sdma_v3_0.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  53. MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  54. MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  55. MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  56. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  57. {
  58. SDMA0_REGISTER_OFFSET,
  59. SDMA1_REGISTER_OFFSET
  60. };
  61. static const u32 golden_settings_tonga_a11[] =
  62. {
  63. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  64. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  65. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  66. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  67. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  69. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  70. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  71. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  72. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  73. };
  74. static const u32 tonga_mgcg_cgcg_init[] =
  75. {
  76. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  77. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  78. };
  79. static const u32 golden_settings_fiji_a10[] =
  80. {
  81. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  82. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  83. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  84. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  85. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  86. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  87. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  88. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  89. };
  90. static const u32 fiji_mgcg_cgcg_init[] =
  91. {
  92. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  93. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  94. };
  95. static const u32 golden_settings_polaris11_a11[] =
  96. {
  97. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  98. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  99. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  100. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  101. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  102. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  103. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  104. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  105. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  106. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  107. };
  108. static const u32 golden_settings_polaris10_a11[] =
  109. {
  110. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  111. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  112. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  113. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  114. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  115. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  116. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  117. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  118. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  119. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  120. };
  121. static const u32 cz_golden_settings_a11[] =
  122. {
  123. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  124. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  125. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  126. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  127. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  128. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  129. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  130. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  131. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  132. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  133. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  134. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  135. };
  136. static const u32 cz_mgcg_cgcg_init[] =
  137. {
  138. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  139. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  140. };
  141. static const u32 stoney_golden_settings_a11[] =
  142. {
  143. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  144. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  145. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  146. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  147. };
  148. static const u32 stoney_mgcg_cgcg_init[] =
  149. {
  150. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  151. };
  152. /*
  153. * sDMA - System DMA
  154. * Starting with CIK, the GPU has new asynchronous
  155. * DMA engines. These engines are used for compute
  156. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  157. * and each one supports 1 ring buffer used for gfx
  158. * and 2 queues used for compute.
  159. *
  160. * The programming model is very similar to the CP
  161. * (ring buffer, IBs, etc.), but sDMA has it's own
  162. * packet format that is different from the PM4 format
  163. * used by the CP. sDMA supports copying data, writing
  164. * embedded data, solid fills, and a number of other
  165. * things. It also has support for tiling/detiling of
  166. * buffers.
  167. */
  168. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  169. {
  170. switch (adev->asic_type) {
  171. case CHIP_FIJI:
  172. amdgpu_program_register_sequence(adev,
  173. fiji_mgcg_cgcg_init,
  174. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  175. amdgpu_program_register_sequence(adev,
  176. golden_settings_fiji_a10,
  177. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  178. break;
  179. case CHIP_TONGA:
  180. amdgpu_program_register_sequence(adev,
  181. tonga_mgcg_cgcg_init,
  182. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  183. amdgpu_program_register_sequence(adev,
  184. golden_settings_tonga_a11,
  185. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  186. break;
  187. case CHIP_POLARIS11:
  188. amdgpu_program_register_sequence(adev,
  189. golden_settings_polaris11_a11,
  190. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  191. break;
  192. case CHIP_POLARIS10:
  193. amdgpu_program_register_sequence(adev,
  194. golden_settings_polaris10_a11,
  195. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  196. break;
  197. case CHIP_CARRIZO:
  198. amdgpu_program_register_sequence(adev,
  199. cz_mgcg_cgcg_init,
  200. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  201. amdgpu_program_register_sequence(adev,
  202. cz_golden_settings_a11,
  203. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  204. break;
  205. case CHIP_STONEY:
  206. amdgpu_program_register_sequence(adev,
  207. stoney_mgcg_cgcg_init,
  208. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  209. amdgpu_program_register_sequence(adev,
  210. stoney_golden_settings_a11,
  211. (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
  212. break;
  213. default:
  214. break;
  215. }
  216. }
  217. static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
  218. {
  219. int i;
  220. for (i = 0; i < adev->sdma.num_instances; i++) {
  221. release_firmware(adev->sdma.instance[i].fw);
  222. adev->sdma.instance[i].fw = NULL;
  223. }
  224. }
  225. /**
  226. * sdma_v3_0_init_microcode - load ucode images from disk
  227. *
  228. * @adev: amdgpu_device pointer
  229. *
  230. * Use the firmware interface to load the ucode images into
  231. * the driver (not loaded into hw).
  232. * Returns 0 on success, error on failure.
  233. */
  234. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  235. {
  236. const char *chip_name;
  237. char fw_name[30];
  238. int err = 0, i;
  239. struct amdgpu_firmware_info *info = NULL;
  240. const struct common_firmware_header *header = NULL;
  241. const struct sdma_firmware_header_v1_0 *hdr;
  242. DRM_DEBUG("\n");
  243. switch (adev->asic_type) {
  244. case CHIP_TONGA:
  245. chip_name = "tonga";
  246. break;
  247. case CHIP_FIJI:
  248. chip_name = "fiji";
  249. break;
  250. case CHIP_POLARIS11:
  251. chip_name = "polaris11";
  252. break;
  253. case CHIP_POLARIS10:
  254. chip_name = "polaris10";
  255. break;
  256. case CHIP_CARRIZO:
  257. chip_name = "carrizo";
  258. break;
  259. case CHIP_STONEY:
  260. chip_name = "stoney";
  261. break;
  262. default: BUG();
  263. }
  264. for (i = 0; i < adev->sdma.num_instances; i++) {
  265. if (i == 0)
  266. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  267. else
  268. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  269. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  270. if (err)
  271. goto out;
  272. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  273. if (err)
  274. goto out;
  275. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  276. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  277. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  278. if (adev->sdma.instance[i].feature_version >= 20)
  279. adev->sdma.instance[i].burst_nop = true;
  280. if (adev->firmware.smu_load) {
  281. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  282. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  283. info->fw = adev->sdma.instance[i].fw;
  284. header = (const struct common_firmware_header *)info->fw->data;
  285. adev->firmware.fw_size +=
  286. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  287. }
  288. }
  289. out:
  290. if (err) {
  291. printk(KERN_ERR
  292. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  293. fw_name);
  294. for (i = 0; i < adev->sdma.num_instances; i++) {
  295. release_firmware(adev->sdma.instance[i].fw);
  296. adev->sdma.instance[i].fw = NULL;
  297. }
  298. }
  299. return err;
  300. }
  301. /**
  302. * sdma_v3_0_ring_get_rptr - get the current read pointer
  303. *
  304. * @ring: amdgpu ring pointer
  305. *
  306. * Get the current rptr from the hardware (VI+).
  307. */
  308. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  309. {
  310. u32 rptr;
  311. /* XXX check if swapping is necessary on BE */
  312. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  313. return rptr;
  314. }
  315. /**
  316. * sdma_v3_0_ring_get_wptr - get the current write pointer
  317. *
  318. * @ring: amdgpu ring pointer
  319. *
  320. * Get the current wptr from the hardware (VI+).
  321. */
  322. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  323. {
  324. struct amdgpu_device *adev = ring->adev;
  325. u32 wptr;
  326. if (ring->use_doorbell) {
  327. /* XXX check if swapping is necessary on BE */
  328. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  329. } else {
  330. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  331. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  332. }
  333. return wptr;
  334. }
  335. /**
  336. * sdma_v3_0_ring_set_wptr - commit the write pointer
  337. *
  338. * @ring: amdgpu ring pointer
  339. *
  340. * Write the wptr back to the hardware (VI+).
  341. */
  342. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  343. {
  344. struct amdgpu_device *adev = ring->adev;
  345. if (ring->use_doorbell) {
  346. /* XXX check if swapping is necessary on BE */
  347. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  348. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  349. } else {
  350. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  351. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  352. }
  353. }
  354. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  355. {
  356. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  357. int i;
  358. for (i = 0; i < count; i++)
  359. if (sdma && sdma->burst_nop && (i == 0))
  360. amdgpu_ring_write(ring, ring->nop |
  361. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  362. else
  363. amdgpu_ring_write(ring, ring->nop);
  364. }
  365. /**
  366. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  367. *
  368. * @ring: amdgpu ring pointer
  369. * @ib: IB object to schedule
  370. *
  371. * Schedule an IB in the DMA ring (VI).
  372. */
  373. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  374. struct amdgpu_ib *ib,
  375. unsigned vm_id, bool ctx_switch)
  376. {
  377. u32 vmid = vm_id & 0xf;
  378. /* IB packet must end on a 8 DW boundary */
  379. sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  380. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  381. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  382. /* base must be 32 byte aligned */
  383. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  384. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  385. amdgpu_ring_write(ring, ib->length_dw);
  386. amdgpu_ring_write(ring, 0);
  387. amdgpu_ring_write(ring, 0);
  388. }
  389. /**
  390. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  391. *
  392. * @ring: amdgpu ring pointer
  393. *
  394. * Emit an hdp flush packet on the requested DMA ring.
  395. */
  396. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  397. {
  398. u32 ref_and_mask = 0;
  399. if (ring == &ring->adev->sdma.instance[0].ring)
  400. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  401. else
  402. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  403. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  404. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  405. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  406. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  407. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  408. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  409. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  410. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  411. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  412. }
  413. static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  414. {
  415. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  416. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  417. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  418. amdgpu_ring_write(ring, 1);
  419. }
  420. /**
  421. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  422. *
  423. * @ring: amdgpu ring pointer
  424. * @fence: amdgpu fence object
  425. *
  426. * Add a DMA fence packet to the ring to write
  427. * the fence seq number and DMA trap packet to generate
  428. * an interrupt if needed (VI).
  429. */
  430. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  431. unsigned flags)
  432. {
  433. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  434. /* write the fence */
  435. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  436. amdgpu_ring_write(ring, lower_32_bits(addr));
  437. amdgpu_ring_write(ring, upper_32_bits(addr));
  438. amdgpu_ring_write(ring, lower_32_bits(seq));
  439. /* optionally write high bits as well */
  440. if (write64bit) {
  441. addr += 4;
  442. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  443. amdgpu_ring_write(ring, lower_32_bits(addr));
  444. amdgpu_ring_write(ring, upper_32_bits(addr));
  445. amdgpu_ring_write(ring, upper_32_bits(seq));
  446. }
  447. /* generate an interrupt */
  448. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  449. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  450. }
  451. unsigned init_cond_exec(struct amdgpu_ring *ring)
  452. {
  453. unsigned ret;
  454. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
  455. amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
  456. amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
  457. amdgpu_ring_write(ring, 1);
  458. ret = ring->wptr;/* this is the offset we need patch later */
  459. amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
  460. return ret;
  461. }
  462. void patch_cond_exec(struct amdgpu_ring *ring, unsigned offset)
  463. {
  464. unsigned cur;
  465. BUG_ON(ring->ring[offset] != 0x55aa55aa);
  466. cur = ring->wptr - 1;
  467. if (likely(cur > offset))
  468. ring->ring[offset] = cur - offset;
  469. else
  470. ring->ring[offset] = (ring->ring_size>>2) - offset + cur;
  471. }
  472. /**
  473. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  474. *
  475. * @adev: amdgpu_device pointer
  476. *
  477. * Stop the gfx async dma ring buffers (VI).
  478. */
  479. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  480. {
  481. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  482. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  483. u32 rb_cntl, ib_cntl;
  484. int i;
  485. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  486. (adev->mman.buffer_funcs_ring == sdma1))
  487. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  488. for (i = 0; i < adev->sdma.num_instances; i++) {
  489. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  490. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  491. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  492. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  493. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  494. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  495. }
  496. sdma0->ready = false;
  497. sdma1->ready = false;
  498. }
  499. /**
  500. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  501. *
  502. * @adev: amdgpu_device pointer
  503. *
  504. * Stop the compute async dma queues (VI).
  505. */
  506. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  507. {
  508. /* XXX todo */
  509. }
  510. /**
  511. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  512. *
  513. * @adev: amdgpu_device pointer
  514. * @enable: enable/disable the DMA MEs context switch.
  515. *
  516. * Halt or unhalt the async dma engines context switch (VI).
  517. */
  518. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  519. {
  520. u32 f32_cntl;
  521. int i;
  522. for (i = 0; i < adev->sdma.num_instances; i++) {
  523. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  524. if (enable)
  525. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  526. AUTO_CTXSW_ENABLE, 1);
  527. else
  528. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  529. AUTO_CTXSW_ENABLE, 0);
  530. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  531. }
  532. }
  533. /**
  534. * sdma_v3_0_enable - stop the async dma engines
  535. *
  536. * @adev: amdgpu_device pointer
  537. * @enable: enable/disable the DMA MEs.
  538. *
  539. * Halt or unhalt the async dma engines (VI).
  540. */
  541. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  542. {
  543. u32 f32_cntl;
  544. int i;
  545. if (enable == false) {
  546. sdma_v3_0_gfx_stop(adev);
  547. sdma_v3_0_rlc_stop(adev);
  548. }
  549. for (i = 0; i < adev->sdma.num_instances; i++) {
  550. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  551. if (enable)
  552. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  553. else
  554. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  555. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  556. }
  557. }
  558. /**
  559. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  560. *
  561. * @adev: amdgpu_device pointer
  562. *
  563. * Set up the gfx DMA ring buffers and enable them (VI).
  564. * Returns 0 for success, error for failure.
  565. */
  566. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  567. {
  568. struct amdgpu_ring *ring;
  569. u32 rb_cntl, ib_cntl;
  570. u32 rb_bufsz;
  571. u32 wb_offset;
  572. u32 doorbell;
  573. int i, j, r;
  574. for (i = 0; i < adev->sdma.num_instances; i++) {
  575. ring = &adev->sdma.instance[i].ring;
  576. wb_offset = (ring->rptr_offs * 4);
  577. mutex_lock(&adev->srbm_mutex);
  578. for (j = 0; j < 16; j++) {
  579. vi_srbm_select(adev, 0, 0, 0, j);
  580. /* SDMA GFX */
  581. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  582. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  583. }
  584. vi_srbm_select(adev, 0, 0, 0, 0);
  585. mutex_unlock(&adev->srbm_mutex);
  586. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  587. adev->gfx.config.gb_addr_config & 0x70);
  588. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  589. /* Set ring buffer size in dwords */
  590. rb_bufsz = order_base_2(ring->ring_size / 4);
  591. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  592. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  593. #ifdef __BIG_ENDIAN
  594. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  595. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  596. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  597. #endif
  598. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  599. /* Initialize the ring buffer's read and write pointers */
  600. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  601. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  602. WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
  603. WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
  604. /* set the wb address whether it's enabled or not */
  605. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  606. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  607. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  608. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  609. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  610. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  611. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  612. ring->wptr = 0;
  613. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  614. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  615. if (ring->use_doorbell) {
  616. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  617. OFFSET, ring->doorbell_index);
  618. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  619. } else {
  620. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  621. }
  622. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  623. /* enable DMA RB */
  624. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  625. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  626. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  627. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  628. #ifdef __BIG_ENDIAN
  629. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  630. #endif
  631. /* enable DMA IBs */
  632. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  633. ring->ready = true;
  634. }
  635. /* unhalt the MEs */
  636. sdma_v3_0_enable(adev, true);
  637. /* enable sdma ring preemption */
  638. sdma_v3_0_ctx_switch_enable(adev, true);
  639. for (i = 0; i < adev->sdma.num_instances; i++) {
  640. ring = &adev->sdma.instance[i].ring;
  641. r = amdgpu_ring_test_ring(ring);
  642. if (r) {
  643. ring->ready = false;
  644. return r;
  645. }
  646. if (adev->mman.buffer_funcs_ring == ring)
  647. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  648. }
  649. return 0;
  650. }
  651. /**
  652. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  653. *
  654. * @adev: amdgpu_device pointer
  655. *
  656. * Set up the compute DMA queues and enable them (VI).
  657. * Returns 0 for success, error for failure.
  658. */
  659. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  660. {
  661. /* XXX todo */
  662. return 0;
  663. }
  664. /**
  665. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  666. *
  667. * @adev: amdgpu_device pointer
  668. *
  669. * Loads the sDMA0/1 ucode.
  670. * Returns 0 for success, -EINVAL if the ucode is not available.
  671. */
  672. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  673. {
  674. const struct sdma_firmware_header_v1_0 *hdr;
  675. const __le32 *fw_data;
  676. u32 fw_size;
  677. int i, j;
  678. /* halt the MEs */
  679. sdma_v3_0_enable(adev, false);
  680. for (i = 0; i < adev->sdma.num_instances; i++) {
  681. if (!adev->sdma.instance[i].fw)
  682. return -EINVAL;
  683. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  684. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  685. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  686. fw_data = (const __le32 *)
  687. (adev->sdma.instance[i].fw->data +
  688. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  689. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  690. for (j = 0; j < fw_size; j++)
  691. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  692. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  693. }
  694. return 0;
  695. }
  696. /**
  697. * sdma_v3_0_start - setup and start the async dma engines
  698. *
  699. * @adev: amdgpu_device pointer
  700. *
  701. * Set up the DMA engines and enable them (VI).
  702. * Returns 0 for success, error for failure.
  703. */
  704. static int sdma_v3_0_start(struct amdgpu_device *adev)
  705. {
  706. int r, i;
  707. if (!adev->pp_enabled) {
  708. if (!adev->firmware.smu_load) {
  709. r = sdma_v3_0_load_microcode(adev);
  710. if (r)
  711. return r;
  712. } else {
  713. for (i = 0; i < adev->sdma.num_instances; i++) {
  714. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  715. (i == 0) ?
  716. AMDGPU_UCODE_ID_SDMA0 :
  717. AMDGPU_UCODE_ID_SDMA1);
  718. if (r)
  719. return -EINVAL;
  720. }
  721. }
  722. }
  723. /* disble sdma engine before programing it */
  724. sdma_v3_0_ctx_switch_enable(adev, false);
  725. sdma_v3_0_enable(adev, false);
  726. /* start the gfx rings and rlc compute queues */
  727. r = sdma_v3_0_gfx_resume(adev);
  728. if (r)
  729. return r;
  730. r = sdma_v3_0_rlc_resume(adev);
  731. if (r)
  732. return r;
  733. return 0;
  734. }
  735. /**
  736. * sdma_v3_0_ring_test_ring - simple async dma engine test
  737. *
  738. * @ring: amdgpu_ring structure holding ring information
  739. *
  740. * Test the DMA engine by writing using it to write an
  741. * value to memory. (VI).
  742. * Returns 0 for success, error for failure.
  743. */
  744. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  745. {
  746. struct amdgpu_device *adev = ring->adev;
  747. unsigned i;
  748. unsigned index;
  749. int r;
  750. u32 tmp;
  751. u64 gpu_addr;
  752. r = amdgpu_wb_get(adev, &index);
  753. if (r) {
  754. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  755. return r;
  756. }
  757. gpu_addr = adev->wb.gpu_addr + (index * 4);
  758. tmp = 0xCAFEDEAD;
  759. adev->wb.wb[index] = cpu_to_le32(tmp);
  760. r = amdgpu_ring_alloc(ring, 5);
  761. if (r) {
  762. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  763. amdgpu_wb_free(adev, index);
  764. return r;
  765. }
  766. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  767. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  768. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  769. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  770. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  771. amdgpu_ring_write(ring, 0xDEADBEEF);
  772. amdgpu_ring_commit(ring);
  773. for (i = 0; i < adev->usec_timeout; i++) {
  774. tmp = le32_to_cpu(adev->wb.wb[index]);
  775. if (tmp == 0xDEADBEEF)
  776. break;
  777. DRM_UDELAY(1);
  778. }
  779. if (i < adev->usec_timeout) {
  780. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  781. } else {
  782. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  783. ring->idx, tmp);
  784. r = -EINVAL;
  785. }
  786. amdgpu_wb_free(adev, index);
  787. return r;
  788. }
  789. /**
  790. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  791. *
  792. * @ring: amdgpu_ring structure holding ring information
  793. *
  794. * Test a simple IB in the DMA ring (VI).
  795. * Returns 0 on success, error on failure.
  796. */
  797. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
  798. {
  799. struct amdgpu_device *adev = ring->adev;
  800. struct amdgpu_ib ib;
  801. struct fence *f = NULL;
  802. unsigned index;
  803. int r;
  804. u32 tmp = 0;
  805. u64 gpu_addr;
  806. r = amdgpu_wb_get(adev, &index);
  807. if (r) {
  808. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  809. return r;
  810. }
  811. gpu_addr = adev->wb.gpu_addr + (index * 4);
  812. tmp = 0xCAFEDEAD;
  813. adev->wb.wb[index] = cpu_to_le32(tmp);
  814. memset(&ib, 0, sizeof(ib));
  815. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  816. if (r) {
  817. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  818. goto err0;
  819. }
  820. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  821. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  822. ib.ptr[1] = lower_32_bits(gpu_addr);
  823. ib.ptr[2] = upper_32_bits(gpu_addr);
  824. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  825. ib.ptr[4] = 0xDEADBEEF;
  826. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  827. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  828. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  829. ib.length_dw = 8;
  830. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
  831. if (r)
  832. goto err1;
  833. r = fence_wait(f, false);
  834. if (r) {
  835. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  836. goto err1;
  837. }
  838. tmp = le32_to_cpu(adev->wb.wb[index]);
  839. if (tmp == 0xDEADBEEF) {
  840. DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
  841. } else {
  842. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  843. r = -EINVAL;
  844. }
  845. err1:
  846. amdgpu_ib_free(adev, &ib, NULL);
  847. fence_put(f);
  848. err0:
  849. amdgpu_wb_free(adev, index);
  850. return r;
  851. }
  852. /**
  853. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  854. *
  855. * @ib: indirect buffer to fill with commands
  856. * @pe: addr of the page entry
  857. * @src: src addr to copy from
  858. * @count: number of page entries to update
  859. *
  860. * Update PTEs by copying them from the GART using sDMA (CIK).
  861. */
  862. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  863. uint64_t pe, uint64_t src,
  864. unsigned count)
  865. {
  866. while (count) {
  867. unsigned bytes = count * 8;
  868. if (bytes > 0x1FFFF8)
  869. bytes = 0x1FFFF8;
  870. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  871. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  872. ib->ptr[ib->length_dw++] = bytes;
  873. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  874. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  875. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  876. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  877. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  878. pe += bytes;
  879. src += bytes;
  880. count -= bytes / 8;
  881. }
  882. }
  883. /**
  884. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  885. *
  886. * @ib: indirect buffer to fill with commands
  887. * @pe: addr of the page entry
  888. * @addr: dst addr to write into pe
  889. * @count: number of page entries to update
  890. * @incr: increase next addr by incr bytes
  891. * @flags: access flags
  892. *
  893. * Update PTEs by writing them manually using sDMA (CIK).
  894. */
  895. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
  896. const dma_addr_t *pages_addr, uint64_t pe,
  897. uint64_t addr, unsigned count,
  898. uint32_t incr, uint32_t flags)
  899. {
  900. uint64_t value;
  901. unsigned ndw;
  902. while (count) {
  903. ndw = count * 2;
  904. if (ndw > 0xFFFFE)
  905. ndw = 0xFFFFE;
  906. /* for non-physically contiguous pages (system) */
  907. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  908. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  909. ib->ptr[ib->length_dw++] = pe;
  910. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  911. ib->ptr[ib->length_dw++] = ndw;
  912. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  913. value = amdgpu_vm_map_gart(pages_addr, addr);
  914. addr += incr;
  915. value |= flags;
  916. ib->ptr[ib->length_dw++] = value;
  917. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  918. }
  919. }
  920. }
  921. /**
  922. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  923. *
  924. * @ib: indirect buffer to fill with commands
  925. * @pe: addr of the page entry
  926. * @addr: dst addr to write into pe
  927. * @count: number of page entries to update
  928. * @incr: increase next addr by incr bytes
  929. * @flags: access flags
  930. *
  931. * Update the page tables using sDMA (CIK).
  932. */
  933. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  934. uint64_t pe,
  935. uint64_t addr, unsigned count,
  936. uint32_t incr, uint32_t flags)
  937. {
  938. uint64_t value;
  939. unsigned ndw;
  940. while (count) {
  941. ndw = count;
  942. if (ndw > 0x7FFFF)
  943. ndw = 0x7FFFF;
  944. if (flags & AMDGPU_PTE_VALID)
  945. value = addr;
  946. else
  947. value = 0;
  948. /* for physically contiguous pages (vram) */
  949. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  950. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  951. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  952. ib->ptr[ib->length_dw++] = flags; /* mask */
  953. ib->ptr[ib->length_dw++] = 0;
  954. ib->ptr[ib->length_dw++] = value; /* value */
  955. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  956. ib->ptr[ib->length_dw++] = incr; /* increment size */
  957. ib->ptr[ib->length_dw++] = 0;
  958. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  959. pe += ndw * 8;
  960. addr += ndw * incr;
  961. count -= ndw;
  962. }
  963. }
  964. /**
  965. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  966. *
  967. * @ib: indirect buffer to fill with padding
  968. *
  969. */
  970. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  971. {
  972. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  973. u32 pad_count;
  974. int i;
  975. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  976. for (i = 0; i < pad_count; i++)
  977. if (sdma && sdma->burst_nop && (i == 0))
  978. ib->ptr[ib->length_dw++] =
  979. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  980. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  981. else
  982. ib->ptr[ib->length_dw++] =
  983. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  984. }
  985. /**
  986. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  987. *
  988. * @ring: amdgpu_ring pointer
  989. *
  990. * Make sure all previous operations are completed (CIK).
  991. */
  992. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  993. {
  994. uint32_t seq = ring->fence_drv.sync_seq;
  995. uint64_t addr = ring->fence_drv.gpu_addr;
  996. /* wait for idle */
  997. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  998. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  999. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  1000. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  1001. amdgpu_ring_write(ring, addr & 0xfffffffc);
  1002. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  1003. amdgpu_ring_write(ring, seq); /* reference */
  1004. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  1005. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1006. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  1007. }
  1008. /**
  1009. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  1010. *
  1011. * @ring: amdgpu_ring pointer
  1012. * @vm: amdgpu_vm pointer
  1013. *
  1014. * Update the page table base and flush the VM TLB
  1015. * using sDMA (VI).
  1016. */
  1017. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  1018. unsigned vm_id, uint64_t pd_addr)
  1019. {
  1020. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1021. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1022. if (vm_id < 8) {
  1023. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  1024. } else {
  1025. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  1026. }
  1027. amdgpu_ring_write(ring, pd_addr >> 12);
  1028. /* flush TLB */
  1029. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1030. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1031. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  1032. amdgpu_ring_write(ring, 1 << vm_id);
  1033. /* wait for flush */
  1034. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1035. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1036. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  1037. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  1038. amdgpu_ring_write(ring, 0);
  1039. amdgpu_ring_write(ring, 0); /* reference */
  1040. amdgpu_ring_write(ring, 0); /* mask */
  1041. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1042. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  1043. }
  1044. static int sdma_v3_0_early_init(void *handle)
  1045. {
  1046. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1047. switch (adev->asic_type) {
  1048. case CHIP_STONEY:
  1049. adev->sdma.num_instances = 1;
  1050. break;
  1051. default:
  1052. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1053. break;
  1054. }
  1055. sdma_v3_0_set_ring_funcs(adev);
  1056. sdma_v3_0_set_buffer_funcs(adev);
  1057. sdma_v3_0_set_vm_pte_funcs(adev);
  1058. sdma_v3_0_set_irq_funcs(adev);
  1059. return 0;
  1060. }
  1061. static int sdma_v3_0_sw_init(void *handle)
  1062. {
  1063. struct amdgpu_ring *ring;
  1064. int r, i;
  1065. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1066. /* SDMA trap event */
  1067. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  1068. if (r)
  1069. return r;
  1070. /* SDMA Privileged inst */
  1071. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  1072. if (r)
  1073. return r;
  1074. /* SDMA Privileged inst */
  1075. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  1076. if (r)
  1077. return r;
  1078. r = sdma_v3_0_init_microcode(adev);
  1079. if (r) {
  1080. DRM_ERROR("Failed to load sdma firmware!\n");
  1081. return r;
  1082. }
  1083. for (i = 0; i < adev->sdma.num_instances; i++) {
  1084. ring = &adev->sdma.instance[i].ring;
  1085. ring->ring_obj = NULL;
  1086. ring->use_doorbell = true;
  1087. ring->doorbell_index = (i == 0) ?
  1088. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1089. sprintf(ring->name, "sdma%d", i);
  1090. r = amdgpu_ring_init(adev, ring, 1024,
  1091. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  1092. &adev->sdma.trap_irq,
  1093. (i == 0) ?
  1094. AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
  1095. AMDGPU_RING_TYPE_SDMA);
  1096. if (r)
  1097. return r;
  1098. }
  1099. return r;
  1100. }
  1101. static int sdma_v3_0_sw_fini(void *handle)
  1102. {
  1103. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1104. int i;
  1105. for (i = 0; i < adev->sdma.num_instances; i++)
  1106. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1107. sdma_v3_0_free_microcode(adev);
  1108. return 0;
  1109. }
  1110. static int sdma_v3_0_hw_init(void *handle)
  1111. {
  1112. int r;
  1113. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1114. sdma_v3_0_init_golden_registers(adev);
  1115. r = sdma_v3_0_start(adev);
  1116. if (r)
  1117. return r;
  1118. return r;
  1119. }
  1120. static int sdma_v3_0_hw_fini(void *handle)
  1121. {
  1122. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1123. sdma_v3_0_ctx_switch_enable(adev, false);
  1124. sdma_v3_0_enable(adev, false);
  1125. return 0;
  1126. }
  1127. static int sdma_v3_0_suspend(void *handle)
  1128. {
  1129. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1130. return sdma_v3_0_hw_fini(adev);
  1131. }
  1132. static int sdma_v3_0_resume(void *handle)
  1133. {
  1134. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1135. return sdma_v3_0_hw_init(adev);
  1136. }
  1137. static bool sdma_v3_0_is_idle(void *handle)
  1138. {
  1139. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1140. u32 tmp = RREG32(mmSRBM_STATUS2);
  1141. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1142. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1143. return false;
  1144. return true;
  1145. }
  1146. static int sdma_v3_0_wait_for_idle(void *handle)
  1147. {
  1148. unsigned i;
  1149. u32 tmp;
  1150. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1151. for (i = 0; i < adev->usec_timeout; i++) {
  1152. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1153. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1154. if (!tmp)
  1155. return 0;
  1156. udelay(1);
  1157. }
  1158. return -ETIMEDOUT;
  1159. }
  1160. static int sdma_v3_0_soft_reset(void *handle)
  1161. {
  1162. u32 srbm_soft_reset = 0;
  1163. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1164. u32 tmp = RREG32(mmSRBM_STATUS2);
  1165. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  1166. /* sdma0 */
  1167. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  1168. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1169. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  1170. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1171. }
  1172. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  1173. /* sdma1 */
  1174. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  1175. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1176. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  1177. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1178. }
  1179. if (srbm_soft_reset) {
  1180. tmp = RREG32(mmSRBM_SOFT_RESET);
  1181. tmp |= srbm_soft_reset;
  1182. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1183. WREG32(mmSRBM_SOFT_RESET, tmp);
  1184. tmp = RREG32(mmSRBM_SOFT_RESET);
  1185. udelay(50);
  1186. tmp &= ~srbm_soft_reset;
  1187. WREG32(mmSRBM_SOFT_RESET, tmp);
  1188. tmp = RREG32(mmSRBM_SOFT_RESET);
  1189. /* Wait a little for things to settle down */
  1190. udelay(50);
  1191. }
  1192. return 0;
  1193. }
  1194. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1195. struct amdgpu_irq_src *source,
  1196. unsigned type,
  1197. enum amdgpu_interrupt_state state)
  1198. {
  1199. u32 sdma_cntl;
  1200. switch (type) {
  1201. case AMDGPU_SDMA_IRQ_TRAP0:
  1202. switch (state) {
  1203. case AMDGPU_IRQ_STATE_DISABLE:
  1204. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1205. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1206. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1207. break;
  1208. case AMDGPU_IRQ_STATE_ENABLE:
  1209. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1210. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1211. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1212. break;
  1213. default:
  1214. break;
  1215. }
  1216. break;
  1217. case AMDGPU_SDMA_IRQ_TRAP1:
  1218. switch (state) {
  1219. case AMDGPU_IRQ_STATE_DISABLE:
  1220. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1221. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1222. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1223. break;
  1224. case AMDGPU_IRQ_STATE_ENABLE:
  1225. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1226. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1227. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1228. break;
  1229. default:
  1230. break;
  1231. }
  1232. break;
  1233. default:
  1234. break;
  1235. }
  1236. return 0;
  1237. }
  1238. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1239. struct amdgpu_irq_src *source,
  1240. struct amdgpu_iv_entry *entry)
  1241. {
  1242. u8 instance_id, queue_id;
  1243. instance_id = (entry->ring_id & 0x3) >> 0;
  1244. queue_id = (entry->ring_id & 0xc) >> 2;
  1245. DRM_DEBUG("IH: SDMA trap\n");
  1246. switch (instance_id) {
  1247. case 0:
  1248. switch (queue_id) {
  1249. case 0:
  1250. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1251. break;
  1252. case 1:
  1253. /* XXX compute */
  1254. break;
  1255. case 2:
  1256. /* XXX compute */
  1257. break;
  1258. }
  1259. break;
  1260. case 1:
  1261. switch (queue_id) {
  1262. case 0:
  1263. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1264. break;
  1265. case 1:
  1266. /* XXX compute */
  1267. break;
  1268. case 2:
  1269. /* XXX compute */
  1270. break;
  1271. }
  1272. break;
  1273. }
  1274. return 0;
  1275. }
  1276. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1277. struct amdgpu_irq_src *source,
  1278. struct amdgpu_iv_entry *entry)
  1279. {
  1280. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1281. schedule_work(&adev->reset_work);
  1282. return 0;
  1283. }
  1284. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1285. struct amdgpu_device *adev,
  1286. bool enable)
  1287. {
  1288. uint32_t temp, data;
  1289. int i;
  1290. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1291. for (i = 0; i < adev->sdma.num_instances; i++) {
  1292. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1293. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1294. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1295. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1296. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1297. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1298. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1299. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1300. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1301. if (data != temp)
  1302. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1303. }
  1304. } else {
  1305. for (i = 0; i < adev->sdma.num_instances; i++) {
  1306. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1307. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1308. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1309. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1310. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1311. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1312. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1313. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1314. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1315. if (data != temp)
  1316. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1317. }
  1318. }
  1319. }
  1320. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1321. struct amdgpu_device *adev,
  1322. bool enable)
  1323. {
  1324. uint32_t temp, data;
  1325. int i;
  1326. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1327. for (i = 0; i < adev->sdma.num_instances; i++) {
  1328. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1329. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1330. if (temp != data)
  1331. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1332. }
  1333. } else {
  1334. for (i = 0; i < adev->sdma.num_instances; i++) {
  1335. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1336. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1337. if (temp != data)
  1338. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1339. }
  1340. }
  1341. }
  1342. static int sdma_v3_0_set_clockgating_state(void *handle,
  1343. enum amd_clockgating_state state)
  1344. {
  1345. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1346. switch (adev->asic_type) {
  1347. case CHIP_FIJI:
  1348. case CHIP_CARRIZO:
  1349. case CHIP_STONEY:
  1350. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1351. state == AMD_CG_STATE_GATE ? true : false);
  1352. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1353. state == AMD_CG_STATE_GATE ? true : false);
  1354. break;
  1355. default:
  1356. break;
  1357. }
  1358. return 0;
  1359. }
  1360. static int sdma_v3_0_set_powergating_state(void *handle,
  1361. enum amd_powergating_state state)
  1362. {
  1363. return 0;
  1364. }
  1365. const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1366. .name = "sdma_v3_0",
  1367. .early_init = sdma_v3_0_early_init,
  1368. .late_init = NULL,
  1369. .sw_init = sdma_v3_0_sw_init,
  1370. .sw_fini = sdma_v3_0_sw_fini,
  1371. .hw_init = sdma_v3_0_hw_init,
  1372. .hw_fini = sdma_v3_0_hw_fini,
  1373. .suspend = sdma_v3_0_suspend,
  1374. .resume = sdma_v3_0_resume,
  1375. .is_idle = sdma_v3_0_is_idle,
  1376. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1377. .soft_reset = sdma_v3_0_soft_reset,
  1378. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1379. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1380. };
  1381. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1382. .get_rptr = sdma_v3_0_ring_get_rptr,
  1383. .get_wptr = sdma_v3_0_ring_get_wptr,
  1384. .set_wptr = sdma_v3_0_ring_set_wptr,
  1385. .parse_cs = NULL,
  1386. .emit_ib = sdma_v3_0_ring_emit_ib,
  1387. .emit_fence = sdma_v3_0_ring_emit_fence,
  1388. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1389. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1390. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1391. .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
  1392. .test_ring = sdma_v3_0_ring_test_ring,
  1393. .test_ib = sdma_v3_0_ring_test_ib,
  1394. .insert_nop = sdma_v3_0_ring_insert_nop,
  1395. .pad_ib = sdma_v3_0_ring_pad_ib,
  1396. };
  1397. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1398. {
  1399. int i;
  1400. for (i = 0; i < adev->sdma.num_instances; i++)
  1401. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1402. }
  1403. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1404. .set = sdma_v3_0_set_trap_irq_state,
  1405. .process = sdma_v3_0_process_trap_irq,
  1406. };
  1407. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1408. .process = sdma_v3_0_process_illegal_inst_irq,
  1409. };
  1410. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1411. {
  1412. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1413. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1414. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1415. }
  1416. /**
  1417. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1418. *
  1419. * @ring: amdgpu_ring structure holding ring information
  1420. * @src_offset: src GPU address
  1421. * @dst_offset: dst GPU address
  1422. * @byte_count: number of bytes to xfer
  1423. *
  1424. * Copy GPU buffers using the DMA engine (VI).
  1425. * Used by the amdgpu ttm implementation to move pages if
  1426. * registered as the asic copy callback.
  1427. */
  1428. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1429. uint64_t src_offset,
  1430. uint64_t dst_offset,
  1431. uint32_t byte_count)
  1432. {
  1433. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1434. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1435. ib->ptr[ib->length_dw++] = byte_count;
  1436. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1437. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1438. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1439. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1440. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1441. }
  1442. /**
  1443. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1444. *
  1445. * @ring: amdgpu_ring structure holding ring information
  1446. * @src_data: value to write to buffer
  1447. * @dst_offset: dst GPU address
  1448. * @byte_count: number of bytes to xfer
  1449. *
  1450. * Fill GPU buffers using the DMA engine (VI).
  1451. */
  1452. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1453. uint32_t src_data,
  1454. uint64_t dst_offset,
  1455. uint32_t byte_count)
  1456. {
  1457. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1458. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1459. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1460. ib->ptr[ib->length_dw++] = src_data;
  1461. ib->ptr[ib->length_dw++] = byte_count;
  1462. }
  1463. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1464. .copy_max_bytes = 0x1fffff,
  1465. .copy_num_dw = 7,
  1466. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1467. .fill_max_bytes = 0x1fffff,
  1468. .fill_num_dw = 5,
  1469. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1470. };
  1471. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1472. {
  1473. if (adev->mman.buffer_funcs == NULL) {
  1474. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1475. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1476. }
  1477. }
  1478. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1479. .copy_pte = sdma_v3_0_vm_copy_pte,
  1480. .write_pte = sdma_v3_0_vm_write_pte,
  1481. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1482. };
  1483. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1484. {
  1485. unsigned i;
  1486. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1487. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1488. for (i = 0; i < adev->sdma.num_instances; i++)
  1489. adev->vm_manager.vm_pte_rings[i] =
  1490. &adev->sdma.instance[i].ring;
  1491. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1492. }
  1493. }