tcp_input.c 180 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * INET An implementation of the TCP/IP protocol suite for the LINUX
  4. * operating system. INET is implemented using the BSD Socket
  5. * interface as the means of communication with the user level.
  6. *
  7. * Implementation of the Transmission Control Protocol(TCP).
  8. *
  9. * Authors: Ross Biro
  10. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  12. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  13. * Florian La Roche, <flla@stud.uni-sb.de>
  14. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  16. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  17. * Matthew Dillon, <dillon@apollo.west.oic.com>
  18. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19. * Jorge Cwik, <jorge@laser.satlink.net>
  20. */
  21. /*
  22. * Changes:
  23. * Pedro Roque : Fast Retransmit/Recovery.
  24. * Two receive queues.
  25. * Retransmit queue handled by TCP.
  26. * Better retransmit timer handling.
  27. * New congestion avoidance.
  28. * Header prediction.
  29. * Variable renaming.
  30. *
  31. * Eric : Fast Retransmit.
  32. * Randy Scott : MSS option defines.
  33. * Eric Schenk : Fixes to slow start algorithm.
  34. * Eric Schenk : Yet another double ACK bug.
  35. * Eric Schenk : Delayed ACK bug fixes.
  36. * Eric Schenk : Floyd style fast retrans war avoidance.
  37. * David S. Miller : Don't allow zero congestion window.
  38. * Eric Schenk : Fix retransmitter so that it sends
  39. * next packet on ack of previous packet.
  40. * Andi Kleen : Moved open_request checking here
  41. * and process RSTs for open_requests.
  42. * Andi Kleen : Better prune_queue, and other fixes.
  43. * Andrey Savochkin: Fix RTT measurements in the presence of
  44. * timestamps.
  45. * Andrey Savochkin: Check sequence numbers correctly when
  46. * removing SACKs due to in sequence incoming
  47. * data segments.
  48. * Andi Kleen: Make sure we never ack data there is not
  49. * enough room for. Also make this condition
  50. * a fatal error if it might still happen.
  51. * Andi Kleen: Add tcp_measure_rcv_mss to make
  52. * connections with MSS<min(MTU,ann. MSS)
  53. * work without delayed acks.
  54. * Andi Kleen: Process packets with PSH set in the
  55. * fast path.
  56. * J Hadi Salim: ECN support
  57. * Andrei Gurtov,
  58. * Pasi Sarolahti,
  59. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  60. * engine. Lots of bugs are found.
  61. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  62. */
  63. #define pr_fmt(fmt) "TCP: " fmt
  64. #include <linux/mm.h>
  65. #include <linux/slab.h>
  66. #include <linux/module.h>
  67. #include <linux/sysctl.h>
  68. #include <linux/kernel.h>
  69. #include <linux/prefetch.h>
  70. #include <net/dst.h>
  71. #include <net/tcp.h>
  72. #include <net/inet_common.h>
  73. #include <linux/ipsec.h>
  74. #include <asm/unaligned.h>
  75. #include <linux/errqueue.h>
  76. #include <trace/events/tcp.h>
  77. #include <linux/static_key.h>
  78. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  79. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  80. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  81. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  82. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  83. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  84. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  85. #define FLAG_ECE 0x40 /* ECE in this ACK */
  86. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  87. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  88. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  89. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  90. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  91. #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
  92. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  93. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  94. #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
  95. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  96. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  97. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
  98. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  99. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  100. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  101. #define REXMIT_NONE 0 /* no loss recovery to do */
  102. #define REXMIT_LOST 1 /* retransmit packets marked lost */
  103. #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
  104. static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
  105. unsigned int len)
  106. {
  107. static bool __once __read_mostly;
  108. if (!__once) {
  109. struct net_device *dev;
  110. __once = true;
  111. rcu_read_lock();
  112. dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
  113. if (!dev || len >= dev->mtu)
  114. pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
  115. dev ? dev->name : "Unknown driver");
  116. rcu_read_unlock();
  117. }
  118. }
  119. /* Adapt the MSS value used to make delayed ack decision to the
  120. * real world.
  121. */
  122. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  123. {
  124. struct inet_connection_sock *icsk = inet_csk(sk);
  125. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  126. unsigned int len;
  127. icsk->icsk_ack.last_seg_size = 0;
  128. /* skb->len may jitter because of SACKs, even if peer
  129. * sends good full-sized frames.
  130. */
  131. len = skb_shinfo(skb)->gso_size ? : skb->len;
  132. if (len >= icsk->icsk_ack.rcv_mss) {
  133. icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
  134. tcp_sk(sk)->advmss);
  135. /* Account for possibly-removed options */
  136. if (unlikely(len > icsk->icsk_ack.rcv_mss +
  137. MAX_TCP_OPTION_SPACE))
  138. tcp_gro_dev_warn(sk, skb, len);
  139. } else {
  140. /* Otherwise, we make more careful check taking into account,
  141. * that SACKs block is variable.
  142. *
  143. * "len" is invariant segment length, including TCP header.
  144. */
  145. len += skb->data - skb_transport_header(skb);
  146. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  147. /* If PSH is not set, packet should be
  148. * full sized, provided peer TCP is not badly broken.
  149. * This observation (if it is correct 8)) allows
  150. * to handle super-low mtu links fairly.
  151. */
  152. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  153. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  154. /* Subtract also invariant (if peer is RFC compliant),
  155. * tcp header plus fixed timestamp option length.
  156. * Resulting "len" is MSS free of SACK jitter.
  157. */
  158. len -= tcp_sk(sk)->tcp_header_len;
  159. icsk->icsk_ack.last_seg_size = len;
  160. if (len == lss) {
  161. icsk->icsk_ack.rcv_mss = len;
  162. return;
  163. }
  164. }
  165. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  166. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  167. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  168. }
  169. }
  170. static void tcp_incr_quickack(struct sock *sk)
  171. {
  172. struct inet_connection_sock *icsk = inet_csk(sk);
  173. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  174. if (quickacks == 0)
  175. quickacks = 2;
  176. if (quickacks > icsk->icsk_ack.quick)
  177. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  178. }
  179. static void tcp_enter_quickack_mode(struct sock *sk)
  180. {
  181. struct inet_connection_sock *icsk = inet_csk(sk);
  182. tcp_incr_quickack(sk);
  183. icsk->icsk_ack.pingpong = 0;
  184. icsk->icsk_ack.ato = TCP_ATO_MIN;
  185. }
  186. /* Send ACKs quickly, if "quick" count is not exhausted
  187. * and the session is not interactive.
  188. */
  189. static bool tcp_in_quickack_mode(struct sock *sk)
  190. {
  191. const struct inet_connection_sock *icsk = inet_csk(sk);
  192. const struct dst_entry *dst = __sk_dst_get(sk);
  193. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  194. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  195. }
  196. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  197. {
  198. if (tp->ecn_flags & TCP_ECN_OK)
  199. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  200. }
  201. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  202. {
  203. if (tcp_hdr(skb)->cwr)
  204. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  205. }
  206. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  207. {
  208. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  209. }
  210. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  211. {
  212. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  213. case INET_ECN_NOT_ECT:
  214. /* Funny extension: if ECT is not set on a segment,
  215. * and we already seen ECT on a previous segment,
  216. * it is probably a retransmit.
  217. */
  218. if (tp->ecn_flags & TCP_ECN_SEEN)
  219. tcp_enter_quickack_mode((struct sock *)tp);
  220. break;
  221. case INET_ECN_CE:
  222. if (tcp_ca_needs_ecn((struct sock *)tp))
  223. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  224. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  225. /* Better not delay acks, sender can have a very low cwnd */
  226. tcp_enter_quickack_mode((struct sock *)tp);
  227. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  228. }
  229. tp->ecn_flags |= TCP_ECN_SEEN;
  230. break;
  231. default:
  232. if (tcp_ca_needs_ecn((struct sock *)tp))
  233. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  234. tp->ecn_flags |= TCP_ECN_SEEN;
  235. break;
  236. }
  237. }
  238. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  239. {
  240. if (tp->ecn_flags & TCP_ECN_OK)
  241. __tcp_ecn_check_ce(tp, skb);
  242. }
  243. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  244. {
  245. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  246. tp->ecn_flags &= ~TCP_ECN_OK;
  247. }
  248. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  249. {
  250. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  251. tp->ecn_flags &= ~TCP_ECN_OK;
  252. }
  253. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  254. {
  255. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  256. return true;
  257. return false;
  258. }
  259. /* Buffer size and advertised window tuning.
  260. *
  261. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  262. */
  263. static void tcp_sndbuf_expand(struct sock *sk)
  264. {
  265. const struct tcp_sock *tp = tcp_sk(sk);
  266. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  267. int sndmem, per_mss;
  268. u32 nr_segs;
  269. /* Worst case is non GSO/TSO : each frame consumes one skb
  270. * and skb->head is kmalloced using power of two area of memory
  271. */
  272. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  273. MAX_TCP_HEADER +
  274. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  275. per_mss = roundup_pow_of_two(per_mss) +
  276. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  277. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  278. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  279. /* Fast Recovery (RFC 5681 3.2) :
  280. * Cubic needs 1.7 factor, rounded to 2 to include
  281. * extra cushion (application might react slowly to POLLOUT)
  282. */
  283. sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
  284. sndmem *= nr_segs * per_mss;
  285. if (sk->sk_sndbuf < sndmem)
  286. sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
  287. }
  288. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  289. *
  290. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  291. * forward and advertised in receiver window (tp->rcv_wnd) and
  292. * "application buffer", required to isolate scheduling/application
  293. * latencies from network.
  294. * window_clamp is maximal advertised window. It can be less than
  295. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  296. * is reserved for "application" buffer. The less window_clamp is
  297. * the smoother our behaviour from viewpoint of network, but the lower
  298. * throughput and the higher sensitivity of the connection to losses. 8)
  299. *
  300. * rcv_ssthresh is more strict window_clamp used at "slow start"
  301. * phase to predict further behaviour of this connection.
  302. * It is used for two goals:
  303. * - to enforce header prediction at sender, even when application
  304. * requires some significant "application buffer". It is check #1.
  305. * - to prevent pruning of receive queue because of misprediction
  306. * of receiver window. Check #2.
  307. *
  308. * The scheme does not work when sender sends good segments opening
  309. * window and then starts to feed us spaghetti. But it should work
  310. * in common situations. Otherwise, we have to rely on queue collapsing.
  311. */
  312. /* Slow part of check#2. */
  313. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  314. {
  315. struct tcp_sock *tp = tcp_sk(sk);
  316. /* Optimize this! */
  317. int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
  318. int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
  319. while (tp->rcv_ssthresh <= window) {
  320. if (truesize <= skb->len)
  321. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  322. truesize >>= 1;
  323. window >>= 1;
  324. }
  325. return 0;
  326. }
  327. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  328. {
  329. struct tcp_sock *tp = tcp_sk(sk);
  330. /* Check #1 */
  331. if (tp->rcv_ssthresh < tp->window_clamp &&
  332. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  333. !tcp_under_memory_pressure(sk)) {
  334. int incr;
  335. /* Check #2. Increase window, if skb with such overhead
  336. * will fit to rcvbuf in future.
  337. */
  338. if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
  339. incr = 2 * tp->advmss;
  340. else
  341. incr = __tcp_grow_window(sk, skb);
  342. if (incr) {
  343. incr = max_t(int, incr, 2 * skb->len);
  344. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  345. tp->window_clamp);
  346. inet_csk(sk)->icsk_ack.quick |= 1;
  347. }
  348. }
  349. }
  350. /* 3. Tuning rcvbuf, when connection enters established state. */
  351. static void tcp_fixup_rcvbuf(struct sock *sk)
  352. {
  353. u32 mss = tcp_sk(sk)->advmss;
  354. int rcvmem;
  355. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  356. tcp_default_init_rwnd(mss);
  357. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  358. * Allow enough cushion so that sender is not limited by our window
  359. */
  360. if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
  361. rcvmem <<= 2;
  362. if (sk->sk_rcvbuf < rcvmem)
  363. sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
  364. }
  365. /* 4. Try to fixup all. It is made immediately after connection enters
  366. * established state.
  367. */
  368. void tcp_init_buffer_space(struct sock *sk)
  369. {
  370. int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
  371. struct tcp_sock *tp = tcp_sk(sk);
  372. int maxwin;
  373. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  374. tcp_fixup_rcvbuf(sk);
  375. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  376. tcp_sndbuf_expand(sk);
  377. tp->rcvq_space.space = tp->rcv_wnd;
  378. tcp_mstamp_refresh(tp);
  379. tp->rcvq_space.time = tp->tcp_mstamp;
  380. tp->rcvq_space.seq = tp->copied_seq;
  381. maxwin = tcp_full_space(sk);
  382. if (tp->window_clamp >= maxwin) {
  383. tp->window_clamp = maxwin;
  384. if (tcp_app_win && maxwin > 4 * tp->advmss)
  385. tp->window_clamp = max(maxwin -
  386. (maxwin >> tcp_app_win),
  387. 4 * tp->advmss);
  388. }
  389. /* Force reservation of one segment. */
  390. if (tcp_app_win &&
  391. tp->window_clamp > 2 * tp->advmss &&
  392. tp->window_clamp + tp->advmss > maxwin)
  393. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  394. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  395. tp->snd_cwnd_stamp = tcp_jiffies32;
  396. }
  397. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  398. static void tcp_clamp_window(struct sock *sk)
  399. {
  400. struct tcp_sock *tp = tcp_sk(sk);
  401. struct inet_connection_sock *icsk = inet_csk(sk);
  402. struct net *net = sock_net(sk);
  403. icsk->icsk_ack.quick = 0;
  404. if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
  405. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  406. !tcp_under_memory_pressure(sk) &&
  407. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  408. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  409. net->ipv4.sysctl_tcp_rmem[2]);
  410. }
  411. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  412. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  413. }
  414. /* Initialize RCV_MSS value.
  415. * RCV_MSS is an our guess about MSS used by the peer.
  416. * We haven't any direct information about the MSS.
  417. * It's better to underestimate the RCV_MSS rather than overestimate.
  418. * Overestimations make us ACKing less frequently than needed.
  419. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  420. */
  421. void tcp_initialize_rcv_mss(struct sock *sk)
  422. {
  423. const struct tcp_sock *tp = tcp_sk(sk);
  424. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  425. hint = min(hint, tp->rcv_wnd / 2);
  426. hint = min(hint, TCP_MSS_DEFAULT);
  427. hint = max(hint, TCP_MIN_MSS);
  428. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  429. }
  430. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  431. /* Receiver "autotuning" code.
  432. *
  433. * The algorithm for RTT estimation w/o timestamps is based on
  434. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  435. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  436. *
  437. * More detail on this code can be found at
  438. * <http://staff.psc.edu/jheffner/>,
  439. * though this reference is out of date. A new paper
  440. * is pending.
  441. */
  442. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  443. {
  444. u32 new_sample = tp->rcv_rtt_est.rtt_us;
  445. long m = sample;
  446. if (m == 0)
  447. m = 1;
  448. if (new_sample != 0) {
  449. /* If we sample in larger samples in the non-timestamp
  450. * case, we could grossly overestimate the RTT especially
  451. * with chatty applications or bulk transfer apps which
  452. * are stalled on filesystem I/O.
  453. *
  454. * Also, since we are only going for a minimum in the
  455. * non-timestamp case, we do not smooth things out
  456. * else with timestamps disabled convergence takes too
  457. * long.
  458. */
  459. if (!win_dep) {
  460. m -= (new_sample >> 3);
  461. new_sample += m;
  462. } else {
  463. m <<= 3;
  464. if (m < new_sample)
  465. new_sample = m;
  466. }
  467. } else {
  468. /* No previous measure. */
  469. new_sample = m << 3;
  470. }
  471. tp->rcv_rtt_est.rtt_us = new_sample;
  472. }
  473. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  474. {
  475. u32 delta_us;
  476. if (tp->rcv_rtt_est.time == 0)
  477. goto new_measure;
  478. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  479. return;
  480. delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
  481. tcp_rcv_rtt_update(tp, delta_us, 1);
  482. new_measure:
  483. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  484. tp->rcv_rtt_est.time = tp->tcp_mstamp;
  485. }
  486. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  487. const struct sk_buff *skb)
  488. {
  489. struct tcp_sock *tp = tcp_sk(sk);
  490. if (tp->rx_opt.rcv_tsecr &&
  491. (TCP_SKB_CB(skb)->end_seq -
  492. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
  493. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  494. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  495. tcp_rcv_rtt_update(tp, delta_us, 0);
  496. }
  497. }
  498. /*
  499. * This function should be called every time data is copied to user space.
  500. * It calculates the appropriate TCP receive buffer space.
  501. */
  502. void tcp_rcv_space_adjust(struct sock *sk)
  503. {
  504. struct tcp_sock *tp = tcp_sk(sk);
  505. int time;
  506. int copied;
  507. time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
  508. if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
  509. return;
  510. /* Number of bytes copied to user in last RTT */
  511. copied = tp->copied_seq - tp->rcvq_space.seq;
  512. if (copied <= tp->rcvq_space.space)
  513. goto new_measure;
  514. /* A bit of theory :
  515. * copied = bytes received in previous RTT, our base window
  516. * To cope with packet losses, we need a 2x factor
  517. * To cope with slow start, and sender growing its cwin by 100 %
  518. * every RTT, we need a 4x factor, because the ACK we are sending
  519. * now is for the next RTT, not the current one :
  520. * <prev RTT . ><current RTT .. ><next RTT .... >
  521. */
  522. if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
  523. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  524. int rcvwin, rcvmem, rcvbuf;
  525. /* minimal window to cope with packet losses, assuming
  526. * steady state. Add some cushion because of small variations.
  527. */
  528. rcvwin = (copied << 1) + 16 * tp->advmss;
  529. /* If rate increased by 25%,
  530. * assume slow start, rcvwin = 3 * copied
  531. * If rate increased by 50%,
  532. * assume sender can use 2x growth, rcvwin = 4 * copied
  533. */
  534. if (copied >=
  535. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  536. if (copied >=
  537. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  538. rcvwin <<= 1;
  539. else
  540. rcvwin += (rcvwin >> 1);
  541. }
  542. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  543. while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
  544. rcvmem += 128;
  545. rcvbuf = min(rcvwin / tp->advmss * rcvmem,
  546. sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
  547. if (rcvbuf > sk->sk_rcvbuf) {
  548. sk->sk_rcvbuf = rcvbuf;
  549. /* Make the window clamp follow along. */
  550. tp->window_clamp = rcvwin;
  551. }
  552. }
  553. tp->rcvq_space.space = copied;
  554. new_measure:
  555. tp->rcvq_space.seq = tp->copied_seq;
  556. tp->rcvq_space.time = tp->tcp_mstamp;
  557. }
  558. /* There is something which you must keep in mind when you analyze the
  559. * behavior of the tp->ato delayed ack timeout interval. When a
  560. * connection starts up, we want to ack as quickly as possible. The
  561. * problem is that "good" TCP's do slow start at the beginning of data
  562. * transmission. The means that until we send the first few ACK's the
  563. * sender will sit on his end and only queue most of his data, because
  564. * he can only send snd_cwnd unacked packets at any given time. For
  565. * each ACK we send, he increments snd_cwnd and transmits more of his
  566. * queue. -DaveM
  567. */
  568. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  569. {
  570. struct tcp_sock *tp = tcp_sk(sk);
  571. struct inet_connection_sock *icsk = inet_csk(sk);
  572. u32 now;
  573. inet_csk_schedule_ack(sk);
  574. tcp_measure_rcv_mss(sk, skb);
  575. tcp_rcv_rtt_measure(tp);
  576. now = tcp_jiffies32;
  577. if (!icsk->icsk_ack.ato) {
  578. /* The _first_ data packet received, initialize
  579. * delayed ACK engine.
  580. */
  581. tcp_incr_quickack(sk);
  582. icsk->icsk_ack.ato = TCP_ATO_MIN;
  583. } else {
  584. int m = now - icsk->icsk_ack.lrcvtime;
  585. if (m <= TCP_ATO_MIN / 2) {
  586. /* The fastest case is the first. */
  587. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  588. } else if (m < icsk->icsk_ack.ato) {
  589. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  590. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  591. icsk->icsk_ack.ato = icsk->icsk_rto;
  592. } else if (m > icsk->icsk_rto) {
  593. /* Too long gap. Apparently sender failed to
  594. * restart window, so that we send ACKs quickly.
  595. */
  596. tcp_incr_quickack(sk);
  597. sk_mem_reclaim(sk);
  598. }
  599. }
  600. icsk->icsk_ack.lrcvtime = now;
  601. tcp_ecn_check_ce(tp, skb);
  602. if (skb->len >= 128)
  603. tcp_grow_window(sk, skb);
  604. }
  605. /* Called to compute a smoothed rtt estimate. The data fed to this
  606. * routine either comes from timestamps, or from segments that were
  607. * known _not_ to have been retransmitted [see Karn/Partridge
  608. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  609. * piece by Van Jacobson.
  610. * NOTE: the next three routines used to be one big routine.
  611. * To save cycles in the RFC 1323 implementation it was better to break
  612. * it up into three procedures. -- erics
  613. */
  614. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  615. {
  616. struct tcp_sock *tp = tcp_sk(sk);
  617. long m = mrtt_us; /* RTT */
  618. u32 srtt = tp->srtt_us;
  619. /* The following amusing code comes from Jacobson's
  620. * article in SIGCOMM '88. Note that rtt and mdev
  621. * are scaled versions of rtt and mean deviation.
  622. * This is designed to be as fast as possible
  623. * m stands for "measurement".
  624. *
  625. * On a 1990 paper the rto value is changed to:
  626. * RTO = rtt + 4 * mdev
  627. *
  628. * Funny. This algorithm seems to be very broken.
  629. * These formulae increase RTO, when it should be decreased, increase
  630. * too slowly, when it should be increased quickly, decrease too quickly
  631. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  632. * does not matter how to _calculate_ it. Seems, it was trap
  633. * that VJ failed to avoid. 8)
  634. */
  635. if (srtt != 0) {
  636. m -= (srtt >> 3); /* m is now error in rtt est */
  637. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  638. if (m < 0) {
  639. m = -m; /* m is now abs(error) */
  640. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  641. /* This is similar to one of Eifel findings.
  642. * Eifel blocks mdev updates when rtt decreases.
  643. * This solution is a bit different: we use finer gain
  644. * for mdev in this case (alpha*beta).
  645. * Like Eifel it also prevents growth of rto,
  646. * but also it limits too fast rto decreases,
  647. * happening in pure Eifel.
  648. */
  649. if (m > 0)
  650. m >>= 3;
  651. } else {
  652. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  653. }
  654. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  655. if (tp->mdev_us > tp->mdev_max_us) {
  656. tp->mdev_max_us = tp->mdev_us;
  657. if (tp->mdev_max_us > tp->rttvar_us)
  658. tp->rttvar_us = tp->mdev_max_us;
  659. }
  660. if (after(tp->snd_una, tp->rtt_seq)) {
  661. if (tp->mdev_max_us < tp->rttvar_us)
  662. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  663. tp->rtt_seq = tp->snd_nxt;
  664. tp->mdev_max_us = tcp_rto_min_us(sk);
  665. }
  666. } else {
  667. /* no previous measure. */
  668. srtt = m << 3; /* take the measured time to be rtt */
  669. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  670. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  671. tp->mdev_max_us = tp->rttvar_us;
  672. tp->rtt_seq = tp->snd_nxt;
  673. }
  674. tp->srtt_us = max(1U, srtt);
  675. }
  676. static void tcp_update_pacing_rate(struct sock *sk)
  677. {
  678. const struct tcp_sock *tp = tcp_sk(sk);
  679. u64 rate;
  680. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  681. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  682. /* current rate is (cwnd * mss) / srtt
  683. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  684. * In Congestion Avoidance phase, set it to 120 % the current rate.
  685. *
  686. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  687. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  688. * end of slow start and should slow down.
  689. */
  690. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  691. rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
  692. else
  693. rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
  694. rate *= max(tp->snd_cwnd, tp->packets_out);
  695. if (likely(tp->srtt_us))
  696. do_div(rate, tp->srtt_us);
  697. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  698. * without any lock. We want to make sure compiler wont store
  699. * intermediate values in this location.
  700. */
  701. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  702. sk->sk_max_pacing_rate);
  703. }
  704. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  705. * routine referred to above.
  706. */
  707. static void tcp_set_rto(struct sock *sk)
  708. {
  709. const struct tcp_sock *tp = tcp_sk(sk);
  710. /* Old crap is replaced with new one. 8)
  711. *
  712. * More seriously:
  713. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  714. * It cannot be less due to utterly erratic ACK generation made
  715. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  716. * to do with delayed acks, because at cwnd>2 true delack timeout
  717. * is invisible. Actually, Linux-2.4 also generates erratic
  718. * ACKs in some circumstances.
  719. */
  720. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  721. /* 2. Fixups made earlier cannot be right.
  722. * If we do not estimate RTO correctly without them,
  723. * all the algo is pure shit and should be replaced
  724. * with correct one. It is exactly, which we pretend to do.
  725. */
  726. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  727. * guarantees that rto is higher.
  728. */
  729. tcp_bound_rto(sk);
  730. }
  731. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  732. {
  733. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  734. if (!cwnd)
  735. cwnd = TCP_INIT_CWND;
  736. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  737. }
  738. /* Take a notice that peer is sending D-SACKs */
  739. static void tcp_dsack_seen(struct tcp_sock *tp)
  740. {
  741. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  742. tp->rack.dsack_seen = 1;
  743. }
  744. static void tcp_update_reordering(struct sock *sk, const int metric,
  745. const int ts)
  746. {
  747. struct tcp_sock *tp = tcp_sk(sk);
  748. int mib_idx;
  749. if (WARN_ON_ONCE(metric < 0))
  750. return;
  751. if (metric > tp->reordering) {
  752. tp->reordering = min(sock_net(sk)->ipv4.sysctl_tcp_max_reordering, metric);
  753. #if FASTRETRANS_DEBUG > 1
  754. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  755. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  756. tp->reordering,
  757. tp->fackets_out,
  758. tp->sacked_out,
  759. tp->undo_marker ? tp->undo_retrans : 0);
  760. #endif
  761. }
  762. tp->rack.reord = 1;
  763. /* This exciting event is worth to be remembered. 8) */
  764. if (ts)
  765. mib_idx = LINUX_MIB_TCPTSREORDER;
  766. else if (tcp_is_reno(tp))
  767. mib_idx = LINUX_MIB_TCPRENOREORDER;
  768. else
  769. mib_idx = LINUX_MIB_TCPSACKREORDER;
  770. NET_INC_STATS(sock_net(sk), mib_idx);
  771. }
  772. /* This must be called before lost_out is incremented */
  773. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  774. {
  775. if (!tp->retransmit_skb_hint ||
  776. before(TCP_SKB_CB(skb)->seq,
  777. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  778. tp->retransmit_skb_hint = skb;
  779. }
  780. /* Sum the number of packets on the wire we have marked as lost.
  781. * There are two cases we care about here:
  782. * a) Packet hasn't been marked lost (nor retransmitted),
  783. * and this is the first loss.
  784. * b) Packet has been marked both lost and retransmitted,
  785. * and this means we think it was lost again.
  786. */
  787. static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
  788. {
  789. __u8 sacked = TCP_SKB_CB(skb)->sacked;
  790. if (!(sacked & TCPCB_LOST) ||
  791. ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
  792. tp->lost += tcp_skb_pcount(skb);
  793. }
  794. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  795. {
  796. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  797. tcp_verify_retransmit_hint(tp, skb);
  798. tp->lost_out += tcp_skb_pcount(skb);
  799. tcp_sum_lost(tp, skb);
  800. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  801. }
  802. }
  803. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  804. {
  805. tcp_verify_retransmit_hint(tp, skb);
  806. tcp_sum_lost(tp, skb);
  807. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  808. tp->lost_out += tcp_skb_pcount(skb);
  809. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  810. }
  811. }
  812. /* This procedure tags the retransmission queue when SACKs arrive.
  813. *
  814. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  815. * Packets in queue with these bits set are counted in variables
  816. * sacked_out, retrans_out and lost_out, correspondingly.
  817. *
  818. * Valid combinations are:
  819. * Tag InFlight Description
  820. * 0 1 - orig segment is in flight.
  821. * S 0 - nothing flies, orig reached receiver.
  822. * L 0 - nothing flies, orig lost by net.
  823. * R 2 - both orig and retransmit are in flight.
  824. * L|R 1 - orig is lost, retransmit is in flight.
  825. * S|R 1 - orig reached receiver, retrans is still in flight.
  826. * (L|S|R is logically valid, it could occur when L|R is sacked,
  827. * but it is equivalent to plain S and code short-curcuits it to S.
  828. * L|S is logically invalid, it would mean -1 packet in flight 8))
  829. *
  830. * These 6 states form finite state machine, controlled by the following events:
  831. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  832. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  833. * 3. Loss detection event of two flavors:
  834. * A. Scoreboard estimator decided the packet is lost.
  835. * A'. Reno "three dupacks" marks head of queue lost.
  836. * B. SACK arrives sacking SND.NXT at the moment, when the
  837. * segment was retransmitted.
  838. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  839. *
  840. * It is pleasant to note, that state diagram turns out to be commutative,
  841. * so that we are allowed not to be bothered by order of our actions,
  842. * when multiple events arrive simultaneously. (see the function below).
  843. *
  844. * Reordering detection.
  845. * --------------------
  846. * Reordering metric is maximal distance, which a packet can be displaced
  847. * in packet stream. With SACKs we can estimate it:
  848. *
  849. * 1. SACK fills old hole and the corresponding segment was not
  850. * ever retransmitted -> reordering. Alas, we cannot use it
  851. * when segment was retransmitted.
  852. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  853. * for retransmitted and already SACKed segment -> reordering..
  854. * Both of these heuristics are not used in Loss state, when we cannot
  855. * account for retransmits accurately.
  856. *
  857. * SACK block validation.
  858. * ----------------------
  859. *
  860. * SACK block range validation checks that the received SACK block fits to
  861. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  862. * Note that SND.UNA is not included to the range though being valid because
  863. * it means that the receiver is rather inconsistent with itself reporting
  864. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  865. * perfectly valid, however, in light of RFC2018 which explicitly states
  866. * that "SACK block MUST reflect the newest segment. Even if the newest
  867. * segment is going to be discarded ...", not that it looks very clever
  868. * in case of head skb. Due to potentional receiver driven attacks, we
  869. * choose to avoid immediate execution of a walk in write queue due to
  870. * reneging and defer head skb's loss recovery to standard loss recovery
  871. * procedure that will eventually trigger (nothing forbids us doing this).
  872. *
  873. * Implements also blockage to start_seq wrap-around. Problem lies in the
  874. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  875. * there's no guarantee that it will be before snd_nxt (n). The problem
  876. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  877. * wrap (s_w):
  878. *
  879. * <- outs wnd -> <- wrapzone ->
  880. * u e n u_w e_w s n_w
  881. * | | | | | | |
  882. * |<------------+------+----- TCP seqno space --------------+---------->|
  883. * ...-- <2^31 ->| |<--------...
  884. * ...---- >2^31 ------>| |<--------...
  885. *
  886. * Current code wouldn't be vulnerable but it's better still to discard such
  887. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  888. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  889. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  890. * equal to the ideal case (infinite seqno space without wrap caused issues).
  891. *
  892. * With D-SACK the lower bound is extended to cover sequence space below
  893. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  894. * again, D-SACK block must not to go across snd_una (for the same reason as
  895. * for the normal SACK blocks, explained above). But there all simplicity
  896. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  897. * fully below undo_marker they do not affect behavior in anyway and can
  898. * therefore be safely ignored. In rare cases (which are more or less
  899. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  900. * fragmentation and packet reordering past skb's retransmission. To consider
  901. * them correctly, the acceptable range must be extended even more though
  902. * the exact amount is rather hard to quantify. However, tp->max_window can
  903. * be used as an exaggerated estimate.
  904. */
  905. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  906. u32 start_seq, u32 end_seq)
  907. {
  908. /* Too far in future, or reversed (interpretation is ambiguous) */
  909. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  910. return false;
  911. /* Nasty start_seq wrap-around check (see comments above) */
  912. if (!before(start_seq, tp->snd_nxt))
  913. return false;
  914. /* In outstanding window? ...This is valid exit for D-SACKs too.
  915. * start_seq == snd_una is non-sensical (see comments above)
  916. */
  917. if (after(start_seq, tp->snd_una))
  918. return true;
  919. if (!is_dsack || !tp->undo_marker)
  920. return false;
  921. /* ...Then it's D-SACK, and must reside below snd_una completely */
  922. if (after(end_seq, tp->snd_una))
  923. return false;
  924. if (!before(start_seq, tp->undo_marker))
  925. return true;
  926. /* Too old */
  927. if (!after(end_seq, tp->undo_marker))
  928. return false;
  929. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  930. * start_seq < undo_marker and end_seq >= undo_marker.
  931. */
  932. return !before(start_seq, end_seq - tp->max_window);
  933. }
  934. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  935. struct tcp_sack_block_wire *sp, int num_sacks,
  936. u32 prior_snd_una)
  937. {
  938. struct tcp_sock *tp = tcp_sk(sk);
  939. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  940. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  941. bool dup_sack = false;
  942. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  943. dup_sack = true;
  944. tcp_dsack_seen(tp);
  945. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  946. } else if (num_sacks > 1) {
  947. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  948. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  949. if (!after(end_seq_0, end_seq_1) &&
  950. !before(start_seq_0, start_seq_1)) {
  951. dup_sack = true;
  952. tcp_dsack_seen(tp);
  953. NET_INC_STATS(sock_net(sk),
  954. LINUX_MIB_TCPDSACKOFORECV);
  955. }
  956. }
  957. /* D-SACK for already forgotten data... Do dumb counting. */
  958. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  959. !after(end_seq_0, prior_snd_una) &&
  960. after(end_seq_0, tp->undo_marker))
  961. tp->undo_retrans--;
  962. return dup_sack;
  963. }
  964. struct tcp_sacktag_state {
  965. int reord;
  966. int fack_count;
  967. /* Timestamps for earliest and latest never-retransmitted segment
  968. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  969. * but congestion control should still get an accurate delay signal.
  970. */
  971. u64 first_sackt;
  972. u64 last_sackt;
  973. struct rate_sample *rate;
  974. int flag;
  975. unsigned int mss_now;
  976. };
  977. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  978. * the incoming SACK may not exactly match but we can find smaller MSS
  979. * aligned portion of it that matches. Therefore we might need to fragment
  980. * which may fail and creates some hassle (caller must handle error case
  981. * returns).
  982. *
  983. * FIXME: this could be merged to shift decision code
  984. */
  985. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  986. u32 start_seq, u32 end_seq)
  987. {
  988. int err;
  989. bool in_sack;
  990. unsigned int pkt_len;
  991. unsigned int mss;
  992. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  993. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  994. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  995. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  996. mss = tcp_skb_mss(skb);
  997. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  998. if (!in_sack) {
  999. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1000. if (pkt_len < mss)
  1001. pkt_len = mss;
  1002. } else {
  1003. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1004. if (pkt_len < mss)
  1005. return -EINVAL;
  1006. }
  1007. /* Round if necessary so that SACKs cover only full MSSes
  1008. * and/or the remaining small portion (if present)
  1009. */
  1010. if (pkt_len > mss) {
  1011. unsigned int new_len = (pkt_len / mss) * mss;
  1012. if (!in_sack && new_len < pkt_len)
  1013. new_len += mss;
  1014. pkt_len = new_len;
  1015. }
  1016. if (pkt_len >= skb->len && !in_sack)
  1017. return 0;
  1018. err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  1019. pkt_len, mss, GFP_ATOMIC);
  1020. if (err < 0)
  1021. return err;
  1022. }
  1023. return in_sack;
  1024. }
  1025. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1026. static u8 tcp_sacktag_one(struct sock *sk,
  1027. struct tcp_sacktag_state *state, u8 sacked,
  1028. u32 start_seq, u32 end_seq,
  1029. int dup_sack, int pcount,
  1030. u64 xmit_time)
  1031. {
  1032. struct tcp_sock *tp = tcp_sk(sk);
  1033. int fack_count = state->fack_count;
  1034. /* Account D-SACK for retransmitted packet. */
  1035. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1036. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1037. after(end_seq, tp->undo_marker))
  1038. tp->undo_retrans--;
  1039. if (sacked & TCPCB_SACKED_ACKED)
  1040. state->reord = min(fack_count, state->reord);
  1041. }
  1042. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1043. if (!after(end_seq, tp->snd_una))
  1044. return sacked;
  1045. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1046. tcp_rack_advance(tp, sacked, end_seq, xmit_time);
  1047. if (sacked & TCPCB_SACKED_RETRANS) {
  1048. /* If the segment is not tagged as lost,
  1049. * we do not clear RETRANS, believing
  1050. * that retransmission is still in flight.
  1051. */
  1052. if (sacked & TCPCB_LOST) {
  1053. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1054. tp->lost_out -= pcount;
  1055. tp->retrans_out -= pcount;
  1056. }
  1057. } else {
  1058. if (!(sacked & TCPCB_RETRANS)) {
  1059. /* New sack for not retransmitted frame,
  1060. * which was in hole. It is reordering.
  1061. */
  1062. if (before(start_seq,
  1063. tcp_highest_sack_seq(tp)))
  1064. state->reord = min(fack_count,
  1065. state->reord);
  1066. if (!after(end_seq, tp->high_seq))
  1067. state->flag |= FLAG_ORIG_SACK_ACKED;
  1068. if (state->first_sackt == 0)
  1069. state->first_sackt = xmit_time;
  1070. state->last_sackt = xmit_time;
  1071. }
  1072. if (sacked & TCPCB_LOST) {
  1073. sacked &= ~TCPCB_LOST;
  1074. tp->lost_out -= pcount;
  1075. }
  1076. }
  1077. sacked |= TCPCB_SACKED_ACKED;
  1078. state->flag |= FLAG_DATA_SACKED;
  1079. tp->sacked_out += pcount;
  1080. tp->delivered += pcount; /* Out-of-order packets delivered */
  1081. fack_count += pcount;
  1082. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1083. if (tp->lost_skb_hint &&
  1084. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1085. tp->lost_cnt_hint += pcount;
  1086. if (fack_count > tp->fackets_out)
  1087. tp->fackets_out = fack_count;
  1088. }
  1089. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1090. * frames and clear it. undo_retrans is decreased above, L|R frames
  1091. * are accounted above as well.
  1092. */
  1093. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1094. sacked &= ~TCPCB_SACKED_RETRANS;
  1095. tp->retrans_out -= pcount;
  1096. }
  1097. return sacked;
  1098. }
  1099. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1100. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1101. */
  1102. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
  1103. struct sk_buff *skb,
  1104. struct tcp_sacktag_state *state,
  1105. unsigned int pcount, int shifted, int mss,
  1106. bool dup_sack)
  1107. {
  1108. struct tcp_sock *tp = tcp_sk(sk);
  1109. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1110. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1111. BUG_ON(!pcount);
  1112. /* Adjust counters and hints for the newly sacked sequence
  1113. * range but discard the return value since prev is already
  1114. * marked. We must tag the range first because the seq
  1115. * advancement below implicitly advances
  1116. * tcp_highest_sack_seq() when skb is highest_sack.
  1117. */
  1118. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1119. start_seq, end_seq, dup_sack, pcount,
  1120. skb->skb_mstamp);
  1121. tcp_rate_skb_delivered(sk, skb, state->rate);
  1122. if (skb == tp->lost_skb_hint)
  1123. tp->lost_cnt_hint += pcount;
  1124. TCP_SKB_CB(prev)->end_seq += shifted;
  1125. TCP_SKB_CB(skb)->seq += shifted;
  1126. tcp_skb_pcount_add(prev, pcount);
  1127. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1128. tcp_skb_pcount_add(skb, -pcount);
  1129. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1130. * in theory this shouldn't be necessary but as long as DSACK
  1131. * code can come after this skb later on it's better to keep
  1132. * setting gso_size to something.
  1133. */
  1134. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1135. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1136. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1137. if (tcp_skb_pcount(skb) <= 1)
  1138. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1139. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1140. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1141. if (skb->len > 0) {
  1142. BUG_ON(!tcp_skb_pcount(skb));
  1143. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1144. return false;
  1145. }
  1146. /* Whole SKB was eaten :-) */
  1147. if (skb == tp->retransmit_skb_hint)
  1148. tp->retransmit_skb_hint = prev;
  1149. if (skb == tp->lost_skb_hint) {
  1150. tp->lost_skb_hint = prev;
  1151. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1152. }
  1153. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1154. TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
  1155. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1156. TCP_SKB_CB(prev)->end_seq++;
  1157. if (skb == tcp_highest_sack(sk))
  1158. tcp_advance_highest_sack(sk, skb);
  1159. tcp_skb_collapse_tstamp(prev, skb);
  1160. if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
  1161. TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
  1162. tcp_rtx_queue_unlink_and_free(skb, sk);
  1163. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
  1164. return true;
  1165. }
  1166. /* I wish gso_size would have a bit more sane initialization than
  1167. * something-or-zero which complicates things
  1168. */
  1169. static int tcp_skb_seglen(const struct sk_buff *skb)
  1170. {
  1171. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1172. }
  1173. /* Shifting pages past head area doesn't work */
  1174. static int skb_can_shift(const struct sk_buff *skb)
  1175. {
  1176. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1177. }
  1178. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1179. * skb.
  1180. */
  1181. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1182. struct tcp_sacktag_state *state,
  1183. u32 start_seq, u32 end_seq,
  1184. bool dup_sack)
  1185. {
  1186. struct tcp_sock *tp = tcp_sk(sk);
  1187. struct sk_buff *prev;
  1188. int mss;
  1189. int pcount = 0;
  1190. int len;
  1191. int in_sack;
  1192. if (!sk_can_gso(sk))
  1193. goto fallback;
  1194. /* Normally R but no L won't result in plain S */
  1195. if (!dup_sack &&
  1196. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1197. goto fallback;
  1198. if (!skb_can_shift(skb))
  1199. goto fallback;
  1200. /* This frame is about to be dropped (was ACKed). */
  1201. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1202. goto fallback;
  1203. /* Can only happen with delayed DSACK + discard craziness */
  1204. prev = skb_rb_prev(skb);
  1205. if (!prev)
  1206. goto fallback;
  1207. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1208. goto fallback;
  1209. if (!tcp_skb_can_collapse_to(prev))
  1210. goto fallback;
  1211. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1212. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1213. if (in_sack) {
  1214. len = skb->len;
  1215. pcount = tcp_skb_pcount(skb);
  1216. mss = tcp_skb_seglen(skb);
  1217. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1218. * drop this restriction as unnecessary
  1219. */
  1220. if (mss != tcp_skb_seglen(prev))
  1221. goto fallback;
  1222. } else {
  1223. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1224. goto noop;
  1225. /* CHECKME: This is non-MSS split case only?, this will
  1226. * cause skipped skbs due to advancing loop btw, original
  1227. * has that feature too
  1228. */
  1229. if (tcp_skb_pcount(skb) <= 1)
  1230. goto noop;
  1231. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1232. if (!in_sack) {
  1233. /* TODO: head merge to next could be attempted here
  1234. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1235. * though it might not be worth of the additional hassle
  1236. *
  1237. * ...we can probably just fallback to what was done
  1238. * previously. We could try merging non-SACKed ones
  1239. * as well but it probably isn't going to buy off
  1240. * because later SACKs might again split them, and
  1241. * it would make skb timestamp tracking considerably
  1242. * harder problem.
  1243. */
  1244. goto fallback;
  1245. }
  1246. len = end_seq - TCP_SKB_CB(skb)->seq;
  1247. BUG_ON(len < 0);
  1248. BUG_ON(len > skb->len);
  1249. /* MSS boundaries should be honoured or else pcount will
  1250. * severely break even though it makes things bit trickier.
  1251. * Optimize common case to avoid most of the divides
  1252. */
  1253. mss = tcp_skb_mss(skb);
  1254. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1255. * drop this restriction as unnecessary
  1256. */
  1257. if (mss != tcp_skb_seglen(prev))
  1258. goto fallback;
  1259. if (len == mss) {
  1260. pcount = 1;
  1261. } else if (len < mss) {
  1262. goto noop;
  1263. } else {
  1264. pcount = len / mss;
  1265. len = pcount * mss;
  1266. }
  1267. }
  1268. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1269. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1270. goto fallback;
  1271. if (!skb_shift(prev, skb, len))
  1272. goto fallback;
  1273. if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
  1274. goto out;
  1275. /* Hole filled allows collapsing with the next as well, this is very
  1276. * useful when hole on every nth skb pattern happens
  1277. */
  1278. skb = skb_rb_next(prev);
  1279. if (!skb)
  1280. goto out;
  1281. if (!skb_can_shift(skb) ||
  1282. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1283. (mss != tcp_skb_seglen(skb)))
  1284. goto out;
  1285. len = skb->len;
  1286. if (skb_shift(prev, skb, len)) {
  1287. pcount += tcp_skb_pcount(skb);
  1288. tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
  1289. len, mss, 0);
  1290. }
  1291. out:
  1292. state->fack_count += pcount;
  1293. return prev;
  1294. noop:
  1295. return skb;
  1296. fallback:
  1297. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1298. return NULL;
  1299. }
  1300. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1301. struct tcp_sack_block *next_dup,
  1302. struct tcp_sacktag_state *state,
  1303. u32 start_seq, u32 end_seq,
  1304. bool dup_sack_in)
  1305. {
  1306. struct tcp_sock *tp = tcp_sk(sk);
  1307. struct sk_buff *tmp;
  1308. skb_rbtree_walk_from(skb) {
  1309. int in_sack = 0;
  1310. bool dup_sack = dup_sack_in;
  1311. /* queue is in-order => we can short-circuit the walk early */
  1312. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1313. break;
  1314. if (next_dup &&
  1315. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1316. in_sack = tcp_match_skb_to_sack(sk, skb,
  1317. next_dup->start_seq,
  1318. next_dup->end_seq);
  1319. if (in_sack > 0)
  1320. dup_sack = true;
  1321. }
  1322. /* skb reference here is a bit tricky to get right, since
  1323. * shifting can eat and free both this skb and the next,
  1324. * so not even _safe variant of the loop is enough.
  1325. */
  1326. if (in_sack <= 0) {
  1327. tmp = tcp_shift_skb_data(sk, skb, state,
  1328. start_seq, end_seq, dup_sack);
  1329. if (tmp) {
  1330. if (tmp != skb) {
  1331. skb = tmp;
  1332. continue;
  1333. }
  1334. in_sack = 0;
  1335. } else {
  1336. in_sack = tcp_match_skb_to_sack(sk, skb,
  1337. start_seq,
  1338. end_seq);
  1339. }
  1340. }
  1341. if (unlikely(in_sack < 0))
  1342. break;
  1343. if (in_sack) {
  1344. TCP_SKB_CB(skb)->sacked =
  1345. tcp_sacktag_one(sk,
  1346. state,
  1347. TCP_SKB_CB(skb)->sacked,
  1348. TCP_SKB_CB(skb)->seq,
  1349. TCP_SKB_CB(skb)->end_seq,
  1350. dup_sack,
  1351. tcp_skb_pcount(skb),
  1352. skb->skb_mstamp);
  1353. tcp_rate_skb_delivered(sk, skb, state->rate);
  1354. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  1355. list_del_init(&skb->tcp_tsorted_anchor);
  1356. if (!before(TCP_SKB_CB(skb)->seq,
  1357. tcp_highest_sack_seq(tp)))
  1358. tcp_advance_highest_sack(sk, skb);
  1359. }
  1360. state->fack_count += tcp_skb_pcount(skb);
  1361. }
  1362. return skb;
  1363. }
  1364. static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
  1365. struct tcp_sacktag_state *state,
  1366. u32 seq)
  1367. {
  1368. struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
  1369. struct sk_buff *skb;
  1370. int unack_bytes;
  1371. while (*p) {
  1372. parent = *p;
  1373. skb = rb_to_skb(parent);
  1374. if (before(seq, TCP_SKB_CB(skb)->seq)) {
  1375. p = &parent->rb_left;
  1376. continue;
  1377. }
  1378. if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
  1379. p = &parent->rb_right;
  1380. continue;
  1381. }
  1382. state->fack_count = 0;
  1383. unack_bytes = TCP_SKB_CB(skb)->seq - tcp_sk(sk)->snd_una;
  1384. if (state->mss_now && unack_bytes > 0)
  1385. state->fack_count = unack_bytes / state->mss_now;
  1386. return skb;
  1387. }
  1388. return NULL;
  1389. }
  1390. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1391. struct tcp_sacktag_state *state,
  1392. u32 skip_to_seq)
  1393. {
  1394. if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
  1395. return skb;
  1396. return tcp_sacktag_bsearch(sk, state, skip_to_seq);
  1397. }
  1398. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1399. struct sock *sk,
  1400. struct tcp_sack_block *next_dup,
  1401. struct tcp_sacktag_state *state,
  1402. u32 skip_to_seq)
  1403. {
  1404. if (!next_dup)
  1405. return skb;
  1406. if (before(next_dup->start_seq, skip_to_seq)) {
  1407. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1408. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1409. next_dup->start_seq, next_dup->end_seq,
  1410. 1);
  1411. }
  1412. return skb;
  1413. }
  1414. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1415. {
  1416. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1417. }
  1418. static int
  1419. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1420. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1421. {
  1422. struct tcp_sock *tp = tcp_sk(sk);
  1423. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1424. TCP_SKB_CB(ack_skb)->sacked);
  1425. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1426. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1427. struct tcp_sack_block *cache;
  1428. struct sk_buff *skb;
  1429. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1430. int used_sacks;
  1431. bool found_dup_sack = false;
  1432. int i, j;
  1433. int first_sack_index;
  1434. state->flag = 0;
  1435. state->reord = tp->packets_out;
  1436. if (!tp->sacked_out) {
  1437. if (WARN_ON(tp->fackets_out))
  1438. tp->fackets_out = 0;
  1439. tcp_highest_sack_reset(sk);
  1440. }
  1441. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1442. num_sacks, prior_snd_una);
  1443. if (found_dup_sack) {
  1444. state->flag |= FLAG_DSACKING_ACK;
  1445. tp->delivered++; /* A spurious retransmission is delivered */
  1446. }
  1447. /* Eliminate too old ACKs, but take into
  1448. * account more or less fresh ones, they can
  1449. * contain valid SACK info.
  1450. */
  1451. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1452. return 0;
  1453. if (!tp->packets_out)
  1454. goto out;
  1455. used_sacks = 0;
  1456. first_sack_index = 0;
  1457. for (i = 0; i < num_sacks; i++) {
  1458. bool dup_sack = !i && found_dup_sack;
  1459. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1460. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1461. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1462. sp[used_sacks].start_seq,
  1463. sp[used_sacks].end_seq)) {
  1464. int mib_idx;
  1465. if (dup_sack) {
  1466. if (!tp->undo_marker)
  1467. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1468. else
  1469. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1470. } else {
  1471. /* Don't count olds caused by ACK reordering */
  1472. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1473. !after(sp[used_sacks].end_seq, tp->snd_una))
  1474. continue;
  1475. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1476. }
  1477. NET_INC_STATS(sock_net(sk), mib_idx);
  1478. if (i == 0)
  1479. first_sack_index = -1;
  1480. continue;
  1481. }
  1482. /* Ignore very old stuff early */
  1483. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1484. continue;
  1485. used_sacks++;
  1486. }
  1487. /* order SACK blocks to allow in order walk of the retrans queue */
  1488. for (i = used_sacks - 1; i > 0; i--) {
  1489. for (j = 0; j < i; j++) {
  1490. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1491. swap(sp[j], sp[j + 1]);
  1492. /* Track where the first SACK block goes to */
  1493. if (j == first_sack_index)
  1494. first_sack_index = j + 1;
  1495. }
  1496. }
  1497. }
  1498. state->mss_now = tcp_current_mss(sk);
  1499. state->fack_count = 0;
  1500. skb = NULL;
  1501. i = 0;
  1502. if (!tp->sacked_out) {
  1503. /* It's already past, so skip checking against it */
  1504. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1505. } else {
  1506. cache = tp->recv_sack_cache;
  1507. /* Skip empty blocks in at head of the cache */
  1508. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1509. !cache->end_seq)
  1510. cache++;
  1511. }
  1512. while (i < used_sacks) {
  1513. u32 start_seq = sp[i].start_seq;
  1514. u32 end_seq = sp[i].end_seq;
  1515. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1516. struct tcp_sack_block *next_dup = NULL;
  1517. if (found_dup_sack && ((i + 1) == first_sack_index))
  1518. next_dup = &sp[i + 1];
  1519. /* Skip too early cached blocks */
  1520. while (tcp_sack_cache_ok(tp, cache) &&
  1521. !before(start_seq, cache->end_seq))
  1522. cache++;
  1523. /* Can skip some work by looking recv_sack_cache? */
  1524. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1525. after(end_seq, cache->start_seq)) {
  1526. /* Head todo? */
  1527. if (before(start_seq, cache->start_seq)) {
  1528. skb = tcp_sacktag_skip(skb, sk, state,
  1529. start_seq);
  1530. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1531. state,
  1532. start_seq,
  1533. cache->start_seq,
  1534. dup_sack);
  1535. }
  1536. /* Rest of the block already fully processed? */
  1537. if (!after(end_seq, cache->end_seq))
  1538. goto advance_sp;
  1539. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1540. state,
  1541. cache->end_seq);
  1542. /* ...tail remains todo... */
  1543. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1544. /* ...but better entrypoint exists! */
  1545. skb = tcp_highest_sack(sk);
  1546. if (!skb)
  1547. break;
  1548. state->fack_count = tp->fackets_out;
  1549. cache++;
  1550. goto walk;
  1551. }
  1552. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1553. /* Check overlap against next cached too (past this one already) */
  1554. cache++;
  1555. continue;
  1556. }
  1557. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1558. skb = tcp_highest_sack(sk);
  1559. if (!skb)
  1560. break;
  1561. state->fack_count = tp->fackets_out;
  1562. }
  1563. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1564. walk:
  1565. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1566. start_seq, end_seq, dup_sack);
  1567. advance_sp:
  1568. i++;
  1569. }
  1570. /* Clear the head of the cache sack blocks so we can skip it next time */
  1571. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1572. tp->recv_sack_cache[i].start_seq = 0;
  1573. tp->recv_sack_cache[i].end_seq = 0;
  1574. }
  1575. for (j = 0; j < used_sacks; j++)
  1576. tp->recv_sack_cache[i++] = sp[j];
  1577. if ((state->reord < tp->fackets_out) &&
  1578. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1579. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1580. tcp_verify_left_out(tp);
  1581. out:
  1582. #if FASTRETRANS_DEBUG > 0
  1583. WARN_ON((int)tp->sacked_out < 0);
  1584. WARN_ON((int)tp->lost_out < 0);
  1585. WARN_ON((int)tp->retrans_out < 0);
  1586. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1587. #endif
  1588. return state->flag;
  1589. }
  1590. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1591. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1592. */
  1593. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1594. {
  1595. u32 holes;
  1596. holes = max(tp->lost_out, 1U);
  1597. holes = min(holes, tp->packets_out);
  1598. if ((tp->sacked_out + holes) > tp->packets_out) {
  1599. tp->sacked_out = tp->packets_out - holes;
  1600. return true;
  1601. }
  1602. return false;
  1603. }
  1604. /* If we receive more dupacks than we expected counting segments
  1605. * in assumption of absent reordering, interpret this as reordering.
  1606. * The only another reason could be bug in receiver TCP.
  1607. */
  1608. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1609. {
  1610. struct tcp_sock *tp = tcp_sk(sk);
  1611. if (tcp_limit_reno_sacked(tp))
  1612. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1613. }
  1614. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1615. static void tcp_add_reno_sack(struct sock *sk)
  1616. {
  1617. struct tcp_sock *tp = tcp_sk(sk);
  1618. u32 prior_sacked = tp->sacked_out;
  1619. tp->sacked_out++;
  1620. tcp_check_reno_reordering(sk, 0);
  1621. if (tp->sacked_out > prior_sacked)
  1622. tp->delivered++; /* Some out-of-order packet is delivered */
  1623. tcp_verify_left_out(tp);
  1624. }
  1625. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1626. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1627. {
  1628. struct tcp_sock *tp = tcp_sk(sk);
  1629. if (acked > 0) {
  1630. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1631. tp->delivered += max_t(int, acked - tp->sacked_out, 1);
  1632. if (acked - 1 >= tp->sacked_out)
  1633. tp->sacked_out = 0;
  1634. else
  1635. tp->sacked_out -= acked - 1;
  1636. }
  1637. tcp_check_reno_reordering(sk, acked);
  1638. tcp_verify_left_out(tp);
  1639. }
  1640. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1641. {
  1642. tp->sacked_out = 0;
  1643. }
  1644. void tcp_clear_retrans(struct tcp_sock *tp)
  1645. {
  1646. tp->retrans_out = 0;
  1647. tp->lost_out = 0;
  1648. tp->undo_marker = 0;
  1649. tp->undo_retrans = -1;
  1650. tp->fackets_out = 0;
  1651. tp->sacked_out = 0;
  1652. }
  1653. static inline void tcp_init_undo(struct tcp_sock *tp)
  1654. {
  1655. tp->undo_marker = tp->snd_una;
  1656. /* Retransmission still in flight may cause DSACKs later. */
  1657. tp->undo_retrans = tp->retrans_out ? : -1;
  1658. }
  1659. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1660. * and reset tags completely, otherwise preserve SACKs. If receiver
  1661. * dropped its ofo queue, we will know this due to reneging detection.
  1662. */
  1663. void tcp_enter_loss(struct sock *sk)
  1664. {
  1665. const struct inet_connection_sock *icsk = inet_csk(sk);
  1666. struct tcp_sock *tp = tcp_sk(sk);
  1667. struct net *net = sock_net(sk);
  1668. struct sk_buff *skb;
  1669. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1670. bool is_reneg; /* is receiver reneging on SACKs? */
  1671. bool mark_lost;
  1672. /* Reduce ssthresh if it has not yet been made inside this window. */
  1673. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1674. !after(tp->high_seq, tp->snd_una) ||
  1675. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1676. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1677. tp->prior_cwnd = tp->snd_cwnd;
  1678. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1679. tcp_ca_event(sk, CA_EVENT_LOSS);
  1680. tcp_init_undo(tp);
  1681. }
  1682. tp->snd_cwnd = 1;
  1683. tp->snd_cwnd_cnt = 0;
  1684. tp->snd_cwnd_stamp = tcp_jiffies32;
  1685. tp->retrans_out = 0;
  1686. tp->lost_out = 0;
  1687. if (tcp_is_reno(tp))
  1688. tcp_reset_reno_sack(tp);
  1689. skb = tcp_rtx_queue_head(sk);
  1690. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1691. if (is_reneg) {
  1692. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1693. tp->sacked_out = 0;
  1694. tp->fackets_out = 0;
  1695. }
  1696. tcp_clear_all_retrans_hints(tp);
  1697. skb_rbtree_walk_from(skb) {
  1698. mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1699. is_reneg);
  1700. if (mark_lost)
  1701. tcp_sum_lost(tp, skb);
  1702. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1703. if (mark_lost) {
  1704. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1705. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1706. tp->lost_out += tcp_skb_pcount(skb);
  1707. }
  1708. }
  1709. tcp_verify_left_out(tp);
  1710. /* Timeout in disordered state after receiving substantial DUPACKs
  1711. * suggests that the degree of reordering is over-estimated.
  1712. */
  1713. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1714. tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
  1715. tp->reordering = min_t(unsigned int, tp->reordering,
  1716. net->ipv4.sysctl_tcp_reordering);
  1717. tcp_set_ca_state(sk, TCP_CA_Loss);
  1718. tp->high_seq = tp->snd_nxt;
  1719. tcp_ecn_queue_cwr(tp);
  1720. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1721. * loss recovery is underway except recurring timeout(s) on
  1722. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1723. *
  1724. * In theory F-RTO can be used repeatedly during loss recovery.
  1725. * In practice this interacts badly with broken middle-boxes that
  1726. * falsely raise the receive window, which results in repeated
  1727. * timeouts and stop-and-go behavior.
  1728. */
  1729. tp->frto = net->ipv4.sysctl_tcp_frto &&
  1730. (new_recovery || icsk->icsk_retransmits) &&
  1731. !inet_csk(sk)->icsk_mtup.probe_size;
  1732. }
  1733. /* If ACK arrived pointing to a remembered SACK, it means that our
  1734. * remembered SACKs do not reflect real state of receiver i.e.
  1735. * receiver _host_ is heavily congested (or buggy).
  1736. *
  1737. * To avoid big spurious retransmission bursts due to transient SACK
  1738. * scoreboard oddities that look like reneging, we give the receiver a
  1739. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1740. * restore sanity to the SACK scoreboard. If the apparent reneging
  1741. * persists until this RTO then we'll clear the SACK scoreboard.
  1742. */
  1743. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1744. {
  1745. if (flag & FLAG_SACK_RENEGING) {
  1746. struct tcp_sock *tp = tcp_sk(sk);
  1747. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1748. msecs_to_jiffies(10));
  1749. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1750. delay, TCP_RTO_MAX);
  1751. return true;
  1752. }
  1753. return false;
  1754. }
  1755. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1756. {
  1757. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1758. }
  1759. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1760. * counter when SACK is enabled (without SACK, sacked_out is used for
  1761. * that purpose).
  1762. *
  1763. * With reordering, holes may still be in flight, so RFC3517 recovery
  1764. * uses pure sacked_out (total number of SACKed segments) even though
  1765. * it violates the RFC that uses duplicate ACKs, often these are equal
  1766. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1767. * they differ. Since neither occurs due to loss, TCP should really
  1768. * ignore them.
  1769. */
  1770. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1771. {
  1772. return tp->sacked_out + 1;
  1773. }
  1774. /* Linux NewReno/SACK/ECN state machine.
  1775. * --------------------------------------
  1776. *
  1777. * "Open" Normal state, no dubious events, fast path.
  1778. * "Disorder" In all the respects it is "Open",
  1779. * but requires a bit more attention. It is entered when
  1780. * we see some SACKs or dupacks. It is split of "Open"
  1781. * mainly to move some processing from fast path to slow one.
  1782. * "CWR" CWND was reduced due to some Congestion Notification event.
  1783. * It can be ECN, ICMP source quench, local device congestion.
  1784. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1785. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1786. *
  1787. * tcp_fastretrans_alert() is entered:
  1788. * - each incoming ACK, if state is not "Open"
  1789. * - when arrived ACK is unusual, namely:
  1790. * * SACK
  1791. * * Duplicate ACK.
  1792. * * ECN ECE.
  1793. *
  1794. * Counting packets in flight is pretty simple.
  1795. *
  1796. * in_flight = packets_out - left_out + retrans_out
  1797. *
  1798. * packets_out is SND.NXT-SND.UNA counted in packets.
  1799. *
  1800. * retrans_out is number of retransmitted segments.
  1801. *
  1802. * left_out is number of segments left network, but not ACKed yet.
  1803. *
  1804. * left_out = sacked_out + lost_out
  1805. *
  1806. * sacked_out: Packets, which arrived to receiver out of order
  1807. * and hence not ACKed. With SACKs this number is simply
  1808. * amount of SACKed data. Even without SACKs
  1809. * it is easy to give pretty reliable estimate of this number,
  1810. * counting duplicate ACKs.
  1811. *
  1812. * lost_out: Packets lost by network. TCP has no explicit
  1813. * "loss notification" feedback from network (for now).
  1814. * It means that this number can be only _guessed_.
  1815. * Actually, it is the heuristics to predict lossage that
  1816. * distinguishes different algorithms.
  1817. *
  1818. * F.e. after RTO, when all the queue is considered as lost,
  1819. * lost_out = packets_out and in_flight = retrans_out.
  1820. *
  1821. * Essentially, we have now a few algorithms detecting
  1822. * lost packets.
  1823. *
  1824. * If the receiver supports SACK:
  1825. *
  1826. * RFC6675/3517: It is the conventional algorithm. A packet is
  1827. * considered lost if the number of higher sequence packets
  1828. * SACKed is greater than or equal the DUPACK thoreshold
  1829. * (reordering). This is implemented in tcp_mark_head_lost and
  1830. * tcp_update_scoreboard.
  1831. *
  1832. * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
  1833. * (2017-) that checks timing instead of counting DUPACKs.
  1834. * Essentially a packet is considered lost if it's not S/ACKed
  1835. * after RTT + reordering_window, where both metrics are
  1836. * dynamically measured and adjusted. This is implemented in
  1837. * tcp_rack_mark_lost.
  1838. *
  1839. * If the receiver does not support SACK:
  1840. *
  1841. * NewReno (RFC6582): in Recovery we assume that one segment
  1842. * is lost (classic Reno). While we are in Recovery and
  1843. * a partial ACK arrives, we assume that one more packet
  1844. * is lost (NewReno). This heuristics are the same in NewReno
  1845. * and SACK.
  1846. *
  1847. * Really tricky (and requiring careful tuning) part of algorithm
  1848. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1849. * The first determines the moment _when_ we should reduce CWND and,
  1850. * hence, slow down forward transmission. In fact, it determines the moment
  1851. * when we decide that hole is caused by loss, rather than by a reorder.
  1852. *
  1853. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1854. * holes, caused by lost packets.
  1855. *
  1856. * And the most logically complicated part of algorithm is undo
  1857. * heuristics. We detect false retransmits due to both too early
  1858. * fast retransmit (reordering) and underestimated RTO, analyzing
  1859. * timestamps and D-SACKs. When we detect that some segments were
  1860. * retransmitted by mistake and CWND reduction was wrong, we undo
  1861. * window reduction and abort recovery phase. This logic is hidden
  1862. * inside several functions named tcp_try_undo_<something>.
  1863. */
  1864. /* This function decides, when we should leave Disordered state
  1865. * and enter Recovery phase, reducing congestion window.
  1866. *
  1867. * Main question: may we further continue forward transmission
  1868. * with the same cwnd?
  1869. */
  1870. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1871. {
  1872. struct tcp_sock *tp = tcp_sk(sk);
  1873. /* Trick#1: The loss is proven. */
  1874. if (tp->lost_out)
  1875. return true;
  1876. /* Not-A-Trick#2 : Classic rule... */
  1877. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1878. return true;
  1879. return false;
  1880. }
  1881. /* Detect loss in event "A" above by marking head of queue up as lost.
  1882. * For non-SACK(Reno) senders, the first "packets" number of segments
  1883. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1884. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1885. * the maximum SACKed segments to pass before reaching this limit.
  1886. */
  1887. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1888. {
  1889. struct tcp_sock *tp = tcp_sk(sk);
  1890. struct sk_buff *skb;
  1891. int cnt, oldcnt, lost;
  1892. unsigned int mss;
  1893. /* Use SACK to deduce losses of new sequences sent during recovery */
  1894. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1895. WARN_ON(packets > tp->packets_out);
  1896. skb = tp->lost_skb_hint;
  1897. if (skb) {
  1898. /* Head already handled? */
  1899. if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
  1900. return;
  1901. cnt = tp->lost_cnt_hint;
  1902. } else {
  1903. skb = tcp_rtx_queue_head(sk);
  1904. cnt = 0;
  1905. }
  1906. skb_rbtree_walk_from(skb) {
  1907. /* TODO: do this better */
  1908. /* this is not the most efficient way to do this... */
  1909. tp->lost_skb_hint = skb;
  1910. tp->lost_cnt_hint = cnt;
  1911. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1912. break;
  1913. oldcnt = cnt;
  1914. if (tcp_is_reno(tp) ||
  1915. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1916. cnt += tcp_skb_pcount(skb);
  1917. if (cnt > packets) {
  1918. if (tcp_is_sack(tp) ||
  1919. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1920. (oldcnt >= packets))
  1921. break;
  1922. mss = tcp_skb_mss(skb);
  1923. /* If needed, chop off the prefix to mark as lost. */
  1924. lost = (packets - oldcnt) * mss;
  1925. if (lost < skb->len &&
  1926. tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  1927. lost, mss, GFP_ATOMIC) < 0)
  1928. break;
  1929. cnt = packets;
  1930. }
  1931. tcp_skb_mark_lost(tp, skb);
  1932. if (mark_head)
  1933. break;
  1934. }
  1935. tcp_verify_left_out(tp);
  1936. }
  1937. /* Account newly detected lost packet(s) */
  1938. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1939. {
  1940. struct tcp_sock *tp = tcp_sk(sk);
  1941. if (tcp_is_reno(tp)) {
  1942. tcp_mark_head_lost(sk, 1, 1);
  1943. } else {
  1944. int sacked_upto = tp->sacked_out - tp->reordering;
  1945. if (sacked_upto >= 0)
  1946. tcp_mark_head_lost(sk, sacked_upto, 0);
  1947. else if (fast_rexmit)
  1948. tcp_mark_head_lost(sk, 1, 1);
  1949. }
  1950. }
  1951. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  1952. {
  1953. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1954. before(tp->rx_opt.rcv_tsecr, when);
  1955. }
  1956. /* skb is spurious retransmitted if the returned timestamp echo
  1957. * reply is prior to the skb transmission time
  1958. */
  1959. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  1960. const struct sk_buff *skb)
  1961. {
  1962. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  1963. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  1964. }
  1965. /* Nothing was retransmitted or returned timestamp is less
  1966. * than timestamp of the first retransmission.
  1967. */
  1968. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  1969. {
  1970. return !tp->retrans_stamp ||
  1971. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  1972. }
  1973. /* Undo procedures. */
  1974. /* We can clear retrans_stamp when there are no retransmissions in the
  1975. * window. It would seem that it is trivially available for us in
  1976. * tp->retrans_out, however, that kind of assumptions doesn't consider
  1977. * what will happen if errors occur when sending retransmission for the
  1978. * second time. ...It could the that such segment has only
  1979. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  1980. * the head skb is enough except for some reneging corner cases that
  1981. * are not worth the effort.
  1982. *
  1983. * Main reason for all this complexity is the fact that connection dying
  1984. * time now depends on the validity of the retrans_stamp, in particular,
  1985. * that successive retransmissions of a segment must not advance
  1986. * retrans_stamp under any conditions.
  1987. */
  1988. static bool tcp_any_retrans_done(const struct sock *sk)
  1989. {
  1990. const struct tcp_sock *tp = tcp_sk(sk);
  1991. struct sk_buff *skb;
  1992. if (tp->retrans_out)
  1993. return true;
  1994. skb = tcp_rtx_queue_head(sk);
  1995. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  1996. return true;
  1997. return false;
  1998. }
  1999. static void DBGUNDO(struct sock *sk, const char *msg)
  2000. {
  2001. #if FASTRETRANS_DEBUG > 1
  2002. struct tcp_sock *tp = tcp_sk(sk);
  2003. struct inet_sock *inet = inet_sk(sk);
  2004. if (sk->sk_family == AF_INET) {
  2005. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2006. msg,
  2007. &inet->inet_daddr, ntohs(inet->inet_dport),
  2008. tp->snd_cwnd, tcp_left_out(tp),
  2009. tp->snd_ssthresh, tp->prior_ssthresh,
  2010. tp->packets_out);
  2011. }
  2012. #if IS_ENABLED(CONFIG_IPV6)
  2013. else if (sk->sk_family == AF_INET6) {
  2014. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2015. msg,
  2016. &sk->sk_v6_daddr, ntohs(inet->inet_dport),
  2017. tp->snd_cwnd, tcp_left_out(tp),
  2018. tp->snd_ssthresh, tp->prior_ssthresh,
  2019. tp->packets_out);
  2020. }
  2021. #endif
  2022. #endif
  2023. }
  2024. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2025. {
  2026. struct tcp_sock *tp = tcp_sk(sk);
  2027. if (unmark_loss) {
  2028. struct sk_buff *skb;
  2029. skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
  2030. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2031. }
  2032. tp->lost_out = 0;
  2033. tcp_clear_all_retrans_hints(tp);
  2034. }
  2035. if (tp->prior_ssthresh) {
  2036. const struct inet_connection_sock *icsk = inet_csk(sk);
  2037. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2038. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2039. tp->snd_ssthresh = tp->prior_ssthresh;
  2040. tcp_ecn_withdraw_cwr(tp);
  2041. }
  2042. }
  2043. tp->snd_cwnd_stamp = tcp_jiffies32;
  2044. tp->undo_marker = 0;
  2045. }
  2046. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2047. {
  2048. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2049. }
  2050. /* People celebrate: "We love our President!" */
  2051. static bool tcp_try_undo_recovery(struct sock *sk)
  2052. {
  2053. struct tcp_sock *tp = tcp_sk(sk);
  2054. if (tcp_may_undo(tp)) {
  2055. int mib_idx;
  2056. /* Happy end! We did not retransmit anything
  2057. * or our original transmission succeeded.
  2058. */
  2059. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2060. tcp_undo_cwnd_reduction(sk, false);
  2061. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2062. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2063. else
  2064. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2065. NET_INC_STATS(sock_net(sk), mib_idx);
  2066. } else if (tp->rack.reo_wnd_persist) {
  2067. tp->rack.reo_wnd_persist--;
  2068. }
  2069. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2070. /* Hold old state until something *above* high_seq
  2071. * is ACKed. For Reno it is MUST to prevent false
  2072. * fast retransmits (RFC2582). SACK TCP is safe. */
  2073. if (!tcp_any_retrans_done(sk))
  2074. tp->retrans_stamp = 0;
  2075. return true;
  2076. }
  2077. tcp_set_ca_state(sk, TCP_CA_Open);
  2078. return false;
  2079. }
  2080. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2081. static bool tcp_try_undo_dsack(struct sock *sk)
  2082. {
  2083. struct tcp_sock *tp = tcp_sk(sk);
  2084. if (tp->undo_marker && !tp->undo_retrans) {
  2085. tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
  2086. tp->rack.reo_wnd_persist + 1);
  2087. DBGUNDO(sk, "D-SACK");
  2088. tcp_undo_cwnd_reduction(sk, false);
  2089. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2090. return true;
  2091. }
  2092. return false;
  2093. }
  2094. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2095. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2096. {
  2097. struct tcp_sock *tp = tcp_sk(sk);
  2098. if (frto_undo || tcp_may_undo(tp)) {
  2099. tcp_undo_cwnd_reduction(sk, true);
  2100. DBGUNDO(sk, "partial loss");
  2101. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2102. if (frto_undo)
  2103. NET_INC_STATS(sock_net(sk),
  2104. LINUX_MIB_TCPSPURIOUSRTOS);
  2105. inet_csk(sk)->icsk_retransmits = 0;
  2106. if (frto_undo || tcp_is_sack(tp))
  2107. tcp_set_ca_state(sk, TCP_CA_Open);
  2108. return true;
  2109. }
  2110. return false;
  2111. }
  2112. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2113. * It computes the number of packets to send (sndcnt) based on packets newly
  2114. * delivered:
  2115. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2116. * cwnd reductions across a full RTT.
  2117. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2118. * But when the retransmits are acked without further losses, PRR
  2119. * slow starts cwnd up to ssthresh to speed up the recovery.
  2120. */
  2121. static void tcp_init_cwnd_reduction(struct sock *sk)
  2122. {
  2123. struct tcp_sock *tp = tcp_sk(sk);
  2124. tp->high_seq = tp->snd_nxt;
  2125. tp->tlp_high_seq = 0;
  2126. tp->snd_cwnd_cnt = 0;
  2127. tp->prior_cwnd = tp->snd_cwnd;
  2128. tp->prr_delivered = 0;
  2129. tp->prr_out = 0;
  2130. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2131. tcp_ecn_queue_cwr(tp);
  2132. }
  2133. void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
  2134. {
  2135. struct tcp_sock *tp = tcp_sk(sk);
  2136. int sndcnt = 0;
  2137. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2138. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2139. return;
  2140. tp->prr_delivered += newly_acked_sacked;
  2141. if (delta < 0) {
  2142. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2143. tp->prior_cwnd - 1;
  2144. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2145. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2146. !(flag & FLAG_LOST_RETRANS)) {
  2147. sndcnt = min_t(int, delta,
  2148. max_t(int, tp->prr_delivered - tp->prr_out,
  2149. newly_acked_sacked) + 1);
  2150. } else {
  2151. sndcnt = min(delta, newly_acked_sacked);
  2152. }
  2153. /* Force a fast retransmit upon entering fast recovery */
  2154. sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
  2155. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2156. }
  2157. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2158. {
  2159. struct tcp_sock *tp = tcp_sk(sk);
  2160. if (inet_csk(sk)->icsk_ca_ops->cong_control)
  2161. return;
  2162. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2163. if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
  2164. (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
  2165. tp->snd_cwnd = tp->snd_ssthresh;
  2166. tp->snd_cwnd_stamp = tcp_jiffies32;
  2167. }
  2168. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2169. }
  2170. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2171. void tcp_enter_cwr(struct sock *sk)
  2172. {
  2173. struct tcp_sock *tp = tcp_sk(sk);
  2174. tp->prior_ssthresh = 0;
  2175. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2176. tp->undo_marker = 0;
  2177. tcp_init_cwnd_reduction(sk);
  2178. tcp_set_ca_state(sk, TCP_CA_CWR);
  2179. }
  2180. }
  2181. EXPORT_SYMBOL(tcp_enter_cwr);
  2182. static void tcp_try_keep_open(struct sock *sk)
  2183. {
  2184. struct tcp_sock *tp = tcp_sk(sk);
  2185. int state = TCP_CA_Open;
  2186. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2187. state = TCP_CA_Disorder;
  2188. if (inet_csk(sk)->icsk_ca_state != state) {
  2189. tcp_set_ca_state(sk, state);
  2190. tp->high_seq = tp->snd_nxt;
  2191. }
  2192. }
  2193. static void tcp_try_to_open(struct sock *sk, int flag)
  2194. {
  2195. struct tcp_sock *tp = tcp_sk(sk);
  2196. tcp_verify_left_out(tp);
  2197. if (!tcp_any_retrans_done(sk))
  2198. tp->retrans_stamp = 0;
  2199. if (flag & FLAG_ECE)
  2200. tcp_enter_cwr(sk);
  2201. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2202. tcp_try_keep_open(sk);
  2203. }
  2204. }
  2205. static void tcp_mtup_probe_failed(struct sock *sk)
  2206. {
  2207. struct inet_connection_sock *icsk = inet_csk(sk);
  2208. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2209. icsk->icsk_mtup.probe_size = 0;
  2210. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2211. }
  2212. static void tcp_mtup_probe_success(struct sock *sk)
  2213. {
  2214. struct tcp_sock *tp = tcp_sk(sk);
  2215. struct inet_connection_sock *icsk = inet_csk(sk);
  2216. /* FIXME: breaks with very large cwnd */
  2217. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2218. tp->snd_cwnd = tp->snd_cwnd *
  2219. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2220. icsk->icsk_mtup.probe_size;
  2221. tp->snd_cwnd_cnt = 0;
  2222. tp->snd_cwnd_stamp = tcp_jiffies32;
  2223. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2224. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2225. icsk->icsk_mtup.probe_size = 0;
  2226. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2227. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2228. }
  2229. /* Do a simple retransmit without using the backoff mechanisms in
  2230. * tcp_timer. This is used for path mtu discovery.
  2231. * The socket is already locked here.
  2232. */
  2233. void tcp_simple_retransmit(struct sock *sk)
  2234. {
  2235. const struct inet_connection_sock *icsk = inet_csk(sk);
  2236. struct tcp_sock *tp = tcp_sk(sk);
  2237. struct sk_buff *skb;
  2238. unsigned int mss = tcp_current_mss(sk);
  2239. u32 prior_lost = tp->lost_out;
  2240. skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
  2241. if (tcp_skb_seglen(skb) > mss &&
  2242. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2243. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2244. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2245. tp->retrans_out -= tcp_skb_pcount(skb);
  2246. }
  2247. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2248. }
  2249. }
  2250. tcp_clear_retrans_hints_partial(tp);
  2251. if (prior_lost == tp->lost_out)
  2252. return;
  2253. if (tcp_is_reno(tp))
  2254. tcp_limit_reno_sacked(tp);
  2255. tcp_verify_left_out(tp);
  2256. /* Don't muck with the congestion window here.
  2257. * Reason is that we do not increase amount of _data_
  2258. * in network, but units changed and effective
  2259. * cwnd/ssthresh really reduced now.
  2260. */
  2261. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2262. tp->high_seq = tp->snd_nxt;
  2263. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2264. tp->prior_ssthresh = 0;
  2265. tp->undo_marker = 0;
  2266. tcp_set_ca_state(sk, TCP_CA_Loss);
  2267. }
  2268. tcp_xmit_retransmit_queue(sk);
  2269. }
  2270. EXPORT_SYMBOL(tcp_simple_retransmit);
  2271. void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2272. {
  2273. struct tcp_sock *tp = tcp_sk(sk);
  2274. int mib_idx;
  2275. if (tcp_is_reno(tp))
  2276. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2277. else
  2278. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2279. NET_INC_STATS(sock_net(sk), mib_idx);
  2280. tp->prior_ssthresh = 0;
  2281. tcp_init_undo(tp);
  2282. if (!tcp_in_cwnd_reduction(sk)) {
  2283. if (!ece_ack)
  2284. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2285. tcp_init_cwnd_reduction(sk);
  2286. }
  2287. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2288. }
  2289. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2290. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2291. */
  2292. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
  2293. int *rexmit)
  2294. {
  2295. struct tcp_sock *tp = tcp_sk(sk);
  2296. bool recovered = !before(tp->snd_una, tp->high_seq);
  2297. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2298. tcp_try_undo_loss(sk, false))
  2299. return;
  2300. /* The ACK (s)acks some never-retransmitted data meaning not all
  2301. * the data packets before the timeout were lost. Therefore we
  2302. * undo the congestion window and state. This is essentially
  2303. * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
  2304. * a retransmitted skb is permantly marked, we can apply such an
  2305. * operation even if F-RTO was not used.
  2306. */
  2307. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2308. tcp_try_undo_loss(sk, tp->undo_marker))
  2309. return;
  2310. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2311. if (after(tp->snd_nxt, tp->high_seq)) {
  2312. if (flag & FLAG_DATA_SACKED || is_dupack)
  2313. tp->frto = 0; /* Step 3.a. loss was real */
  2314. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2315. tp->high_seq = tp->snd_nxt;
  2316. /* Step 2.b. Try send new data (but deferred until cwnd
  2317. * is updated in tcp_ack()). Otherwise fall back to
  2318. * the conventional recovery.
  2319. */
  2320. if (!tcp_write_queue_empty(sk) &&
  2321. after(tcp_wnd_end(tp), tp->snd_nxt)) {
  2322. *rexmit = REXMIT_NEW;
  2323. return;
  2324. }
  2325. tp->frto = 0;
  2326. }
  2327. }
  2328. if (recovered) {
  2329. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2330. tcp_try_undo_recovery(sk);
  2331. return;
  2332. }
  2333. if (tcp_is_reno(tp)) {
  2334. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2335. * delivered. Lower inflight to clock out (re)tranmissions.
  2336. */
  2337. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2338. tcp_add_reno_sack(sk);
  2339. else if (flag & FLAG_SND_UNA_ADVANCED)
  2340. tcp_reset_reno_sack(tp);
  2341. }
  2342. *rexmit = REXMIT_LOST;
  2343. }
  2344. /* Undo during fast recovery after partial ACK. */
  2345. static bool tcp_try_undo_partial(struct sock *sk, const int acked)
  2346. {
  2347. struct tcp_sock *tp = tcp_sk(sk);
  2348. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2349. /* Plain luck! Hole if filled with delayed
  2350. * packet, rather than with a retransmit.
  2351. */
  2352. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2353. /* We are getting evidence that the reordering degree is higher
  2354. * than we realized. If there are no retransmits out then we
  2355. * can undo. Otherwise we clock out new packets but do not
  2356. * mark more packets lost or retransmit more.
  2357. */
  2358. if (tp->retrans_out)
  2359. return true;
  2360. if (!tcp_any_retrans_done(sk))
  2361. tp->retrans_stamp = 0;
  2362. DBGUNDO(sk, "partial recovery");
  2363. tcp_undo_cwnd_reduction(sk, true);
  2364. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2365. tcp_try_keep_open(sk);
  2366. return true;
  2367. }
  2368. return false;
  2369. }
  2370. static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
  2371. {
  2372. struct tcp_sock *tp = tcp_sk(sk);
  2373. /* Use RACK to detect loss */
  2374. if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
  2375. u32 prior_retrans = tp->retrans_out;
  2376. tcp_rack_mark_lost(sk);
  2377. if (prior_retrans > tp->retrans_out)
  2378. *ack_flag |= FLAG_LOST_RETRANS;
  2379. }
  2380. }
  2381. /* Process an event, which can update packets-in-flight not trivially.
  2382. * Main goal of this function is to calculate new estimate for left_out,
  2383. * taking into account both packets sitting in receiver's buffer and
  2384. * packets lost by network.
  2385. *
  2386. * Besides that it updates the congestion state when packet loss or ECN
  2387. * is detected. But it does not reduce the cwnd, it is done by the
  2388. * congestion control later.
  2389. *
  2390. * It does _not_ decide what to send, it is made in function
  2391. * tcp_xmit_retransmit_queue().
  2392. */
  2393. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2394. bool is_dupack, int *ack_flag, int *rexmit)
  2395. {
  2396. struct inet_connection_sock *icsk = inet_csk(sk);
  2397. struct tcp_sock *tp = tcp_sk(sk);
  2398. int fast_rexmit = 0, flag = *ack_flag;
  2399. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2400. (tcp_fackets_out(tp) > tp->reordering));
  2401. if (!tp->packets_out && tp->sacked_out)
  2402. tp->sacked_out = 0;
  2403. if (!tp->sacked_out && tp->fackets_out)
  2404. tp->fackets_out = 0;
  2405. /* Now state machine starts.
  2406. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2407. if (flag & FLAG_ECE)
  2408. tp->prior_ssthresh = 0;
  2409. /* B. In all the states check for reneging SACKs. */
  2410. if (tcp_check_sack_reneging(sk, flag))
  2411. return;
  2412. /* C. Check consistency of the current state. */
  2413. tcp_verify_left_out(tp);
  2414. /* D. Check state exit conditions. State can be terminated
  2415. * when high_seq is ACKed. */
  2416. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2417. WARN_ON(tp->retrans_out != 0);
  2418. tp->retrans_stamp = 0;
  2419. } else if (!before(tp->snd_una, tp->high_seq)) {
  2420. switch (icsk->icsk_ca_state) {
  2421. case TCP_CA_CWR:
  2422. /* CWR is to be held something *above* high_seq
  2423. * is ACKed for CWR bit to reach receiver. */
  2424. if (tp->snd_una != tp->high_seq) {
  2425. tcp_end_cwnd_reduction(sk);
  2426. tcp_set_ca_state(sk, TCP_CA_Open);
  2427. }
  2428. break;
  2429. case TCP_CA_Recovery:
  2430. if (tcp_is_reno(tp))
  2431. tcp_reset_reno_sack(tp);
  2432. if (tcp_try_undo_recovery(sk))
  2433. return;
  2434. tcp_end_cwnd_reduction(sk);
  2435. break;
  2436. }
  2437. }
  2438. /* E. Process state. */
  2439. switch (icsk->icsk_ca_state) {
  2440. case TCP_CA_Recovery:
  2441. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2442. if (tcp_is_reno(tp) && is_dupack)
  2443. tcp_add_reno_sack(sk);
  2444. } else {
  2445. if (tcp_try_undo_partial(sk, acked))
  2446. return;
  2447. /* Partial ACK arrived. Force fast retransmit. */
  2448. do_lost = tcp_is_reno(tp) ||
  2449. tcp_fackets_out(tp) > tp->reordering;
  2450. }
  2451. if (tcp_try_undo_dsack(sk)) {
  2452. tcp_try_keep_open(sk);
  2453. return;
  2454. }
  2455. tcp_rack_identify_loss(sk, ack_flag);
  2456. break;
  2457. case TCP_CA_Loss:
  2458. tcp_process_loss(sk, flag, is_dupack, rexmit);
  2459. tcp_rack_identify_loss(sk, ack_flag);
  2460. if (!(icsk->icsk_ca_state == TCP_CA_Open ||
  2461. (*ack_flag & FLAG_LOST_RETRANS)))
  2462. return;
  2463. /* Change state if cwnd is undone or retransmits are lost */
  2464. /* fall through */
  2465. default:
  2466. if (tcp_is_reno(tp)) {
  2467. if (flag & FLAG_SND_UNA_ADVANCED)
  2468. tcp_reset_reno_sack(tp);
  2469. if (is_dupack)
  2470. tcp_add_reno_sack(sk);
  2471. }
  2472. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2473. tcp_try_undo_dsack(sk);
  2474. tcp_rack_identify_loss(sk, ack_flag);
  2475. if (!tcp_time_to_recover(sk, flag)) {
  2476. tcp_try_to_open(sk, flag);
  2477. return;
  2478. }
  2479. /* MTU probe failure: don't reduce cwnd */
  2480. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2481. icsk->icsk_mtup.probe_size &&
  2482. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2483. tcp_mtup_probe_failed(sk);
  2484. /* Restores the reduction we did in tcp_mtup_probe() */
  2485. tp->snd_cwnd++;
  2486. tcp_simple_retransmit(sk);
  2487. return;
  2488. }
  2489. /* Otherwise enter Recovery state */
  2490. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2491. fast_rexmit = 1;
  2492. }
  2493. if (do_lost)
  2494. tcp_update_scoreboard(sk, fast_rexmit);
  2495. *rexmit = REXMIT_LOST;
  2496. }
  2497. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2498. {
  2499. u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
  2500. struct tcp_sock *tp = tcp_sk(sk);
  2501. minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
  2502. rtt_us ? : jiffies_to_usecs(1));
  2503. }
  2504. static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2505. long seq_rtt_us, long sack_rtt_us,
  2506. long ca_rtt_us, struct rate_sample *rs)
  2507. {
  2508. const struct tcp_sock *tp = tcp_sk(sk);
  2509. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2510. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2511. * Karn's algorithm forbids taking RTT if some retransmitted data
  2512. * is acked (RFC6298).
  2513. */
  2514. if (seq_rtt_us < 0)
  2515. seq_rtt_us = sack_rtt_us;
  2516. /* RTTM Rule: A TSecr value received in a segment is used to
  2517. * update the averaged RTT measurement only if the segment
  2518. * acknowledges some new data, i.e., only if it advances the
  2519. * left edge of the send window.
  2520. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2521. */
  2522. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2523. flag & FLAG_ACKED) {
  2524. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  2525. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  2526. seq_rtt_us = ca_rtt_us = delta_us;
  2527. }
  2528. rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
  2529. if (seq_rtt_us < 0)
  2530. return false;
  2531. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2532. * always taken together with ACK, SACK, or TS-opts. Any negative
  2533. * values will be skipped with the seq_rtt_us < 0 check above.
  2534. */
  2535. tcp_update_rtt_min(sk, ca_rtt_us);
  2536. tcp_rtt_estimator(sk, seq_rtt_us);
  2537. tcp_set_rto(sk);
  2538. /* RFC6298: only reset backoff on valid RTT measurement. */
  2539. inet_csk(sk)->icsk_backoff = 0;
  2540. return true;
  2541. }
  2542. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2543. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2544. {
  2545. struct rate_sample rs;
  2546. long rtt_us = -1L;
  2547. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
  2548. rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
  2549. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
  2550. }
  2551. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2552. {
  2553. const struct inet_connection_sock *icsk = inet_csk(sk);
  2554. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2555. tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
  2556. }
  2557. /* Restart timer after forward progress on connection.
  2558. * RFC2988 recommends to restart timer to now+rto.
  2559. */
  2560. void tcp_rearm_rto(struct sock *sk)
  2561. {
  2562. const struct inet_connection_sock *icsk = inet_csk(sk);
  2563. struct tcp_sock *tp = tcp_sk(sk);
  2564. /* If the retrans timer is currently being used by Fast Open
  2565. * for SYN-ACK retrans purpose, stay put.
  2566. */
  2567. if (tp->fastopen_rsk)
  2568. return;
  2569. if (!tp->packets_out) {
  2570. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2571. } else {
  2572. u32 rto = inet_csk(sk)->icsk_rto;
  2573. /* Offset the time elapsed after installing regular RTO */
  2574. if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
  2575. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2576. s64 delta_us = tcp_rto_delta_us(sk);
  2577. /* delta_us may not be positive if the socket is locked
  2578. * when the retrans timer fires and is rescheduled.
  2579. */
  2580. rto = usecs_to_jiffies(max_t(int, delta_us, 1));
  2581. }
  2582. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2583. TCP_RTO_MAX);
  2584. }
  2585. }
  2586. /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
  2587. static void tcp_set_xmit_timer(struct sock *sk)
  2588. {
  2589. if (!tcp_schedule_loss_probe(sk))
  2590. tcp_rearm_rto(sk);
  2591. }
  2592. /* If we get here, the whole TSO packet has not been acked. */
  2593. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2594. {
  2595. struct tcp_sock *tp = tcp_sk(sk);
  2596. u32 packets_acked;
  2597. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2598. packets_acked = tcp_skb_pcount(skb);
  2599. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2600. return 0;
  2601. packets_acked -= tcp_skb_pcount(skb);
  2602. if (packets_acked) {
  2603. BUG_ON(tcp_skb_pcount(skb) == 0);
  2604. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2605. }
  2606. return packets_acked;
  2607. }
  2608. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2609. u32 prior_snd_una)
  2610. {
  2611. const struct skb_shared_info *shinfo;
  2612. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2613. if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
  2614. return;
  2615. shinfo = skb_shinfo(skb);
  2616. if (!before(shinfo->tskey, prior_snd_una) &&
  2617. before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
  2618. tcp_skb_tsorted_save(skb) {
  2619. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2620. } tcp_skb_tsorted_restore(skb);
  2621. }
  2622. }
  2623. /* Remove acknowledged frames from the retransmission queue. If our packet
  2624. * is before the ack sequence we can discard it as it's confirmed to have
  2625. * arrived at the other end.
  2626. */
  2627. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2628. u32 prior_snd_una, int *acked,
  2629. struct tcp_sacktag_state *sack)
  2630. {
  2631. const struct inet_connection_sock *icsk = inet_csk(sk);
  2632. u64 first_ackt, last_ackt;
  2633. struct tcp_sock *tp = tcp_sk(sk);
  2634. u32 prior_sacked = tp->sacked_out;
  2635. u32 reord = tp->packets_out;
  2636. struct sk_buff *skb, *next;
  2637. bool fully_acked = true;
  2638. long sack_rtt_us = -1L;
  2639. long seq_rtt_us = -1L;
  2640. long ca_rtt_us = -1L;
  2641. u32 pkts_acked = 0;
  2642. u32 last_in_flight = 0;
  2643. bool rtt_update;
  2644. int flag = 0;
  2645. first_ackt = 0;
  2646. for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
  2647. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2648. u8 sacked = scb->sacked;
  2649. u32 acked_pcount;
  2650. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2651. /* Determine how many packets and what bytes were acked, tso and else */
  2652. if (after(scb->end_seq, tp->snd_una)) {
  2653. if (tcp_skb_pcount(skb) == 1 ||
  2654. !after(tp->snd_una, scb->seq))
  2655. break;
  2656. acked_pcount = tcp_tso_acked(sk, skb);
  2657. if (!acked_pcount)
  2658. break;
  2659. fully_acked = false;
  2660. } else {
  2661. acked_pcount = tcp_skb_pcount(skb);
  2662. }
  2663. if (unlikely(sacked & TCPCB_RETRANS)) {
  2664. if (sacked & TCPCB_SACKED_RETRANS)
  2665. tp->retrans_out -= acked_pcount;
  2666. flag |= FLAG_RETRANS_DATA_ACKED;
  2667. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2668. last_ackt = skb->skb_mstamp;
  2669. WARN_ON_ONCE(last_ackt == 0);
  2670. if (!first_ackt)
  2671. first_ackt = last_ackt;
  2672. last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
  2673. reord = min(pkts_acked, reord);
  2674. if (!after(scb->end_seq, tp->high_seq))
  2675. flag |= FLAG_ORIG_SACK_ACKED;
  2676. }
  2677. if (sacked & TCPCB_SACKED_ACKED) {
  2678. tp->sacked_out -= acked_pcount;
  2679. } else if (tcp_is_sack(tp)) {
  2680. tp->delivered += acked_pcount;
  2681. if (!tcp_skb_spurious_retrans(tp, skb))
  2682. tcp_rack_advance(tp, sacked, scb->end_seq,
  2683. skb->skb_mstamp);
  2684. }
  2685. if (sacked & TCPCB_LOST)
  2686. tp->lost_out -= acked_pcount;
  2687. tp->packets_out -= acked_pcount;
  2688. pkts_acked += acked_pcount;
  2689. tcp_rate_skb_delivered(sk, skb, sack->rate);
  2690. /* Initial outgoing SYN's get put onto the write_queue
  2691. * just like anything else we transmit. It is not
  2692. * true data, and if we misinform our callers that
  2693. * this ACK acks real data, we will erroneously exit
  2694. * connection startup slow start one packet too
  2695. * quickly. This is severely frowned upon behavior.
  2696. */
  2697. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2698. flag |= FLAG_DATA_ACKED;
  2699. } else {
  2700. flag |= FLAG_SYN_ACKED;
  2701. tp->retrans_stamp = 0;
  2702. }
  2703. if (!fully_acked)
  2704. break;
  2705. next = skb_rb_next(skb);
  2706. if (unlikely(skb == tp->retransmit_skb_hint))
  2707. tp->retransmit_skb_hint = NULL;
  2708. if (unlikely(skb == tp->lost_skb_hint))
  2709. tp->lost_skb_hint = NULL;
  2710. tcp_rtx_queue_unlink_and_free(skb, sk);
  2711. }
  2712. if (!skb)
  2713. tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
  2714. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2715. tp->snd_up = tp->snd_una;
  2716. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2717. flag |= FLAG_SACK_RENEGING;
  2718. if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2719. seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
  2720. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
  2721. }
  2722. if (sack->first_sackt) {
  2723. sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
  2724. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
  2725. }
  2726. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2727. ca_rtt_us, sack->rate);
  2728. if (flag & FLAG_ACKED) {
  2729. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2730. if (unlikely(icsk->icsk_mtup.probe_size &&
  2731. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2732. tcp_mtup_probe_success(sk);
  2733. }
  2734. if (tcp_is_reno(tp)) {
  2735. tcp_remove_reno_sacks(sk, pkts_acked);
  2736. } else {
  2737. int delta;
  2738. /* Non-retransmitted hole got filled? That's reordering */
  2739. if (reord < prior_fackets && reord <= tp->fackets_out)
  2740. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2741. delta = prior_sacked - tp->sacked_out;
  2742. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2743. }
  2744. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2745. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2746. sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
  2747. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2748. * after when the head was last (re)transmitted. Otherwise the
  2749. * timeout may continue to extend in loss recovery.
  2750. */
  2751. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2752. }
  2753. if (icsk->icsk_ca_ops->pkts_acked) {
  2754. struct ack_sample sample = { .pkts_acked = pkts_acked,
  2755. .rtt_us = sack->rate->rtt_us,
  2756. .in_flight = last_in_flight };
  2757. icsk->icsk_ca_ops->pkts_acked(sk, &sample);
  2758. }
  2759. #if FASTRETRANS_DEBUG > 0
  2760. WARN_ON((int)tp->sacked_out < 0);
  2761. WARN_ON((int)tp->lost_out < 0);
  2762. WARN_ON((int)tp->retrans_out < 0);
  2763. if (!tp->packets_out && tcp_is_sack(tp)) {
  2764. icsk = inet_csk(sk);
  2765. if (tp->lost_out) {
  2766. pr_debug("Leak l=%u %d\n",
  2767. tp->lost_out, icsk->icsk_ca_state);
  2768. tp->lost_out = 0;
  2769. }
  2770. if (tp->sacked_out) {
  2771. pr_debug("Leak s=%u %d\n",
  2772. tp->sacked_out, icsk->icsk_ca_state);
  2773. tp->sacked_out = 0;
  2774. }
  2775. if (tp->retrans_out) {
  2776. pr_debug("Leak r=%u %d\n",
  2777. tp->retrans_out, icsk->icsk_ca_state);
  2778. tp->retrans_out = 0;
  2779. }
  2780. }
  2781. #endif
  2782. *acked = pkts_acked;
  2783. return flag;
  2784. }
  2785. static void tcp_ack_probe(struct sock *sk)
  2786. {
  2787. struct inet_connection_sock *icsk = inet_csk(sk);
  2788. struct sk_buff *head = tcp_send_head(sk);
  2789. const struct tcp_sock *tp = tcp_sk(sk);
  2790. /* Was it a usable window open? */
  2791. if (!head)
  2792. return;
  2793. if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
  2794. icsk->icsk_backoff = 0;
  2795. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2796. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2797. * This function is not for random using!
  2798. */
  2799. } else {
  2800. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2801. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2802. when, TCP_RTO_MAX);
  2803. }
  2804. }
  2805. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2806. {
  2807. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2808. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2809. }
  2810. /* Decide wheather to run the increase function of congestion control. */
  2811. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2812. {
  2813. /* If reordering is high then always grow cwnd whenever data is
  2814. * delivered regardless of its ordering. Otherwise stay conservative
  2815. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2816. * new SACK or ECE mark may first advance cwnd here and later reduce
  2817. * cwnd in tcp_fastretrans_alert() based on more states.
  2818. */
  2819. if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
  2820. return flag & FLAG_FORWARD_PROGRESS;
  2821. return flag & FLAG_DATA_ACKED;
  2822. }
  2823. /* The "ultimate" congestion control function that aims to replace the rigid
  2824. * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
  2825. * It's called toward the end of processing an ACK with precise rate
  2826. * information. All transmission or retransmission are delayed afterwards.
  2827. */
  2828. static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
  2829. int flag, const struct rate_sample *rs)
  2830. {
  2831. const struct inet_connection_sock *icsk = inet_csk(sk);
  2832. if (icsk->icsk_ca_ops->cong_control) {
  2833. icsk->icsk_ca_ops->cong_control(sk, rs);
  2834. return;
  2835. }
  2836. if (tcp_in_cwnd_reduction(sk)) {
  2837. /* Reduce cwnd if state mandates */
  2838. tcp_cwnd_reduction(sk, acked_sacked, flag);
  2839. } else if (tcp_may_raise_cwnd(sk, flag)) {
  2840. /* Advance cwnd if state allows */
  2841. tcp_cong_avoid(sk, ack, acked_sacked);
  2842. }
  2843. tcp_update_pacing_rate(sk);
  2844. }
  2845. /* Check that window update is acceptable.
  2846. * The function assumes that snd_una<=ack<=snd_next.
  2847. */
  2848. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2849. const u32 ack, const u32 ack_seq,
  2850. const u32 nwin)
  2851. {
  2852. return after(ack, tp->snd_una) ||
  2853. after(ack_seq, tp->snd_wl1) ||
  2854. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2855. }
  2856. /* If we update tp->snd_una, also update tp->bytes_acked */
  2857. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2858. {
  2859. u32 delta = ack - tp->snd_una;
  2860. sock_owned_by_me((struct sock *)tp);
  2861. tp->bytes_acked += delta;
  2862. tp->snd_una = ack;
  2863. }
  2864. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2865. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2866. {
  2867. u32 delta = seq - tp->rcv_nxt;
  2868. sock_owned_by_me((struct sock *)tp);
  2869. tp->bytes_received += delta;
  2870. tp->rcv_nxt = seq;
  2871. }
  2872. /* Update our send window.
  2873. *
  2874. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2875. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2876. */
  2877. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2878. u32 ack_seq)
  2879. {
  2880. struct tcp_sock *tp = tcp_sk(sk);
  2881. int flag = 0;
  2882. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2883. if (likely(!tcp_hdr(skb)->syn))
  2884. nwin <<= tp->rx_opt.snd_wscale;
  2885. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2886. flag |= FLAG_WIN_UPDATE;
  2887. tcp_update_wl(tp, ack_seq);
  2888. if (tp->snd_wnd != nwin) {
  2889. tp->snd_wnd = nwin;
  2890. /* Note, it is the only place, where
  2891. * fast path is recovered for sending TCP.
  2892. */
  2893. tp->pred_flags = 0;
  2894. tcp_fast_path_check(sk);
  2895. if (!tcp_write_queue_empty(sk))
  2896. tcp_slow_start_after_idle_check(sk);
  2897. if (nwin > tp->max_window) {
  2898. tp->max_window = nwin;
  2899. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2900. }
  2901. }
  2902. }
  2903. tcp_snd_una_update(tp, ack);
  2904. return flag;
  2905. }
  2906. static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
  2907. u32 *last_oow_ack_time)
  2908. {
  2909. if (*last_oow_ack_time) {
  2910. s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
  2911. if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
  2912. NET_INC_STATS(net, mib_idx);
  2913. return true; /* rate-limited: don't send yet! */
  2914. }
  2915. }
  2916. *last_oow_ack_time = tcp_jiffies32;
  2917. return false; /* not rate-limited: go ahead, send dupack now! */
  2918. }
  2919. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2920. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2921. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2922. * attacks that send repeated SYNs or ACKs for the same connection. To
  2923. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2924. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2925. */
  2926. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2927. int mib_idx, u32 *last_oow_ack_time)
  2928. {
  2929. /* Data packets without SYNs are not likely part of an ACK loop. */
  2930. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2931. !tcp_hdr(skb)->syn)
  2932. return false;
  2933. return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
  2934. }
  2935. /* RFC 5961 7 [ACK Throttling] */
  2936. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2937. {
  2938. /* unprotected vars, we dont care of overwrites */
  2939. static u32 challenge_timestamp;
  2940. static unsigned int challenge_count;
  2941. struct tcp_sock *tp = tcp_sk(sk);
  2942. struct net *net = sock_net(sk);
  2943. u32 count, now;
  2944. /* First check our per-socket dupack rate limit. */
  2945. if (__tcp_oow_rate_limited(net,
  2946. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  2947. &tp->last_oow_ack_time))
  2948. return;
  2949. /* Then check host-wide RFC 5961 rate limit. */
  2950. now = jiffies / HZ;
  2951. if (now != challenge_timestamp) {
  2952. u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
  2953. u32 half = (ack_limit + 1) >> 1;
  2954. challenge_timestamp = now;
  2955. WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
  2956. }
  2957. count = READ_ONCE(challenge_count);
  2958. if (count > 0) {
  2959. WRITE_ONCE(challenge_count, count - 1);
  2960. NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
  2961. tcp_send_ack(sk);
  2962. }
  2963. }
  2964. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2965. {
  2966. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2967. tp->rx_opt.ts_recent_stamp = get_seconds();
  2968. }
  2969. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2970. {
  2971. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2972. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2973. * extra check below makes sure this can only happen
  2974. * for pure ACK frames. -DaveM
  2975. *
  2976. * Not only, also it occurs for expired timestamps.
  2977. */
  2978. if (tcp_paws_check(&tp->rx_opt, 0))
  2979. tcp_store_ts_recent(tp);
  2980. }
  2981. }
  2982. /* This routine deals with acks during a TLP episode.
  2983. * We mark the end of a TLP episode on receiving TLP dupack or when
  2984. * ack is after tlp_high_seq.
  2985. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2986. */
  2987. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2988. {
  2989. struct tcp_sock *tp = tcp_sk(sk);
  2990. if (before(ack, tp->tlp_high_seq))
  2991. return;
  2992. if (flag & FLAG_DSACKING_ACK) {
  2993. /* This DSACK means original and TLP probe arrived; no loss */
  2994. tp->tlp_high_seq = 0;
  2995. } else if (after(ack, tp->tlp_high_seq)) {
  2996. /* ACK advances: there was a loss, so reduce cwnd. Reset
  2997. * tlp_high_seq in tcp_init_cwnd_reduction()
  2998. */
  2999. tcp_init_cwnd_reduction(sk);
  3000. tcp_set_ca_state(sk, TCP_CA_CWR);
  3001. tcp_end_cwnd_reduction(sk);
  3002. tcp_try_keep_open(sk);
  3003. NET_INC_STATS(sock_net(sk),
  3004. LINUX_MIB_TCPLOSSPROBERECOVERY);
  3005. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  3006. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  3007. /* Pure dupack: original and TLP probe arrived; no loss */
  3008. tp->tlp_high_seq = 0;
  3009. }
  3010. }
  3011. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3012. {
  3013. const struct inet_connection_sock *icsk = inet_csk(sk);
  3014. if (icsk->icsk_ca_ops->in_ack_event)
  3015. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3016. }
  3017. /* Congestion control has updated the cwnd already. So if we're in
  3018. * loss recovery then now we do any new sends (for FRTO) or
  3019. * retransmits (for CA_Loss or CA_recovery) that make sense.
  3020. */
  3021. static void tcp_xmit_recovery(struct sock *sk, int rexmit)
  3022. {
  3023. struct tcp_sock *tp = tcp_sk(sk);
  3024. if (rexmit == REXMIT_NONE)
  3025. return;
  3026. if (unlikely(rexmit == 2)) {
  3027. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  3028. TCP_NAGLE_OFF);
  3029. if (after(tp->snd_nxt, tp->high_seq))
  3030. return;
  3031. tp->frto = 0;
  3032. }
  3033. tcp_xmit_retransmit_queue(sk);
  3034. }
  3035. /* This routine deals with incoming acks, but not outgoing ones. */
  3036. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3037. {
  3038. struct inet_connection_sock *icsk = inet_csk(sk);
  3039. struct tcp_sock *tp = tcp_sk(sk);
  3040. struct tcp_sacktag_state sack_state;
  3041. struct rate_sample rs = { .prior_delivered = 0 };
  3042. u32 prior_snd_una = tp->snd_una;
  3043. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3044. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3045. bool is_dupack = false;
  3046. u32 prior_fackets;
  3047. int prior_packets = tp->packets_out;
  3048. u32 delivered = tp->delivered;
  3049. u32 lost = tp->lost;
  3050. int acked = 0; /* Number of packets newly acked */
  3051. int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
  3052. sack_state.first_sackt = 0;
  3053. sack_state.rate = &rs;
  3054. /* We very likely will need to access rtx queue. */
  3055. prefetch(sk->tcp_rtx_queue.rb_node);
  3056. /* If the ack is older than previous acks
  3057. * then we can probably ignore it.
  3058. */
  3059. if (before(ack, prior_snd_una)) {
  3060. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3061. if (before(ack, prior_snd_una - tp->max_window)) {
  3062. if (!(flag & FLAG_NO_CHALLENGE_ACK))
  3063. tcp_send_challenge_ack(sk, skb);
  3064. return -1;
  3065. }
  3066. goto old_ack;
  3067. }
  3068. /* If the ack includes data we haven't sent yet, discard
  3069. * this segment (RFC793 Section 3.9).
  3070. */
  3071. if (after(ack, tp->snd_nxt))
  3072. goto invalid_ack;
  3073. if (after(ack, prior_snd_una)) {
  3074. flag |= FLAG_SND_UNA_ADVANCED;
  3075. icsk->icsk_retransmits = 0;
  3076. }
  3077. prior_fackets = tp->fackets_out;
  3078. rs.prior_in_flight = tcp_packets_in_flight(tp);
  3079. /* ts_recent update must be made after we are sure that the packet
  3080. * is in window.
  3081. */
  3082. if (flag & FLAG_UPDATE_TS_RECENT)
  3083. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3084. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3085. /* Window is constant, pure forward advance.
  3086. * No more checks are required.
  3087. * Note, we use the fact that SND.UNA>=SND.WL2.
  3088. */
  3089. tcp_update_wl(tp, ack_seq);
  3090. tcp_snd_una_update(tp, ack);
  3091. flag |= FLAG_WIN_UPDATE;
  3092. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3093. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3094. } else {
  3095. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3096. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3097. flag |= FLAG_DATA;
  3098. else
  3099. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3100. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3101. if (TCP_SKB_CB(skb)->sacked)
  3102. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3103. &sack_state);
  3104. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3105. flag |= FLAG_ECE;
  3106. ack_ev_flags |= CA_ACK_ECE;
  3107. }
  3108. if (flag & FLAG_WIN_UPDATE)
  3109. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3110. tcp_in_ack_event(sk, ack_ev_flags);
  3111. }
  3112. /* We passed data and got it acked, remove any soft error
  3113. * log. Something worked...
  3114. */
  3115. sk->sk_err_soft = 0;
  3116. icsk->icsk_probes_out = 0;
  3117. tp->rcv_tstamp = tcp_jiffies32;
  3118. if (!prior_packets)
  3119. goto no_queue;
  3120. /* See if we can take anything off of the retransmit queue. */
  3121. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
  3122. &sack_state);
  3123. tcp_rack_update_reo_wnd(sk, &rs);
  3124. if (tp->tlp_high_seq)
  3125. tcp_process_tlp_ack(sk, ack, flag);
  3126. /* If needed, reset TLP/RTO timer; RACK may later override this. */
  3127. if (flag & FLAG_SET_XMIT_TIMER)
  3128. tcp_set_xmit_timer(sk);
  3129. if (tcp_ack_is_dubious(sk, flag)) {
  3130. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3131. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3132. }
  3133. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3134. sk_dst_confirm(sk);
  3135. delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
  3136. lost = tp->lost - lost; /* freshly marked lost */
  3137. tcp_rate_gen(sk, delivered, lost, sack_state.rate);
  3138. tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
  3139. tcp_xmit_recovery(sk, rexmit);
  3140. return 1;
  3141. no_queue:
  3142. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3143. if (flag & FLAG_DSACKING_ACK)
  3144. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3145. /* If this ack opens up a zero window, clear backoff. It was
  3146. * being used to time the probes, and is probably far higher than
  3147. * it needs to be for normal retransmission.
  3148. */
  3149. tcp_ack_probe(sk);
  3150. if (tp->tlp_high_seq)
  3151. tcp_process_tlp_ack(sk, ack, flag);
  3152. return 1;
  3153. invalid_ack:
  3154. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3155. return -1;
  3156. old_ack:
  3157. /* If data was SACKed, tag it and see if we should send more data.
  3158. * If data was DSACKed, see if we can undo a cwnd reduction.
  3159. */
  3160. if (TCP_SKB_CB(skb)->sacked) {
  3161. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3162. &sack_state);
  3163. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3164. tcp_xmit_recovery(sk, rexmit);
  3165. }
  3166. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3167. return 0;
  3168. }
  3169. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3170. bool syn, struct tcp_fastopen_cookie *foc,
  3171. bool exp_opt)
  3172. {
  3173. /* Valid only in SYN or SYN-ACK with an even length. */
  3174. if (!foc || !syn || len < 0 || (len & 1))
  3175. return;
  3176. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3177. len <= TCP_FASTOPEN_COOKIE_MAX)
  3178. memcpy(foc->val, cookie, len);
  3179. else if (len != 0)
  3180. len = -1;
  3181. foc->len = len;
  3182. foc->exp = exp_opt;
  3183. }
  3184. static void smc_parse_options(const struct tcphdr *th,
  3185. struct tcp_options_received *opt_rx,
  3186. const unsigned char *ptr,
  3187. int opsize)
  3188. {
  3189. #if IS_ENABLED(CONFIG_SMC)
  3190. if (static_branch_unlikely(&tcp_have_smc)) {
  3191. if (th->syn && !(opsize & 1) &&
  3192. opsize >= TCPOLEN_EXP_SMC_BASE &&
  3193. get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
  3194. opt_rx->smc_ok = 1;
  3195. }
  3196. #endif
  3197. }
  3198. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3199. * But, this can also be called on packets in the established flow when
  3200. * the fast version below fails.
  3201. */
  3202. void tcp_parse_options(const struct net *net,
  3203. const struct sk_buff *skb,
  3204. struct tcp_options_received *opt_rx, int estab,
  3205. struct tcp_fastopen_cookie *foc)
  3206. {
  3207. const unsigned char *ptr;
  3208. const struct tcphdr *th = tcp_hdr(skb);
  3209. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3210. ptr = (const unsigned char *)(th + 1);
  3211. opt_rx->saw_tstamp = 0;
  3212. while (length > 0) {
  3213. int opcode = *ptr++;
  3214. int opsize;
  3215. switch (opcode) {
  3216. case TCPOPT_EOL:
  3217. return;
  3218. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3219. length--;
  3220. continue;
  3221. default:
  3222. opsize = *ptr++;
  3223. if (opsize < 2) /* "silly options" */
  3224. return;
  3225. if (opsize > length)
  3226. return; /* don't parse partial options */
  3227. switch (opcode) {
  3228. case TCPOPT_MSS:
  3229. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3230. u16 in_mss = get_unaligned_be16(ptr);
  3231. if (in_mss) {
  3232. if (opt_rx->user_mss &&
  3233. opt_rx->user_mss < in_mss)
  3234. in_mss = opt_rx->user_mss;
  3235. opt_rx->mss_clamp = in_mss;
  3236. }
  3237. }
  3238. break;
  3239. case TCPOPT_WINDOW:
  3240. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3241. !estab && net->ipv4.sysctl_tcp_window_scaling) {
  3242. __u8 snd_wscale = *(__u8 *)ptr;
  3243. opt_rx->wscale_ok = 1;
  3244. if (snd_wscale > TCP_MAX_WSCALE) {
  3245. net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
  3246. __func__,
  3247. snd_wscale,
  3248. TCP_MAX_WSCALE);
  3249. snd_wscale = TCP_MAX_WSCALE;
  3250. }
  3251. opt_rx->snd_wscale = snd_wscale;
  3252. }
  3253. break;
  3254. case TCPOPT_TIMESTAMP:
  3255. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3256. ((estab && opt_rx->tstamp_ok) ||
  3257. (!estab && net->ipv4.sysctl_tcp_timestamps))) {
  3258. opt_rx->saw_tstamp = 1;
  3259. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3260. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3261. }
  3262. break;
  3263. case TCPOPT_SACK_PERM:
  3264. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3265. !estab && net->ipv4.sysctl_tcp_sack) {
  3266. opt_rx->sack_ok = TCP_SACK_SEEN;
  3267. tcp_sack_reset(opt_rx);
  3268. }
  3269. break;
  3270. case TCPOPT_SACK:
  3271. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3272. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3273. opt_rx->sack_ok) {
  3274. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3275. }
  3276. break;
  3277. #ifdef CONFIG_TCP_MD5SIG
  3278. case TCPOPT_MD5SIG:
  3279. /*
  3280. * The MD5 Hash has already been
  3281. * checked (see tcp_v{4,6}_do_rcv()).
  3282. */
  3283. break;
  3284. #endif
  3285. case TCPOPT_FASTOPEN:
  3286. tcp_parse_fastopen_option(
  3287. opsize - TCPOLEN_FASTOPEN_BASE,
  3288. ptr, th->syn, foc, false);
  3289. break;
  3290. case TCPOPT_EXP:
  3291. /* Fast Open option shares code 254 using a
  3292. * 16 bits magic number.
  3293. */
  3294. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3295. get_unaligned_be16(ptr) ==
  3296. TCPOPT_FASTOPEN_MAGIC)
  3297. tcp_parse_fastopen_option(opsize -
  3298. TCPOLEN_EXP_FASTOPEN_BASE,
  3299. ptr + 2, th->syn, foc, true);
  3300. else
  3301. smc_parse_options(th, opt_rx, ptr,
  3302. opsize);
  3303. break;
  3304. }
  3305. ptr += opsize-2;
  3306. length -= opsize;
  3307. }
  3308. }
  3309. }
  3310. EXPORT_SYMBOL(tcp_parse_options);
  3311. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3312. {
  3313. const __be32 *ptr = (const __be32 *)(th + 1);
  3314. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3315. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3316. tp->rx_opt.saw_tstamp = 1;
  3317. ++ptr;
  3318. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3319. ++ptr;
  3320. if (*ptr)
  3321. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3322. else
  3323. tp->rx_opt.rcv_tsecr = 0;
  3324. return true;
  3325. }
  3326. return false;
  3327. }
  3328. /* Fast parse options. This hopes to only see timestamps.
  3329. * If it is wrong it falls back on tcp_parse_options().
  3330. */
  3331. static bool tcp_fast_parse_options(const struct net *net,
  3332. const struct sk_buff *skb,
  3333. const struct tcphdr *th, struct tcp_sock *tp)
  3334. {
  3335. /* In the spirit of fast parsing, compare doff directly to constant
  3336. * values. Because equality is used, short doff can be ignored here.
  3337. */
  3338. if (th->doff == (sizeof(*th) / 4)) {
  3339. tp->rx_opt.saw_tstamp = 0;
  3340. return false;
  3341. } else if (tp->rx_opt.tstamp_ok &&
  3342. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3343. if (tcp_parse_aligned_timestamp(tp, th))
  3344. return true;
  3345. }
  3346. tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
  3347. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3348. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3349. return true;
  3350. }
  3351. #ifdef CONFIG_TCP_MD5SIG
  3352. /*
  3353. * Parse MD5 Signature option
  3354. */
  3355. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3356. {
  3357. int length = (th->doff << 2) - sizeof(*th);
  3358. const u8 *ptr = (const u8 *)(th + 1);
  3359. /* If the TCP option is too short, we can short cut */
  3360. if (length < TCPOLEN_MD5SIG)
  3361. return NULL;
  3362. while (length > 0) {
  3363. int opcode = *ptr++;
  3364. int opsize;
  3365. switch (opcode) {
  3366. case TCPOPT_EOL:
  3367. return NULL;
  3368. case TCPOPT_NOP:
  3369. length--;
  3370. continue;
  3371. default:
  3372. opsize = *ptr++;
  3373. if (opsize < 2 || opsize > length)
  3374. return NULL;
  3375. if (opcode == TCPOPT_MD5SIG)
  3376. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3377. }
  3378. ptr += opsize - 2;
  3379. length -= opsize;
  3380. }
  3381. return NULL;
  3382. }
  3383. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3384. #endif
  3385. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3386. *
  3387. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3388. * it can pass through stack. So, the following predicate verifies that
  3389. * this segment is not used for anything but congestion avoidance or
  3390. * fast retransmit. Moreover, we even are able to eliminate most of such
  3391. * second order effects, if we apply some small "replay" window (~RTO)
  3392. * to timestamp space.
  3393. *
  3394. * All these measures still do not guarantee that we reject wrapped ACKs
  3395. * on networks with high bandwidth, when sequence space is recycled fastly,
  3396. * but it guarantees that such events will be very rare and do not affect
  3397. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3398. * buggy extension.
  3399. *
  3400. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3401. * states that events when retransmit arrives after original data are rare.
  3402. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3403. * the biggest problem on large power networks even with minor reordering.
  3404. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3405. * up to bandwidth of 18Gigabit/sec. 8) ]
  3406. */
  3407. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3408. {
  3409. const struct tcp_sock *tp = tcp_sk(sk);
  3410. const struct tcphdr *th = tcp_hdr(skb);
  3411. u32 seq = TCP_SKB_CB(skb)->seq;
  3412. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3413. return (/* 1. Pure ACK with correct sequence number. */
  3414. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3415. /* 2. ... and duplicate ACK. */
  3416. ack == tp->snd_una &&
  3417. /* 3. ... and does not update window. */
  3418. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3419. /* 4. ... and sits in replay window. */
  3420. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3421. }
  3422. static inline bool tcp_paws_discard(const struct sock *sk,
  3423. const struct sk_buff *skb)
  3424. {
  3425. const struct tcp_sock *tp = tcp_sk(sk);
  3426. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3427. !tcp_disordered_ack(sk, skb);
  3428. }
  3429. /* Check segment sequence number for validity.
  3430. *
  3431. * Segment controls are considered valid, if the segment
  3432. * fits to the window after truncation to the window. Acceptability
  3433. * of data (and SYN, FIN, of course) is checked separately.
  3434. * See tcp_data_queue(), for example.
  3435. *
  3436. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3437. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3438. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3439. * (borrowed from freebsd)
  3440. */
  3441. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3442. {
  3443. return !before(end_seq, tp->rcv_wup) &&
  3444. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3445. }
  3446. /* When we get a reset we do this. */
  3447. void tcp_reset(struct sock *sk)
  3448. {
  3449. trace_tcp_receive_reset(sk);
  3450. /* We want the right error as BSD sees it (and indeed as we do). */
  3451. switch (sk->sk_state) {
  3452. case TCP_SYN_SENT:
  3453. sk->sk_err = ECONNREFUSED;
  3454. break;
  3455. case TCP_CLOSE_WAIT:
  3456. sk->sk_err = EPIPE;
  3457. break;
  3458. case TCP_CLOSE:
  3459. return;
  3460. default:
  3461. sk->sk_err = ECONNRESET;
  3462. }
  3463. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3464. smp_wmb();
  3465. tcp_done(sk);
  3466. if (!sock_flag(sk, SOCK_DEAD))
  3467. sk->sk_error_report(sk);
  3468. }
  3469. /*
  3470. * Process the FIN bit. This now behaves as it is supposed to work
  3471. * and the FIN takes effect when it is validly part of sequence
  3472. * space. Not before when we get holes.
  3473. *
  3474. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3475. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3476. * TIME-WAIT)
  3477. *
  3478. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3479. * close and we go into CLOSING (and later onto TIME-WAIT)
  3480. *
  3481. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3482. */
  3483. void tcp_fin(struct sock *sk)
  3484. {
  3485. struct tcp_sock *tp = tcp_sk(sk);
  3486. inet_csk_schedule_ack(sk);
  3487. sk->sk_shutdown |= RCV_SHUTDOWN;
  3488. sock_set_flag(sk, SOCK_DONE);
  3489. switch (sk->sk_state) {
  3490. case TCP_SYN_RECV:
  3491. case TCP_ESTABLISHED:
  3492. /* Move to CLOSE_WAIT */
  3493. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3494. inet_csk(sk)->icsk_ack.pingpong = 1;
  3495. break;
  3496. case TCP_CLOSE_WAIT:
  3497. case TCP_CLOSING:
  3498. /* Received a retransmission of the FIN, do
  3499. * nothing.
  3500. */
  3501. break;
  3502. case TCP_LAST_ACK:
  3503. /* RFC793: Remain in the LAST-ACK state. */
  3504. break;
  3505. case TCP_FIN_WAIT1:
  3506. /* This case occurs when a simultaneous close
  3507. * happens, we must ack the received FIN and
  3508. * enter the CLOSING state.
  3509. */
  3510. tcp_send_ack(sk);
  3511. tcp_set_state(sk, TCP_CLOSING);
  3512. break;
  3513. case TCP_FIN_WAIT2:
  3514. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3515. tcp_send_ack(sk);
  3516. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3517. break;
  3518. default:
  3519. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3520. * cases we should never reach this piece of code.
  3521. */
  3522. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3523. __func__, sk->sk_state);
  3524. break;
  3525. }
  3526. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3527. * Probably, we should reset in this case. For now drop them.
  3528. */
  3529. skb_rbtree_purge(&tp->out_of_order_queue);
  3530. if (tcp_is_sack(tp))
  3531. tcp_sack_reset(&tp->rx_opt);
  3532. sk_mem_reclaim(sk);
  3533. if (!sock_flag(sk, SOCK_DEAD)) {
  3534. sk->sk_state_change(sk);
  3535. /* Do not send POLL_HUP for half duplex close. */
  3536. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3537. sk->sk_state == TCP_CLOSE)
  3538. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3539. else
  3540. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3541. }
  3542. }
  3543. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3544. u32 end_seq)
  3545. {
  3546. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3547. if (before(seq, sp->start_seq))
  3548. sp->start_seq = seq;
  3549. if (after(end_seq, sp->end_seq))
  3550. sp->end_seq = end_seq;
  3551. return true;
  3552. }
  3553. return false;
  3554. }
  3555. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3556. {
  3557. struct tcp_sock *tp = tcp_sk(sk);
  3558. if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
  3559. int mib_idx;
  3560. if (before(seq, tp->rcv_nxt))
  3561. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3562. else
  3563. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3564. NET_INC_STATS(sock_net(sk), mib_idx);
  3565. tp->rx_opt.dsack = 1;
  3566. tp->duplicate_sack[0].start_seq = seq;
  3567. tp->duplicate_sack[0].end_seq = end_seq;
  3568. }
  3569. }
  3570. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3571. {
  3572. struct tcp_sock *tp = tcp_sk(sk);
  3573. if (!tp->rx_opt.dsack)
  3574. tcp_dsack_set(sk, seq, end_seq);
  3575. else
  3576. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3577. }
  3578. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3579. {
  3580. struct tcp_sock *tp = tcp_sk(sk);
  3581. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3582. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3583. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3584. tcp_enter_quickack_mode(sk);
  3585. if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
  3586. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3587. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3588. end_seq = tp->rcv_nxt;
  3589. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3590. }
  3591. }
  3592. tcp_send_ack(sk);
  3593. }
  3594. /* These routines update the SACK block as out-of-order packets arrive or
  3595. * in-order packets close up the sequence space.
  3596. */
  3597. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3598. {
  3599. int this_sack;
  3600. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3601. struct tcp_sack_block *swalk = sp + 1;
  3602. /* See if the recent change to the first SACK eats into
  3603. * or hits the sequence space of other SACK blocks, if so coalesce.
  3604. */
  3605. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3606. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3607. int i;
  3608. /* Zap SWALK, by moving every further SACK up by one slot.
  3609. * Decrease num_sacks.
  3610. */
  3611. tp->rx_opt.num_sacks--;
  3612. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3613. sp[i] = sp[i + 1];
  3614. continue;
  3615. }
  3616. this_sack++, swalk++;
  3617. }
  3618. }
  3619. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3620. {
  3621. struct tcp_sock *tp = tcp_sk(sk);
  3622. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3623. int cur_sacks = tp->rx_opt.num_sacks;
  3624. int this_sack;
  3625. if (!cur_sacks)
  3626. goto new_sack;
  3627. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3628. if (tcp_sack_extend(sp, seq, end_seq)) {
  3629. /* Rotate this_sack to the first one. */
  3630. for (; this_sack > 0; this_sack--, sp--)
  3631. swap(*sp, *(sp - 1));
  3632. if (cur_sacks > 1)
  3633. tcp_sack_maybe_coalesce(tp);
  3634. return;
  3635. }
  3636. }
  3637. /* Could not find an adjacent existing SACK, build a new one,
  3638. * put it at the front, and shift everyone else down. We
  3639. * always know there is at least one SACK present already here.
  3640. *
  3641. * If the sack array is full, forget about the last one.
  3642. */
  3643. if (this_sack >= TCP_NUM_SACKS) {
  3644. this_sack--;
  3645. tp->rx_opt.num_sacks--;
  3646. sp--;
  3647. }
  3648. for (; this_sack > 0; this_sack--, sp--)
  3649. *sp = *(sp - 1);
  3650. new_sack:
  3651. /* Build the new head SACK, and we're done. */
  3652. sp->start_seq = seq;
  3653. sp->end_seq = end_seq;
  3654. tp->rx_opt.num_sacks++;
  3655. }
  3656. /* RCV.NXT advances, some SACKs should be eaten. */
  3657. static void tcp_sack_remove(struct tcp_sock *tp)
  3658. {
  3659. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3660. int num_sacks = tp->rx_opt.num_sacks;
  3661. int this_sack;
  3662. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3663. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3664. tp->rx_opt.num_sacks = 0;
  3665. return;
  3666. }
  3667. for (this_sack = 0; this_sack < num_sacks;) {
  3668. /* Check if the start of the sack is covered by RCV.NXT. */
  3669. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3670. int i;
  3671. /* RCV.NXT must cover all the block! */
  3672. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3673. /* Zap this SACK, by moving forward any other SACKS. */
  3674. for (i = this_sack+1; i < num_sacks; i++)
  3675. tp->selective_acks[i-1] = tp->selective_acks[i];
  3676. num_sacks--;
  3677. continue;
  3678. }
  3679. this_sack++;
  3680. sp++;
  3681. }
  3682. tp->rx_opt.num_sacks = num_sacks;
  3683. }
  3684. /**
  3685. * tcp_try_coalesce - try to merge skb to prior one
  3686. * @sk: socket
  3687. * @dest: destination queue
  3688. * @to: prior buffer
  3689. * @from: buffer to add in queue
  3690. * @fragstolen: pointer to boolean
  3691. *
  3692. * Before queueing skb @from after @to, try to merge them
  3693. * to reduce overall memory use and queue lengths, if cost is small.
  3694. * Packets in ofo or receive queues can stay a long time.
  3695. * Better try to coalesce them right now to avoid future collapses.
  3696. * Returns true if caller should free @from instead of queueing it
  3697. */
  3698. static bool tcp_try_coalesce(struct sock *sk,
  3699. struct sk_buff *to,
  3700. struct sk_buff *from,
  3701. bool *fragstolen)
  3702. {
  3703. int delta;
  3704. *fragstolen = false;
  3705. /* Its possible this segment overlaps with prior segment in queue */
  3706. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3707. return false;
  3708. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3709. return false;
  3710. atomic_add(delta, &sk->sk_rmem_alloc);
  3711. sk_mem_charge(sk, delta);
  3712. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3713. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3714. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3715. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3716. if (TCP_SKB_CB(from)->has_rxtstamp) {
  3717. TCP_SKB_CB(to)->has_rxtstamp = true;
  3718. to->tstamp = from->tstamp;
  3719. }
  3720. return true;
  3721. }
  3722. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3723. {
  3724. sk_drops_add(sk, skb);
  3725. __kfree_skb(skb);
  3726. }
  3727. /* This one checks to see if we can put data from the
  3728. * out_of_order queue into the receive_queue.
  3729. */
  3730. static void tcp_ofo_queue(struct sock *sk)
  3731. {
  3732. struct tcp_sock *tp = tcp_sk(sk);
  3733. __u32 dsack_high = tp->rcv_nxt;
  3734. bool fin, fragstolen, eaten;
  3735. struct sk_buff *skb, *tail;
  3736. struct rb_node *p;
  3737. p = rb_first(&tp->out_of_order_queue);
  3738. while (p) {
  3739. skb = rb_to_skb(p);
  3740. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3741. break;
  3742. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3743. __u32 dsack = dsack_high;
  3744. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3745. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3746. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3747. }
  3748. p = rb_next(p);
  3749. rb_erase(&skb->rbnode, &tp->out_of_order_queue);
  3750. if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
  3751. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3752. tcp_drop(sk, skb);
  3753. continue;
  3754. }
  3755. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3756. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3757. TCP_SKB_CB(skb)->end_seq);
  3758. tail = skb_peek_tail(&sk->sk_receive_queue);
  3759. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3760. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3761. fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
  3762. if (!eaten)
  3763. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3764. else
  3765. kfree_skb_partial(skb, fragstolen);
  3766. if (unlikely(fin)) {
  3767. tcp_fin(sk);
  3768. /* tcp_fin() purges tp->out_of_order_queue,
  3769. * so we must end this loop right now.
  3770. */
  3771. break;
  3772. }
  3773. }
  3774. }
  3775. static bool tcp_prune_ofo_queue(struct sock *sk);
  3776. static int tcp_prune_queue(struct sock *sk);
  3777. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3778. unsigned int size)
  3779. {
  3780. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3781. !sk_rmem_schedule(sk, skb, size)) {
  3782. if (tcp_prune_queue(sk) < 0)
  3783. return -1;
  3784. while (!sk_rmem_schedule(sk, skb, size)) {
  3785. if (!tcp_prune_ofo_queue(sk))
  3786. return -1;
  3787. }
  3788. }
  3789. return 0;
  3790. }
  3791. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3792. {
  3793. struct tcp_sock *tp = tcp_sk(sk);
  3794. struct rb_node **p, *parent;
  3795. struct sk_buff *skb1;
  3796. u32 seq, end_seq;
  3797. bool fragstolen;
  3798. tcp_ecn_check_ce(tp, skb);
  3799. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3800. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3801. tcp_drop(sk, skb);
  3802. return;
  3803. }
  3804. /* Disable header prediction. */
  3805. tp->pred_flags = 0;
  3806. inet_csk_schedule_ack(sk);
  3807. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3808. seq = TCP_SKB_CB(skb)->seq;
  3809. end_seq = TCP_SKB_CB(skb)->end_seq;
  3810. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3811. tp->rcv_nxt, seq, end_seq);
  3812. p = &tp->out_of_order_queue.rb_node;
  3813. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3814. /* Initial out of order segment, build 1 SACK. */
  3815. if (tcp_is_sack(tp)) {
  3816. tp->rx_opt.num_sacks = 1;
  3817. tp->selective_acks[0].start_seq = seq;
  3818. tp->selective_acks[0].end_seq = end_seq;
  3819. }
  3820. rb_link_node(&skb->rbnode, NULL, p);
  3821. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3822. tp->ooo_last_skb = skb;
  3823. goto end;
  3824. }
  3825. /* In the typical case, we are adding an skb to the end of the list.
  3826. * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
  3827. */
  3828. if (tcp_try_coalesce(sk, tp->ooo_last_skb,
  3829. skb, &fragstolen)) {
  3830. coalesce_done:
  3831. tcp_grow_window(sk, skb);
  3832. kfree_skb_partial(skb, fragstolen);
  3833. skb = NULL;
  3834. goto add_sack;
  3835. }
  3836. /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
  3837. if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
  3838. parent = &tp->ooo_last_skb->rbnode;
  3839. p = &parent->rb_right;
  3840. goto insert;
  3841. }
  3842. /* Find place to insert this segment. Handle overlaps on the way. */
  3843. parent = NULL;
  3844. while (*p) {
  3845. parent = *p;
  3846. skb1 = rb_to_skb(parent);
  3847. if (before(seq, TCP_SKB_CB(skb1)->seq)) {
  3848. p = &parent->rb_left;
  3849. continue;
  3850. }
  3851. if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3852. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3853. /* All the bits are present. Drop. */
  3854. NET_INC_STATS(sock_net(sk),
  3855. LINUX_MIB_TCPOFOMERGE);
  3856. __kfree_skb(skb);
  3857. skb = NULL;
  3858. tcp_dsack_set(sk, seq, end_seq);
  3859. goto add_sack;
  3860. }
  3861. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3862. /* Partial overlap. */
  3863. tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
  3864. } else {
  3865. /* skb's seq == skb1's seq and skb covers skb1.
  3866. * Replace skb1 with skb.
  3867. */
  3868. rb_replace_node(&skb1->rbnode, &skb->rbnode,
  3869. &tp->out_of_order_queue);
  3870. tcp_dsack_extend(sk,
  3871. TCP_SKB_CB(skb1)->seq,
  3872. TCP_SKB_CB(skb1)->end_seq);
  3873. NET_INC_STATS(sock_net(sk),
  3874. LINUX_MIB_TCPOFOMERGE);
  3875. __kfree_skb(skb1);
  3876. goto merge_right;
  3877. }
  3878. } else if (tcp_try_coalesce(sk, skb1,
  3879. skb, &fragstolen)) {
  3880. goto coalesce_done;
  3881. }
  3882. p = &parent->rb_right;
  3883. }
  3884. insert:
  3885. /* Insert segment into RB tree. */
  3886. rb_link_node(&skb->rbnode, parent, p);
  3887. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3888. merge_right:
  3889. /* Remove other segments covered by skb. */
  3890. while ((skb1 = skb_rb_next(skb)) != NULL) {
  3891. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3892. break;
  3893. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3894. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3895. end_seq);
  3896. break;
  3897. }
  3898. rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
  3899. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3900. TCP_SKB_CB(skb1)->end_seq);
  3901. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3902. tcp_drop(sk, skb1);
  3903. }
  3904. /* If there is no skb after us, we are the last_skb ! */
  3905. if (!skb1)
  3906. tp->ooo_last_skb = skb;
  3907. add_sack:
  3908. if (tcp_is_sack(tp))
  3909. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3910. end:
  3911. if (skb) {
  3912. tcp_grow_window(sk, skb);
  3913. skb_condense(skb);
  3914. skb_set_owner_r(skb, sk);
  3915. }
  3916. }
  3917. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3918. bool *fragstolen)
  3919. {
  3920. int eaten;
  3921. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3922. __skb_pull(skb, hdrlen);
  3923. eaten = (tail &&
  3924. tcp_try_coalesce(sk, tail,
  3925. skb, fragstolen)) ? 1 : 0;
  3926. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3927. if (!eaten) {
  3928. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3929. skb_set_owner_r(skb, sk);
  3930. }
  3931. return eaten;
  3932. }
  3933. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3934. {
  3935. struct sk_buff *skb;
  3936. int err = -ENOMEM;
  3937. int data_len = 0;
  3938. bool fragstolen;
  3939. if (size == 0)
  3940. return 0;
  3941. if (size > PAGE_SIZE) {
  3942. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  3943. data_len = npages << PAGE_SHIFT;
  3944. size = data_len + (size & ~PAGE_MASK);
  3945. }
  3946. skb = alloc_skb_with_frags(size - data_len, data_len,
  3947. PAGE_ALLOC_COSTLY_ORDER,
  3948. &err, sk->sk_allocation);
  3949. if (!skb)
  3950. goto err;
  3951. skb_put(skb, size - data_len);
  3952. skb->data_len = data_len;
  3953. skb->len = size;
  3954. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3955. goto err_free;
  3956. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  3957. if (err)
  3958. goto err_free;
  3959. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3960. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3961. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3962. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3963. WARN_ON_ONCE(fragstolen); /* should not happen */
  3964. __kfree_skb(skb);
  3965. }
  3966. return size;
  3967. err_free:
  3968. kfree_skb(skb);
  3969. err:
  3970. return err;
  3971. }
  3972. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3973. {
  3974. struct tcp_sock *tp = tcp_sk(sk);
  3975. bool fragstolen;
  3976. int eaten;
  3977. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  3978. __kfree_skb(skb);
  3979. return;
  3980. }
  3981. skb_dst_drop(skb);
  3982. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3983. tcp_ecn_accept_cwr(tp, skb);
  3984. tp->rx_opt.dsack = 0;
  3985. /* Queue data for delivery to the user.
  3986. * Packets in sequence go to the receive queue.
  3987. * Out of sequence packets to the out_of_order_queue.
  3988. */
  3989. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3990. if (tcp_receive_window(tp) == 0)
  3991. goto out_of_window;
  3992. /* Ok. In sequence. In window. */
  3993. queue_and_out:
  3994. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  3995. sk_forced_mem_schedule(sk, skb->truesize);
  3996. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3997. goto drop;
  3998. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3999. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4000. if (skb->len)
  4001. tcp_event_data_recv(sk, skb);
  4002. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  4003. tcp_fin(sk);
  4004. if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  4005. tcp_ofo_queue(sk);
  4006. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4007. * gap in queue is filled.
  4008. */
  4009. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4010. inet_csk(sk)->icsk_ack.pingpong = 0;
  4011. }
  4012. if (tp->rx_opt.num_sacks)
  4013. tcp_sack_remove(tp);
  4014. tcp_fast_path_check(sk);
  4015. if (eaten > 0)
  4016. kfree_skb_partial(skb, fragstolen);
  4017. if (!sock_flag(sk, SOCK_DEAD))
  4018. sk->sk_data_ready(sk);
  4019. return;
  4020. }
  4021. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4022. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4023. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4024. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4025. out_of_window:
  4026. tcp_enter_quickack_mode(sk);
  4027. inet_csk_schedule_ack(sk);
  4028. drop:
  4029. tcp_drop(sk, skb);
  4030. return;
  4031. }
  4032. /* Out of window. F.e. zero window probe. */
  4033. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4034. goto out_of_window;
  4035. tcp_enter_quickack_mode(sk);
  4036. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4037. /* Partial packet, seq < rcv_next < end_seq */
  4038. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4039. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4040. TCP_SKB_CB(skb)->end_seq);
  4041. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4042. /* If window is closed, drop tail of packet. But after
  4043. * remembering D-SACK for its head made in previous line.
  4044. */
  4045. if (!tcp_receive_window(tp))
  4046. goto out_of_window;
  4047. goto queue_and_out;
  4048. }
  4049. tcp_data_queue_ofo(sk, skb);
  4050. }
  4051. static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
  4052. {
  4053. if (list)
  4054. return !skb_queue_is_last(list, skb) ? skb->next : NULL;
  4055. return skb_rb_next(skb);
  4056. }
  4057. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4058. struct sk_buff_head *list,
  4059. struct rb_root *root)
  4060. {
  4061. struct sk_buff *next = tcp_skb_next(skb, list);
  4062. if (list)
  4063. __skb_unlink(skb, list);
  4064. else
  4065. rb_erase(&skb->rbnode, root);
  4066. __kfree_skb(skb);
  4067. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4068. return next;
  4069. }
  4070. /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
  4071. void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
  4072. {
  4073. struct rb_node **p = &root->rb_node;
  4074. struct rb_node *parent = NULL;
  4075. struct sk_buff *skb1;
  4076. while (*p) {
  4077. parent = *p;
  4078. skb1 = rb_to_skb(parent);
  4079. if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
  4080. p = &parent->rb_left;
  4081. else
  4082. p = &parent->rb_right;
  4083. }
  4084. rb_link_node(&skb->rbnode, parent, p);
  4085. rb_insert_color(&skb->rbnode, root);
  4086. }
  4087. /* Collapse contiguous sequence of skbs head..tail with
  4088. * sequence numbers start..end.
  4089. *
  4090. * If tail is NULL, this means until the end of the queue.
  4091. *
  4092. * Segments with FIN/SYN are not collapsed (only because this
  4093. * simplifies code)
  4094. */
  4095. static void
  4096. tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
  4097. struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
  4098. {
  4099. struct sk_buff *skb = head, *n;
  4100. struct sk_buff_head tmp;
  4101. bool end_of_skbs;
  4102. /* First, check that queue is collapsible and find
  4103. * the point where collapsing can be useful.
  4104. */
  4105. restart:
  4106. for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
  4107. n = tcp_skb_next(skb, list);
  4108. /* No new bits? It is possible on ofo queue. */
  4109. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4110. skb = tcp_collapse_one(sk, skb, list, root);
  4111. if (!skb)
  4112. break;
  4113. goto restart;
  4114. }
  4115. /* The first skb to collapse is:
  4116. * - not SYN/FIN and
  4117. * - bloated or contains data before "start" or
  4118. * overlaps to the next one.
  4119. */
  4120. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4121. (tcp_win_from_space(sk, skb->truesize) > skb->len ||
  4122. before(TCP_SKB_CB(skb)->seq, start))) {
  4123. end_of_skbs = false;
  4124. break;
  4125. }
  4126. if (n && n != tail &&
  4127. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
  4128. end_of_skbs = false;
  4129. break;
  4130. }
  4131. /* Decided to skip this, advance start seq. */
  4132. start = TCP_SKB_CB(skb)->end_seq;
  4133. }
  4134. if (end_of_skbs ||
  4135. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4136. return;
  4137. __skb_queue_head_init(&tmp);
  4138. while (before(start, end)) {
  4139. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4140. struct sk_buff *nskb;
  4141. nskb = alloc_skb(copy, GFP_ATOMIC);
  4142. if (!nskb)
  4143. break;
  4144. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4145. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4146. if (list)
  4147. __skb_queue_before(list, skb, nskb);
  4148. else
  4149. __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
  4150. skb_set_owner_r(nskb, sk);
  4151. /* Copy data, releasing collapsed skbs. */
  4152. while (copy > 0) {
  4153. int offset = start - TCP_SKB_CB(skb)->seq;
  4154. int size = TCP_SKB_CB(skb)->end_seq - start;
  4155. BUG_ON(offset < 0);
  4156. if (size > 0) {
  4157. size = min(copy, size);
  4158. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4159. BUG();
  4160. TCP_SKB_CB(nskb)->end_seq += size;
  4161. copy -= size;
  4162. start += size;
  4163. }
  4164. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4165. skb = tcp_collapse_one(sk, skb, list, root);
  4166. if (!skb ||
  4167. skb == tail ||
  4168. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4169. goto end;
  4170. }
  4171. }
  4172. }
  4173. end:
  4174. skb_queue_walk_safe(&tmp, skb, n)
  4175. tcp_rbtree_insert(root, skb);
  4176. }
  4177. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4178. * and tcp_collapse() them until all the queue is collapsed.
  4179. */
  4180. static void tcp_collapse_ofo_queue(struct sock *sk)
  4181. {
  4182. struct tcp_sock *tp = tcp_sk(sk);
  4183. struct sk_buff *skb, *head;
  4184. u32 start, end;
  4185. skb = skb_rb_first(&tp->out_of_order_queue);
  4186. new_range:
  4187. if (!skb) {
  4188. tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
  4189. return;
  4190. }
  4191. start = TCP_SKB_CB(skb)->seq;
  4192. end = TCP_SKB_CB(skb)->end_seq;
  4193. for (head = skb;;) {
  4194. skb = skb_rb_next(skb);
  4195. /* Range is terminated when we see a gap or when
  4196. * we are at the queue end.
  4197. */
  4198. if (!skb ||
  4199. after(TCP_SKB_CB(skb)->seq, end) ||
  4200. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4201. tcp_collapse(sk, NULL, &tp->out_of_order_queue,
  4202. head, skb, start, end);
  4203. goto new_range;
  4204. }
  4205. if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
  4206. start = TCP_SKB_CB(skb)->seq;
  4207. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4208. end = TCP_SKB_CB(skb)->end_seq;
  4209. }
  4210. }
  4211. /*
  4212. * Clean the out-of-order queue to make room.
  4213. * We drop high sequences packets to :
  4214. * 1) Let a chance for holes to be filled.
  4215. * 2) not add too big latencies if thousands of packets sit there.
  4216. * (But if application shrinks SO_RCVBUF, we could still end up
  4217. * freeing whole queue here)
  4218. *
  4219. * Return true if queue has shrunk.
  4220. */
  4221. static bool tcp_prune_ofo_queue(struct sock *sk)
  4222. {
  4223. struct tcp_sock *tp = tcp_sk(sk);
  4224. struct rb_node *node, *prev;
  4225. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4226. return false;
  4227. NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4228. node = &tp->ooo_last_skb->rbnode;
  4229. do {
  4230. prev = rb_prev(node);
  4231. rb_erase(node, &tp->out_of_order_queue);
  4232. tcp_drop(sk, rb_to_skb(node));
  4233. sk_mem_reclaim(sk);
  4234. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  4235. !tcp_under_memory_pressure(sk))
  4236. break;
  4237. node = prev;
  4238. } while (node);
  4239. tp->ooo_last_skb = rb_to_skb(prev);
  4240. /* Reset SACK state. A conforming SACK implementation will
  4241. * do the same at a timeout based retransmit. When a connection
  4242. * is in a sad state like this, we care only about integrity
  4243. * of the connection not performance.
  4244. */
  4245. if (tp->rx_opt.sack_ok)
  4246. tcp_sack_reset(&tp->rx_opt);
  4247. return true;
  4248. }
  4249. /* Reduce allocated memory if we can, trying to get
  4250. * the socket within its memory limits again.
  4251. *
  4252. * Return less than zero if we should start dropping frames
  4253. * until the socket owning process reads some of the data
  4254. * to stabilize the situation.
  4255. */
  4256. static int tcp_prune_queue(struct sock *sk)
  4257. {
  4258. struct tcp_sock *tp = tcp_sk(sk);
  4259. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4260. NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4261. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4262. tcp_clamp_window(sk);
  4263. else if (tcp_under_memory_pressure(sk))
  4264. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4265. tcp_collapse_ofo_queue(sk);
  4266. if (!skb_queue_empty(&sk->sk_receive_queue))
  4267. tcp_collapse(sk, &sk->sk_receive_queue, NULL,
  4268. skb_peek(&sk->sk_receive_queue),
  4269. NULL,
  4270. tp->copied_seq, tp->rcv_nxt);
  4271. sk_mem_reclaim(sk);
  4272. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4273. return 0;
  4274. /* Collapsing did not help, destructive actions follow.
  4275. * This must not ever occur. */
  4276. tcp_prune_ofo_queue(sk);
  4277. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4278. return 0;
  4279. /* If we are really being abused, tell the caller to silently
  4280. * drop receive data on the floor. It will get retransmitted
  4281. * and hopefully then we'll have sufficient space.
  4282. */
  4283. NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4284. /* Massive buffer overcommit. */
  4285. tp->pred_flags = 0;
  4286. return -1;
  4287. }
  4288. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4289. {
  4290. const struct tcp_sock *tp = tcp_sk(sk);
  4291. /* If the user specified a specific send buffer setting, do
  4292. * not modify it.
  4293. */
  4294. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4295. return false;
  4296. /* If we are under global TCP memory pressure, do not expand. */
  4297. if (tcp_under_memory_pressure(sk))
  4298. return false;
  4299. /* If we are under soft global TCP memory pressure, do not expand. */
  4300. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4301. return false;
  4302. /* If we filled the congestion window, do not expand. */
  4303. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4304. return false;
  4305. return true;
  4306. }
  4307. /* When incoming ACK allowed to free some skb from write_queue,
  4308. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4309. * on the exit from tcp input handler.
  4310. *
  4311. * PROBLEM: sndbuf expansion does not work well with largesend.
  4312. */
  4313. static void tcp_new_space(struct sock *sk)
  4314. {
  4315. struct tcp_sock *tp = tcp_sk(sk);
  4316. if (tcp_should_expand_sndbuf(sk)) {
  4317. tcp_sndbuf_expand(sk);
  4318. tp->snd_cwnd_stamp = tcp_jiffies32;
  4319. }
  4320. sk->sk_write_space(sk);
  4321. }
  4322. static void tcp_check_space(struct sock *sk)
  4323. {
  4324. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4325. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4326. /* pairs with tcp_poll() */
  4327. smp_mb();
  4328. if (sk->sk_socket &&
  4329. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4330. tcp_new_space(sk);
  4331. if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4332. tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
  4333. }
  4334. }
  4335. }
  4336. static inline void tcp_data_snd_check(struct sock *sk)
  4337. {
  4338. tcp_push_pending_frames(sk);
  4339. tcp_check_space(sk);
  4340. }
  4341. /*
  4342. * Check if sending an ack is needed.
  4343. */
  4344. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4345. {
  4346. struct tcp_sock *tp = tcp_sk(sk);
  4347. /* More than one full frame received... */
  4348. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4349. /* ... and right edge of window advances far enough.
  4350. * (tcp_recvmsg() will send ACK otherwise). Or...
  4351. */
  4352. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4353. /* We ACK each frame or... */
  4354. tcp_in_quickack_mode(sk) ||
  4355. /* We have out of order data. */
  4356. (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
  4357. /* Then ack it now */
  4358. tcp_send_ack(sk);
  4359. } else {
  4360. /* Else, send delayed ack. */
  4361. tcp_send_delayed_ack(sk);
  4362. }
  4363. }
  4364. static inline void tcp_ack_snd_check(struct sock *sk)
  4365. {
  4366. if (!inet_csk_ack_scheduled(sk)) {
  4367. /* We sent a data segment already. */
  4368. return;
  4369. }
  4370. __tcp_ack_snd_check(sk, 1);
  4371. }
  4372. /*
  4373. * This routine is only called when we have urgent data
  4374. * signaled. Its the 'slow' part of tcp_urg. It could be
  4375. * moved inline now as tcp_urg is only called from one
  4376. * place. We handle URGent data wrong. We have to - as
  4377. * BSD still doesn't use the correction from RFC961.
  4378. * For 1003.1g we should support a new option TCP_STDURG to permit
  4379. * either form (or just set the sysctl tcp_stdurg).
  4380. */
  4381. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4382. {
  4383. struct tcp_sock *tp = tcp_sk(sk);
  4384. u32 ptr = ntohs(th->urg_ptr);
  4385. if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
  4386. ptr--;
  4387. ptr += ntohl(th->seq);
  4388. /* Ignore urgent data that we've already seen and read. */
  4389. if (after(tp->copied_seq, ptr))
  4390. return;
  4391. /* Do not replay urg ptr.
  4392. *
  4393. * NOTE: interesting situation not covered by specs.
  4394. * Misbehaving sender may send urg ptr, pointing to segment,
  4395. * which we already have in ofo queue. We are not able to fetch
  4396. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4397. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4398. * situations. But it is worth to think about possibility of some
  4399. * DoSes using some hypothetical application level deadlock.
  4400. */
  4401. if (before(ptr, tp->rcv_nxt))
  4402. return;
  4403. /* Do we already have a newer (or duplicate) urgent pointer? */
  4404. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4405. return;
  4406. /* Tell the world about our new urgent pointer. */
  4407. sk_send_sigurg(sk);
  4408. /* We may be adding urgent data when the last byte read was
  4409. * urgent. To do this requires some care. We cannot just ignore
  4410. * tp->copied_seq since we would read the last urgent byte again
  4411. * as data, nor can we alter copied_seq until this data arrives
  4412. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4413. *
  4414. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4415. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4416. * and expect that both A and B disappear from stream. This is _wrong_.
  4417. * Though this happens in BSD with high probability, this is occasional.
  4418. * Any application relying on this is buggy. Note also, that fix "works"
  4419. * only in this artificial test. Insert some normal data between A and B and we will
  4420. * decline of BSD again. Verdict: it is better to remove to trap
  4421. * buggy users.
  4422. */
  4423. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4424. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4425. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4426. tp->copied_seq++;
  4427. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4428. __skb_unlink(skb, &sk->sk_receive_queue);
  4429. __kfree_skb(skb);
  4430. }
  4431. }
  4432. tp->urg_data = TCP_URG_NOTYET;
  4433. tp->urg_seq = ptr;
  4434. /* Disable header prediction. */
  4435. tp->pred_flags = 0;
  4436. }
  4437. /* This is the 'fast' part of urgent handling. */
  4438. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4439. {
  4440. struct tcp_sock *tp = tcp_sk(sk);
  4441. /* Check if we get a new urgent pointer - normally not. */
  4442. if (th->urg)
  4443. tcp_check_urg(sk, th);
  4444. /* Do we wait for any urgent data? - normally not... */
  4445. if (tp->urg_data == TCP_URG_NOTYET) {
  4446. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4447. th->syn;
  4448. /* Is the urgent pointer pointing into this packet? */
  4449. if (ptr < skb->len) {
  4450. u8 tmp;
  4451. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4452. BUG();
  4453. tp->urg_data = TCP_URG_VALID | tmp;
  4454. if (!sock_flag(sk, SOCK_DEAD))
  4455. sk->sk_data_ready(sk);
  4456. }
  4457. }
  4458. }
  4459. /* Accept RST for rcv_nxt - 1 after a FIN.
  4460. * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
  4461. * FIN is sent followed by a RST packet. The RST is sent with the same
  4462. * sequence number as the FIN, and thus according to RFC 5961 a challenge
  4463. * ACK should be sent. However, Mac OSX rate limits replies to challenge
  4464. * ACKs on the closed socket. In addition middleboxes can drop either the
  4465. * challenge ACK or a subsequent RST.
  4466. */
  4467. static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
  4468. {
  4469. struct tcp_sock *tp = tcp_sk(sk);
  4470. return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
  4471. (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
  4472. TCPF_CLOSING));
  4473. }
  4474. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4475. * play significant role here.
  4476. */
  4477. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4478. const struct tcphdr *th, int syn_inerr)
  4479. {
  4480. struct tcp_sock *tp = tcp_sk(sk);
  4481. bool rst_seq_match = false;
  4482. /* RFC1323: H1. Apply PAWS check first. */
  4483. if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
  4484. tp->rx_opt.saw_tstamp &&
  4485. tcp_paws_discard(sk, skb)) {
  4486. if (!th->rst) {
  4487. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4488. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4489. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4490. &tp->last_oow_ack_time))
  4491. tcp_send_dupack(sk, skb);
  4492. goto discard;
  4493. }
  4494. /* Reset is accepted even if it did not pass PAWS. */
  4495. }
  4496. /* Step 1: check sequence number */
  4497. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4498. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4499. * (RST) segments are validated by checking their SEQ-fields."
  4500. * And page 69: "If an incoming segment is not acceptable,
  4501. * an acknowledgment should be sent in reply (unless the RST
  4502. * bit is set, if so drop the segment and return)".
  4503. */
  4504. if (!th->rst) {
  4505. if (th->syn)
  4506. goto syn_challenge;
  4507. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4508. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4509. &tp->last_oow_ack_time))
  4510. tcp_send_dupack(sk, skb);
  4511. } else if (tcp_reset_check(sk, skb)) {
  4512. tcp_reset(sk);
  4513. }
  4514. goto discard;
  4515. }
  4516. /* Step 2: check RST bit */
  4517. if (th->rst) {
  4518. /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
  4519. * FIN and SACK too if available):
  4520. * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
  4521. * the right-most SACK block,
  4522. * then
  4523. * RESET the connection
  4524. * else
  4525. * Send a challenge ACK
  4526. */
  4527. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
  4528. tcp_reset_check(sk, skb)) {
  4529. rst_seq_match = true;
  4530. } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
  4531. struct tcp_sack_block *sp = &tp->selective_acks[0];
  4532. int max_sack = sp[0].end_seq;
  4533. int this_sack;
  4534. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
  4535. ++this_sack) {
  4536. max_sack = after(sp[this_sack].end_seq,
  4537. max_sack) ?
  4538. sp[this_sack].end_seq : max_sack;
  4539. }
  4540. if (TCP_SKB_CB(skb)->seq == max_sack)
  4541. rst_seq_match = true;
  4542. }
  4543. if (rst_seq_match)
  4544. tcp_reset(sk);
  4545. else {
  4546. /* Disable TFO if RST is out-of-order
  4547. * and no data has been received
  4548. * for current active TFO socket
  4549. */
  4550. if (tp->syn_fastopen && !tp->data_segs_in &&
  4551. sk->sk_state == TCP_ESTABLISHED)
  4552. tcp_fastopen_active_disable(sk);
  4553. tcp_send_challenge_ack(sk, skb);
  4554. }
  4555. goto discard;
  4556. }
  4557. /* step 3: check security and precedence [ignored] */
  4558. /* step 4: Check for a SYN
  4559. * RFC 5961 4.2 : Send a challenge ack
  4560. */
  4561. if (th->syn) {
  4562. syn_challenge:
  4563. if (syn_inerr)
  4564. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4565. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4566. tcp_send_challenge_ack(sk, skb);
  4567. goto discard;
  4568. }
  4569. return true;
  4570. discard:
  4571. tcp_drop(sk, skb);
  4572. return false;
  4573. }
  4574. /*
  4575. * TCP receive function for the ESTABLISHED state.
  4576. *
  4577. * It is split into a fast path and a slow path. The fast path is
  4578. * disabled when:
  4579. * - A zero window was announced from us - zero window probing
  4580. * is only handled properly in the slow path.
  4581. * - Out of order segments arrived.
  4582. * - Urgent data is expected.
  4583. * - There is no buffer space left
  4584. * - Unexpected TCP flags/window values/header lengths are received
  4585. * (detected by checking the TCP header against pred_flags)
  4586. * - Data is sent in both directions. Fast path only supports pure senders
  4587. * or pure receivers (this means either the sequence number or the ack
  4588. * value must stay constant)
  4589. * - Unexpected TCP option.
  4590. *
  4591. * When these conditions are not satisfied it drops into a standard
  4592. * receive procedure patterned after RFC793 to handle all cases.
  4593. * The first three cases are guaranteed by proper pred_flags setting,
  4594. * the rest is checked inline. Fast processing is turned on in
  4595. * tcp_data_queue when everything is OK.
  4596. */
  4597. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4598. const struct tcphdr *th)
  4599. {
  4600. unsigned int len = skb->len;
  4601. struct tcp_sock *tp = tcp_sk(sk);
  4602. tcp_mstamp_refresh(tp);
  4603. if (unlikely(!sk->sk_rx_dst))
  4604. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4605. /*
  4606. * Header prediction.
  4607. * The code loosely follows the one in the famous
  4608. * "30 instruction TCP receive" Van Jacobson mail.
  4609. *
  4610. * Van's trick is to deposit buffers into socket queue
  4611. * on a device interrupt, to call tcp_recv function
  4612. * on the receive process context and checksum and copy
  4613. * the buffer to user space. smart...
  4614. *
  4615. * Our current scheme is not silly either but we take the
  4616. * extra cost of the net_bh soft interrupt processing...
  4617. * We do checksum and copy also but from device to kernel.
  4618. */
  4619. tp->rx_opt.saw_tstamp = 0;
  4620. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4621. * if header_prediction is to be made
  4622. * 'S' will always be tp->tcp_header_len >> 2
  4623. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4624. * turn it off (when there are holes in the receive
  4625. * space for instance)
  4626. * PSH flag is ignored.
  4627. */
  4628. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4629. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4630. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4631. int tcp_header_len = tp->tcp_header_len;
  4632. /* Timestamp header prediction: tcp_header_len
  4633. * is automatically equal to th->doff*4 due to pred_flags
  4634. * match.
  4635. */
  4636. /* Check timestamp */
  4637. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4638. /* No? Slow path! */
  4639. if (!tcp_parse_aligned_timestamp(tp, th))
  4640. goto slow_path;
  4641. /* If PAWS failed, check it more carefully in slow path */
  4642. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4643. goto slow_path;
  4644. /* DO NOT update ts_recent here, if checksum fails
  4645. * and timestamp was corrupted part, it will result
  4646. * in a hung connection since we will drop all
  4647. * future packets due to the PAWS test.
  4648. */
  4649. }
  4650. if (len <= tcp_header_len) {
  4651. /* Bulk data transfer: sender */
  4652. if (len == tcp_header_len) {
  4653. /* Predicted packet is in window by definition.
  4654. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4655. * Hence, check seq<=rcv_wup reduces to:
  4656. */
  4657. if (tcp_header_len ==
  4658. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4659. tp->rcv_nxt == tp->rcv_wup)
  4660. tcp_store_ts_recent(tp);
  4661. /* We know that such packets are checksummed
  4662. * on entry.
  4663. */
  4664. tcp_ack(sk, skb, 0);
  4665. __kfree_skb(skb);
  4666. tcp_data_snd_check(sk);
  4667. return;
  4668. } else { /* Header too small */
  4669. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4670. goto discard;
  4671. }
  4672. } else {
  4673. int eaten = 0;
  4674. bool fragstolen = false;
  4675. if (tcp_checksum_complete(skb))
  4676. goto csum_error;
  4677. if ((int)skb->truesize > sk->sk_forward_alloc)
  4678. goto step5;
  4679. /* Predicted packet is in window by definition.
  4680. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4681. * Hence, check seq<=rcv_wup reduces to:
  4682. */
  4683. if (tcp_header_len ==
  4684. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4685. tp->rcv_nxt == tp->rcv_wup)
  4686. tcp_store_ts_recent(tp);
  4687. tcp_rcv_rtt_measure_ts(sk, skb);
  4688. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4689. /* Bulk data transfer: receiver */
  4690. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4691. &fragstolen);
  4692. tcp_event_data_recv(sk, skb);
  4693. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4694. /* Well, only one small jumplet in fast path... */
  4695. tcp_ack(sk, skb, FLAG_DATA);
  4696. tcp_data_snd_check(sk);
  4697. if (!inet_csk_ack_scheduled(sk))
  4698. goto no_ack;
  4699. }
  4700. __tcp_ack_snd_check(sk, 0);
  4701. no_ack:
  4702. if (eaten)
  4703. kfree_skb_partial(skb, fragstolen);
  4704. sk->sk_data_ready(sk);
  4705. return;
  4706. }
  4707. }
  4708. slow_path:
  4709. if (len < (th->doff << 2) || tcp_checksum_complete(skb))
  4710. goto csum_error;
  4711. if (!th->ack && !th->rst && !th->syn)
  4712. goto discard;
  4713. /*
  4714. * Standard slow path.
  4715. */
  4716. if (!tcp_validate_incoming(sk, skb, th, 1))
  4717. return;
  4718. step5:
  4719. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4720. goto discard;
  4721. tcp_rcv_rtt_measure_ts(sk, skb);
  4722. /* Process urgent data. */
  4723. tcp_urg(sk, skb, th);
  4724. /* step 7: process the segment text */
  4725. tcp_data_queue(sk, skb);
  4726. tcp_data_snd_check(sk);
  4727. tcp_ack_snd_check(sk);
  4728. return;
  4729. csum_error:
  4730. TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
  4731. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4732. discard:
  4733. tcp_drop(sk, skb);
  4734. }
  4735. EXPORT_SYMBOL(tcp_rcv_established);
  4736. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4737. {
  4738. struct tcp_sock *tp = tcp_sk(sk);
  4739. struct inet_connection_sock *icsk = inet_csk(sk);
  4740. tcp_set_state(sk, TCP_ESTABLISHED);
  4741. icsk->icsk_ack.lrcvtime = tcp_jiffies32;
  4742. if (skb) {
  4743. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4744. security_inet_conn_established(sk, skb);
  4745. }
  4746. tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
  4747. /* Prevent spurious tcp_cwnd_restart() on first data
  4748. * packet.
  4749. */
  4750. tp->lsndtime = tcp_jiffies32;
  4751. if (sock_flag(sk, SOCK_KEEPOPEN))
  4752. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4753. if (!tp->rx_opt.snd_wscale)
  4754. __tcp_fast_path_on(tp, tp->snd_wnd);
  4755. else
  4756. tp->pred_flags = 0;
  4757. }
  4758. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4759. struct tcp_fastopen_cookie *cookie)
  4760. {
  4761. struct tcp_sock *tp = tcp_sk(sk);
  4762. struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
  4763. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4764. bool syn_drop = false;
  4765. if (mss == tp->rx_opt.user_mss) {
  4766. struct tcp_options_received opt;
  4767. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4768. tcp_clear_options(&opt);
  4769. opt.user_mss = opt.mss_clamp = 0;
  4770. tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
  4771. mss = opt.mss_clamp;
  4772. }
  4773. if (!tp->syn_fastopen) {
  4774. /* Ignore an unsolicited cookie */
  4775. cookie->len = -1;
  4776. } else if (tp->total_retrans) {
  4777. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4778. * acknowledges data. Presumably the remote received only
  4779. * the retransmitted (regular) SYNs: either the original
  4780. * SYN-data or the corresponding SYN-ACK was dropped.
  4781. */
  4782. syn_drop = (cookie->len < 0 && data);
  4783. } else if (cookie->len < 0 && !tp->syn_data) {
  4784. /* We requested a cookie but didn't get it. If we did not use
  4785. * the (old) exp opt format then try so next time (try_exp=1).
  4786. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4787. */
  4788. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4789. }
  4790. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4791. if (data) { /* Retransmit unacked data in SYN */
  4792. skb_rbtree_walk_from(data) {
  4793. if (__tcp_retransmit_skb(sk, data, 1))
  4794. break;
  4795. }
  4796. tcp_rearm_rto(sk);
  4797. NET_INC_STATS(sock_net(sk),
  4798. LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4799. return true;
  4800. }
  4801. tp->syn_data_acked = tp->syn_data;
  4802. if (tp->syn_data_acked)
  4803. NET_INC_STATS(sock_net(sk),
  4804. LINUX_MIB_TCPFASTOPENACTIVE);
  4805. tcp_fastopen_add_skb(sk, synack);
  4806. return false;
  4807. }
  4808. static void smc_check_reset_syn(struct tcp_sock *tp)
  4809. {
  4810. #if IS_ENABLED(CONFIG_SMC)
  4811. if (static_branch_unlikely(&tcp_have_smc)) {
  4812. if (tp->syn_smc && !tp->rx_opt.smc_ok)
  4813. tp->syn_smc = 0;
  4814. }
  4815. #endif
  4816. }
  4817. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4818. const struct tcphdr *th)
  4819. {
  4820. struct inet_connection_sock *icsk = inet_csk(sk);
  4821. struct tcp_sock *tp = tcp_sk(sk);
  4822. struct tcp_fastopen_cookie foc = { .len = -1 };
  4823. int saved_clamp = tp->rx_opt.mss_clamp;
  4824. bool fastopen_fail;
  4825. tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
  4826. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4827. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4828. if (th->ack) {
  4829. /* rfc793:
  4830. * "If the state is SYN-SENT then
  4831. * first check the ACK bit
  4832. * If the ACK bit is set
  4833. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4834. * a reset (unless the RST bit is set, if so drop
  4835. * the segment and return)"
  4836. */
  4837. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4838. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4839. goto reset_and_undo;
  4840. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4841. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4842. tcp_time_stamp(tp))) {
  4843. NET_INC_STATS(sock_net(sk),
  4844. LINUX_MIB_PAWSACTIVEREJECTED);
  4845. goto reset_and_undo;
  4846. }
  4847. /* Now ACK is acceptable.
  4848. *
  4849. * "If the RST bit is set
  4850. * If the ACK was acceptable then signal the user "error:
  4851. * connection reset", drop the segment, enter CLOSED state,
  4852. * delete TCB, and return."
  4853. */
  4854. if (th->rst) {
  4855. tcp_reset(sk);
  4856. goto discard;
  4857. }
  4858. /* rfc793:
  4859. * "fifth, if neither of the SYN or RST bits is set then
  4860. * drop the segment and return."
  4861. *
  4862. * See note below!
  4863. * --ANK(990513)
  4864. */
  4865. if (!th->syn)
  4866. goto discard_and_undo;
  4867. /* rfc793:
  4868. * "If the SYN bit is on ...
  4869. * are acceptable then ...
  4870. * (our SYN has been ACKed), change the connection
  4871. * state to ESTABLISHED..."
  4872. */
  4873. tcp_ecn_rcv_synack(tp, th);
  4874. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4875. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4876. /* Ok.. it's good. Set up sequence numbers and
  4877. * move to established.
  4878. */
  4879. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4880. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4881. /* RFC1323: The window in SYN & SYN/ACK segments is
  4882. * never scaled.
  4883. */
  4884. tp->snd_wnd = ntohs(th->window);
  4885. if (!tp->rx_opt.wscale_ok) {
  4886. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4887. tp->window_clamp = min(tp->window_clamp, 65535U);
  4888. }
  4889. if (tp->rx_opt.saw_tstamp) {
  4890. tp->rx_opt.tstamp_ok = 1;
  4891. tp->tcp_header_len =
  4892. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4893. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4894. tcp_store_ts_recent(tp);
  4895. } else {
  4896. tp->tcp_header_len = sizeof(struct tcphdr);
  4897. }
  4898. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4899. tcp_initialize_rcv_mss(sk);
  4900. /* Remember, tcp_poll() does not lock socket!
  4901. * Change state from SYN-SENT only after copied_seq
  4902. * is initialized. */
  4903. tp->copied_seq = tp->rcv_nxt;
  4904. smc_check_reset_syn(tp);
  4905. smp_mb();
  4906. tcp_finish_connect(sk, skb);
  4907. fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
  4908. tcp_rcv_fastopen_synack(sk, skb, &foc);
  4909. if (!sock_flag(sk, SOCK_DEAD)) {
  4910. sk->sk_state_change(sk);
  4911. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4912. }
  4913. if (fastopen_fail)
  4914. return -1;
  4915. if (sk->sk_write_pending ||
  4916. icsk->icsk_accept_queue.rskq_defer_accept ||
  4917. icsk->icsk_ack.pingpong) {
  4918. /* Save one ACK. Data will be ready after
  4919. * several ticks, if write_pending is set.
  4920. *
  4921. * It may be deleted, but with this feature tcpdumps
  4922. * look so _wonderfully_ clever, that I was not able
  4923. * to stand against the temptation 8) --ANK
  4924. */
  4925. inet_csk_schedule_ack(sk);
  4926. tcp_enter_quickack_mode(sk);
  4927. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4928. TCP_DELACK_MAX, TCP_RTO_MAX);
  4929. discard:
  4930. tcp_drop(sk, skb);
  4931. return 0;
  4932. } else {
  4933. tcp_send_ack(sk);
  4934. }
  4935. return -1;
  4936. }
  4937. /* No ACK in the segment */
  4938. if (th->rst) {
  4939. /* rfc793:
  4940. * "If the RST bit is set
  4941. *
  4942. * Otherwise (no ACK) drop the segment and return."
  4943. */
  4944. goto discard_and_undo;
  4945. }
  4946. /* PAWS check. */
  4947. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4948. tcp_paws_reject(&tp->rx_opt, 0))
  4949. goto discard_and_undo;
  4950. if (th->syn) {
  4951. /* We see SYN without ACK. It is attempt of
  4952. * simultaneous connect with crossed SYNs.
  4953. * Particularly, it can be connect to self.
  4954. */
  4955. tcp_set_state(sk, TCP_SYN_RECV);
  4956. if (tp->rx_opt.saw_tstamp) {
  4957. tp->rx_opt.tstamp_ok = 1;
  4958. tcp_store_ts_recent(tp);
  4959. tp->tcp_header_len =
  4960. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4961. } else {
  4962. tp->tcp_header_len = sizeof(struct tcphdr);
  4963. }
  4964. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4965. tp->copied_seq = tp->rcv_nxt;
  4966. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4967. /* RFC1323: The window in SYN & SYN/ACK segments is
  4968. * never scaled.
  4969. */
  4970. tp->snd_wnd = ntohs(th->window);
  4971. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4972. tp->max_window = tp->snd_wnd;
  4973. tcp_ecn_rcv_syn(tp, th);
  4974. tcp_mtup_init(sk);
  4975. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4976. tcp_initialize_rcv_mss(sk);
  4977. tcp_send_synack(sk);
  4978. #if 0
  4979. /* Note, we could accept data and URG from this segment.
  4980. * There are no obstacles to make this (except that we must
  4981. * either change tcp_recvmsg() to prevent it from returning data
  4982. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4983. *
  4984. * However, if we ignore data in ACKless segments sometimes,
  4985. * we have no reasons to accept it sometimes.
  4986. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4987. * is not flawless. So, discard packet for sanity.
  4988. * Uncomment this return to process the data.
  4989. */
  4990. return -1;
  4991. #else
  4992. goto discard;
  4993. #endif
  4994. }
  4995. /* "fifth, if neither of the SYN or RST bits is set then
  4996. * drop the segment and return."
  4997. */
  4998. discard_and_undo:
  4999. tcp_clear_options(&tp->rx_opt);
  5000. tp->rx_opt.mss_clamp = saved_clamp;
  5001. goto discard;
  5002. reset_and_undo:
  5003. tcp_clear_options(&tp->rx_opt);
  5004. tp->rx_opt.mss_clamp = saved_clamp;
  5005. return 1;
  5006. }
  5007. /*
  5008. * This function implements the receiving procedure of RFC 793 for
  5009. * all states except ESTABLISHED and TIME_WAIT.
  5010. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5011. * address independent.
  5012. */
  5013. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  5014. {
  5015. struct tcp_sock *tp = tcp_sk(sk);
  5016. struct inet_connection_sock *icsk = inet_csk(sk);
  5017. const struct tcphdr *th = tcp_hdr(skb);
  5018. struct request_sock *req;
  5019. int queued = 0;
  5020. bool acceptable;
  5021. switch (sk->sk_state) {
  5022. case TCP_CLOSE:
  5023. goto discard;
  5024. case TCP_LISTEN:
  5025. if (th->ack)
  5026. return 1;
  5027. if (th->rst)
  5028. goto discard;
  5029. if (th->syn) {
  5030. if (th->fin)
  5031. goto discard;
  5032. /* It is possible that we process SYN packets from backlog,
  5033. * so we need to make sure to disable BH right there.
  5034. */
  5035. local_bh_disable();
  5036. acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
  5037. local_bh_enable();
  5038. if (!acceptable)
  5039. return 1;
  5040. consume_skb(skb);
  5041. return 0;
  5042. }
  5043. goto discard;
  5044. case TCP_SYN_SENT:
  5045. tp->rx_opt.saw_tstamp = 0;
  5046. tcp_mstamp_refresh(tp);
  5047. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  5048. if (queued >= 0)
  5049. return queued;
  5050. /* Do step6 onward by hand. */
  5051. tcp_urg(sk, skb, th);
  5052. __kfree_skb(skb);
  5053. tcp_data_snd_check(sk);
  5054. return 0;
  5055. }
  5056. tcp_mstamp_refresh(tp);
  5057. tp->rx_opt.saw_tstamp = 0;
  5058. req = tp->fastopen_rsk;
  5059. if (req) {
  5060. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5061. sk->sk_state != TCP_FIN_WAIT1);
  5062. if (!tcp_check_req(sk, skb, req, true))
  5063. goto discard;
  5064. }
  5065. if (!th->ack && !th->rst && !th->syn)
  5066. goto discard;
  5067. if (!tcp_validate_incoming(sk, skb, th, 0))
  5068. return 0;
  5069. /* step 5: check the ACK field */
  5070. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5071. FLAG_UPDATE_TS_RECENT |
  5072. FLAG_NO_CHALLENGE_ACK) > 0;
  5073. if (!acceptable) {
  5074. if (sk->sk_state == TCP_SYN_RECV)
  5075. return 1; /* send one RST */
  5076. tcp_send_challenge_ack(sk, skb);
  5077. goto discard;
  5078. }
  5079. switch (sk->sk_state) {
  5080. case TCP_SYN_RECV:
  5081. if (!tp->srtt_us)
  5082. tcp_synack_rtt_meas(sk, req);
  5083. /* Once we leave TCP_SYN_RECV, we no longer need req
  5084. * so release it.
  5085. */
  5086. if (req) {
  5087. inet_csk(sk)->icsk_retransmits = 0;
  5088. reqsk_fastopen_remove(sk, req, false);
  5089. /* Re-arm the timer because data may have been sent out.
  5090. * This is similar to the regular data transmission case
  5091. * when new data has just been ack'ed.
  5092. *
  5093. * (TFO) - we could try to be more aggressive and
  5094. * retransmitting any data sooner based on when they
  5095. * are sent out.
  5096. */
  5097. tcp_rearm_rto(sk);
  5098. } else {
  5099. tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
  5100. tp->copied_seq = tp->rcv_nxt;
  5101. }
  5102. smp_mb();
  5103. tcp_set_state(sk, TCP_ESTABLISHED);
  5104. sk->sk_state_change(sk);
  5105. /* Note, that this wakeup is only for marginal crossed SYN case.
  5106. * Passively open sockets are not waked up, because
  5107. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5108. */
  5109. if (sk->sk_socket)
  5110. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5111. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5112. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5113. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5114. if (tp->rx_opt.tstamp_ok)
  5115. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5116. if (!inet_csk(sk)->icsk_ca_ops->cong_control)
  5117. tcp_update_pacing_rate(sk);
  5118. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5119. tp->lsndtime = tcp_jiffies32;
  5120. tcp_initialize_rcv_mss(sk);
  5121. tcp_fast_path_on(tp);
  5122. break;
  5123. case TCP_FIN_WAIT1: {
  5124. int tmo;
  5125. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5126. * Fast Open socket and this is the first acceptable
  5127. * ACK we have received, this would have acknowledged
  5128. * our SYNACK so stop the SYNACK timer.
  5129. */
  5130. if (req) {
  5131. /* We no longer need the request sock. */
  5132. reqsk_fastopen_remove(sk, req, false);
  5133. tcp_rearm_rto(sk);
  5134. }
  5135. if (tp->snd_una != tp->write_seq)
  5136. break;
  5137. tcp_set_state(sk, TCP_FIN_WAIT2);
  5138. sk->sk_shutdown |= SEND_SHUTDOWN;
  5139. sk_dst_confirm(sk);
  5140. if (!sock_flag(sk, SOCK_DEAD)) {
  5141. /* Wake up lingering close() */
  5142. sk->sk_state_change(sk);
  5143. break;
  5144. }
  5145. if (tp->linger2 < 0) {
  5146. tcp_done(sk);
  5147. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5148. return 1;
  5149. }
  5150. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5151. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5152. /* Receive out of order FIN after close() */
  5153. if (tp->syn_fastopen && th->fin)
  5154. tcp_fastopen_active_disable(sk);
  5155. tcp_done(sk);
  5156. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5157. return 1;
  5158. }
  5159. tmo = tcp_fin_time(sk);
  5160. if (tmo > TCP_TIMEWAIT_LEN) {
  5161. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5162. } else if (th->fin || sock_owned_by_user(sk)) {
  5163. /* Bad case. We could lose such FIN otherwise.
  5164. * It is not a big problem, but it looks confusing
  5165. * and not so rare event. We still can lose it now,
  5166. * if it spins in bh_lock_sock(), but it is really
  5167. * marginal case.
  5168. */
  5169. inet_csk_reset_keepalive_timer(sk, tmo);
  5170. } else {
  5171. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5172. goto discard;
  5173. }
  5174. break;
  5175. }
  5176. case TCP_CLOSING:
  5177. if (tp->snd_una == tp->write_seq) {
  5178. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5179. goto discard;
  5180. }
  5181. break;
  5182. case TCP_LAST_ACK:
  5183. if (tp->snd_una == tp->write_seq) {
  5184. tcp_update_metrics(sk);
  5185. tcp_done(sk);
  5186. goto discard;
  5187. }
  5188. break;
  5189. }
  5190. /* step 6: check the URG bit */
  5191. tcp_urg(sk, skb, th);
  5192. /* step 7: process the segment text */
  5193. switch (sk->sk_state) {
  5194. case TCP_CLOSE_WAIT:
  5195. case TCP_CLOSING:
  5196. case TCP_LAST_ACK:
  5197. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5198. break;
  5199. /* fall through */
  5200. case TCP_FIN_WAIT1:
  5201. case TCP_FIN_WAIT2:
  5202. /* RFC 793 says to queue data in these states,
  5203. * RFC 1122 says we MUST send a reset.
  5204. * BSD 4.4 also does reset.
  5205. */
  5206. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5207. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5208. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5209. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5210. tcp_reset(sk);
  5211. return 1;
  5212. }
  5213. }
  5214. /* Fall through */
  5215. case TCP_ESTABLISHED:
  5216. tcp_data_queue(sk, skb);
  5217. queued = 1;
  5218. break;
  5219. }
  5220. /* tcp_data could move socket to TIME-WAIT */
  5221. if (sk->sk_state != TCP_CLOSE) {
  5222. tcp_data_snd_check(sk);
  5223. tcp_ack_snd_check(sk);
  5224. }
  5225. if (!queued) {
  5226. discard:
  5227. tcp_drop(sk, skb);
  5228. }
  5229. return 0;
  5230. }
  5231. EXPORT_SYMBOL(tcp_rcv_state_process);
  5232. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5233. {
  5234. struct inet_request_sock *ireq = inet_rsk(req);
  5235. if (family == AF_INET)
  5236. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5237. &ireq->ir_rmt_addr, port);
  5238. #if IS_ENABLED(CONFIG_IPV6)
  5239. else if (family == AF_INET6)
  5240. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5241. &ireq->ir_v6_rmt_addr, port);
  5242. #endif
  5243. }
  5244. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5245. *
  5246. * If we receive a SYN packet with these bits set, it means a
  5247. * network is playing bad games with TOS bits. In order to
  5248. * avoid possible false congestion notifications, we disable
  5249. * TCP ECN negotiation.
  5250. *
  5251. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5252. * congestion control: Linux DCTCP asserts ECT on all packets,
  5253. * including SYN, which is most optimal solution; however,
  5254. * others, such as FreeBSD do not.
  5255. */
  5256. static void tcp_ecn_create_request(struct request_sock *req,
  5257. const struct sk_buff *skb,
  5258. const struct sock *listen_sk,
  5259. const struct dst_entry *dst)
  5260. {
  5261. const struct tcphdr *th = tcp_hdr(skb);
  5262. const struct net *net = sock_net(listen_sk);
  5263. bool th_ecn = th->ece && th->cwr;
  5264. bool ect, ecn_ok;
  5265. u32 ecn_ok_dst;
  5266. if (!th_ecn)
  5267. return;
  5268. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5269. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5270. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5271. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5272. (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
  5273. tcp_bpf_ca_needs_ecn((struct sock *)req))
  5274. inet_rsk(req)->ecn_ok = 1;
  5275. }
  5276. static void tcp_openreq_init(struct request_sock *req,
  5277. const struct tcp_options_received *rx_opt,
  5278. struct sk_buff *skb, const struct sock *sk)
  5279. {
  5280. struct inet_request_sock *ireq = inet_rsk(req);
  5281. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5282. req->cookie_ts = 0;
  5283. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5284. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5285. tcp_rsk(req)->snt_synack = tcp_clock_us();
  5286. tcp_rsk(req)->last_oow_ack_time = 0;
  5287. req->mss = rx_opt->mss_clamp;
  5288. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5289. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5290. ireq->sack_ok = rx_opt->sack_ok;
  5291. ireq->snd_wscale = rx_opt->snd_wscale;
  5292. ireq->wscale_ok = rx_opt->wscale_ok;
  5293. ireq->acked = 0;
  5294. ireq->ecn_ok = 0;
  5295. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5296. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5297. ireq->ir_mark = inet_request_mark(sk, skb);
  5298. #if IS_ENABLED(CONFIG_SMC)
  5299. ireq->smc_ok = rx_opt->smc_ok;
  5300. #endif
  5301. }
  5302. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5303. struct sock *sk_listener,
  5304. bool attach_listener)
  5305. {
  5306. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5307. attach_listener);
  5308. if (req) {
  5309. struct inet_request_sock *ireq = inet_rsk(req);
  5310. kmemcheck_annotate_bitfield(ireq, flags);
  5311. ireq->ireq_opt = NULL;
  5312. #if IS_ENABLED(CONFIG_IPV6)
  5313. ireq->pktopts = NULL;
  5314. #endif
  5315. atomic64_set(&ireq->ir_cookie, 0);
  5316. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5317. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5318. ireq->ireq_family = sk_listener->sk_family;
  5319. }
  5320. return req;
  5321. }
  5322. EXPORT_SYMBOL(inet_reqsk_alloc);
  5323. /*
  5324. * Return true if a syncookie should be sent
  5325. */
  5326. static bool tcp_syn_flood_action(const struct sock *sk,
  5327. const struct sk_buff *skb,
  5328. const char *proto)
  5329. {
  5330. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5331. const char *msg = "Dropping request";
  5332. bool want_cookie = false;
  5333. struct net *net = sock_net(sk);
  5334. #ifdef CONFIG_SYN_COOKIES
  5335. if (net->ipv4.sysctl_tcp_syncookies) {
  5336. msg = "Sending cookies";
  5337. want_cookie = true;
  5338. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5339. } else
  5340. #endif
  5341. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5342. if (!queue->synflood_warned &&
  5343. net->ipv4.sysctl_tcp_syncookies != 2 &&
  5344. xchg(&queue->synflood_warned, 1) == 0)
  5345. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5346. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5347. return want_cookie;
  5348. }
  5349. static void tcp_reqsk_record_syn(const struct sock *sk,
  5350. struct request_sock *req,
  5351. const struct sk_buff *skb)
  5352. {
  5353. if (tcp_sk(sk)->save_syn) {
  5354. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5355. u32 *copy;
  5356. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5357. if (copy) {
  5358. copy[0] = len;
  5359. memcpy(&copy[1], skb_network_header(skb), len);
  5360. req->saved_syn = copy;
  5361. }
  5362. }
  5363. }
  5364. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5365. const struct tcp_request_sock_ops *af_ops,
  5366. struct sock *sk, struct sk_buff *skb)
  5367. {
  5368. struct tcp_fastopen_cookie foc = { .len = -1 };
  5369. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5370. struct tcp_options_received tmp_opt;
  5371. struct tcp_sock *tp = tcp_sk(sk);
  5372. struct net *net = sock_net(sk);
  5373. struct sock *fastopen_sk = NULL;
  5374. struct request_sock *req;
  5375. bool want_cookie = false;
  5376. struct dst_entry *dst;
  5377. struct flowi fl;
  5378. /* TW buckets are converted to open requests without
  5379. * limitations, they conserve resources and peer is
  5380. * evidently real one.
  5381. */
  5382. if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
  5383. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5384. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5385. if (!want_cookie)
  5386. goto drop;
  5387. }
  5388. if (sk_acceptq_is_full(sk)) {
  5389. NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5390. goto drop;
  5391. }
  5392. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5393. if (!req)
  5394. goto drop;
  5395. tcp_rsk(req)->af_specific = af_ops;
  5396. tcp_rsk(req)->ts_off = 0;
  5397. tcp_clear_options(&tmp_opt);
  5398. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5399. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5400. tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
  5401. want_cookie ? NULL : &foc);
  5402. if (want_cookie && !tmp_opt.saw_tstamp)
  5403. tcp_clear_options(&tmp_opt);
  5404. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5405. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5406. inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
  5407. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5408. inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
  5409. af_ops->init_req(req, sk, skb);
  5410. if (security_inet_conn_request(sk, skb, req))
  5411. goto drop_and_free;
  5412. if (tmp_opt.tstamp_ok)
  5413. tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
  5414. dst = af_ops->route_req(sk, &fl, req);
  5415. if (!dst)
  5416. goto drop_and_free;
  5417. if (!want_cookie && !isn) {
  5418. /* Kill the following clause, if you dislike this way. */
  5419. if (!net->ipv4.sysctl_tcp_syncookies &&
  5420. (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5421. (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
  5422. !tcp_peer_is_proven(req, dst)) {
  5423. /* Without syncookies last quarter of
  5424. * backlog is filled with destinations,
  5425. * proven to be alive.
  5426. * It means that we continue to communicate
  5427. * to destinations, already remembered
  5428. * to the moment of synflood.
  5429. */
  5430. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5431. rsk_ops->family);
  5432. goto drop_and_release;
  5433. }
  5434. isn = af_ops->init_seq(skb);
  5435. }
  5436. tcp_ecn_create_request(req, skb, sk, dst);
  5437. if (want_cookie) {
  5438. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5439. req->cookie_ts = tmp_opt.tstamp_ok;
  5440. if (!tmp_opt.tstamp_ok)
  5441. inet_rsk(req)->ecn_ok = 0;
  5442. }
  5443. tcp_rsk(req)->snt_isn = isn;
  5444. tcp_rsk(req)->txhash = net_tx_rndhash();
  5445. tcp_openreq_init_rwin(req, sk, dst);
  5446. if (!want_cookie) {
  5447. tcp_reqsk_record_syn(sk, req, skb);
  5448. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
  5449. }
  5450. if (fastopen_sk) {
  5451. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5452. &foc, TCP_SYNACK_FASTOPEN);
  5453. /* Add the child socket directly into the accept queue */
  5454. inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
  5455. sk->sk_data_ready(sk);
  5456. bh_unlock_sock(fastopen_sk);
  5457. sock_put(fastopen_sk);
  5458. } else {
  5459. tcp_rsk(req)->tfo_listener = false;
  5460. if (!want_cookie)
  5461. inet_csk_reqsk_queue_hash_add(sk, req,
  5462. tcp_timeout_init((struct sock *)req));
  5463. af_ops->send_synack(sk, dst, &fl, req, &foc,
  5464. !want_cookie ? TCP_SYNACK_NORMAL :
  5465. TCP_SYNACK_COOKIE);
  5466. if (want_cookie) {
  5467. reqsk_free(req);
  5468. return 0;
  5469. }
  5470. }
  5471. reqsk_put(req);
  5472. return 0;
  5473. drop_and_release:
  5474. dst_release(dst);
  5475. drop_and_free:
  5476. reqsk_free(req);
  5477. drop:
  5478. tcp_listendrop(sk);
  5479. return 0;
  5480. }
  5481. EXPORT_SYMBOL(tcp_conn_request);