intel_ringbuffer.c 83 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. static void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. struct intel_engine_cs *ring = req->ring;
  87. u32 cmd;
  88. int ret;
  89. cmd = MI_FLUSH;
  90. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  91. cmd |= MI_NO_WRITE_FLUSH;
  92. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  93. cmd |= MI_READ_FLUSH;
  94. ret = intel_ring_begin(req, 2);
  95. if (ret)
  96. return ret;
  97. intel_ring_emit(ring, cmd);
  98. intel_ring_emit(ring, MI_NOOP);
  99. intel_ring_advance(ring);
  100. return 0;
  101. }
  102. static int
  103. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  104. u32 invalidate_domains,
  105. u32 flush_domains)
  106. {
  107. struct intel_engine_cs *ring = req->ring;
  108. struct drm_device *dev = ring->dev;
  109. u32 cmd;
  110. int ret;
  111. /*
  112. * read/write caches:
  113. *
  114. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  115. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  116. * also flushed at 2d versus 3d pipeline switches.
  117. *
  118. * read-only caches:
  119. *
  120. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  121. * MI_READ_FLUSH is set, and is always flushed on 965.
  122. *
  123. * I915_GEM_DOMAIN_COMMAND may not exist?
  124. *
  125. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  126. * invalidated when MI_EXE_FLUSH is set.
  127. *
  128. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  129. * invalidated with every MI_FLUSH.
  130. *
  131. * TLBs:
  132. *
  133. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  134. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  135. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  136. * are flushed at any MI_FLUSH.
  137. */
  138. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  139. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  140. cmd &= ~MI_NO_WRITE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  142. cmd |= MI_EXE_FLUSH;
  143. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  144. (IS_G4X(dev) || IS_GEN5(dev)))
  145. cmd |= MI_INVALIDATE_ISP;
  146. ret = intel_ring_begin(req, 2);
  147. if (ret)
  148. return ret;
  149. intel_ring_emit(ring, cmd);
  150. intel_ring_emit(ring, MI_NOOP);
  151. intel_ring_advance(ring);
  152. return 0;
  153. }
  154. /**
  155. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  156. * implementing two workarounds on gen6. From section 1.4.7.1
  157. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  158. *
  159. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  160. * produced by non-pipelined state commands), software needs to first
  161. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  162. * 0.
  163. *
  164. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  165. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  166. *
  167. * And the workaround for these two requires this workaround first:
  168. *
  169. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  170. * BEFORE the pipe-control with a post-sync op and no write-cache
  171. * flushes.
  172. *
  173. * And this last workaround is tricky because of the requirements on
  174. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  175. * volume 2 part 1:
  176. *
  177. * "1 of the following must also be set:
  178. * - Render Target Cache Flush Enable ([12] of DW1)
  179. * - Depth Cache Flush Enable ([0] of DW1)
  180. * - Stall at Pixel Scoreboard ([1] of DW1)
  181. * - Depth Stall ([13] of DW1)
  182. * - Post-Sync Operation ([13] of DW1)
  183. * - Notify Enable ([8] of DW1)"
  184. *
  185. * The cache flushes require the workaround flush that triggered this
  186. * one, so we can't use it. Depth stall would trigger the same.
  187. * Post-sync nonzero is what triggered this second workaround, so we
  188. * can't use that one either. Notify enable is IRQs, which aren't
  189. * really our business. That leaves only stall at scoreboard.
  190. */
  191. static int
  192. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  193. {
  194. struct intel_engine_cs *ring = req->ring;
  195. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  196. int ret;
  197. ret = intel_ring_begin(req, 6);
  198. if (ret)
  199. return ret;
  200. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  201. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  202. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  203. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  204. intel_ring_emit(ring, 0); /* low dword */
  205. intel_ring_emit(ring, 0); /* high dword */
  206. intel_ring_emit(ring, MI_NOOP);
  207. intel_ring_advance(ring);
  208. ret = intel_ring_begin(req, 6);
  209. if (ret)
  210. return ret;
  211. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  212. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  213. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  214. intel_ring_emit(ring, 0);
  215. intel_ring_emit(ring, 0);
  216. intel_ring_emit(ring, MI_NOOP);
  217. intel_ring_advance(ring);
  218. return 0;
  219. }
  220. static int
  221. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  222. u32 invalidate_domains, u32 flush_domains)
  223. {
  224. struct intel_engine_cs *ring = req->ring;
  225. u32 flags = 0;
  226. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  227. int ret;
  228. /* Force SNB workarounds for PIPE_CONTROL flushes */
  229. ret = intel_emit_post_sync_nonzero_flush(req);
  230. if (ret)
  231. return ret;
  232. /* Just flush everything. Experiments have shown that reducing the
  233. * number of bits based on the write domains has little performance
  234. * impact.
  235. */
  236. if (flush_domains) {
  237. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  238. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  239. /*
  240. * Ensure that any following seqno writes only happen
  241. * when the render cache is indeed flushed.
  242. */
  243. flags |= PIPE_CONTROL_CS_STALL;
  244. }
  245. if (invalidate_domains) {
  246. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  247. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  248. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  249. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  250. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  251. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  252. /*
  253. * TLB invalidate requires a post-sync write.
  254. */
  255. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  256. }
  257. ret = intel_ring_begin(req, 4);
  258. if (ret)
  259. return ret;
  260. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  261. intel_ring_emit(ring, flags);
  262. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  263. intel_ring_emit(ring, 0);
  264. intel_ring_advance(ring);
  265. return 0;
  266. }
  267. static int
  268. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  269. {
  270. struct intel_engine_cs *ring = req->ring;
  271. int ret;
  272. ret = intel_ring_begin(req, 4);
  273. if (ret)
  274. return ret;
  275. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  276. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  277. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  278. intel_ring_emit(ring, 0);
  279. intel_ring_emit(ring, 0);
  280. intel_ring_advance(ring);
  281. return 0;
  282. }
  283. static int
  284. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  285. u32 invalidate_domains, u32 flush_domains)
  286. {
  287. struct intel_engine_cs *ring = req->ring;
  288. u32 flags = 0;
  289. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  290. int ret;
  291. /*
  292. * Ensure that any following seqno writes only happen when the render
  293. * cache is indeed flushed.
  294. *
  295. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  296. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  297. * don't try to be clever and just set it unconditionally.
  298. */
  299. flags |= PIPE_CONTROL_CS_STALL;
  300. /* Just flush everything. Experiments have shown that reducing the
  301. * number of bits based on the write domains has little performance
  302. * impact.
  303. */
  304. if (flush_domains) {
  305. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  306. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  307. }
  308. if (invalidate_domains) {
  309. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  310. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  311. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  312. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  313. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  314. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  316. /*
  317. * TLB invalidate requires a post-sync write.
  318. */
  319. flags |= PIPE_CONTROL_QW_WRITE;
  320. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  321. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  322. /* Workaround: we must issue a pipe_control with CS-stall bit
  323. * set before a pipe_control command that has the state cache
  324. * invalidate bit set. */
  325. gen7_render_ring_cs_stall_wa(req);
  326. }
  327. ret = intel_ring_begin(req, 4);
  328. if (ret)
  329. return ret;
  330. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  331. intel_ring_emit(ring, flags);
  332. intel_ring_emit(ring, scratch_addr);
  333. intel_ring_emit(ring, 0);
  334. intel_ring_advance(ring);
  335. return 0;
  336. }
  337. static int
  338. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  339. u32 flags, u32 scratch_addr)
  340. {
  341. struct intel_engine_cs *ring = req->ring;
  342. int ret;
  343. ret = intel_ring_begin(req, 6);
  344. if (ret)
  345. return ret;
  346. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  347. intel_ring_emit(ring, flags);
  348. intel_ring_emit(ring, scratch_addr);
  349. intel_ring_emit(ring, 0);
  350. intel_ring_emit(ring, 0);
  351. intel_ring_emit(ring, 0);
  352. intel_ring_advance(ring);
  353. return 0;
  354. }
  355. static int
  356. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  357. u32 invalidate_domains, u32 flush_domains)
  358. {
  359. u32 flags = 0;
  360. u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  361. int ret;
  362. flags |= PIPE_CONTROL_CS_STALL;
  363. if (flush_domains) {
  364. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  365. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  366. }
  367. if (invalidate_domains) {
  368. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  369. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  370. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  371. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  372. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  373. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  374. flags |= PIPE_CONTROL_QW_WRITE;
  375. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  376. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  377. ret = gen8_emit_pipe_control(req,
  378. PIPE_CONTROL_CS_STALL |
  379. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  380. 0);
  381. if (ret)
  382. return ret;
  383. }
  384. return gen8_emit_pipe_control(req, flags, scratch_addr);
  385. }
  386. static void ring_write_tail(struct intel_engine_cs *ring,
  387. u32 value)
  388. {
  389. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  390. I915_WRITE_TAIL(ring, value);
  391. }
  392. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  393. {
  394. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  395. u64 acthd;
  396. if (INTEL_INFO(ring->dev)->gen >= 8)
  397. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  398. RING_ACTHD_UDW(ring->mmio_base));
  399. else if (INTEL_INFO(ring->dev)->gen >= 4)
  400. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  401. else
  402. acthd = I915_READ(ACTHD);
  403. return acthd;
  404. }
  405. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  406. {
  407. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  408. u32 addr;
  409. addr = dev_priv->status_page_dmah->busaddr;
  410. if (INTEL_INFO(ring->dev)->gen >= 4)
  411. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  412. I915_WRITE(HWS_PGA, addr);
  413. }
  414. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  415. {
  416. struct drm_device *dev = ring->dev;
  417. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  418. u32 mmio = 0;
  419. /* The ring status page addresses are no longer next to the rest of
  420. * the ring registers as of gen7.
  421. */
  422. if (IS_GEN7(dev)) {
  423. switch (ring->id) {
  424. case RCS:
  425. mmio = RENDER_HWS_PGA_GEN7;
  426. break;
  427. case BCS:
  428. mmio = BLT_HWS_PGA_GEN7;
  429. break;
  430. /*
  431. * VCS2 actually doesn't exist on Gen7. Only shut up
  432. * gcc switch check warning
  433. */
  434. case VCS2:
  435. case VCS:
  436. mmio = BSD_HWS_PGA_GEN7;
  437. break;
  438. case VECS:
  439. mmio = VEBOX_HWS_PGA_GEN7;
  440. break;
  441. }
  442. } else if (IS_GEN6(ring->dev)) {
  443. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  444. } else {
  445. /* XXX: gen8 returns to sanity */
  446. mmio = RING_HWS_PGA(ring->mmio_base);
  447. }
  448. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  449. POSTING_READ(mmio);
  450. /*
  451. * Flush the TLB for this page
  452. *
  453. * FIXME: These two bits have disappeared on gen8, so a question
  454. * arises: do we still need this and if so how should we go about
  455. * invalidating the TLB?
  456. */
  457. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  458. u32 reg = RING_INSTPM(ring->mmio_base);
  459. /* ring should be idle before issuing a sync flush*/
  460. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  461. I915_WRITE(reg,
  462. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  463. INSTPM_SYNC_FLUSH));
  464. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  465. 1000))
  466. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  467. ring->name);
  468. }
  469. }
  470. static bool stop_ring(struct intel_engine_cs *ring)
  471. {
  472. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  473. if (!IS_GEN2(ring->dev)) {
  474. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  475. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  476. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  477. /* Sometimes we observe that the idle flag is not
  478. * set even though the ring is empty. So double
  479. * check before giving up.
  480. */
  481. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  482. return false;
  483. }
  484. }
  485. I915_WRITE_CTL(ring, 0);
  486. I915_WRITE_HEAD(ring, 0);
  487. ring->write_tail(ring, 0);
  488. if (!IS_GEN2(ring->dev)) {
  489. (void)I915_READ_CTL(ring);
  490. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  491. }
  492. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  493. }
  494. static int init_ring_common(struct intel_engine_cs *ring)
  495. {
  496. struct drm_device *dev = ring->dev;
  497. struct drm_i915_private *dev_priv = dev->dev_private;
  498. struct intel_ringbuffer *ringbuf = ring->buffer;
  499. struct drm_i915_gem_object *obj = ringbuf->obj;
  500. int ret = 0;
  501. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  502. if (!stop_ring(ring)) {
  503. /* G45 ring initialization often fails to reset head to zero */
  504. DRM_DEBUG_KMS("%s head not reset to zero "
  505. "ctl %08x head %08x tail %08x start %08x\n",
  506. ring->name,
  507. I915_READ_CTL(ring),
  508. I915_READ_HEAD(ring),
  509. I915_READ_TAIL(ring),
  510. I915_READ_START(ring));
  511. if (!stop_ring(ring)) {
  512. DRM_ERROR("failed to set %s head to zero "
  513. "ctl %08x head %08x tail %08x start %08x\n",
  514. ring->name,
  515. I915_READ_CTL(ring),
  516. I915_READ_HEAD(ring),
  517. I915_READ_TAIL(ring),
  518. I915_READ_START(ring));
  519. ret = -EIO;
  520. goto out;
  521. }
  522. }
  523. if (I915_NEED_GFX_HWS(dev))
  524. intel_ring_setup_status_page(ring);
  525. else
  526. ring_setup_phys_status_page(ring);
  527. /* Enforce ordering by reading HEAD register back */
  528. I915_READ_HEAD(ring);
  529. /* Initialize the ring. This must happen _after_ we've cleared the ring
  530. * registers with the above sequence (the readback of the HEAD registers
  531. * also enforces ordering), otherwise the hw might lose the new ring
  532. * register values. */
  533. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  534. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  535. if (I915_READ_HEAD(ring))
  536. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  537. ring->name, I915_READ_HEAD(ring));
  538. I915_WRITE_HEAD(ring, 0);
  539. (void)I915_READ_HEAD(ring);
  540. I915_WRITE_CTL(ring,
  541. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  542. | RING_VALID);
  543. /* If the head is still not zero, the ring is dead */
  544. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  545. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  546. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  547. DRM_ERROR("%s initialization failed "
  548. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  549. ring->name,
  550. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  551. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  552. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  553. ret = -EIO;
  554. goto out;
  555. }
  556. ringbuf->last_retired_head = -1;
  557. ringbuf->head = I915_READ_HEAD(ring);
  558. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  559. intel_ring_update_space(ringbuf);
  560. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  561. out:
  562. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  563. return ret;
  564. }
  565. void
  566. intel_fini_pipe_control(struct intel_engine_cs *ring)
  567. {
  568. struct drm_device *dev = ring->dev;
  569. if (ring->scratch.obj == NULL)
  570. return;
  571. if (INTEL_INFO(dev)->gen >= 5) {
  572. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  573. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  574. }
  575. drm_gem_object_unreference(&ring->scratch.obj->base);
  576. ring->scratch.obj = NULL;
  577. }
  578. int
  579. intel_init_pipe_control(struct intel_engine_cs *ring)
  580. {
  581. int ret;
  582. WARN_ON(ring->scratch.obj);
  583. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  584. if (ring->scratch.obj == NULL) {
  585. DRM_ERROR("Failed to allocate seqno page\n");
  586. ret = -ENOMEM;
  587. goto err;
  588. }
  589. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  590. if (ret)
  591. goto err_unref;
  592. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  593. if (ret)
  594. goto err_unref;
  595. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  596. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  597. if (ring->scratch.cpu_page == NULL) {
  598. ret = -ENOMEM;
  599. goto err_unpin;
  600. }
  601. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  602. ring->name, ring->scratch.gtt_offset);
  603. return 0;
  604. err_unpin:
  605. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  606. err_unref:
  607. drm_gem_object_unreference(&ring->scratch.obj->base);
  608. err:
  609. return ret;
  610. }
  611. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  612. {
  613. int ret, i;
  614. struct intel_engine_cs *ring = req->ring;
  615. struct drm_device *dev = ring->dev;
  616. struct drm_i915_private *dev_priv = dev->dev_private;
  617. struct i915_workarounds *w = &dev_priv->workarounds;
  618. if (WARN_ON_ONCE(w->count == 0))
  619. return 0;
  620. ring->gpu_caches_dirty = true;
  621. ret = intel_ring_flush_all_caches(req);
  622. if (ret)
  623. return ret;
  624. ret = intel_ring_begin(req, (w->count * 2 + 2));
  625. if (ret)
  626. return ret;
  627. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  628. for (i = 0; i < w->count; i++) {
  629. intel_ring_emit(ring, w->reg[i].addr);
  630. intel_ring_emit(ring, w->reg[i].value);
  631. }
  632. intel_ring_emit(ring, MI_NOOP);
  633. intel_ring_advance(ring);
  634. ring->gpu_caches_dirty = true;
  635. ret = intel_ring_flush_all_caches(req);
  636. if (ret)
  637. return ret;
  638. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  639. return 0;
  640. }
  641. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  642. {
  643. int ret;
  644. ret = intel_ring_workarounds_emit(req);
  645. if (ret != 0)
  646. return ret;
  647. ret = i915_gem_render_state_init(req);
  648. if (ret)
  649. DRM_ERROR("init render state: %d\n", ret);
  650. return ret;
  651. }
  652. static int wa_add(struct drm_i915_private *dev_priv,
  653. const u32 addr, const u32 mask, const u32 val)
  654. {
  655. const u32 idx = dev_priv->workarounds.count;
  656. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  657. return -ENOSPC;
  658. dev_priv->workarounds.reg[idx].addr = addr;
  659. dev_priv->workarounds.reg[idx].value = val;
  660. dev_priv->workarounds.reg[idx].mask = mask;
  661. dev_priv->workarounds.count++;
  662. return 0;
  663. }
  664. #define WA_REG(addr, mask, val) do { \
  665. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  666. if (r) \
  667. return r; \
  668. } while (0)
  669. #define WA_SET_BIT_MASKED(addr, mask) \
  670. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  671. #define WA_CLR_BIT_MASKED(addr, mask) \
  672. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  673. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  674. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  675. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  676. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  677. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  678. static int gen8_init_workarounds(struct intel_engine_cs *ring)
  679. {
  680. struct drm_device *dev = ring->dev;
  681. struct drm_i915_private *dev_priv = dev->dev_private;
  682. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  683. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  684. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  685. return 0;
  686. }
  687. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  688. {
  689. int ret;
  690. struct drm_device *dev = ring->dev;
  691. struct drm_i915_private *dev_priv = dev->dev_private;
  692. ret = gen8_init_workarounds(ring);
  693. if (ret)
  694. return ret;
  695. /* WaDisablePartialInstShootdown:bdw */
  696. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  697. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  698. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  699. STALL_DOP_GATING_DISABLE);
  700. /* WaDisableDopClockGating:bdw */
  701. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  702. DOP_CLOCK_GATING_DISABLE);
  703. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  704. GEN8_SAMPLER_POWER_BYPASS_DIS);
  705. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  706. * workaround for for a possible hang in the unlikely event a TLB
  707. * invalidation occurs during a PSD flush.
  708. */
  709. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  710. /* WaForceEnableNonCoherent:bdw */
  711. HDC_FORCE_NON_COHERENT |
  712. /* WaForceContextSaveRestoreNonCoherent:bdw */
  713. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  714. /* WaHdcDisableFetchWhenMasked:bdw */
  715. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  716. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  717. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  718. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  719. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  720. * polygons in the same 8x4 pixel/sample area to be processed without
  721. * stalling waiting for the earlier ones to write to Hierarchical Z
  722. * buffer."
  723. *
  724. * This optimization is off by default for Broadwell; turn it on.
  725. */
  726. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  727. /* Wa4x4STCOptimizationDisable:bdw */
  728. WA_SET_BIT_MASKED(CACHE_MODE_1,
  729. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  730. /*
  731. * BSpec recommends 8x4 when MSAA is used,
  732. * however in practice 16x4 seems fastest.
  733. *
  734. * Note that PS/WM thread counts depend on the WIZ hashing
  735. * disable bit, which we don't touch here, but it's good
  736. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  737. */
  738. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  739. GEN6_WIZ_HASHING_MASK,
  740. GEN6_WIZ_HASHING_16x4);
  741. return 0;
  742. }
  743. static int chv_init_workarounds(struct intel_engine_cs *ring)
  744. {
  745. int ret;
  746. struct drm_device *dev = ring->dev;
  747. struct drm_i915_private *dev_priv = dev->dev_private;
  748. ret = gen8_init_workarounds(ring);
  749. if (ret)
  750. return ret;
  751. /* WaDisablePartialInstShootdown:chv */
  752. /* WaDisableThreadStallDopClockGating:chv */
  753. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  754. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  755. STALL_DOP_GATING_DISABLE);
  756. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  757. * workaround for a possible hang in the unlikely event a TLB
  758. * invalidation occurs during a PSD flush.
  759. */
  760. /* WaForceEnableNonCoherent:chv */
  761. /* WaHdcDisableFetchWhenMasked:chv */
  762. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  763. HDC_FORCE_NON_COHERENT |
  764. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  765. /* According to the CACHE_MODE_0 default value documentation, some
  766. * CHV platforms disable this optimization by default. Turn it on.
  767. */
  768. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  769. /* Wa4x4STCOptimizationDisable:chv */
  770. WA_SET_BIT_MASKED(CACHE_MODE_1,
  771. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  772. /* Improve HiZ throughput on CHV. */
  773. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  774. /*
  775. * BSpec recommends 8x4 when MSAA is used,
  776. * however in practice 16x4 seems fastest.
  777. *
  778. * Note that PS/WM thread counts depend on the WIZ hashing
  779. * disable bit, which we don't touch here, but it's good
  780. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  781. */
  782. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  783. GEN6_WIZ_HASHING_MASK,
  784. GEN6_WIZ_HASHING_16x4);
  785. return 0;
  786. }
  787. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  788. {
  789. struct drm_device *dev = ring->dev;
  790. struct drm_i915_private *dev_priv = dev->dev_private;
  791. uint32_t tmp;
  792. /* WaDisablePartialInstShootdown:skl,bxt */
  793. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  794. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  795. /* Syncing dependencies between camera and graphics:skl,bxt */
  796. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  797. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  798. if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
  799. INTEL_REVID(dev) == SKL_REVID_B0)) ||
  800. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  801. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  802. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  803. GEN9_DG_MIRROR_FIX_ENABLE);
  804. }
  805. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
  806. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  807. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  808. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  809. GEN9_RHWO_OPTIMIZATION_DISABLE);
  810. /*
  811. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  812. * but we do that in per ctx batchbuffer as there is an issue
  813. * with this register not getting restored on ctx restore
  814. */
  815. }
  816. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
  817. IS_BROXTON(dev)) {
  818. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  819. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  820. GEN9_ENABLE_YV12_BUGFIX);
  821. }
  822. /* Wa4x4STCOptimizationDisable:skl,bxt */
  823. /* WaDisablePartialResolveInVc:skl,bxt */
  824. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  825. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  826. /* WaCcsTlbPrefetchDisable:skl,bxt */
  827. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  828. GEN9_CCS_TLB_PREFETCH_ENABLE);
  829. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  830. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
  831. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
  832. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  833. PIXEL_MASK_CAMMING_DISABLE);
  834. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  835. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  836. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
  837. (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
  838. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  839. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  840. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
  841. if (IS_SKYLAKE(dev) ||
  842. (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_B0)) {
  843. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  844. GEN8_SAMPLER_POWER_BYPASS_DIS);
  845. }
  846. /* WaDisableSTUnitPowerOptimization:skl,bxt */
  847. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  848. return 0;
  849. }
  850. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  851. {
  852. struct drm_device *dev = ring->dev;
  853. struct drm_i915_private *dev_priv = dev->dev_private;
  854. u8 vals[3] = { 0, 0, 0 };
  855. unsigned int i;
  856. for (i = 0; i < 3; i++) {
  857. u8 ss;
  858. /*
  859. * Only consider slices where one, and only one, subslice has 7
  860. * EUs
  861. */
  862. if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
  863. continue;
  864. /*
  865. * subslice_7eu[i] != 0 (because of the check above) and
  866. * ss_max == 4 (maximum number of subslices possible per slice)
  867. *
  868. * -> 0 <= ss <= 3;
  869. */
  870. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  871. vals[i] = 3 - ss;
  872. }
  873. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  874. return 0;
  875. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  876. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  877. GEN9_IZ_HASHING_MASK(2) |
  878. GEN9_IZ_HASHING_MASK(1) |
  879. GEN9_IZ_HASHING_MASK(0),
  880. GEN9_IZ_HASHING(2, vals[2]) |
  881. GEN9_IZ_HASHING(1, vals[1]) |
  882. GEN9_IZ_HASHING(0, vals[0]));
  883. return 0;
  884. }
  885. static int skl_init_workarounds(struct intel_engine_cs *ring)
  886. {
  887. int ret;
  888. struct drm_device *dev = ring->dev;
  889. struct drm_i915_private *dev_priv = dev->dev_private;
  890. ret = gen9_init_workarounds(ring);
  891. if (ret)
  892. return ret;
  893. /* WaDisablePowerCompilerClockGating:skl */
  894. if (INTEL_REVID(dev) == SKL_REVID_B0)
  895. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  896. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  897. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  898. /*
  899. *Use Force Non-Coherent whenever executing a 3D context. This
  900. * is a workaround for a possible hang in the unlikely event
  901. * a TLB invalidation occurs during a PSD flush.
  902. */
  903. /* WaForceEnableNonCoherent:skl */
  904. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  905. HDC_FORCE_NON_COHERENT);
  906. }
  907. if (INTEL_REVID(dev) == SKL_REVID_C0 ||
  908. INTEL_REVID(dev) == SKL_REVID_D0)
  909. /* WaBarrierPerformanceFixDisable:skl */
  910. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  911. HDC_FENCE_DEST_SLM_DISABLE |
  912. HDC_BARRIER_PERFORMANCE_DISABLE);
  913. /* WaDisableSbeCacheDispatchPortSharing:skl */
  914. if (INTEL_REVID(dev) <= SKL_REVID_F0) {
  915. WA_SET_BIT_MASKED(
  916. GEN7_HALF_SLICE_CHICKEN1,
  917. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  918. }
  919. return skl_tune_iz_hashing(ring);
  920. }
  921. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  922. {
  923. int ret;
  924. struct drm_device *dev = ring->dev;
  925. struct drm_i915_private *dev_priv = dev->dev_private;
  926. ret = gen9_init_workarounds(ring);
  927. if (ret)
  928. return ret;
  929. /* WaDisableThreadStallDopClockGating:bxt */
  930. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  931. STALL_DOP_GATING_DISABLE);
  932. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  933. if (INTEL_REVID(dev) <= BXT_REVID_B0) {
  934. WA_SET_BIT_MASKED(
  935. GEN7_HALF_SLICE_CHICKEN1,
  936. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  937. }
  938. return 0;
  939. }
  940. int init_workarounds_ring(struct intel_engine_cs *ring)
  941. {
  942. struct drm_device *dev = ring->dev;
  943. struct drm_i915_private *dev_priv = dev->dev_private;
  944. WARN_ON(ring->id != RCS);
  945. dev_priv->workarounds.count = 0;
  946. if (IS_BROADWELL(dev))
  947. return bdw_init_workarounds(ring);
  948. if (IS_CHERRYVIEW(dev))
  949. return chv_init_workarounds(ring);
  950. if (IS_SKYLAKE(dev))
  951. return skl_init_workarounds(ring);
  952. if (IS_BROXTON(dev))
  953. return bxt_init_workarounds(ring);
  954. return 0;
  955. }
  956. static int init_render_ring(struct intel_engine_cs *ring)
  957. {
  958. struct drm_device *dev = ring->dev;
  959. struct drm_i915_private *dev_priv = dev->dev_private;
  960. int ret = init_ring_common(ring);
  961. if (ret)
  962. return ret;
  963. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  964. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  965. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  966. /* We need to disable the AsyncFlip performance optimisations in order
  967. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  968. * programmed to '1' on all products.
  969. *
  970. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  971. */
  972. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  973. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  974. /* Required for the hardware to program scanline values for waiting */
  975. /* WaEnableFlushTlbInvalidationMode:snb */
  976. if (INTEL_INFO(dev)->gen == 6)
  977. I915_WRITE(GFX_MODE,
  978. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  979. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  980. if (IS_GEN7(dev))
  981. I915_WRITE(GFX_MODE_GEN7,
  982. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  983. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  984. if (IS_GEN6(dev)) {
  985. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  986. * "If this bit is set, STCunit will have LRA as replacement
  987. * policy. [...] This bit must be reset. LRA replacement
  988. * policy is not supported."
  989. */
  990. I915_WRITE(CACHE_MODE_0,
  991. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  992. }
  993. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  994. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  995. if (HAS_L3_DPF(dev))
  996. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  997. return init_workarounds_ring(ring);
  998. }
  999. static void render_ring_cleanup(struct intel_engine_cs *ring)
  1000. {
  1001. struct drm_device *dev = ring->dev;
  1002. struct drm_i915_private *dev_priv = dev->dev_private;
  1003. if (dev_priv->semaphore_obj) {
  1004. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1005. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1006. dev_priv->semaphore_obj = NULL;
  1007. }
  1008. intel_fini_pipe_control(ring);
  1009. }
  1010. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1011. unsigned int num_dwords)
  1012. {
  1013. #define MBOX_UPDATE_DWORDS 8
  1014. struct intel_engine_cs *signaller = signaller_req->ring;
  1015. struct drm_device *dev = signaller->dev;
  1016. struct drm_i915_private *dev_priv = dev->dev_private;
  1017. struct intel_engine_cs *waiter;
  1018. int i, ret, num_rings;
  1019. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1020. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1021. #undef MBOX_UPDATE_DWORDS
  1022. ret = intel_ring_begin(signaller_req, num_dwords);
  1023. if (ret)
  1024. return ret;
  1025. for_each_ring(waiter, dev_priv, i) {
  1026. u32 seqno;
  1027. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1028. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1029. continue;
  1030. seqno = i915_gem_request_get_seqno(signaller_req);
  1031. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1032. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1033. PIPE_CONTROL_QW_WRITE |
  1034. PIPE_CONTROL_FLUSH_ENABLE);
  1035. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1036. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1037. intel_ring_emit(signaller, seqno);
  1038. intel_ring_emit(signaller, 0);
  1039. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1040. MI_SEMAPHORE_TARGET(waiter->id));
  1041. intel_ring_emit(signaller, 0);
  1042. }
  1043. return 0;
  1044. }
  1045. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1046. unsigned int num_dwords)
  1047. {
  1048. #define MBOX_UPDATE_DWORDS 6
  1049. struct intel_engine_cs *signaller = signaller_req->ring;
  1050. struct drm_device *dev = signaller->dev;
  1051. struct drm_i915_private *dev_priv = dev->dev_private;
  1052. struct intel_engine_cs *waiter;
  1053. int i, ret, num_rings;
  1054. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1055. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1056. #undef MBOX_UPDATE_DWORDS
  1057. ret = intel_ring_begin(signaller_req, num_dwords);
  1058. if (ret)
  1059. return ret;
  1060. for_each_ring(waiter, dev_priv, i) {
  1061. u32 seqno;
  1062. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1063. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1064. continue;
  1065. seqno = i915_gem_request_get_seqno(signaller_req);
  1066. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1067. MI_FLUSH_DW_OP_STOREDW);
  1068. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1069. MI_FLUSH_DW_USE_GTT);
  1070. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1071. intel_ring_emit(signaller, seqno);
  1072. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1073. MI_SEMAPHORE_TARGET(waiter->id));
  1074. intel_ring_emit(signaller, 0);
  1075. }
  1076. return 0;
  1077. }
  1078. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1079. unsigned int num_dwords)
  1080. {
  1081. struct intel_engine_cs *signaller = signaller_req->ring;
  1082. struct drm_device *dev = signaller->dev;
  1083. struct drm_i915_private *dev_priv = dev->dev_private;
  1084. struct intel_engine_cs *useless;
  1085. int i, ret, num_rings;
  1086. #define MBOX_UPDATE_DWORDS 3
  1087. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1088. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1089. #undef MBOX_UPDATE_DWORDS
  1090. ret = intel_ring_begin(signaller_req, num_dwords);
  1091. if (ret)
  1092. return ret;
  1093. for_each_ring(useless, dev_priv, i) {
  1094. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  1095. if (mbox_reg != GEN6_NOSYNC) {
  1096. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1097. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1098. intel_ring_emit(signaller, mbox_reg);
  1099. intel_ring_emit(signaller, seqno);
  1100. }
  1101. }
  1102. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1103. if (num_rings % 2 == 0)
  1104. intel_ring_emit(signaller, MI_NOOP);
  1105. return 0;
  1106. }
  1107. /**
  1108. * gen6_add_request - Update the semaphore mailbox registers
  1109. *
  1110. * @request - request to write to the ring
  1111. *
  1112. * Update the mailbox registers in the *other* rings with the current seqno.
  1113. * This acts like a signal in the canonical semaphore.
  1114. */
  1115. static int
  1116. gen6_add_request(struct drm_i915_gem_request *req)
  1117. {
  1118. struct intel_engine_cs *ring = req->ring;
  1119. int ret;
  1120. if (ring->semaphore.signal)
  1121. ret = ring->semaphore.signal(req, 4);
  1122. else
  1123. ret = intel_ring_begin(req, 4);
  1124. if (ret)
  1125. return ret;
  1126. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1127. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1128. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1129. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1130. __intel_ring_advance(ring);
  1131. return 0;
  1132. }
  1133. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1134. u32 seqno)
  1135. {
  1136. struct drm_i915_private *dev_priv = dev->dev_private;
  1137. return dev_priv->last_seqno < seqno;
  1138. }
  1139. /**
  1140. * intel_ring_sync - sync the waiter to the signaller on seqno
  1141. *
  1142. * @waiter - ring that is waiting
  1143. * @signaller - ring which has, or will signal
  1144. * @seqno - seqno which the waiter will block on
  1145. */
  1146. static int
  1147. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1148. struct intel_engine_cs *signaller,
  1149. u32 seqno)
  1150. {
  1151. struct intel_engine_cs *waiter = waiter_req->ring;
  1152. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1153. int ret;
  1154. ret = intel_ring_begin(waiter_req, 4);
  1155. if (ret)
  1156. return ret;
  1157. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1158. MI_SEMAPHORE_GLOBAL_GTT |
  1159. MI_SEMAPHORE_POLL |
  1160. MI_SEMAPHORE_SAD_GTE_SDD);
  1161. intel_ring_emit(waiter, seqno);
  1162. intel_ring_emit(waiter,
  1163. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1164. intel_ring_emit(waiter,
  1165. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1166. intel_ring_advance(waiter);
  1167. return 0;
  1168. }
  1169. static int
  1170. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1171. struct intel_engine_cs *signaller,
  1172. u32 seqno)
  1173. {
  1174. struct intel_engine_cs *waiter = waiter_req->ring;
  1175. u32 dw1 = MI_SEMAPHORE_MBOX |
  1176. MI_SEMAPHORE_COMPARE |
  1177. MI_SEMAPHORE_REGISTER;
  1178. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1179. int ret;
  1180. /* Throughout all of the GEM code, seqno passed implies our current
  1181. * seqno is >= the last seqno executed. However for hardware the
  1182. * comparison is strictly greater than.
  1183. */
  1184. seqno -= 1;
  1185. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1186. ret = intel_ring_begin(waiter_req, 4);
  1187. if (ret)
  1188. return ret;
  1189. /* If seqno wrap happened, omit the wait with no-ops */
  1190. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1191. intel_ring_emit(waiter, dw1 | wait_mbox);
  1192. intel_ring_emit(waiter, seqno);
  1193. intel_ring_emit(waiter, 0);
  1194. intel_ring_emit(waiter, MI_NOOP);
  1195. } else {
  1196. intel_ring_emit(waiter, MI_NOOP);
  1197. intel_ring_emit(waiter, MI_NOOP);
  1198. intel_ring_emit(waiter, MI_NOOP);
  1199. intel_ring_emit(waiter, MI_NOOP);
  1200. }
  1201. intel_ring_advance(waiter);
  1202. return 0;
  1203. }
  1204. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1205. do { \
  1206. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1207. PIPE_CONTROL_DEPTH_STALL); \
  1208. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1209. intel_ring_emit(ring__, 0); \
  1210. intel_ring_emit(ring__, 0); \
  1211. } while (0)
  1212. static int
  1213. pc_render_add_request(struct drm_i915_gem_request *req)
  1214. {
  1215. struct intel_engine_cs *ring = req->ring;
  1216. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1217. int ret;
  1218. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1219. * incoherent with writes to memory, i.e. completely fubar,
  1220. * so we need to use PIPE_NOTIFY instead.
  1221. *
  1222. * However, we also need to workaround the qword write
  1223. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1224. * memory before requesting an interrupt.
  1225. */
  1226. ret = intel_ring_begin(req, 32);
  1227. if (ret)
  1228. return ret;
  1229. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1230. PIPE_CONTROL_WRITE_FLUSH |
  1231. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1232. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1233. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1234. intel_ring_emit(ring, 0);
  1235. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1236. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1237. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1238. scratch_addr += 2 * CACHELINE_BYTES;
  1239. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1240. scratch_addr += 2 * CACHELINE_BYTES;
  1241. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1242. scratch_addr += 2 * CACHELINE_BYTES;
  1243. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1244. scratch_addr += 2 * CACHELINE_BYTES;
  1245. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1246. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1247. PIPE_CONTROL_WRITE_FLUSH |
  1248. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1249. PIPE_CONTROL_NOTIFY);
  1250. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1251. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1252. intel_ring_emit(ring, 0);
  1253. __intel_ring_advance(ring);
  1254. return 0;
  1255. }
  1256. static u32
  1257. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1258. {
  1259. /* Workaround to force correct ordering between irq and seqno writes on
  1260. * ivb (and maybe also on snb) by reading from a CS register (like
  1261. * ACTHD) before reading the status page. */
  1262. if (!lazy_coherency) {
  1263. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1264. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1265. }
  1266. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1267. }
  1268. static u32
  1269. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1270. {
  1271. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1272. }
  1273. static void
  1274. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1275. {
  1276. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1277. }
  1278. static u32
  1279. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1280. {
  1281. return ring->scratch.cpu_page[0];
  1282. }
  1283. static void
  1284. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1285. {
  1286. ring->scratch.cpu_page[0] = seqno;
  1287. }
  1288. static bool
  1289. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1290. {
  1291. struct drm_device *dev = ring->dev;
  1292. struct drm_i915_private *dev_priv = dev->dev_private;
  1293. unsigned long flags;
  1294. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1295. return false;
  1296. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1297. if (ring->irq_refcount++ == 0)
  1298. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1299. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1300. return true;
  1301. }
  1302. static void
  1303. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1304. {
  1305. struct drm_device *dev = ring->dev;
  1306. struct drm_i915_private *dev_priv = dev->dev_private;
  1307. unsigned long flags;
  1308. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1309. if (--ring->irq_refcount == 0)
  1310. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1311. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1312. }
  1313. static bool
  1314. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1315. {
  1316. struct drm_device *dev = ring->dev;
  1317. struct drm_i915_private *dev_priv = dev->dev_private;
  1318. unsigned long flags;
  1319. if (!intel_irqs_enabled(dev_priv))
  1320. return false;
  1321. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1322. if (ring->irq_refcount++ == 0) {
  1323. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1324. I915_WRITE(IMR, dev_priv->irq_mask);
  1325. POSTING_READ(IMR);
  1326. }
  1327. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1328. return true;
  1329. }
  1330. static void
  1331. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1332. {
  1333. struct drm_device *dev = ring->dev;
  1334. struct drm_i915_private *dev_priv = dev->dev_private;
  1335. unsigned long flags;
  1336. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1337. if (--ring->irq_refcount == 0) {
  1338. dev_priv->irq_mask |= ring->irq_enable_mask;
  1339. I915_WRITE(IMR, dev_priv->irq_mask);
  1340. POSTING_READ(IMR);
  1341. }
  1342. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1343. }
  1344. static bool
  1345. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1346. {
  1347. struct drm_device *dev = ring->dev;
  1348. struct drm_i915_private *dev_priv = dev->dev_private;
  1349. unsigned long flags;
  1350. if (!intel_irqs_enabled(dev_priv))
  1351. return false;
  1352. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1353. if (ring->irq_refcount++ == 0) {
  1354. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1355. I915_WRITE16(IMR, dev_priv->irq_mask);
  1356. POSTING_READ16(IMR);
  1357. }
  1358. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1359. return true;
  1360. }
  1361. static void
  1362. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1363. {
  1364. struct drm_device *dev = ring->dev;
  1365. struct drm_i915_private *dev_priv = dev->dev_private;
  1366. unsigned long flags;
  1367. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1368. if (--ring->irq_refcount == 0) {
  1369. dev_priv->irq_mask |= ring->irq_enable_mask;
  1370. I915_WRITE16(IMR, dev_priv->irq_mask);
  1371. POSTING_READ16(IMR);
  1372. }
  1373. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1374. }
  1375. static int
  1376. bsd_ring_flush(struct drm_i915_gem_request *req,
  1377. u32 invalidate_domains,
  1378. u32 flush_domains)
  1379. {
  1380. struct intel_engine_cs *ring = req->ring;
  1381. int ret;
  1382. ret = intel_ring_begin(req, 2);
  1383. if (ret)
  1384. return ret;
  1385. intel_ring_emit(ring, MI_FLUSH);
  1386. intel_ring_emit(ring, MI_NOOP);
  1387. intel_ring_advance(ring);
  1388. return 0;
  1389. }
  1390. static int
  1391. i9xx_add_request(struct drm_i915_gem_request *req)
  1392. {
  1393. struct intel_engine_cs *ring = req->ring;
  1394. int ret;
  1395. ret = intel_ring_begin(req, 4);
  1396. if (ret)
  1397. return ret;
  1398. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1399. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1400. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1401. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1402. __intel_ring_advance(ring);
  1403. return 0;
  1404. }
  1405. static bool
  1406. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1407. {
  1408. struct drm_device *dev = ring->dev;
  1409. struct drm_i915_private *dev_priv = dev->dev_private;
  1410. unsigned long flags;
  1411. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1412. return false;
  1413. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1414. if (ring->irq_refcount++ == 0) {
  1415. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1416. I915_WRITE_IMR(ring,
  1417. ~(ring->irq_enable_mask |
  1418. GT_PARITY_ERROR(dev)));
  1419. else
  1420. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1421. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1422. }
  1423. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1424. return true;
  1425. }
  1426. static void
  1427. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1428. {
  1429. struct drm_device *dev = ring->dev;
  1430. struct drm_i915_private *dev_priv = dev->dev_private;
  1431. unsigned long flags;
  1432. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1433. if (--ring->irq_refcount == 0) {
  1434. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1435. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1436. else
  1437. I915_WRITE_IMR(ring, ~0);
  1438. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1439. }
  1440. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1441. }
  1442. static bool
  1443. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1444. {
  1445. struct drm_device *dev = ring->dev;
  1446. struct drm_i915_private *dev_priv = dev->dev_private;
  1447. unsigned long flags;
  1448. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1449. return false;
  1450. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1451. if (ring->irq_refcount++ == 0) {
  1452. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1453. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1454. }
  1455. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1456. return true;
  1457. }
  1458. static void
  1459. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1460. {
  1461. struct drm_device *dev = ring->dev;
  1462. struct drm_i915_private *dev_priv = dev->dev_private;
  1463. unsigned long flags;
  1464. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1465. if (--ring->irq_refcount == 0) {
  1466. I915_WRITE_IMR(ring, ~0);
  1467. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1468. }
  1469. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1470. }
  1471. static bool
  1472. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1473. {
  1474. struct drm_device *dev = ring->dev;
  1475. struct drm_i915_private *dev_priv = dev->dev_private;
  1476. unsigned long flags;
  1477. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1478. return false;
  1479. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1480. if (ring->irq_refcount++ == 0) {
  1481. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1482. I915_WRITE_IMR(ring,
  1483. ~(ring->irq_enable_mask |
  1484. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1485. } else {
  1486. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1487. }
  1488. POSTING_READ(RING_IMR(ring->mmio_base));
  1489. }
  1490. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1491. return true;
  1492. }
  1493. static void
  1494. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1495. {
  1496. struct drm_device *dev = ring->dev;
  1497. struct drm_i915_private *dev_priv = dev->dev_private;
  1498. unsigned long flags;
  1499. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1500. if (--ring->irq_refcount == 0) {
  1501. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1502. I915_WRITE_IMR(ring,
  1503. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1504. } else {
  1505. I915_WRITE_IMR(ring, ~0);
  1506. }
  1507. POSTING_READ(RING_IMR(ring->mmio_base));
  1508. }
  1509. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1510. }
  1511. static int
  1512. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1513. u64 offset, u32 length,
  1514. unsigned dispatch_flags)
  1515. {
  1516. struct intel_engine_cs *ring = req->ring;
  1517. int ret;
  1518. ret = intel_ring_begin(req, 2);
  1519. if (ret)
  1520. return ret;
  1521. intel_ring_emit(ring,
  1522. MI_BATCH_BUFFER_START |
  1523. MI_BATCH_GTT |
  1524. (dispatch_flags & I915_DISPATCH_SECURE ?
  1525. 0 : MI_BATCH_NON_SECURE_I965));
  1526. intel_ring_emit(ring, offset);
  1527. intel_ring_advance(ring);
  1528. return 0;
  1529. }
  1530. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1531. #define I830_BATCH_LIMIT (256*1024)
  1532. #define I830_TLB_ENTRIES (2)
  1533. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1534. static int
  1535. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1536. u64 offset, u32 len,
  1537. unsigned dispatch_flags)
  1538. {
  1539. struct intel_engine_cs *ring = req->ring;
  1540. u32 cs_offset = ring->scratch.gtt_offset;
  1541. int ret;
  1542. ret = intel_ring_begin(req, 6);
  1543. if (ret)
  1544. return ret;
  1545. /* Evict the invalid PTE TLBs */
  1546. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1547. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1548. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1549. intel_ring_emit(ring, cs_offset);
  1550. intel_ring_emit(ring, 0xdeadbeef);
  1551. intel_ring_emit(ring, MI_NOOP);
  1552. intel_ring_advance(ring);
  1553. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1554. if (len > I830_BATCH_LIMIT)
  1555. return -ENOSPC;
  1556. ret = intel_ring_begin(req, 6 + 2);
  1557. if (ret)
  1558. return ret;
  1559. /* Blit the batch (which has now all relocs applied) to the
  1560. * stable batch scratch bo area (so that the CS never
  1561. * stumbles over its tlb invalidation bug) ...
  1562. */
  1563. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1564. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1565. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1566. intel_ring_emit(ring, cs_offset);
  1567. intel_ring_emit(ring, 4096);
  1568. intel_ring_emit(ring, offset);
  1569. intel_ring_emit(ring, MI_FLUSH);
  1570. intel_ring_emit(ring, MI_NOOP);
  1571. intel_ring_advance(ring);
  1572. /* ... and execute it. */
  1573. offset = cs_offset;
  1574. }
  1575. ret = intel_ring_begin(req, 4);
  1576. if (ret)
  1577. return ret;
  1578. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1579. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1580. 0 : MI_BATCH_NON_SECURE));
  1581. intel_ring_emit(ring, offset + len - 8);
  1582. intel_ring_emit(ring, MI_NOOP);
  1583. intel_ring_advance(ring);
  1584. return 0;
  1585. }
  1586. static int
  1587. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1588. u64 offset, u32 len,
  1589. unsigned dispatch_flags)
  1590. {
  1591. struct intel_engine_cs *ring = req->ring;
  1592. int ret;
  1593. ret = intel_ring_begin(req, 2);
  1594. if (ret)
  1595. return ret;
  1596. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1597. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1598. 0 : MI_BATCH_NON_SECURE));
  1599. intel_ring_advance(ring);
  1600. return 0;
  1601. }
  1602. static void cleanup_status_page(struct intel_engine_cs *ring)
  1603. {
  1604. struct drm_i915_gem_object *obj;
  1605. obj = ring->status_page.obj;
  1606. if (obj == NULL)
  1607. return;
  1608. kunmap(sg_page(obj->pages->sgl));
  1609. i915_gem_object_ggtt_unpin(obj);
  1610. drm_gem_object_unreference(&obj->base);
  1611. ring->status_page.obj = NULL;
  1612. }
  1613. static int init_status_page(struct intel_engine_cs *ring)
  1614. {
  1615. struct drm_i915_gem_object *obj;
  1616. if ((obj = ring->status_page.obj) == NULL) {
  1617. unsigned flags;
  1618. int ret;
  1619. obj = i915_gem_alloc_object(ring->dev, 4096);
  1620. if (obj == NULL) {
  1621. DRM_ERROR("Failed to allocate status page\n");
  1622. return -ENOMEM;
  1623. }
  1624. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1625. if (ret)
  1626. goto err_unref;
  1627. flags = 0;
  1628. if (!HAS_LLC(ring->dev))
  1629. /* On g33, we cannot place HWS above 256MiB, so
  1630. * restrict its pinning to the low mappable arena.
  1631. * Though this restriction is not documented for
  1632. * gen4, gen5, or byt, they also behave similarly
  1633. * and hang if the HWS is placed at the top of the
  1634. * GTT. To generalise, it appears that all !llc
  1635. * platforms have issues with us placing the HWS
  1636. * above the mappable region (even though we never
  1637. * actualy map it).
  1638. */
  1639. flags |= PIN_MAPPABLE;
  1640. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1641. if (ret) {
  1642. err_unref:
  1643. drm_gem_object_unreference(&obj->base);
  1644. return ret;
  1645. }
  1646. ring->status_page.obj = obj;
  1647. }
  1648. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1649. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1650. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1651. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1652. ring->name, ring->status_page.gfx_addr);
  1653. return 0;
  1654. }
  1655. static int init_phys_status_page(struct intel_engine_cs *ring)
  1656. {
  1657. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1658. if (!dev_priv->status_page_dmah) {
  1659. dev_priv->status_page_dmah =
  1660. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1661. if (!dev_priv->status_page_dmah)
  1662. return -ENOMEM;
  1663. }
  1664. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1665. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1666. return 0;
  1667. }
  1668. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1669. {
  1670. iounmap(ringbuf->virtual_start);
  1671. ringbuf->virtual_start = NULL;
  1672. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1673. }
  1674. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1675. struct intel_ringbuffer *ringbuf)
  1676. {
  1677. struct drm_i915_private *dev_priv = to_i915(dev);
  1678. struct drm_i915_gem_object *obj = ringbuf->obj;
  1679. int ret;
  1680. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1681. if (ret)
  1682. return ret;
  1683. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1684. if (ret) {
  1685. i915_gem_object_ggtt_unpin(obj);
  1686. return ret;
  1687. }
  1688. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1689. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1690. if (ringbuf->virtual_start == NULL) {
  1691. i915_gem_object_ggtt_unpin(obj);
  1692. return -EINVAL;
  1693. }
  1694. return 0;
  1695. }
  1696. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1697. {
  1698. drm_gem_object_unreference(&ringbuf->obj->base);
  1699. ringbuf->obj = NULL;
  1700. }
  1701. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1702. struct intel_ringbuffer *ringbuf)
  1703. {
  1704. struct drm_i915_gem_object *obj;
  1705. obj = NULL;
  1706. if (!HAS_LLC(dev))
  1707. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1708. if (obj == NULL)
  1709. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1710. if (obj == NULL)
  1711. return -ENOMEM;
  1712. /* mark ring buffers as read-only from GPU side by default */
  1713. obj->gt_ro = 1;
  1714. ringbuf->obj = obj;
  1715. return 0;
  1716. }
  1717. struct intel_ringbuffer *
  1718. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1719. {
  1720. struct intel_ringbuffer *ring;
  1721. int ret;
  1722. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1723. if (ring == NULL)
  1724. return ERR_PTR(-ENOMEM);
  1725. ring->ring = engine;
  1726. ring->size = size;
  1727. /* Workaround an erratum on the i830 which causes a hang if
  1728. * the TAIL pointer points to within the last 2 cachelines
  1729. * of the buffer.
  1730. */
  1731. ring->effective_size = size;
  1732. if (IS_I830(engine->dev) || IS_845G(engine->dev))
  1733. ring->effective_size -= 2 * CACHELINE_BYTES;
  1734. ring->last_retired_head = -1;
  1735. intel_ring_update_space(ring);
  1736. ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
  1737. if (ret) {
  1738. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1739. engine->name, ret);
  1740. kfree(ring);
  1741. return ERR_PTR(ret);
  1742. }
  1743. return ring;
  1744. }
  1745. void
  1746. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1747. {
  1748. intel_destroy_ringbuffer_obj(ring);
  1749. kfree(ring);
  1750. }
  1751. static int intel_init_ring_buffer(struct drm_device *dev,
  1752. struct intel_engine_cs *ring)
  1753. {
  1754. struct intel_ringbuffer *ringbuf;
  1755. int ret;
  1756. WARN_ON(ring->buffer);
  1757. ring->dev = dev;
  1758. INIT_LIST_HEAD(&ring->active_list);
  1759. INIT_LIST_HEAD(&ring->request_list);
  1760. INIT_LIST_HEAD(&ring->execlist_queue);
  1761. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1762. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1763. init_waitqueue_head(&ring->irq_queue);
  1764. ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
  1765. if (IS_ERR(ringbuf))
  1766. return PTR_ERR(ringbuf);
  1767. ring->buffer = ringbuf;
  1768. if (I915_NEED_GFX_HWS(dev)) {
  1769. ret = init_status_page(ring);
  1770. if (ret)
  1771. goto error;
  1772. } else {
  1773. BUG_ON(ring->id != RCS);
  1774. ret = init_phys_status_page(ring);
  1775. if (ret)
  1776. goto error;
  1777. }
  1778. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1779. if (ret) {
  1780. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1781. ring->name, ret);
  1782. intel_destroy_ringbuffer_obj(ringbuf);
  1783. goto error;
  1784. }
  1785. ret = i915_cmd_parser_init_ring(ring);
  1786. if (ret)
  1787. goto error;
  1788. return 0;
  1789. error:
  1790. intel_ringbuffer_free(ringbuf);
  1791. ring->buffer = NULL;
  1792. return ret;
  1793. }
  1794. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1795. {
  1796. struct drm_i915_private *dev_priv;
  1797. if (!intel_ring_initialized(ring))
  1798. return;
  1799. dev_priv = to_i915(ring->dev);
  1800. intel_stop_ring_buffer(ring);
  1801. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1802. intel_unpin_ringbuffer_obj(ring->buffer);
  1803. intel_ringbuffer_free(ring->buffer);
  1804. ring->buffer = NULL;
  1805. if (ring->cleanup)
  1806. ring->cleanup(ring);
  1807. cleanup_status_page(ring);
  1808. i915_cmd_parser_fini_ring(ring);
  1809. i915_gem_batch_pool_fini(&ring->batch_pool);
  1810. }
  1811. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1812. {
  1813. struct intel_ringbuffer *ringbuf = ring->buffer;
  1814. struct drm_i915_gem_request *request;
  1815. unsigned space;
  1816. int ret;
  1817. if (intel_ring_space(ringbuf) >= n)
  1818. return 0;
  1819. /* The whole point of reserving space is to not wait! */
  1820. WARN_ON(ringbuf->reserved_in_use);
  1821. list_for_each_entry(request, &ring->request_list, list) {
  1822. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1823. ringbuf->size);
  1824. if (space >= n)
  1825. break;
  1826. }
  1827. if (WARN_ON(&request->list == &ring->request_list))
  1828. return -ENOSPC;
  1829. ret = i915_wait_request(request);
  1830. if (ret)
  1831. return ret;
  1832. ringbuf->space = space;
  1833. return 0;
  1834. }
  1835. static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
  1836. {
  1837. uint32_t __iomem *virt;
  1838. int rem = ringbuf->size - ringbuf->tail;
  1839. virt = ringbuf->virtual_start + ringbuf->tail;
  1840. rem /= 4;
  1841. while (rem--)
  1842. iowrite32(MI_NOOP, virt++);
  1843. ringbuf->tail = 0;
  1844. intel_ring_update_space(ringbuf);
  1845. }
  1846. int intel_ring_idle(struct intel_engine_cs *ring)
  1847. {
  1848. struct drm_i915_gem_request *req;
  1849. /* Wait upon the last request to be completed */
  1850. if (list_empty(&ring->request_list))
  1851. return 0;
  1852. req = list_entry(ring->request_list.prev,
  1853. struct drm_i915_gem_request,
  1854. list);
  1855. /* Make sure we do not trigger any retires */
  1856. return __i915_wait_request(req,
  1857. atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
  1858. to_i915(ring->dev)->mm.interruptible,
  1859. NULL, NULL);
  1860. }
  1861. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1862. {
  1863. request->ringbuf = request->ring->buffer;
  1864. return 0;
  1865. }
  1866. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1867. {
  1868. /*
  1869. * The first call merely notes the reserve request and is common for
  1870. * all back ends. The subsequent localised _begin() call actually
  1871. * ensures that the reservation is available. Without the begin, if
  1872. * the request creator immediately submitted the request without
  1873. * adding any commands to it then there might not actually be
  1874. * sufficient room for the submission commands.
  1875. */
  1876. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  1877. return intel_ring_begin(request, 0);
  1878. }
  1879. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1880. {
  1881. WARN_ON(ringbuf->reserved_size);
  1882. WARN_ON(ringbuf->reserved_in_use);
  1883. ringbuf->reserved_size = size;
  1884. }
  1885. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  1886. {
  1887. WARN_ON(ringbuf->reserved_in_use);
  1888. ringbuf->reserved_size = 0;
  1889. ringbuf->reserved_in_use = false;
  1890. }
  1891. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  1892. {
  1893. WARN_ON(ringbuf->reserved_in_use);
  1894. ringbuf->reserved_in_use = true;
  1895. ringbuf->reserved_tail = ringbuf->tail;
  1896. }
  1897. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  1898. {
  1899. WARN_ON(!ringbuf->reserved_in_use);
  1900. if (ringbuf->tail > ringbuf->reserved_tail) {
  1901. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  1902. "request reserved size too small: %d vs %d!\n",
  1903. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  1904. } else {
  1905. /*
  1906. * The ring was wrapped while the reserved space was in use.
  1907. * That means that some unknown amount of the ring tail was
  1908. * no-op filled and skipped. Thus simply adding the ring size
  1909. * to the tail and doing the above space check will not work.
  1910. * Rather than attempt to track how much tail was skipped,
  1911. * it is much simpler to say that also skipping the sanity
  1912. * check every once in a while is not a big issue.
  1913. */
  1914. }
  1915. ringbuf->reserved_size = 0;
  1916. ringbuf->reserved_in_use = false;
  1917. }
  1918. static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
  1919. {
  1920. struct intel_ringbuffer *ringbuf = ring->buffer;
  1921. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  1922. int remain_actual = ringbuf->size - ringbuf->tail;
  1923. int ret, total_bytes, wait_bytes = 0;
  1924. bool need_wrap = false;
  1925. if (ringbuf->reserved_in_use)
  1926. total_bytes = bytes;
  1927. else
  1928. total_bytes = bytes + ringbuf->reserved_size;
  1929. if (unlikely(bytes > remain_usable)) {
  1930. /*
  1931. * Not enough space for the basic request. So need to flush
  1932. * out the remainder and then wait for base + reserved.
  1933. */
  1934. wait_bytes = remain_actual + total_bytes;
  1935. need_wrap = true;
  1936. } else {
  1937. if (unlikely(total_bytes > remain_usable)) {
  1938. /*
  1939. * The base request will fit but the reserved space
  1940. * falls off the end. So only need to to wait for the
  1941. * reserved size after flushing out the remainder.
  1942. */
  1943. wait_bytes = remain_actual + ringbuf->reserved_size;
  1944. need_wrap = true;
  1945. } else if (total_bytes > ringbuf->space) {
  1946. /* No wrapping required, just waiting. */
  1947. wait_bytes = total_bytes;
  1948. }
  1949. }
  1950. if (wait_bytes) {
  1951. ret = ring_wait_for_space(ring, wait_bytes);
  1952. if (unlikely(ret))
  1953. return ret;
  1954. if (need_wrap)
  1955. __wrap_ring_buffer(ringbuf);
  1956. }
  1957. return 0;
  1958. }
  1959. int intel_ring_begin(struct drm_i915_gem_request *req,
  1960. int num_dwords)
  1961. {
  1962. struct intel_engine_cs *ring;
  1963. struct drm_i915_private *dev_priv;
  1964. int ret;
  1965. WARN_ON(req == NULL);
  1966. ring = req->ring;
  1967. dev_priv = ring->dev->dev_private;
  1968. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1969. dev_priv->mm.interruptible);
  1970. if (ret)
  1971. return ret;
  1972. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1973. if (ret)
  1974. return ret;
  1975. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1976. return 0;
  1977. }
  1978. /* Align the ring tail to a cacheline boundary */
  1979. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1980. {
  1981. struct intel_engine_cs *ring = req->ring;
  1982. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1983. int ret;
  1984. if (num_dwords == 0)
  1985. return 0;
  1986. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1987. ret = intel_ring_begin(req, num_dwords);
  1988. if (ret)
  1989. return ret;
  1990. while (num_dwords--)
  1991. intel_ring_emit(ring, MI_NOOP);
  1992. intel_ring_advance(ring);
  1993. return 0;
  1994. }
  1995. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1996. {
  1997. struct drm_device *dev = ring->dev;
  1998. struct drm_i915_private *dev_priv = dev->dev_private;
  1999. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  2000. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  2001. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  2002. if (HAS_VEBOX(dev))
  2003. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  2004. }
  2005. ring->set_seqno(ring, seqno);
  2006. ring->hangcheck.seqno = seqno;
  2007. }
  2008. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  2009. u32 value)
  2010. {
  2011. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2012. /* Every tail move must follow the sequence below */
  2013. /* Disable notification that the ring is IDLE. The GT
  2014. * will then assume that it is busy and bring it out of rc6.
  2015. */
  2016. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2017. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2018. /* Clear the context id. Here be magic! */
  2019. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2020. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2021. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2022. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2023. 50))
  2024. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2025. /* Now that the ring is fully powered up, update the tail */
  2026. I915_WRITE_TAIL(ring, value);
  2027. POSTING_READ(RING_TAIL(ring->mmio_base));
  2028. /* Let the ring send IDLE messages to the GT again,
  2029. * and so let it sleep to conserve power when idle.
  2030. */
  2031. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2032. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2033. }
  2034. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2035. u32 invalidate, u32 flush)
  2036. {
  2037. struct intel_engine_cs *ring = req->ring;
  2038. uint32_t cmd;
  2039. int ret;
  2040. ret = intel_ring_begin(req, 4);
  2041. if (ret)
  2042. return ret;
  2043. cmd = MI_FLUSH_DW;
  2044. if (INTEL_INFO(ring->dev)->gen >= 8)
  2045. cmd += 1;
  2046. /* We always require a command barrier so that subsequent
  2047. * commands, such as breadcrumb interrupts, are strictly ordered
  2048. * wrt the contents of the write cache being flushed to memory
  2049. * (and thus being coherent from the CPU).
  2050. */
  2051. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2052. /*
  2053. * Bspec vol 1c.5 - video engine command streamer:
  2054. * "If ENABLED, all TLBs will be invalidated once the flush
  2055. * operation is complete. This bit is only valid when the
  2056. * Post-Sync Operation field is a value of 1h or 3h."
  2057. */
  2058. if (invalidate & I915_GEM_GPU_DOMAINS)
  2059. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2060. intel_ring_emit(ring, cmd);
  2061. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2062. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2063. intel_ring_emit(ring, 0); /* upper addr */
  2064. intel_ring_emit(ring, 0); /* value */
  2065. } else {
  2066. intel_ring_emit(ring, 0);
  2067. intel_ring_emit(ring, MI_NOOP);
  2068. }
  2069. intel_ring_advance(ring);
  2070. return 0;
  2071. }
  2072. static int
  2073. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2074. u64 offset, u32 len,
  2075. unsigned dispatch_flags)
  2076. {
  2077. struct intel_engine_cs *ring = req->ring;
  2078. bool ppgtt = USES_PPGTT(ring->dev) &&
  2079. !(dispatch_flags & I915_DISPATCH_SECURE);
  2080. int ret;
  2081. ret = intel_ring_begin(req, 4);
  2082. if (ret)
  2083. return ret;
  2084. /* FIXME(BDW): Address space and security selectors. */
  2085. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2086. (dispatch_flags & I915_DISPATCH_RS ?
  2087. MI_BATCH_RESOURCE_STREAMER : 0));
  2088. intel_ring_emit(ring, lower_32_bits(offset));
  2089. intel_ring_emit(ring, upper_32_bits(offset));
  2090. intel_ring_emit(ring, MI_NOOP);
  2091. intel_ring_advance(ring);
  2092. return 0;
  2093. }
  2094. static int
  2095. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2096. u64 offset, u32 len,
  2097. unsigned dispatch_flags)
  2098. {
  2099. struct intel_engine_cs *ring = req->ring;
  2100. int ret;
  2101. ret = intel_ring_begin(req, 2);
  2102. if (ret)
  2103. return ret;
  2104. intel_ring_emit(ring,
  2105. MI_BATCH_BUFFER_START |
  2106. (dispatch_flags & I915_DISPATCH_SECURE ?
  2107. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2108. (dispatch_flags & I915_DISPATCH_RS ?
  2109. MI_BATCH_RESOURCE_STREAMER : 0));
  2110. /* bit0-7 is the length on GEN6+ */
  2111. intel_ring_emit(ring, offset);
  2112. intel_ring_advance(ring);
  2113. return 0;
  2114. }
  2115. static int
  2116. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2117. u64 offset, u32 len,
  2118. unsigned dispatch_flags)
  2119. {
  2120. struct intel_engine_cs *ring = req->ring;
  2121. int ret;
  2122. ret = intel_ring_begin(req, 2);
  2123. if (ret)
  2124. return ret;
  2125. intel_ring_emit(ring,
  2126. MI_BATCH_BUFFER_START |
  2127. (dispatch_flags & I915_DISPATCH_SECURE ?
  2128. 0 : MI_BATCH_NON_SECURE_I965));
  2129. /* bit0-7 is the length on GEN6+ */
  2130. intel_ring_emit(ring, offset);
  2131. intel_ring_advance(ring);
  2132. return 0;
  2133. }
  2134. /* Blitter support (SandyBridge+) */
  2135. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2136. u32 invalidate, u32 flush)
  2137. {
  2138. struct intel_engine_cs *ring = req->ring;
  2139. struct drm_device *dev = ring->dev;
  2140. uint32_t cmd;
  2141. int ret;
  2142. ret = intel_ring_begin(req, 4);
  2143. if (ret)
  2144. return ret;
  2145. cmd = MI_FLUSH_DW;
  2146. if (INTEL_INFO(dev)->gen >= 8)
  2147. cmd += 1;
  2148. /* We always require a command barrier so that subsequent
  2149. * commands, such as breadcrumb interrupts, are strictly ordered
  2150. * wrt the contents of the write cache being flushed to memory
  2151. * (and thus being coherent from the CPU).
  2152. */
  2153. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2154. /*
  2155. * Bspec vol 1c.3 - blitter engine command streamer:
  2156. * "If ENABLED, all TLBs will be invalidated once the flush
  2157. * operation is complete. This bit is only valid when the
  2158. * Post-Sync Operation field is a value of 1h or 3h."
  2159. */
  2160. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2161. cmd |= MI_INVALIDATE_TLB;
  2162. intel_ring_emit(ring, cmd);
  2163. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2164. if (INTEL_INFO(dev)->gen >= 8) {
  2165. intel_ring_emit(ring, 0); /* upper addr */
  2166. intel_ring_emit(ring, 0); /* value */
  2167. } else {
  2168. intel_ring_emit(ring, 0);
  2169. intel_ring_emit(ring, MI_NOOP);
  2170. }
  2171. intel_ring_advance(ring);
  2172. return 0;
  2173. }
  2174. int intel_init_render_ring_buffer(struct drm_device *dev)
  2175. {
  2176. struct drm_i915_private *dev_priv = dev->dev_private;
  2177. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2178. struct drm_i915_gem_object *obj;
  2179. int ret;
  2180. ring->name = "render ring";
  2181. ring->id = RCS;
  2182. ring->mmio_base = RENDER_RING_BASE;
  2183. if (INTEL_INFO(dev)->gen >= 8) {
  2184. if (i915_semaphore_is_enabled(dev)) {
  2185. obj = i915_gem_alloc_object(dev, 4096);
  2186. if (obj == NULL) {
  2187. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2188. i915.semaphores = 0;
  2189. } else {
  2190. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2191. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2192. if (ret != 0) {
  2193. drm_gem_object_unreference(&obj->base);
  2194. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2195. i915.semaphores = 0;
  2196. } else
  2197. dev_priv->semaphore_obj = obj;
  2198. }
  2199. }
  2200. ring->init_context = intel_rcs_ctx_init;
  2201. ring->add_request = gen6_add_request;
  2202. ring->flush = gen8_render_ring_flush;
  2203. ring->irq_get = gen8_ring_get_irq;
  2204. ring->irq_put = gen8_ring_put_irq;
  2205. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2206. ring->get_seqno = gen6_ring_get_seqno;
  2207. ring->set_seqno = ring_set_seqno;
  2208. if (i915_semaphore_is_enabled(dev)) {
  2209. WARN_ON(!dev_priv->semaphore_obj);
  2210. ring->semaphore.sync_to = gen8_ring_sync;
  2211. ring->semaphore.signal = gen8_rcs_signal;
  2212. GEN8_RING_SEMAPHORE_INIT;
  2213. }
  2214. } else if (INTEL_INFO(dev)->gen >= 6) {
  2215. ring->add_request = gen6_add_request;
  2216. ring->flush = gen7_render_ring_flush;
  2217. if (INTEL_INFO(dev)->gen == 6)
  2218. ring->flush = gen6_render_ring_flush;
  2219. ring->irq_get = gen6_ring_get_irq;
  2220. ring->irq_put = gen6_ring_put_irq;
  2221. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2222. ring->get_seqno = gen6_ring_get_seqno;
  2223. ring->set_seqno = ring_set_seqno;
  2224. if (i915_semaphore_is_enabled(dev)) {
  2225. ring->semaphore.sync_to = gen6_ring_sync;
  2226. ring->semaphore.signal = gen6_signal;
  2227. /*
  2228. * The current semaphore is only applied on pre-gen8
  2229. * platform. And there is no VCS2 ring on the pre-gen8
  2230. * platform. So the semaphore between RCS and VCS2 is
  2231. * initialized as INVALID. Gen8 will initialize the
  2232. * sema between VCS2 and RCS later.
  2233. */
  2234. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2235. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2236. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2237. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2238. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2239. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2240. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2241. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2242. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2243. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2244. }
  2245. } else if (IS_GEN5(dev)) {
  2246. ring->add_request = pc_render_add_request;
  2247. ring->flush = gen4_render_ring_flush;
  2248. ring->get_seqno = pc_render_get_seqno;
  2249. ring->set_seqno = pc_render_set_seqno;
  2250. ring->irq_get = gen5_ring_get_irq;
  2251. ring->irq_put = gen5_ring_put_irq;
  2252. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2253. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2254. } else {
  2255. ring->add_request = i9xx_add_request;
  2256. if (INTEL_INFO(dev)->gen < 4)
  2257. ring->flush = gen2_render_ring_flush;
  2258. else
  2259. ring->flush = gen4_render_ring_flush;
  2260. ring->get_seqno = ring_get_seqno;
  2261. ring->set_seqno = ring_set_seqno;
  2262. if (IS_GEN2(dev)) {
  2263. ring->irq_get = i8xx_ring_get_irq;
  2264. ring->irq_put = i8xx_ring_put_irq;
  2265. } else {
  2266. ring->irq_get = i9xx_ring_get_irq;
  2267. ring->irq_put = i9xx_ring_put_irq;
  2268. }
  2269. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2270. }
  2271. ring->write_tail = ring_write_tail;
  2272. if (IS_HASWELL(dev))
  2273. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2274. else if (IS_GEN8(dev))
  2275. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2276. else if (INTEL_INFO(dev)->gen >= 6)
  2277. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2278. else if (INTEL_INFO(dev)->gen >= 4)
  2279. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2280. else if (IS_I830(dev) || IS_845G(dev))
  2281. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2282. else
  2283. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2284. ring->init_hw = init_render_ring;
  2285. ring->cleanup = render_ring_cleanup;
  2286. /* Workaround batchbuffer to combat CS tlb bug. */
  2287. if (HAS_BROKEN_CS_TLB(dev)) {
  2288. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2289. if (obj == NULL) {
  2290. DRM_ERROR("Failed to allocate batch bo\n");
  2291. return -ENOMEM;
  2292. }
  2293. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2294. if (ret != 0) {
  2295. drm_gem_object_unreference(&obj->base);
  2296. DRM_ERROR("Failed to ping batch bo\n");
  2297. return ret;
  2298. }
  2299. ring->scratch.obj = obj;
  2300. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2301. }
  2302. ret = intel_init_ring_buffer(dev, ring);
  2303. if (ret)
  2304. return ret;
  2305. if (INTEL_INFO(dev)->gen >= 5) {
  2306. ret = intel_init_pipe_control(ring);
  2307. if (ret)
  2308. return ret;
  2309. }
  2310. return 0;
  2311. }
  2312. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2313. {
  2314. struct drm_i915_private *dev_priv = dev->dev_private;
  2315. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2316. ring->name = "bsd ring";
  2317. ring->id = VCS;
  2318. ring->write_tail = ring_write_tail;
  2319. if (INTEL_INFO(dev)->gen >= 6) {
  2320. ring->mmio_base = GEN6_BSD_RING_BASE;
  2321. /* gen6 bsd needs a special wa for tail updates */
  2322. if (IS_GEN6(dev))
  2323. ring->write_tail = gen6_bsd_ring_write_tail;
  2324. ring->flush = gen6_bsd_ring_flush;
  2325. ring->add_request = gen6_add_request;
  2326. ring->get_seqno = gen6_ring_get_seqno;
  2327. ring->set_seqno = ring_set_seqno;
  2328. if (INTEL_INFO(dev)->gen >= 8) {
  2329. ring->irq_enable_mask =
  2330. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2331. ring->irq_get = gen8_ring_get_irq;
  2332. ring->irq_put = gen8_ring_put_irq;
  2333. ring->dispatch_execbuffer =
  2334. gen8_ring_dispatch_execbuffer;
  2335. if (i915_semaphore_is_enabled(dev)) {
  2336. ring->semaphore.sync_to = gen8_ring_sync;
  2337. ring->semaphore.signal = gen8_xcs_signal;
  2338. GEN8_RING_SEMAPHORE_INIT;
  2339. }
  2340. } else {
  2341. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2342. ring->irq_get = gen6_ring_get_irq;
  2343. ring->irq_put = gen6_ring_put_irq;
  2344. ring->dispatch_execbuffer =
  2345. gen6_ring_dispatch_execbuffer;
  2346. if (i915_semaphore_is_enabled(dev)) {
  2347. ring->semaphore.sync_to = gen6_ring_sync;
  2348. ring->semaphore.signal = gen6_signal;
  2349. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2350. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2351. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2352. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2353. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2354. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2355. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2356. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2357. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2358. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2359. }
  2360. }
  2361. } else {
  2362. ring->mmio_base = BSD_RING_BASE;
  2363. ring->flush = bsd_ring_flush;
  2364. ring->add_request = i9xx_add_request;
  2365. ring->get_seqno = ring_get_seqno;
  2366. ring->set_seqno = ring_set_seqno;
  2367. if (IS_GEN5(dev)) {
  2368. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2369. ring->irq_get = gen5_ring_get_irq;
  2370. ring->irq_put = gen5_ring_put_irq;
  2371. } else {
  2372. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2373. ring->irq_get = i9xx_ring_get_irq;
  2374. ring->irq_put = i9xx_ring_put_irq;
  2375. }
  2376. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2377. }
  2378. ring->init_hw = init_ring_common;
  2379. return intel_init_ring_buffer(dev, ring);
  2380. }
  2381. /**
  2382. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2383. */
  2384. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2385. {
  2386. struct drm_i915_private *dev_priv = dev->dev_private;
  2387. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2388. ring->name = "bsd2 ring";
  2389. ring->id = VCS2;
  2390. ring->write_tail = ring_write_tail;
  2391. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2392. ring->flush = gen6_bsd_ring_flush;
  2393. ring->add_request = gen6_add_request;
  2394. ring->get_seqno = gen6_ring_get_seqno;
  2395. ring->set_seqno = ring_set_seqno;
  2396. ring->irq_enable_mask =
  2397. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2398. ring->irq_get = gen8_ring_get_irq;
  2399. ring->irq_put = gen8_ring_put_irq;
  2400. ring->dispatch_execbuffer =
  2401. gen8_ring_dispatch_execbuffer;
  2402. if (i915_semaphore_is_enabled(dev)) {
  2403. ring->semaphore.sync_to = gen8_ring_sync;
  2404. ring->semaphore.signal = gen8_xcs_signal;
  2405. GEN8_RING_SEMAPHORE_INIT;
  2406. }
  2407. ring->init_hw = init_ring_common;
  2408. return intel_init_ring_buffer(dev, ring);
  2409. }
  2410. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2411. {
  2412. struct drm_i915_private *dev_priv = dev->dev_private;
  2413. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2414. ring->name = "blitter ring";
  2415. ring->id = BCS;
  2416. ring->mmio_base = BLT_RING_BASE;
  2417. ring->write_tail = ring_write_tail;
  2418. ring->flush = gen6_ring_flush;
  2419. ring->add_request = gen6_add_request;
  2420. ring->get_seqno = gen6_ring_get_seqno;
  2421. ring->set_seqno = ring_set_seqno;
  2422. if (INTEL_INFO(dev)->gen >= 8) {
  2423. ring->irq_enable_mask =
  2424. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2425. ring->irq_get = gen8_ring_get_irq;
  2426. ring->irq_put = gen8_ring_put_irq;
  2427. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2428. if (i915_semaphore_is_enabled(dev)) {
  2429. ring->semaphore.sync_to = gen8_ring_sync;
  2430. ring->semaphore.signal = gen8_xcs_signal;
  2431. GEN8_RING_SEMAPHORE_INIT;
  2432. }
  2433. } else {
  2434. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2435. ring->irq_get = gen6_ring_get_irq;
  2436. ring->irq_put = gen6_ring_put_irq;
  2437. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2438. if (i915_semaphore_is_enabled(dev)) {
  2439. ring->semaphore.signal = gen6_signal;
  2440. ring->semaphore.sync_to = gen6_ring_sync;
  2441. /*
  2442. * The current semaphore is only applied on pre-gen8
  2443. * platform. And there is no VCS2 ring on the pre-gen8
  2444. * platform. So the semaphore between BCS and VCS2 is
  2445. * initialized as INVALID. Gen8 will initialize the
  2446. * sema between BCS and VCS2 later.
  2447. */
  2448. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2449. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2450. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2451. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2452. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2453. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2454. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2455. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2456. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2457. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2458. }
  2459. }
  2460. ring->init_hw = init_ring_common;
  2461. return intel_init_ring_buffer(dev, ring);
  2462. }
  2463. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2464. {
  2465. struct drm_i915_private *dev_priv = dev->dev_private;
  2466. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2467. ring->name = "video enhancement ring";
  2468. ring->id = VECS;
  2469. ring->mmio_base = VEBOX_RING_BASE;
  2470. ring->write_tail = ring_write_tail;
  2471. ring->flush = gen6_ring_flush;
  2472. ring->add_request = gen6_add_request;
  2473. ring->get_seqno = gen6_ring_get_seqno;
  2474. ring->set_seqno = ring_set_seqno;
  2475. if (INTEL_INFO(dev)->gen >= 8) {
  2476. ring->irq_enable_mask =
  2477. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2478. ring->irq_get = gen8_ring_get_irq;
  2479. ring->irq_put = gen8_ring_put_irq;
  2480. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2481. if (i915_semaphore_is_enabled(dev)) {
  2482. ring->semaphore.sync_to = gen8_ring_sync;
  2483. ring->semaphore.signal = gen8_xcs_signal;
  2484. GEN8_RING_SEMAPHORE_INIT;
  2485. }
  2486. } else {
  2487. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2488. ring->irq_get = hsw_vebox_get_irq;
  2489. ring->irq_put = hsw_vebox_put_irq;
  2490. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2491. if (i915_semaphore_is_enabled(dev)) {
  2492. ring->semaphore.sync_to = gen6_ring_sync;
  2493. ring->semaphore.signal = gen6_signal;
  2494. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2495. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2496. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2497. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2498. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2499. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2500. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2501. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2502. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2503. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2504. }
  2505. }
  2506. ring->init_hw = init_ring_common;
  2507. return intel_init_ring_buffer(dev, ring);
  2508. }
  2509. int
  2510. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2511. {
  2512. struct intel_engine_cs *ring = req->ring;
  2513. int ret;
  2514. if (!ring->gpu_caches_dirty)
  2515. return 0;
  2516. ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2517. if (ret)
  2518. return ret;
  2519. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2520. ring->gpu_caches_dirty = false;
  2521. return 0;
  2522. }
  2523. int
  2524. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2525. {
  2526. struct intel_engine_cs *ring = req->ring;
  2527. uint32_t flush_domains;
  2528. int ret;
  2529. flush_domains = 0;
  2530. if (ring->gpu_caches_dirty)
  2531. flush_domains = I915_GEM_GPU_DOMAINS;
  2532. ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2533. if (ret)
  2534. return ret;
  2535. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2536. ring->gpu_caches_dirty = false;
  2537. return 0;
  2538. }
  2539. void
  2540. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2541. {
  2542. int ret;
  2543. if (!intel_ring_initialized(ring))
  2544. return;
  2545. ret = intel_ring_idle(ring);
  2546. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2547. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2548. ring->name, ret);
  2549. stop_ring(ring);
  2550. }