURSEG_WARM_DATA;
  1594. }
  1595. } else {
  1596. if (!IS_CURSEG(sbi, segno))
  1597. type = CURSEG_WARM_DATA;
  1598. }
  1599. curseg = CURSEG_I(sbi, type);
  1600. mutex_lock(&curseg->curseg_mutex);
  1601. mutex_lock(&sit_i->sentry_lock);
  1602. old_cursegno = curseg->segno;
  1603. old_blkoff = curseg->next_blkoff;
  1604. /* change the current segment */
  1605. if (segno != curseg->segno) {
  1606. curseg->next_segno = segno;
  1607. change_curseg(sbi, type, true);
  1608. }
  1609. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  1610. __add_sum_entry(sbi, type, sum);
  1611. if (!recover_curseg || recover_newaddr)
  1612. update_sit_entry(sbi, new_blkaddr, 1);
  1613. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  1614. update_sit_entry(sbi, old_blkaddr, -1);
  1615. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  1616. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  1617. locate_dirty_segment(sbi, old_cursegno);
  1618. if (recover_curseg) {
  1619. if (old_cursegno != curseg->segno) {
  1620. curseg->next_segno = old_cursegno;
  1621. change_curseg(sbi, type, true);
  1622. }
  1623. curseg->next_blkoff = old_blkoff;
  1624. }
  1625. mutex_unlock(&sit_i->sentry_lock);
  1626. mutex_unlock(&curseg->curseg_mutex);
  1627. }
  1628. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  1629. block_t old_addr, block_t new_addr,
  1630. unsigned char version, bool recover_curseg,
  1631. bool recover_newaddr)
  1632. {
  1633. struct f2fs_summary sum;
  1634. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  1635. __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
  1636. recover_curseg, recover_newaddr);
  1637. f2fs_update_data_blkaddr(dn, new_addr);
  1638. }
  1639. void f2fs_wait_on_page_writeback(struct page *page,
  1640. enum page_type type, bool ordered)
  1641. {
  1642. if (PageWriteback(page)) {
  1643. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1644. f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
  1645. 0, page->index, type, WRITE);
  1646. if (ordered)
  1647. wait_on_page_writeback(page);
  1648. else
  1649. wait_for_stable_page(page);
  1650. }
  1651. }
  1652. void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
  1653. block_t blkaddr)
  1654. {
  1655. struct page *cpage;
  1656. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1657. return;
  1658. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  1659. if (cpage) {
  1660. f2fs_wait_on_page_writeback(cpage, DATA, true);
  1661. f2fs_put_page(cpage, 1);
  1662. }
  1663. }
  1664. static int read_compacted_summaries(struct f2fs_sb_info *sbi)
  1665. {
  1666. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1667. struct curseg_info *seg_i;
  1668. unsigned char *kaddr;
  1669. struct page *page;
  1670. block_t start;
  1671. int i, j, offset;
  1672. start = start_sum_block(sbi);
  1673. page = get_meta_page(sbi, start++);
  1674. kaddr = (unsigned char *)page_address(page);
  1675. /* Step 1: restore nat cache */
  1676. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1677. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  1678. /* Step 2: restore sit cache */
  1679. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1680. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  1681. offset = 2 * SUM_JOURNAL_SIZE;
  1682. /* Step 3: restore summary entries */
  1683. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1684. unsigned short blk_off;
  1685. unsigned int segno;
  1686. seg_i = CURSEG_I(sbi, i);
  1687. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  1688. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  1689. seg_i->next_segno = segno;
  1690. reset_curseg(sbi, i, 0);
  1691. seg_i->alloc_type = ckpt->alloc_type[i];
  1692. seg_i->next_blkoff = blk_off;
  1693. if (seg_i->alloc_type == SSR)
  1694. blk_off = sbi->blocks_per_seg;
  1695. for (j = 0; j < blk_off; j++) {
  1696. struct f2fs_summary *s;
  1697. s = (struct f2fs_summary *)(kaddr + offset);
  1698. seg_i->sum_blk->entries[j] = *s;
  1699. offset += SUMMARY_SIZE;
  1700. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  1701. SUM_FOOTER_SIZE)
  1702. continue;
  1703. f2fs_put_page(page, 1);
  1704. page = NULL;
  1705. page = get_meta_page(sbi, start++);
  1706. kaddr = (unsigned char *)page_address(page);
  1707. offset = 0;
  1708. }
  1709. }
  1710. f2fs_put_page(page, 1);
  1711. return 0;
  1712. }
  1713. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  1714. {
  1715. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1716. struct f2fs_summary_block *sum;
  1717. struct curseg_info *curseg;
  1718. struct page *new;
  1719. unsigned short blk_off;
  1720. unsigned int segno = 0;
  1721. block_t blk_addr = 0;
  1722. /* get segment number and block addr */
  1723. if (IS_DATASEG(type)) {
  1724. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  1725. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  1726. CURSEG_HOT_DATA]);
  1727. if (__exist_node_summaries(sbi))
  1728. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  1729. else
  1730. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  1731. } else {
  1732. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  1733. CURSEG_HOT_NODE]);
  1734. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  1735. CURSEG_HOT_NODE]);
  1736. if (__exist_node_summaries(sbi))
  1737. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  1738. type - CURSEG_HOT_NODE);
  1739. else
  1740. blk_addr = GET_SUM_BLOCK(sbi, segno);
  1741. }
  1742. new = get_meta_page(sbi, blk_addr);
  1743. sum = (struct f2fs_summary_block *)page_address(new);
  1744. if (IS_NODESEG(type)) {
  1745. if (__exist_node_summaries(sbi)) {
  1746. struct f2fs_summary *ns = &sum->entries[0];
  1747. int i;
  1748. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  1749. ns->version = 0;
  1750. ns->ofs_in_node = 0;
  1751. }
  1752. } else {
  1753. int err;
  1754. err = restore_node_summary(sbi, segno, sum);
  1755. if (err) {
  1756. f2fs_put_page(new, 1);
  1757. return err;
  1758. }
  1759. }
  1760. }
  1761. /* set uncompleted segment to curseg */
  1762. curseg = CURSEG_I(sbi, type);
  1763. mutex_lock(&curseg->curseg_mutex);
  1764. /* update journal info */
  1765. down_write(&curseg->journal_rwsem);
  1766. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  1767. up_write(&curseg->journal_rwsem);
  1768. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  1769. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  1770. curseg->next_segno = segno;
  1771. reset_curseg(sbi, type, 0);
  1772. curseg->alloc_type = ckpt->alloc_type[type];
  1773. curseg->next_blkoff = blk_off;
  1774. mutex_unlock(&curseg->curseg_mutex);
  1775. f2fs_put_page(new, 1);
  1776. return 0;
  1777. }
  1778. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  1779. {
  1780. int type = CURSEG_HOT_DATA;
  1781. int err;
  1782. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  1783. int npages = npages_for_summary_flush(sbi, true);
  1784. if (npages >= 2)
  1785. ra_meta_pages(sbi, start_sum_block(sbi), npages,
  1786. META_CP, true);
  1787. /* restore for compacted data summary */
  1788. if (read_compacted_summaries(sbi))
  1789. return -EINVAL;
  1790. type = CURSEG_HOT_NODE;
  1791. }
  1792. if (__exist_node_summaries(sbi))
  1793. ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  1794. NR_CURSEG_TYPE - type, META_CP, true);
  1795. for (; type <= CURSEG_COLD_NODE; type++) {
  1796. err = read_normal_summaries(sbi, type);
  1797. if (err)
  1798. return err;
  1799. }
  1800. return 0;
  1801. }
  1802. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  1803. {
  1804. struct page *page;
  1805. unsigned char *kaddr;
  1806. struct f2fs_summary *summary;
  1807. struct curseg_info *seg_i;
  1808. int written_size = 0;
  1809. int i, j;
  1810. page = grab_meta_page(sbi, blkaddr++);
  1811. kaddr = (unsigned char *)page_address(page);
  1812. /* Step 1: write nat cache */
  1813. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1814. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  1815. written_size += SUM_JOURNAL_SIZE;
  1816. /* Step 2: write sit cache */
  1817. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1818. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  1819. written_size += SUM_JOURNAL_SIZE;
  1820. /* Step 3: write summary entries */
  1821. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1822. unsigned short blkoff;
  1823. seg_i = CURSEG_I(sbi, i);
  1824. if (sbi->ckpt->alloc_type[i] == SSR)
  1825. blkoff = sbi->blocks_per_seg;
  1826. else
  1827. blkoff = curseg_blkoff(sbi, i);
  1828. for (j = 0; j < blkoff; j++) {
  1829. if (!page) {
  1830. page = grab_meta_page(sbi, blkaddr++);
  1831. kaddr = (unsigned char *)page_address(page);
  1832. written_size = 0;
  1833. }
  1834. summary = (struct f2fs_summary *)(kaddr + written_size);
  1835. *summary = seg_i->sum_blk->entries[j];
  1836. written_size += SUMMARY_SIZE;
  1837. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  1838. SUM_FOOTER_SIZE)
  1839. continue;
  1840. set_page_dirty(page);
  1841. f2fs_put_page(page, 1);
  1842. page = NULL;
  1843. }
  1844. }
  1845. if (page) {
  1846. set_page_dirty(page);
  1847. f2fs_put_page(page, 1);
  1848. }
  1849. }
  1850. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  1851. block_t blkaddr, int type)
  1852. {
  1853. int i, end;
  1854. if (IS_DATASEG(type))
  1855. end = type + NR_CURSEG_DATA_TYPE;
  1856. else
  1857. end = type + NR_CURSEG_NODE_TYPE;
  1858. for (i = type; i < end; i++)
  1859. write_current_sum_page(sbi, i, blkaddr + (i - type));
  1860. }
  1861. void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  1862. {
  1863. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  1864. write_compacted_summaries(sbi, start_blk);
  1865. else
  1866. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  1867. }
  1868. void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  1869. {
  1870. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  1871. }
  1872. int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  1873. unsigned int val, int alloc)
  1874. {
  1875. int i;
  1876. if (type == NAT_JOURNAL) {
  1877. for (i = 0; i < nats_in_cursum(journal); i++) {
  1878. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  1879. return i;
  1880. }
  1881. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  1882. return update_nats_in_cursum(journal, 1);
  1883. } else if (type == SIT_JOURNAL) {
  1884. for (i = 0; i < sits_in_cursum(journal); i++)
  1885. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  1886. return i;
  1887. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  1888. return update_sits_in_cursum(journal, 1);
  1889. }
  1890. return -1;
  1891. }
  1892. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  1893. unsigned int segno)
  1894. {
  1895. return get_meta_page(sbi, current_sit_addr(sbi, segno));
  1896. }
  1897. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  1898. unsigned int start)
  1899. {
  1900. struct sit_info *sit_i = SIT_I(sbi);
  1901. struct page *src_page, *dst_page;
  1902. pgoff_t src_off, dst_off;
  1903. void *src_addr, *dst_addr;
  1904. src_off = current_sit_addr(sbi, start);
  1905. dst_off = next_sit_addr(sbi, src_off);
  1906. /* get current sit block page without lock */
  1907. src_page = get_meta_page(sbi, src_off);
  1908. dst_page = grab_meta_page(sbi, dst_off);
  1909. f2fs_bug_on(sbi, PageDirty(src_page));
  1910. src_addr = page_address(src_page);
  1911. dst_addr = page_address(dst_page);
  1912. memcpy(dst_addr, src_addr, PAGE_SIZE);
  1913. set_page_dirty(dst_page);
  1914. f2fs_put_page(src_page, 1);
  1915. set_to_next_sit(sit_i, start);
  1916. return dst_page;
  1917. }
  1918. static struct sit_entry_set *grab_sit_entry_set(void)
  1919. {
  1920. struct sit_entry_set *ses =
  1921. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  1922. ses->entry_cnt = 0;
  1923. INIT_LIST_HEAD(&ses->set_list);
  1924. return ses;
  1925. }
  1926. static void release_sit_entry_set(struct sit_entry_set *ses)
  1927. {
  1928. list_del(&ses->set_list);
  1929. kmem_cache_free(sit_entry_set_slab, ses);
  1930. }
  1931. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  1932. struct list_head *head)
  1933. {
  1934. struct sit_entry_set *next = ses;
  1935. if (list_is_last(&ses->set_list, head))
  1936. return;
  1937. list_for_each_entry_continue(next, head, set_list)
  1938. if (ses->entry_cnt <= next->entry_cnt)
  1939. break;
  1940. list_move_tail(&ses->set_list, &next->set_list);
  1941. }
  1942. static void add_sit_entry(unsigned int segno, struct list_head *head)
  1943. {
  1944. struct sit_entry_set *ses;
  1945. unsigned int start_segno = START_SEGNO(segno);
  1946. list_for_each_entry(ses, head, set_list) {
  1947. if (ses->start_segno == start_segno) {
  1948. ses->entry_cnt++;
  1949. adjust_sit_entry_set(ses, head);
  1950. return;
  1951. }
  1952. }
  1953. ses = grab_sit_entry_set();
  1954. ses->start_segno = start_segno;
  1955. ses->entry_cnt++;
  1956. list_add(&ses->set_list, head);
  1957. }
  1958. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  1959. {
  1960. struct f2fs_sm_info *sm_info = SM_I(sbi);
  1961. struct list_head *set_list = &sm_info->sit_entry_set;
  1962. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  1963. unsigned int segno;
  1964. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  1965. add_sit_entry(segno, set_list);
  1966. }
  1967. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  1968. {
  1969. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1970. struct f2fs_journal *journal = curseg->journal;
  1971. int i;
  1972. down_write(&curseg->journal_rwsem);
  1973. for (i = 0; i < sits_in_cursum(journal); i++) {
  1974. unsigned int segno;
  1975. bool dirtied;
  1976. segno = le32_to_cpu(segno_in_journal(journal, i));
  1977. dirtied = __mark_sit_entry_dirty(sbi, segno);
  1978. if (!dirtied)
  1979. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  1980. }
  1981. update_sits_in_cursum(journal, -i);
  1982. up_write(&curseg->journal_rwsem);
  1983. }
  1984. /*
  1985. * CP calls this function, which flushes SIT entries including sit_journal,
  1986. * and moves prefree segs to free segs.
  1987. */
  1988. void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1989. {
  1990. struct sit_info *sit_i = SIT_I(sbi);
  1991. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  1992. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1993. struct f2fs_journal *journal = curseg->journal;
  1994. struct sit_entry_set *ses, *tmp;
  1995. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  1996. bool to_journal = true;
  1997. struct seg_entry *se;
  1998. mutex_lock(&sit_i->sentry_lock);
  1999. if (!sit_i->dirty_sentries)
  2000. goto out;
  2001. /*
  2002. * add and account sit entries of dirty bitmap in sit entry
  2003. * set temporarily
  2004. */
  2005. add_sits_in_set(sbi);
  2006. /*
  2007. * if there are no enough space in journal to store dirty sit
  2008. * entries, remove all entries from journal and add and account
  2009. * them in sit entry set.
  2010. */
  2011. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  2012. remove_sits_in_journal(sbi);
  2013. /*
  2014. * there are two steps to flush sit entries:
  2015. * #1, flush sit entries to journal in current cold data summary block.
  2016. * #2, flush sit entries to sit page.
  2017. */
  2018. list_for_each_entry_safe(ses, tmp, head, set_list) {
  2019. struct page *page = NULL;
  2020. struct f2fs_sit_block *raw_sit = NULL;
  2021. unsigned int start_segno = ses->start_segno;
  2022. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  2023. (unsigned long)MAIN_SEGS(sbi));
  2024. unsigned int segno = start_segno;
  2025. if (to_journal &&
  2026. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  2027. to_journal = false;
  2028. if (to_journal) {
  2029. down_write(&curseg->journal_rwsem);
  2030. } else {
  2031. page = get_next_sit_page(sbi, start_segno);
  2032. raw_sit = page_address(page);
  2033. }
  2034. /* flush dirty sit entries in region of current sit set */
  2035. for_each_set_bit_from(segno, bitmap, end) {
  2036. int offset, sit_offset;
  2037. se = get_seg_entry(sbi, segno);
  2038. /* add discard candidates */
  2039. if (cpc->reason != CP_DISCARD) {
  2040. cpc->trim_start = segno;
  2041. add_discard_addrs(sbi, cpc, false);
  2042. }
  2043. if (to_journal) {
  2044. offset = lookup_journal_in_cursum(journal,
  2045. SIT_JOURNAL, segno, 1);
  2046. f2fs_bug_on(sbi, offset < 0);
  2047. segno_in_journal(journal, offset) =
  2048. cpu_to_le32(segno);
  2049. seg_info_to_raw_sit(se,
  2050. &sit_in_journal(journal, offset));
  2051. } else {
  2052. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  2053. seg_info_to_raw_sit(se,
  2054. &raw_sit->entries[sit_offset]);
  2055. }
  2056. __clear_bit(segno, bitmap);
  2057. sit_i->dirty_sentries--;
  2058. ses->entry_cnt--;
  2059. }
  2060. if (to_journal)
  2061. up_write(&curseg->journal_rwsem);
  2062. else
  2063. f2fs_put_page(page, 1);
  2064. f2fs_bug_on(sbi, ses->entry_cnt);
  2065. release_sit_entry_set(ses);
  2066. }
  2067. f2fs_bug_on(sbi, !list_empty(head));
  2068. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  2069. out:
  2070. if (cpc->reason == CP_DISCARD) {
  2071. __u64 trim_start = cpc->trim_start;
  2072. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  2073. add_discard_addrs(sbi, cpc, false);
  2074. cpc->trim_start = trim_start;
  2075. }
  2076. mutex_unlock(&sit_i->sentry_lock);
  2077. set_prefree_as_free_segments(sbi);
  2078. }
  2079. static int build_sit_info(struct f2fs_sb_info *sbi)
  2080. {
  2081. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2082. struct sit_info *sit_i;
  2083. unsigned int sit_segs, start;
  2084. char *src_bitmap;
  2085. unsigned int bitmap_size;
  2086. /* allocate memory for SIT information */
  2087. sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
  2088. if (!sit_i)
  2089. return -ENOMEM;
  2090. SM_I(sbi)->sit_info = sit_i;
  2091. sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
  2092. sizeof(struct seg_entry), GFP_KERNEL);
  2093. if (!sit_i->sentries)
  2094. return -ENOMEM;
  2095. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2096. sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2097. if (!sit_i->dirty_sentries_bitmap)
  2098. return -ENOMEM;
  2099. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2100. sit_i->sentries[start].cur_valid_map
  2101. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2102. sit_i->sentries[start].ckpt_valid_map
  2103. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2104. if (!sit_i->sentries[start].cur_valid_map ||
  2105. !sit_i->sentries[start].ckpt_valid_map)
  2106. return -ENOMEM;
  2107. #ifdef CONFIG_F2FS_CHECK_FS
  2108. sit_i->sentries[start].cur_valid_map_mir
  2109. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2110. if (!sit_i->sentries[start].cur_valid_map_mir)
  2111. return -ENOMEM;
  2112. #endif
  2113. if (f2fs_discard_en(sbi)) {
  2114. sit_i->sentries[start].discard_map
  2115. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2116. if (!sit_i->sentries[start].discard_map)
  2117. return -ENOMEM;
  2118. }
  2119. }
  2120. sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2121. if (!sit_i->tmp_map)
  2122. return -ENOMEM;
  2123. if (sbi->segs_per_sec > 1) {
  2124. sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
  2125. sizeof(struct sec_entry), GFP_KERNEL);
  2126. if (!sit_i->sec_entries)
  2127. return -ENOMEM;
  2128. }
  2129. /* get information related with SIT */
  2130. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  2131. /* setup SIT bitmap from ckeckpoint pack */
  2132. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  2133. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  2134. sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2135. if (!sit_i->sit_bitmap)
  2136. return -ENOMEM;
  2137. #ifdef CONFIG_F2FS_CHECK_FS
  2138. sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2139. if (!sit_i->sit_bitmap_mir)
  2140. return -ENOMEM;
  2141. #endif
  2142. /* init SIT information */
  2143. sit_i->s_ops = &default_salloc_ops;
  2144. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  2145. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  2146. sit_i->written_valid_blocks = 0;
  2147. sit_i->bitmap_size = bitmap_size;
  2148. sit_i->dirty_sentries = 0;
  2149. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  2150. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  2151. sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
  2152. mutex_init(&sit_i->sentry_lock);
  2153. return 0;
  2154. }
  2155. static int build_free_segmap(struct f2fs_sb_info *sbi)
  2156. {
  2157. struct free_segmap_info *free_i;
  2158. unsigned int bitmap_size, sec_bitmap_size;
  2159. /* allocate memory for free segmap information */
  2160. free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
  2161. if (!free_i)
  2162. return -ENOMEM;
  2163. SM_I(sbi)->free_info = free_i;
  2164. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2165. free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
  2166. if (!free_i->free_segmap)
  2167. return -ENOMEM;
  2168. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2169. free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
  2170. if (!free_i->free_secmap)
  2171. return -ENOMEM;
  2172. /* set all segments as dirty temporarily */
  2173. memset(free_i->free_segmap, 0xff, bitmap_size);
  2174. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  2175. /* init free segmap information */
  2176. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  2177. free_i->free_segments = 0;
  2178. free_i->free_sections = 0;
  2179. spin_lock_init(&free_i->segmap_lock);
  2180. return 0;
  2181. }
  2182. static int build_curseg(struct f2fs_sb_info *sbi)
  2183. {
  2184. struct curseg_info *array;
  2185. int i;
  2186. array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
  2187. if (!array)
  2188. return -ENOMEM;
  2189. SM_I(sbi)->curseg_array = array;
  2190. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2191. mutex_init(&array[i].curseg_mutex);
  2192. array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
  2193. if (!array[i].sum_blk)
  2194. return -ENOMEM;
  2195. init_rwsem(&array[i].journal_rwsem);
  2196. array[i].journal = kzalloc(sizeof(struct f2fs_journal),
  2197. GFP_KERNEL);
  2198. if (!array[i].journal)
  2199. return -ENOMEM;
  2200. array[i].segno = NULL_SEGNO;
  2201. array[i].next_blkoff = 0;
  2202. }
  2203. return restore_curseg_summaries(sbi);
  2204. }
  2205. static void build_sit_entries(struct f2fs_sb_info *sbi)
  2206. {
  2207. struct sit_info *sit_i = SIT_I(sbi);
  2208. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2209. struct f2fs_journal *journal = curseg->journal;
  2210. struct seg_entry *se;
  2211. struct f2fs_sit_entry sit;
  2212. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  2213. unsigned int i, start, end;
  2214. unsigned int readed, start_blk = 0;
  2215. do {
  2216. readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  2217. META_SIT, true);
  2218. start = start_blk * sit_i->sents_per_block;
  2219. end = (start_blk + readed) * sit_i->sents_per_block;
  2220. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  2221. struct f2fs_sit_block *sit_blk;
  2222. struct page *page;
  2223. se = &sit_i->sentries[start];
  2224. page = get_current_sit_page(sbi, start);
  2225. sit_blk = (struct f2fs_sit_block *)page_address(page);
  2226. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  2227. f2fs_put_page(page, 1);
  2228. check_block_count(sbi, start, &sit);
  2229. seg_info_from_raw_sit(se, &sit);
  2230. /* build discard map only one time */
  2231. if (f2fs_discard_en(sbi)) {
  2232. memcpy(se->discard_map, se->cur_valid_map,
  2233. SIT_VBLOCK_MAP_SIZE);
  2234. sbi->discard_blks += sbi->blocks_per_seg -
  2235. se->valid_blocks;
  2236. }
  2237. if (sbi->segs_per_sec > 1)
  2238. get_sec_entry(sbi, start)->valid_blocks +=
  2239. se->valid_blocks;
  2240. }
  2241. start_blk += readed;
  2242. } while (start_blk < sit_blk_cnt);
  2243. down_read(&curseg->journal_rwsem);
  2244. for (i = 0; i < sits_in_cursum(journal); i++) {
  2245. unsigned int old_valid_blocks;
  2246. start = le32_to_cpu(segno_in_journal(journal, i));
  2247. se = &sit_i->sentries[start];
  2248. sit = sit_in_journal(journal, i);
  2249. old_valid_blocks = se->valid_blocks;
  2250. check_block_count(sbi, start, &sit);
  2251. seg_info_from_raw_sit(se, &sit);
  2252. if (f2fs_discard_en(sbi)) {
  2253. memcpy(se->discard_map, se->cur_valid_map,
  2254. SIT_VBLOCK_MAP_SIZE);
  2255. sbi->discard_blks += old_valid_blocks -
  2256. se->valid_blocks;
  2257. }
  2258. if (sbi->segs_per_sec > 1)
  2259. get_sec_entry(sbi, start)->valid_blocks +=
  2260. se->valid_blocks - old_valid_blocks;
  2261. }
  2262. up_read(&curseg->journal_rwsem);
  2263. }
  2264. static void init_free_segmap(struct f2fs_sb_info *sbi)
  2265. {
  2266. unsigned int start;
  2267. int type;
  2268. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2269. struct seg_entry *sentry = get_seg_entry(sbi, start);
  2270. if (!sentry->valid_blocks)
  2271. __set_free(sbi, start);
  2272. else
  2273. SIT_I(sbi)->written_valid_blocks +=
  2274. sentry->valid_blocks;
  2275. }
  2276. /* set use the current segments */
  2277. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  2278. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  2279. __set_test_and_inuse(sbi, curseg_t->segno);
  2280. }
  2281. }
  2282. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  2283. {
  2284. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2285. struct free_segmap_info *free_i = FREE_I(sbi);
  2286. unsigned int segno = 0, offset = 0;
  2287. unsigned short valid_blocks;
  2288. while (1) {
  2289. /* find dirty segment based on free segmap */
  2290. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  2291. if (segno >= MAIN_SEGS(sbi))
  2292. break;
  2293. offset = segno + 1;
  2294. valid_blocks = get_valid_blocks(sbi, segno, 0);
  2295. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  2296. continue;
  2297. if (valid_blocks > sbi->blocks_per_seg) {
  2298. f2fs_bug_on(sbi, 1);
  2299. continue;
  2300. }
  2301. mutex_lock(&dirty_i->seglist_lock);
  2302. __locate_dirty_segment(sbi, segno, DIRTY);
  2303. mutex_unlock(&dirty_i->seglist_lock);
  2304. }
  2305. }
  2306. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  2307. {
  2308. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2309. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2310. dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2311. if (!dirty_i->victim_secmap)
  2312. return -ENOMEM;
  2313. return 0;
  2314. }
  2315. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  2316. {
  2317. struct dirty_seglist_info *dirty_i;
  2318. unsigned int bitmap_size, i;
  2319. /* allocate memory for dirty segments list information */
  2320. dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
  2321. if (!dirty_i)
  2322. return -ENOMEM;
  2323. SM_I(sbi)->dirty_info = dirty_i;
  2324. mutex_init(&dirty_i->seglist_lock);
  2325. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2326. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  2327. dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2328. if (!dirty_i->dirty_segmap[i])
  2329. return -ENOMEM;
  2330. }
  2331. init_dirty_segmap(sbi);
  2332. return init_victim_secmap(sbi);
  2333. }
  2334. /*
  2335. * Update min, max modified time for cost-benefit GC algorithm
  2336. */
  2337. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  2338. {
  2339. struct sit_info *sit_i = SIT_I(sbi);
  2340. unsigned int segno;
  2341. mutex_lock(&sit_i->sentry_lock);
  2342. sit_i->min_mtime = LLONG_MAX;
  2343. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  2344. unsigned int i;
  2345. unsigned long long mtime = 0;
  2346. for (i = 0; i < sbi->segs_per_sec; i++)
  2347. mtime += get_seg_entry(sbi, segno + i)->mtime;
  2348. mtime = div_u64(mtime, sbi->segs_per_sec);
  2349. if (sit_i->min_mtime > mtime)
  2350. sit_i->min_mtime = mtime;
  2351. }
  2352. sit_i->max_mtime = get_mtime(sbi);
  2353. mutex_unlock(&sit_i->sentry_lock);
  2354. }
  2355. int build_segment_manager(struct f2fs_sb_info *sbi)
  2356. {
  2357. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2358. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2359. struct f2fs_sm_info *sm_info;
  2360. int err;
  2361. sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
  2362. if (!sm_info)
  2363. return -ENOMEM;
  2364. /* init sm info */
  2365. sbi->sm_info = sm_info;
  2366. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  2367. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  2368. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  2369. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  2370. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  2371. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  2372. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  2373. sm_info->rec_prefree_segments = sm_info->main_segments *
  2374. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  2375. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  2376. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  2377. if (!test_opt(sbi, LFS))
  2378. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  2379. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  2380. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  2381. sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
  2382. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  2383. if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
  2384. err = create_flush_cmd_control(sbi);
  2385. if (err)
  2386. return err;
  2387. }
  2388. err = create_discard_cmd_control(sbi);
  2389. if (err)
  2390. return err;
  2391. err = build_sit_info(sbi);
  2392. if (err)
  2393. return err;
  2394. err = build_free_segmap(sbi);
  2395. if (err)
  2396. return err;
  2397. err = build_curseg(sbi);
  2398. if (err)
  2399. return err;
  2400. /* reinit free segmap based on SIT */
  2401. build_sit_entries(sbi);
  2402. init_free_segmap(sbi);
  2403. err = build_dirty_segmap(sbi);
  2404. if (err)
  2405. return err;
  2406. init_min_max_mtime(sbi);
  2407. return 0;
  2408. }
  2409. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  2410. enum dirty_type dirty_type)
  2411. {
  2412. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2413. mutex_lock(&dirty_i->seglist_lock);
  2414. kvfree(dirty_i->dirty_segmap[dirty_type]);
  2415. dirty_i->nr_dirty[dirty_type] = 0;
  2416. mutex_unlock(&dirty_i->seglist_lock);
  2417. }
  2418. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  2419. {
  2420. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2421. kvfree(dirty_i->victim_secmap);
  2422. }
  2423. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  2424. {
  2425. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2426. int i;
  2427. if (!dirty_i)
  2428. return;
  2429. /* discard pre-free/dirty segments list */
  2430. for (i = 0; i < NR_DIRTY_TYPE; i++)
  2431. discard_dirty_segmap(sbi, i);
  2432. destroy_victim_secmap(sbi);
  2433. SM_I(sbi)->dirty_info = NULL;
  2434. kfree(dirty_i);
  2435. }
  2436. static void destroy_curseg(struct f2fs_sb_info *sbi)
  2437. {
  2438. struct curseg_info *array = SM_I(sbi)->curseg_array;
  2439. int i;
  2440. if (!array)
  2441. return;
  2442. SM_I(sbi)->curseg_array = NULL;
  2443. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2444. kfree(array[i].sum_blk);
  2445. kfree(array[i].journal);
  2446. }
  2447. kfree(array);
  2448. }
  2449. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  2450. {
  2451. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  2452. if (!free_i)
  2453. return;
  2454. SM_I(sbi)->free_info = NULL;
  2455. kvfree(free_i->free_segmap);
  2456. kvfree(free_i->free_secmap);
  2457. kfree(free_i);
  2458. }
  2459. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  2460. {
  2461. struct sit_info *sit_i = SIT_I(sbi);
  2462. unsigned int start;
  2463. if (!sit_i)
  2464. return;
  2465. if (sit_i->sentries) {
  2466. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2467. kfree(sit_i->sentries[start].cur_valid_map);
  2468. #ifdef CONFIG_F2FS_CHECK_FS
  2469. kfree(sit_i->sentries[start].cur_valid_map_mir);
  2470. #endif
  2471. kfree(sit_i->sentries[start].ckpt_valid_map);
  2472. kfree(sit_i->sentries[start].discard_map);
  2473. }
  2474. }
  2475. kfree(sit_i->tmp_map);
  2476. kvfree(sit_i->sentries);
  2477. kvfree(sit_i->sec_entries);
  2478. kvfree(sit_i->dirty_sentries_bitmap);
  2479. SM_I(sbi)->sit_info = NULL;
  2480. kfree(sit_i->sit_bitmap);
  2481. #ifdef CONFIG_F2FS_CHECK_FS
  2482. kfree(sit_i->sit_bitmap_mir);
  2483. #endif
  2484. kfree(sit_i);
  2485. }
  2486. void destroy_segment_manager(struct f2fs_sb_info *sbi)
  2487. {
  2488. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2489. if (!sm_info)
  2490. return;
  2491. destroy_flush_cmd_control(sbi, true);
  2492. destroy_discard_cmd_control(sbi, true);
  2493. destroy_dirty_segmap(sbi);
  2494. destroy_curseg(sbi);
  2495. destroy_free_segmap(sbi);
  2496. destroy_sit_info(sbi);
  2497. sbi->sm_info = NULL;
  2498. kfree(sm_info);
  2499. }
  2500. int __init create_segment_manager_caches(void)
  2501. {
  2502. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  2503. sizeof(struct discard_entry));
  2504. if (!discard_entry_slab)
  2505. goto fail;
  2506. discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
  2507. sizeof(struct discard_cmd));
  2508. if (!discard_cmd_slab)
  2509. goto destroy_discard_entry;
  2510. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  2511. sizeof(struct sit_entry_set));
  2512. if (!sit_entry_set_slab)
  2513. goto destroy_discard_cmd;
  2514. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  2515. sizeof(struct inmem_pages));
  2516. if (!inmem_entry_slab)
  2517. goto destroy_sit_entry_set;
  2518. return 0;
  2519. destroy_sit_entry_set:
  2520. kmem_cache_destroy(sit_entry_set_slab);
  2521. destroy_discard_cmd:
  2522. kmem_cache_destroy(discard_cmd_slab);
  2523. destroy_discard_entry:
  2524. kmem_cache_destroy(discard_entry_slab);
  2525. fail:
  2526. return -ENOMEM;
  2527. }
  2528. void destroy_segment_manager_caches(void)
  2529. {
  2530. kmem_cache_destroy(sit_entry_set_slab);
  2531. kmem_cache_destroy(discard_cmd_slab);
  2532. kmem_cache_destroy(discard_entry_slab);
  2533. kmem_cache_destroy(inmem_entry_slab);
  2534. }