intel_ringbuffer.c 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. static inline int ring_space(struct intel_ring_buffer *ring)
  35. {
  36. int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
  37. if (space < 0)
  38. space += ring->size;
  39. return space;
  40. }
  41. void __intel_ring_advance(struct intel_ring_buffer *ring)
  42. {
  43. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  44. ring->tail &= ring->size - 1;
  45. if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
  46. return;
  47. ring->write_tail(ring, ring->tail);
  48. }
  49. static int
  50. gen2_render_ring_flush(struct intel_ring_buffer *ring,
  51. u32 invalidate_domains,
  52. u32 flush_domains)
  53. {
  54. u32 cmd;
  55. int ret;
  56. cmd = MI_FLUSH;
  57. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  58. cmd |= MI_NO_WRITE_FLUSH;
  59. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  60. cmd |= MI_READ_FLUSH;
  61. ret = intel_ring_begin(ring, 2);
  62. if (ret)
  63. return ret;
  64. intel_ring_emit(ring, cmd);
  65. intel_ring_emit(ring, MI_NOOP);
  66. intel_ring_advance(ring);
  67. return 0;
  68. }
  69. static int
  70. gen4_render_ring_flush(struct intel_ring_buffer *ring,
  71. u32 invalidate_domains,
  72. u32 flush_domains)
  73. {
  74. struct drm_device *dev = ring->dev;
  75. u32 cmd;
  76. int ret;
  77. /*
  78. * read/write caches:
  79. *
  80. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  81. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  82. * also flushed at 2d versus 3d pipeline switches.
  83. *
  84. * read-only caches:
  85. *
  86. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  87. * MI_READ_FLUSH is set, and is always flushed on 965.
  88. *
  89. * I915_GEM_DOMAIN_COMMAND may not exist?
  90. *
  91. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  92. * invalidated when MI_EXE_FLUSH is set.
  93. *
  94. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  95. * invalidated with every MI_FLUSH.
  96. *
  97. * TLBs:
  98. *
  99. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  100. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  101. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  102. * are flushed at any MI_FLUSH.
  103. */
  104. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  105. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  106. cmd &= ~MI_NO_WRITE_FLUSH;
  107. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  108. cmd |= MI_EXE_FLUSH;
  109. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  110. (IS_G4X(dev) || IS_GEN5(dev)))
  111. cmd |= MI_INVALIDATE_ISP;
  112. ret = intel_ring_begin(ring, 2);
  113. if (ret)
  114. return ret;
  115. intel_ring_emit(ring, cmd);
  116. intel_ring_emit(ring, MI_NOOP);
  117. intel_ring_advance(ring);
  118. return 0;
  119. }
  120. /**
  121. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  122. * implementing two workarounds on gen6. From section 1.4.7.1
  123. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  124. *
  125. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  126. * produced by non-pipelined state commands), software needs to first
  127. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  128. * 0.
  129. *
  130. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  131. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  132. *
  133. * And the workaround for these two requires this workaround first:
  134. *
  135. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  136. * BEFORE the pipe-control with a post-sync op and no write-cache
  137. * flushes.
  138. *
  139. * And this last workaround is tricky because of the requirements on
  140. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  141. * volume 2 part 1:
  142. *
  143. * "1 of the following must also be set:
  144. * - Render Target Cache Flush Enable ([12] of DW1)
  145. * - Depth Cache Flush Enable ([0] of DW1)
  146. * - Stall at Pixel Scoreboard ([1] of DW1)
  147. * - Depth Stall ([13] of DW1)
  148. * - Post-Sync Operation ([13] of DW1)
  149. * - Notify Enable ([8] of DW1)"
  150. *
  151. * The cache flushes require the workaround flush that triggered this
  152. * one, so we can't use it. Depth stall would trigger the same.
  153. * Post-sync nonzero is what triggered this second workaround, so we
  154. * can't use that one either. Notify enable is IRQs, which aren't
  155. * really our business. That leaves only stall at scoreboard.
  156. */
  157. static int
  158. intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
  159. {
  160. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  161. int ret;
  162. ret = intel_ring_begin(ring, 6);
  163. if (ret)
  164. return ret;
  165. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  166. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  167. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  168. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  169. intel_ring_emit(ring, 0); /* low dword */
  170. intel_ring_emit(ring, 0); /* high dword */
  171. intel_ring_emit(ring, MI_NOOP);
  172. intel_ring_advance(ring);
  173. ret = intel_ring_begin(ring, 6);
  174. if (ret)
  175. return ret;
  176. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  177. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  178. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  179. intel_ring_emit(ring, 0);
  180. intel_ring_emit(ring, 0);
  181. intel_ring_emit(ring, MI_NOOP);
  182. intel_ring_advance(ring);
  183. return 0;
  184. }
  185. static int
  186. gen6_render_ring_flush(struct intel_ring_buffer *ring,
  187. u32 invalidate_domains, u32 flush_domains)
  188. {
  189. u32 flags = 0;
  190. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  191. int ret;
  192. /* Force SNB workarounds for PIPE_CONTROL flushes */
  193. ret = intel_emit_post_sync_nonzero_flush(ring);
  194. if (ret)
  195. return ret;
  196. /* Just flush everything. Experiments have shown that reducing the
  197. * number of bits based on the write domains has little performance
  198. * impact.
  199. */
  200. if (flush_domains) {
  201. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  202. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  203. /*
  204. * Ensure that any following seqno writes only happen
  205. * when the render cache is indeed flushed.
  206. */
  207. flags |= PIPE_CONTROL_CS_STALL;
  208. }
  209. if (invalidate_domains) {
  210. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  211. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  212. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  213. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  214. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  215. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  216. /*
  217. * TLB invalidate requires a post-sync write.
  218. */
  219. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  220. }
  221. ret = intel_ring_begin(ring, 4);
  222. if (ret)
  223. return ret;
  224. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  225. intel_ring_emit(ring, flags);
  226. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  227. intel_ring_emit(ring, 0);
  228. intel_ring_advance(ring);
  229. return 0;
  230. }
  231. static int
  232. gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
  233. {
  234. int ret;
  235. ret = intel_ring_begin(ring, 4);
  236. if (ret)
  237. return ret;
  238. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  239. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  240. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  241. intel_ring_emit(ring, 0);
  242. intel_ring_emit(ring, 0);
  243. intel_ring_advance(ring);
  244. return 0;
  245. }
  246. static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
  247. {
  248. int ret;
  249. if (!ring->fbc_dirty)
  250. return 0;
  251. ret = intel_ring_begin(ring, 6);
  252. if (ret)
  253. return ret;
  254. /* WaFbcNukeOn3DBlt:ivb/hsw */
  255. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  256. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  257. intel_ring_emit(ring, value);
  258. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  259. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  260. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  261. intel_ring_advance(ring);
  262. ring->fbc_dirty = false;
  263. return 0;
  264. }
  265. static int
  266. gen7_render_ring_flush(struct intel_ring_buffer *ring,
  267. u32 invalidate_domains, u32 flush_domains)
  268. {
  269. u32 flags = 0;
  270. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  271. int ret;
  272. /*
  273. * Ensure that any following seqno writes only happen when the render
  274. * cache is indeed flushed.
  275. *
  276. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  277. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  278. * don't try to be clever and just set it unconditionally.
  279. */
  280. flags |= PIPE_CONTROL_CS_STALL;
  281. /* Just flush everything. Experiments have shown that reducing the
  282. * number of bits based on the write domains has little performance
  283. * impact.
  284. */
  285. if (flush_domains) {
  286. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  287. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  288. }
  289. if (invalidate_domains) {
  290. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  291. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  292. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  293. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  294. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  295. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  296. /*
  297. * TLB invalidate requires a post-sync write.
  298. */
  299. flags |= PIPE_CONTROL_QW_WRITE;
  300. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  301. /* Workaround: we must issue a pipe_control with CS-stall bit
  302. * set before a pipe_control command that has the state cache
  303. * invalidate bit set. */
  304. gen7_render_ring_cs_stall_wa(ring);
  305. }
  306. ret = intel_ring_begin(ring, 4);
  307. if (ret)
  308. return ret;
  309. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  310. intel_ring_emit(ring, flags);
  311. intel_ring_emit(ring, scratch_addr);
  312. intel_ring_emit(ring, 0);
  313. intel_ring_advance(ring);
  314. if (!invalidate_domains && flush_domains)
  315. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  316. return 0;
  317. }
  318. static int
  319. gen8_render_ring_flush(struct intel_ring_buffer *ring,
  320. u32 invalidate_domains, u32 flush_domains)
  321. {
  322. u32 flags = 0;
  323. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  324. int ret;
  325. flags |= PIPE_CONTROL_CS_STALL;
  326. if (flush_domains) {
  327. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  328. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  329. }
  330. if (invalidate_domains) {
  331. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  332. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  333. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  334. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  335. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  336. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  337. flags |= PIPE_CONTROL_QW_WRITE;
  338. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  339. }
  340. ret = intel_ring_begin(ring, 6);
  341. if (ret)
  342. return ret;
  343. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  344. intel_ring_emit(ring, flags);
  345. intel_ring_emit(ring, scratch_addr);
  346. intel_ring_emit(ring, 0);
  347. intel_ring_emit(ring, 0);
  348. intel_ring_emit(ring, 0);
  349. intel_ring_advance(ring);
  350. return 0;
  351. }
  352. static void ring_write_tail(struct intel_ring_buffer *ring,
  353. u32 value)
  354. {
  355. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  356. I915_WRITE_TAIL(ring, value);
  357. }
  358. u64 intel_ring_get_active_head(struct intel_ring_buffer *ring)
  359. {
  360. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  361. u64 acthd;
  362. if (INTEL_INFO(ring->dev)->gen >= 8)
  363. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  364. RING_ACTHD_UDW(ring->mmio_base));
  365. else if (INTEL_INFO(ring->dev)->gen >= 4)
  366. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  367. else
  368. acthd = I915_READ(ACTHD);
  369. return acthd;
  370. }
  371. static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
  372. {
  373. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  374. u32 addr;
  375. addr = dev_priv->status_page_dmah->busaddr;
  376. if (INTEL_INFO(ring->dev)->gen >= 4)
  377. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  378. I915_WRITE(HWS_PGA, addr);
  379. }
  380. static bool stop_ring(struct intel_ring_buffer *ring)
  381. {
  382. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  383. if (!IS_GEN2(ring->dev)) {
  384. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  385. if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  386. DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
  387. return false;
  388. }
  389. }
  390. I915_WRITE_CTL(ring, 0);
  391. I915_WRITE_HEAD(ring, 0);
  392. ring->write_tail(ring, 0);
  393. if (!IS_GEN2(ring->dev)) {
  394. (void)I915_READ_CTL(ring);
  395. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  396. }
  397. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  398. }
  399. static int init_ring_common(struct intel_ring_buffer *ring)
  400. {
  401. struct drm_device *dev = ring->dev;
  402. struct drm_i915_private *dev_priv = dev->dev_private;
  403. struct drm_i915_gem_object *obj = ring->obj;
  404. int ret = 0;
  405. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  406. if (!stop_ring(ring)) {
  407. /* G45 ring initialization often fails to reset head to zero */
  408. DRM_DEBUG_KMS("%s head not reset to zero "
  409. "ctl %08x head %08x tail %08x start %08x\n",
  410. ring->name,
  411. I915_READ_CTL(ring),
  412. I915_READ_HEAD(ring),
  413. I915_READ_TAIL(ring),
  414. I915_READ_START(ring));
  415. if (!stop_ring(ring)) {
  416. DRM_ERROR("failed to set %s head to zero "
  417. "ctl %08x head %08x tail %08x start %08x\n",
  418. ring->name,
  419. I915_READ_CTL(ring),
  420. I915_READ_HEAD(ring),
  421. I915_READ_TAIL(ring),
  422. I915_READ_START(ring));
  423. ret = -EIO;
  424. goto out;
  425. }
  426. }
  427. if (I915_NEED_GFX_HWS(dev))
  428. intel_ring_setup_status_page(ring);
  429. else
  430. ring_setup_phys_status_page(ring);
  431. /* Initialize the ring. This must happen _after_ we've cleared the ring
  432. * registers with the above sequence (the readback of the HEAD registers
  433. * also enforces ordering), otherwise the hw might lose the new ring
  434. * register values. */
  435. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  436. I915_WRITE_CTL(ring,
  437. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  438. | RING_VALID);
  439. /* If the head is still not zero, the ring is dead */
  440. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  441. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  442. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  443. DRM_ERROR("%s initialization failed "
  444. "ctl %08x head %08x tail %08x start %08x\n",
  445. ring->name,
  446. I915_READ_CTL(ring),
  447. I915_READ_HEAD(ring),
  448. I915_READ_TAIL(ring),
  449. I915_READ_START(ring));
  450. ret = -EIO;
  451. goto out;
  452. }
  453. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  454. i915_kernel_lost_context(ring->dev);
  455. else {
  456. ring->head = I915_READ_HEAD(ring);
  457. ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  458. ring->space = ring_space(ring);
  459. ring->last_retired_head = -1;
  460. }
  461. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  462. out:
  463. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  464. return ret;
  465. }
  466. static int
  467. init_pipe_control(struct intel_ring_buffer *ring)
  468. {
  469. int ret;
  470. if (ring->scratch.obj)
  471. return 0;
  472. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  473. if (ring->scratch.obj == NULL) {
  474. DRM_ERROR("Failed to allocate seqno page\n");
  475. ret = -ENOMEM;
  476. goto err;
  477. }
  478. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  479. if (ret)
  480. goto err_unref;
  481. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  482. if (ret)
  483. goto err_unref;
  484. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  485. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  486. if (ring->scratch.cpu_page == NULL) {
  487. ret = -ENOMEM;
  488. goto err_unpin;
  489. }
  490. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  491. ring->name, ring->scratch.gtt_offset);
  492. return 0;
  493. err_unpin:
  494. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  495. err_unref:
  496. drm_gem_object_unreference(&ring->scratch.obj->base);
  497. err:
  498. return ret;
  499. }
  500. static int init_render_ring(struct intel_ring_buffer *ring)
  501. {
  502. struct drm_device *dev = ring->dev;
  503. struct drm_i915_private *dev_priv = dev->dev_private;
  504. int ret = init_ring_common(ring);
  505. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  506. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  507. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  508. /* We need to disable the AsyncFlip performance optimisations in order
  509. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  510. * programmed to '1' on all products.
  511. *
  512. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
  513. */
  514. if (INTEL_INFO(dev)->gen >= 6)
  515. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  516. /* Required for the hardware to program scanline values for waiting */
  517. if (INTEL_INFO(dev)->gen == 6)
  518. I915_WRITE(GFX_MODE,
  519. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
  520. if (IS_GEN7(dev))
  521. I915_WRITE(GFX_MODE_GEN7,
  522. _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
  523. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  524. if (INTEL_INFO(dev)->gen >= 5) {
  525. ret = init_pipe_control(ring);
  526. if (ret)
  527. return ret;
  528. }
  529. if (IS_GEN6(dev)) {
  530. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  531. * "If this bit is set, STCunit will have LRA as replacement
  532. * policy. [...] This bit must be reset. LRA replacement
  533. * policy is not supported."
  534. */
  535. I915_WRITE(CACHE_MODE_0,
  536. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  537. /* This is not explicitly set for GEN6, so read the register.
  538. * see intel_ring_mi_set_context() for why we care.
  539. * TODO: consider explicitly setting the bit for GEN5
  540. */
  541. ring->itlb_before_ctx_switch =
  542. !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
  543. }
  544. if (INTEL_INFO(dev)->gen >= 6)
  545. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  546. if (HAS_L3_DPF(dev))
  547. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  548. return ret;
  549. }
  550. static void render_ring_cleanup(struct intel_ring_buffer *ring)
  551. {
  552. struct drm_device *dev = ring->dev;
  553. if (ring->scratch.obj == NULL)
  554. return;
  555. if (INTEL_INFO(dev)->gen >= 5) {
  556. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  557. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  558. }
  559. drm_gem_object_unreference(&ring->scratch.obj->base);
  560. ring->scratch.obj = NULL;
  561. }
  562. static void
  563. update_mboxes(struct intel_ring_buffer *ring,
  564. u32 mmio_offset)
  565. {
  566. /* NB: In order to be able to do semaphore MBOX updates for varying number
  567. * of rings, it's easiest if we round up each individual update to a
  568. * multiple of 2 (since ring updates must always be a multiple of 2)
  569. * even though the actual update only requires 3 dwords.
  570. */
  571. #define MBOX_UPDATE_DWORDS 4
  572. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  573. intel_ring_emit(ring, mmio_offset);
  574. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  575. intel_ring_emit(ring, MI_NOOP);
  576. }
  577. /**
  578. * gen6_add_request - Update the semaphore mailbox registers
  579. *
  580. * @ring - ring that is adding a request
  581. * @seqno - return seqno stuck into the ring
  582. *
  583. * Update the mailbox registers in the *other* rings with the current seqno.
  584. * This acts like a signal in the canonical semaphore.
  585. */
  586. static int
  587. gen6_add_request(struct intel_ring_buffer *ring)
  588. {
  589. struct drm_device *dev = ring->dev;
  590. struct drm_i915_private *dev_priv = dev->dev_private;
  591. struct intel_ring_buffer *useless;
  592. int i, ret, num_dwords = 4;
  593. if (i915_semaphore_is_enabled(dev))
  594. num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
  595. #undef MBOX_UPDATE_DWORDS
  596. ret = intel_ring_begin(ring, num_dwords);
  597. if (ret)
  598. return ret;
  599. if (i915_semaphore_is_enabled(dev)) {
  600. for_each_ring(useless, dev_priv, i) {
  601. u32 mbox_reg = ring->signal_mbox[i];
  602. if (mbox_reg != GEN6_NOSYNC)
  603. update_mboxes(ring, mbox_reg);
  604. }
  605. }
  606. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  607. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  608. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  609. intel_ring_emit(ring, MI_USER_INTERRUPT);
  610. __intel_ring_advance(ring);
  611. return 0;
  612. }
  613. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  614. u32 seqno)
  615. {
  616. struct drm_i915_private *dev_priv = dev->dev_private;
  617. return dev_priv->last_seqno < seqno;
  618. }
  619. /**
  620. * intel_ring_sync - sync the waiter to the signaller on seqno
  621. *
  622. * @waiter - ring that is waiting
  623. * @signaller - ring which has, or will signal
  624. * @seqno - seqno which the waiter will block on
  625. */
  626. static int
  627. gen6_ring_sync(struct intel_ring_buffer *waiter,
  628. struct intel_ring_buffer *signaller,
  629. u32 seqno)
  630. {
  631. int ret;
  632. u32 dw1 = MI_SEMAPHORE_MBOX |
  633. MI_SEMAPHORE_COMPARE |
  634. MI_SEMAPHORE_REGISTER;
  635. /* Throughout all of the GEM code, seqno passed implies our current
  636. * seqno is >= the last seqno executed. However for hardware the
  637. * comparison is strictly greater than.
  638. */
  639. seqno -= 1;
  640. WARN_ON(signaller->semaphore_register[waiter->id] ==
  641. MI_SEMAPHORE_SYNC_INVALID);
  642. ret = intel_ring_begin(waiter, 4);
  643. if (ret)
  644. return ret;
  645. /* If seqno wrap happened, omit the wait with no-ops */
  646. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  647. intel_ring_emit(waiter,
  648. dw1 |
  649. signaller->semaphore_register[waiter->id]);
  650. intel_ring_emit(waiter, seqno);
  651. intel_ring_emit(waiter, 0);
  652. intel_ring_emit(waiter, MI_NOOP);
  653. } else {
  654. intel_ring_emit(waiter, MI_NOOP);
  655. intel_ring_emit(waiter, MI_NOOP);
  656. intel_ring_emit(waiter, MI_NOOP);
  657. intel_ring_emit(waiter, MI_NOOP);
  658. }
  659. intel_ring_advance(waiter);
  660. return 0;
  661. }
  662. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  663. do { \
  664. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  665. PIPE_CONTROL_DEPTH_STALL); \
  666. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  667. intel_ring_emit(ring__, 0); \
  668. intel_ring_emit(ring__, 0); \
  669. } while (0)
  670. static int
  671. pc_render_add_request(struct intel_ring_buffer *ring)
  672. {
  673. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  674. int ret;
  675. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  676. * incoherent with writes to memory, i.e. completely fubar,
  677. * so we need to use PIPE_NOTIFY instead.
  678. *
  679. * However, we also need to workaround the qword write
  680. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  681. * memory before requesting an interrupt.
  682. */
  683. ret = intel_ring_begin(ring, 32);
  684. if (ret)
  685. return ret;
  686. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  687. PIPE_CONTROL_WRITE_FLUSH |
  688. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  689. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  690. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  691. intel_ring_emit(ring, 0);
  692. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  693. scratch_addr += 128; /* write to separate cachelines */
  694. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  695. scratch_addr += 128;
  696. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  697. scratch_addr += 128;
  698. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  699. scratch_addr += 128;
  700. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  701. scratch_addr += 128;
  702. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  703. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  704. PIPE_CONTROL_WRITE_FLUSH |
  705. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  706. PIPE_CONTROL_NOTIFY);
  707. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  708. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  709. intel_ring_emit(ring, 0);
  710. __intel_ring_advance(ring);
  711. return 0;
  712. }
  713. static u32
  714. gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  715. {
  716. /* Workaround to force correct ordering between irq and seqno writes on
  717. * ivb (and maybe also on snb) by reading from a CS register (like
  718. * ACTHD) before reading the status page. */
  719. if (!lazy_coherency) {
  720. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  721. POSTING_READ(RING_ACTHD(ring->mmio_base));
  722. }
  723. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  724. }
  725. static u32
  726. ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  727. {
  728. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  729. }
  730. static void
  731. ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  732. {
  733. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  734. }
  735. static u32
  736. pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  737. {
  738. return ring->scratch.cpu_page[0];
  739. }
  740. static void
  741. pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  742. {
  743. ring->scratch.cpu_page[0] = seqno;
  744. }
  745. static bool
  746. gen5_ring_get_irq(struct intel_ring_buffer *ring)
  747. {
  748. struct drm_device *dev = ring->dev;
  749. struct drm_i915_private *dev_priv = dev->dev_private;
  750. unsigned long flags;
  751. if (!dev->irq_enabled)
  752. return false;
  753. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  754. if (ring->irq_refcount++ == 0)
  755. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  756. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  757. return true;
  758. }
  759. static void
  760. gen5_ring_put_irq(struct intel_ring_buffer *ring)
  761. {
  762. struct drm_device *dev = ring->dev;
  763. struct drm_i915_private *dev_priv = dev->dev_private;
  764. unsigned long flags;
  765. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  766. if (--ring->irq_refcount == 0)
  767. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  768. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  769. }
  770. static bool
  771. i9xx_ring_get_irq(struct intel_ring_buffer *ring)
  772. {
  773. struct drm_device *dev = ring->dev;
  774. struct drm_i915_private *dev_priv = dev->dev_private;
  775. unsigned long flags;
  776. if (!dev->irq_enabled)
  777. return false;
  778. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  779. if (ring->irq_refcount++ == 0) {
  780. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  781. I915_WRITE(IMR, dev_priv->irq_mask);
  782. POSTING_READ(IMR);
  783. }
  784. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  785. return true;
  786. }
  787. static void
  788. i9xx_ring_put_irq(struct intel_ring_buffer *ring)
  789. {
  790. struct drm_device *dev = ring->dev;
  791. struct drm_i915_private *dev_priv = dev->dev_private;
  792. unsigned long flags;
  793. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  794. if (--ring->irq_refcount == 0) {
  795. dev_priv->irq_mask |= ring->irq_enable_mask;
  796. I915_WRITE(IMR, dev_priv->irq_mask);
  797. POSTING_READ(IMR);
  798. }
  799. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  800. }
  801. static bool
  802. i8xx_ring_get_irq(struct intel_ring_buffer *ring)
  803. {
  804. struct drm_device *dev = ring->dev;
  805. struct drm_i915_private *dev_priv = dev->dev_private;
  806. unsigned long flags;
  807. if (!dev->irq_enabled)
  808. return false;
  809. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  810. if (ring->irq_refcount++ == 0) {
  811. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  812. I915_WRITE16(IMR, dev_priv->irq_mask);
  813. POSTING_READ16(IMR);
  814. }
  815. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  816. return true;
  817. }
  818. static void
  819. i8xx_ring_put_irq(struct intel_ring_buffer *ring)
  820. {
  821. struct drm_device *dev = ring->dev;
  822. struct drm_i915_private *dev_priv = dev->dev_private;
  823. unsigned long flags;
  824. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  825. if (--ring->irq_refcount == 0) {
  826. dev_priv->irq_mask |= ring->irq_enable_mask;
  827. I915_WRITE16(IMR, dev_priv->irq_mask);
  828. POSTING_READ16(IMR);
  829. }
  830. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  831. }
  832. void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
  833. {
  834. struct drm_device *dev = ring->dev;
  835. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  836. u32 mmio = 0;
  837. /* The ring status page addresses are no longer next to the rest of
  838. * the ring registers as of gen7.
  839. */
  840. if (IS_GEN7(dev)) {
  841. switch (ring->id) {
  842. case RCS:
  843. mmio = RENDER_HWS_PGA_GEN7;
  844. break;
  845. case BCS:
  846. mmio = BLT_HWS_PGA_GEN7;
  847. break;
  848. case VCS:
  849. mmio = BSD_HWS_PGA_GEN7;
  850. break;
  851. case VECS:
  852. mmio = VEBOX_HWS_PGA_GEN7;
  853. break;
  854. }
  855. } else if (IS_GEN6(ring->dev)) {
  856. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  857. } else {
  858. /* XXX: gen8 returns to sanity */
  859. mmio = RING_HWS_PGA(ring->mmio_base);
  860. }
  861. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  862. POSTING_READ(mmio);
  863. /*
  864. * Flush the TLB for this page
  865. *
  866. * FIXME: These two bits have disappeared on gen8, so a question
  867. * arises: do we still need this and if so how should we go about
  868. * invalidating the TLB?
  869. */
  870. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  871. u32 reg = RING_INSTPM(ring->mmio_base);
  872. /* ring should be idle before issuing a sync flush*/
  873. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  874. I915_WRITE(reg,
  875. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  876. INSTPM_SYNC_FLUSH));
  877. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  878. 1000))
  879. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  880. ring->name);
  881. }
  882. }
  883. static int
  884. bsd_ring_flush(struct intel_ring_buffer *ring,
  885. u32 invalidate_domains,
  886. u32 flush_domains)
  887. {
  888. int ret;
  889. ret = intel_ring_begin(ring, 2);
  890. if (ret)
  891. return ret;
  892. intel_ring_emit(ring, MI_FLUSH);
  893. intel_ring_emit(ring, MI_NOOP);
  894. intel_ring_advance(ring);
  895. return 0;
  896. }
  897. static int
  898. i9xx_add_request(struct intel_ring_buffer *ring)
  899. {
  900. int ret;
  901. ret = intel_ring_begin(ring, 4);
  902. if (ret)
  903. return ret;
  904. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  905. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  906. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  907. intel_ring_emit(ring, MI_USER_INTERRUPT);
  908. __intel_ring_advance(ring);
  909. return 0;
  910. }
  911. static bool
  912. gen6_ring_get_irq(struct intel_ring_buffer *ring)
  913. {
  914. struct drm_device *dev = ring->dev;
  915. struct drm_i915_private *dev_priv = dev->dev_private;
  916. unsigned long flags;
  917. if (!dev->irq_enabled)
  918. return false;
  919. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  920. if (ring->irq_refcount++ == 0) {
  921. if (HAS_L3_DPF(dev) && ring->id == RCS)
  922. I915_WRITE_IMR(ring,
  923. ~(ring->irq_enable_mask |
  924. GT_PARITY_ERROR(dev)));
  925. else
  926. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  927. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  928. }
  929. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  930. return true;
  931. }
  932. static void
  933. gen6_ring_put_irq(struct intel_ring_buffer *ring)
  934. {
  935. struct drm_device *dev = ring->dev;
  936. struct drm_i915_private *dev_priv = dev->dev_private;
  937. unsigned long flags;
  938. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  939. if (--ring->irq_refcount == 0) {
  940. if (HAS_L3_DPF(dev) && ring->id == RCS)
  941. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  942. else
  943. I915_WRITE_IMR(ring, ~0);
  944. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  945. }
  946. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  947. }
  948. static bool
  949. hsw_vebox_get_irq(struct intel_ring_buffer *ring)
  950. {
  951. struct drm_device *dev = ring->dev;
  952. struct drm_i915_private *dev_priv = dev->dev_private;
  953. unsigned long flags;
  954. if (!dev->irq_enabled)
  955. return false;
  956. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  957. if (ring->irq_refcount++ == 0) {
  958. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  959. snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  960. }
  961. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  962. return true;
  963. }
  964. static void
  965. hsw_vebox_put_irq(struct intel_ring_buffer *ring)
  966. {
  967. struct drm_device *dev = ring->dev;
  968. struct drm_i915_private *dev_priv = dev->dev_private;
  969. unsigned long flags;
  970. if (!dev->irq_enabled)
  971. return;
  972. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  973. if (--ring->irq_refcount == 0) {
  974. I915_WRITE_IMR(ring, ~0);
  975. snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  976. }
  977. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  978. }
  979. static bool
  980. gen8_ring_get_irq(struct intel_ring_buffer *ring)
  981. {
  982. struct drm_device *dev = ring->dev;
  983. struct drm_i915_private *dev_priv = dev->dev_private;
  984. unsigned long flags;
  985. if (!dev->irq_enabled)
  986. return false;
  987. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  988. if (ring->irq_refcount++ == 0) {
  989. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  990. I915_WRITE_IMR(ring,
  991. ~(ring->irq_enable_mask |
  992. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  993. } else {
  994. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  995. }
  996. POSTING_READ(RING_IMR(ring->mmio_base));
  997. }
  998. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  999. return true;
  1000. }
  1001. static void
  1002. gen8_ring_put_irq(struct intel_ring_buffer *ring)
  1003. {
  1004. struct drm_device *dev = ring->dev;
  1005. struct drm_i915_private *dev_priv = dev->dev_private;
  1006. unsigned long flags;
  1007. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1008. if (--ring->irq_refcount == 0) {
  1009. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1010. I915_WRITE_IMR(ring,
  1011. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1012. } else {
  1013. I915_WRITE_IMR(ring, ~0);
  1014. }
  1015. POSTING_READ(RING_IMR(ring->mmio_base));
  1016. }
  1017. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1018. }
  1019. static int
  1020. i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1021. u32 offset, u32 length,
  1022. unsigned flags)
  1023. {
  1024. int ret;
  1025. ret = intel_ring_begin(ring, 2);
  1026. if (ret)
  1027. return ret;
  1028. intel_ring_emit(ring,
  1029. MI_BATCH_BUFFER_START |
  1030. MI_BATCH_GTT |
  1031. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1032. intel_ring_emit(ring, offset);
  1033. intel_ring_advance(ring);
  1034. return 0;
  1035. }
  1036. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1037. #define I830_BATCH_LIMIT (256*1024)
  1038. static int
  1039. i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1040. u32 offset, u32 len,
  1041. unsigned flags)
  1042. {
  1043. int ret;
  1044. if (flags & I915_DISPATCH_PINNED) {
  1045. ret = intel_ring_begin(ring, 4);
  1046. if (ret)
  1047. return ret;
  1048. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1049. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1050. intel_ring_emit(ring, offset + len - 8);
  1051. intel_ring_emit(ring, MI_NOOP);
  1052. intel_ring_advance(ring);
  1053. } else {
  1054. u32 cs_offset = ring->scratch.gtt_offset;
  1055. if (len > I830_BATCH_LIMIT)
  1056. return -ENOSPC;
  1057. ret = intel_ring_begin(ring, 9+3);
  1058. if (ret)
  1059. return ret;
  1060. /* Blit the batch (which has now all relocs applied) to the stable batch
  1061. * scratch bo area (so that the CS never stumbles over its tlb
  1062. * invalidation bug) ... */
  1063. intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
  1064. XY_SRC_COPY_BLT_WRITE_ALPHA |
  1065. XY_SRC_COPY_BLT_WRITE_RGB);
  1066. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
  1067. intel_ring_emit(ring, 0);
  1068. intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
  1069. intel_ring_emit(ring, cs_offset);
  1070. intel_ring_emit(ring, 0);
  1071. intel_ring_emit(ring, 4096);
  1072. intel_ring_emit(ring, offset);
  1073. intel_ring_emit(ring, MI_FLUSH);
  1074. /* ... and execute it. */
  1075. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1076. intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1077. intel_ring_emit(ring, cs_offset + len - 8);
  1078. intel_ring_advance(ring);
  1079. }
  1080. return 0;
  1081. }
  1082. static int
  1083. i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1084. u32 offset, u32 len,
  1085. unsigned flags)
  1086. {
  1087. int ret;
  1088. ret = intel_ring_begin(ring, 2);
  1089. if (ret)
  1090. return ret;
  1091. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1092. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1093. intel_ring_advance(ring);
  1094. return 0;
  1095. }
  1096. static void cleanup_status_page(struct intel_ring_buffer *ring)
  1097. {
  1098. struct drm_i915_gem_object *obj;
  1099. obj = ring->status_page.obj;
  1100. if (obj == NULL)
  1101. return;
  1102. kunmap(sg_page(obj->pages->sgl));
  1103. i915_gem_object_ggtt_unpin(obj);
  1104. drm_gem_object_unreference(&obj->base);
  1105. ring->status_page.obj = NULL;
  1106. }
  1107. static int init_status_page(struct intel_ring_buffer *ring)
  1108. {
  1109. struct drm_device *dev = ring->dev;
  1110. struct drm_i915_gem_object *obj;
  1111. int ret;
  1112. obj = i915_gem_alloc_object(dev, 4096);
  1113. if (obj == NULL) {
  1114. DRM_ERROR("Failed to allocate status page\n");
  1115. ret = -ENOMEM;
  1116. goto err;
  1117. }
  1118. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1119. if (ret)
  1120. goto err_unref;
  1121. ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
  1122. if (ret)
  1123. goto err_unref;
  1124. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1125. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1126. if (ring->status_page.page_addr == NULL) {
  1127. ret = -ENOMEM;
  1128. goto err_unpin;
  1129. }
  1130. ring->status_page.obj = obj;
  1131. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1132. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1133. ring->name, ring->status_page.gfx_addr);
  1134. return 0;
  1135. err_unpin:
  1136. i915_gem_object_ggtt_unpin(obj);
  1137. err_unref:
  1138. drm_gem_object_unreference(&obj->base);
  1139. err:
  1140. return ret;
  1141. }
  1142. static int init_phys_status_page(struct intel_ring_buffer *ring)
  1143. {
  1144. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1145. if (!dev_priv->status_page_dmah) {
  1146. dev_priv->status_page_dmah =
  1147. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1148. if (!dev_priv->status_page_dmah)
  1149. return -ENOMEM;
  1150. }
  1151. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1152. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1153. return 0;
  1154. }
  1155. static int intel_init_ring_buffer(struct drm_device *dev,
  1156. struct intel_ring_buffer *ring)
  1157. {
  1158. struct drm_i915_gem_object *obj;
  1159. struct drm_i915_private *dev_priv = dev->dev_private;
  1160. int ret;
  1161. ring->dev = dev;
  1162. INIT_LIST_HEAD(&ring->active_list);
  1163. INIT_LIST_HEAD(&ring->request_list);
  1164. ring->size = 32 * PAGE_SIZE;
  1165. memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
  1166. init_waitqueue_head(&ring->irq_queue);
  1167. if (I915_NEED_GFX_HWS(dev)) {
  1168. ret = init_status_page(ring);
  1169. if (ret)
  1170. return ret;
  1171. } else {
  1172. BUG_ON(ring->id != RCS);
  1173. ret = init_phys_status_page(ring);
  1174. if (ret)
  1175. return ret;
  1176. }
  1177. obj = NULL;
  1178. if (!HAS_LLC(dev))
  1179. obj = i915_gem_object_create_stolen(dev, ring->size);
  1180. if (obj == NULL)
  1181. obj = i915_gem_alloc_object(dev, ring->size);
  1182. if (obj == NULL) {
  1183. DRM_ERROR("Failed to allocate ringbuffer\n");
  1184. ret = -ENOMEM;
  1185. goto err_hws;
  1186. }
  1187. ring->obj = obj;
  1188. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1189. if (ret)
  1190. goto err_unref;
  1191. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1192. if (ret)
  1193. goto err_unpin;
  1194. ring->virtual_start =
  1195. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1196. ring->size);
  1197. if (ring->virtual_start == NULL) {
  1198. DRM_ERROR("Failed to map ringbuffer.\n");
  1199. ret = -EINVAL;
  1200. goto err_unpin;
  1201. }
  1202. ret = ring->init(ring);
  1203. if (ret)
  1204. goto err_unmap;
  1205. /* Workaround an erratum on the i830 which causes a hang if
  1206. * the TAIL pointer points to within the last 2 cachelines
  1207. * of the buffer.
  1208. */
  1209. ring->effective_size = ring->size;
  1210. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1211. ring->effective_size -= 128;
  1212. i915_cmd_parser_init_ring(ring);
  1213. return 0;
  1214. err_unmap:
  1215. iounmap(ring->virtual_start);
  1216. err_unpin:
  1217. i915_gem_object_ggtt_unpin(obj);
  1218. err_unref:
  1219. drm_gem_object_unreference(&obj->base);
  1220. ring->obj = NULL;
  1221. err_hws:
  1222. cleanup_status_page(ring);
  1223. return ret;
  1224. }
  1225. void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
  1226. {
  1227. struct drm_i915_private *dev_priv;
  1228. int ret;
  1229. if (ring->obj == NULL)
  1230. return;
  1231. /* Disable the ring buffer. The ring must be idle at this point */
  1232. dev_priv = ring->dev->dev_private;
  1233. ret = intel_ring_idle(ring);
  1234. if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
  1235. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  1236. ring->name, ret);
  1237. I915_WRITE_CTL(ring, 0);
  1238. iounmap(ring->virtual_start);
  1239. i915_gem_object_ggtt_unpin(ring->obj);
  1240. drm_gem_object_unreference(&ring->obj->base);
  1241. ring->obj = NULL;
  1242. ring->preallocated_lazy_request = NULL;
  1243. ring->outstanding_lazy_seqno = 0;
  1244. if (ring->cleanup)
  1245. ring->cleanup(ring);
  1246. cleanup_status_page(ring);
  1247. }
  1248. static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
  1249. {
  1250. struct drm_i915_gem_request *request;
  1251. u32 seqno = 0, tail;
  1252. int ret;
  1253. if (ring->last_retired_head != -1) {
  1254. ring->head = ring->last_retired_head;
  1255. ring->last_retired_head = -1;
  1256. ring->space = ring_space(ring);
  1257. if (ring->space >= n)
  1258. return 0;
  1259. }
  1260. list_for_each_entry(request, &ring->request_list, list) {
  1261. int space;
  1262. if (request->tail == -1)
  1263. continue;
  1264. space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
  1265. if (space < 0)
  1266. space += ring->size;
  1267. if (space >= n) {
  1268. seqno = request->seqno;
  1269. tail = request->tail;
  1270. break;
  1271. }
  1272. /* Consume this request in case we need more space than
  1273. * is available and so need to prevent a race between
  1274. * updating last_retired_head and direct reads of
  1275. * I915_RING_HEAD. It also provides a nice sanity check.
  1276. */
  1277. request->tail = -1;
  1278. }
  1279. if (seqno == 0)
  1280. return -ENOSPC;
  1281. ret = i915_wait_seqno(ring, seqno);
  1282. if (ret)
  1283. return ret;
  1284. ring->head = tail;
  1285. ring->space = ring_space(ring);
  1286. if (WARN_ON(ring->space < n))
  1287. return -ENOSPC;
  1288. return 0;
  1289. }
  1290. static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
  1291. {
  1292. struct drm_device *dev = ring->dev;
  1293. struct drm_i915_private *dev_priv = dev->dev_private;
  1294. unsigned long end;
  1295. int ret;
  1296. ret = intel_ring_wait_request(ring, n);
  1297. if (ret != -ENOSPC)
  1298. return ret;
  1299. /* force the tail write in case we have been skipping them */
  1300. __intel_ring_advance(ring);
  1301. trace_i915_ring_wait_begin(ring);
  1302. /* With GEM the hangcheck timer should kick us out of the loop,
  1303. * leaving it early runs the risk of corrupting GEM state (due
  1304. * to running on almost untested codepaths). But on resume
  1305. * timers don't work yet, so prevent a complete hang in that
  1306. * case by choosing an insanely large timeout. */
  1307. end = jiffies + 60 * HZ;
  1308. do {
  1309. ring->head = I915_READ_HEAD(ring);
  1310. ring->space = ring_space(ring);
  1311. if (ring->space >= n) {
  1312. trace_i915_ring_wait_end(ring);
  1313. return 0;
  1314. }
  1315. if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
  1316. dev->primary->master) {
  1317. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1318. if (master_priv->sarea_priv)
  1319. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1320. }
  1321. msleep(1);
  1322. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1323. dev_priv->mm.interruptible);
  1324. if (ret)
  1325. return ret;
  1326. } while (!time_after(jiffies, end));
  1327. trace_i915_ring_wait_end(ring);
  1328. return -EBUSY;
  1329. }
  1330. static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
  1331. {
  1332. uint32_t __iomem *virt;
  1333. int rem = ring->size - ring->tail;
  1334. if (ring->space < rem) {
  1335. int ret = ring_wait_for_space(ring, rem);
  1336. if (ret)
  1337. return ret;
  1338. }
  1339. virt = ring->virtual_start + ring->tail;
  1340. rem /= 4;
  1341. while (rem--)
  1342. iowrite32(MI_NOOP, virt++);
  1343. ring->tail = 0;
  1344. ring->space = ring_space(ring);
  1345. return 0;
  1346. }
  1347. int intel_ring_idle(struct intel_ring_buffer *ring)
  1348. {
  1349. u32 seqno;
  1350. int ret;
  1351. /* We need to add any requests required to flush the objects and ring */
  1352. if (ring->outstanding_lazy_seqno) {
  1353. ret = i915_add_request(ring, NULL);
  1354. if (ret)
  1355. return ret;
  1356. }
  1357. /* Wait upon the last request to be completed */
  1358. if (list_empty(&ring->request_list))
  1359. return 0;
  1360. seqno = list_entry(ring->request_list.prev,
  1361. struct drm_i915_gem_request,
  1362. list)->seqno;
  1363. return i915_wait_seqno(ring, seqno);
  1364. }
  1365. static int
  1366. intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
  1367. {
  1368. if (ring->outstanding_lazy_seqno)
  1369. return 0;
  1370. if (ring->preallocated_lazy_request == NULL) {
  1371. struct drm_i915_gem_request *request;
  1372. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1373. if (request == NULL)
  1374. return -ENOMEM;
  1375. ring->preallocated_lazy_request = request;
  1376. }
  1377. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1378. }
  1379. static int __intel_ring_prepare(struct intel_ring_buffer *ring,
  1380. int bytes)
  1381. {
  1382. int ret;
  1383. if (unlikely(ring->tail + bytes > ring->effective_size)) {
  1384. ret = intel_wrap_ring_buffer(ring);
  1385. if (unlikely(ret))
  1386. return ret;
  1387. }
  1388. if (unlikely(ring->space < bytes)) {
  1389. ret = ring_wait_for_space(ring, bytes);
  1390. if (unlikely(ret))
  1391. return ret;
  1392. }
  1393. return 0;
  1394. }
  1395. int intel_ring_begin(struct intel_ring_buffer *ring,
  1396. int num_dwords)
  1397. {
  1398. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1399. int ret;
  1400. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1401. dev_priv->mm.interruptible);
  1402. if (ret)
  1403. return ret;
  1404. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1405. if (ret)
  1406. return ret;
  1407. /* Preallocate the olr before touching the ring */
  1408. ret = intel_ring_alloc_seqno(ring);
  1409. if (ret)
  1410. return ret;
  1411. ring->space -= num_dwords * sizeof(uint32_t);
  1412. return 0;
  1413. }
  1414. /* Align the ring tail to a cacheline boundary */
  1415. int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
  1416. {
  1417. int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t);
  1418. int ret;
  1419. if (num_dwords == 0)
  1420. return 0;
  1421. ret = intel_ring_begin(ring, num_dwords);
  1422. if (ret)
  1423. return ret;
  1424. while (num_dwords--)
  1425. intel_ring_emit(ring, MI_NOOP);
  1426. intel_ring_advance(ring);
  1427. return 0;
  1428. }
  1429. void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1430. {
  1431. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1432. BUG_ON(ring->outstanding_lazy_seqno);
  1433. if (INTEL_INFO(ring->dev)->gen >= 6) {
  1434. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1435. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1436. if (HAS_VEBOX(ring->dev))
  1437. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1438. }
  1439. ring->set_seqno(ring, seqno);
  1440. ring->hangcheck.seqno = seqno;
  1441. }
  1442. static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
  1443. u32 value)
  1444. {
  1445. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1446. /* Every tail move must follow the sequence below */
  1447. /* Disable notification that the ring is IDLE. The GT
  1448. * will then assume that it is busy and bring it out of rc6.
  1449. */
  1450. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1451. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1452. /* Clear the context id. Here be magic! */
  1453. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1454. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1455. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1456. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1457. 50))
  1458. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1459. /* Now that the ring is fully powered up, update the tail */
  1460. I915_WRITE_TAIL(ring, value);
  1461. POSTING_READ(RING_TAIL(ring->mmio_base));
  1462. /* Let the ring send IDLE messages to the GT again,
  1463. * and so let it sleep to conserve power when idle.
  1464. */
  1465. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1466. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1467. }
  1468. static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
  1469. u32 invalidate, u32 flush)
  1470. {
  1471. uint32_t cmd;
  1472. int ret;
  1473. ret = intel_ring_begin(ring, 4);
  1474. if (ret)
  1475. return ret;
  1476. cmd = MI_FLUSH_DW;
  1477. if (INTEL_INFO(ring->dev)->gen >= 8)
  1478. cmd += 1;
  1479. /*
  1480. * Bspec vol 1c.5 - video engine command streamer:
  1481. * "If ENABLED, all TLBs will be invalidated once the flush
  1482. * operation is complete. This bit is only valid when the
  1483. * Post-Sync Operation field is a value of 1h or 3h."
  1484. */
  1485. if (invalidate & I915_GEM_GPU_DOMAINS)
  1486. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1487. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1488. intel_ring_emit(ring, cmd);
  1489. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1490. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1491. intel_ring_emit(ring, 0); /* upper addr */
  1492. intel_ring_emit(ring, 0); /* value */
  1493. } else {
  1494. intel_ring_emit(ring, 0);
  1495. intel_ring_emit(ring, MI_NOOP);
  1496. }
  1497. intel_ring_advance(ring);
  1498. return 0;
  1499. }
  1500. static int
  1501. gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1502. u32 offset, u32 len,
  1503. unsigned flags)
  1504. {
  1505. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1506. bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
  1507. !(flags & I915_DISPATCH_SECURE);
  1508. int ret;
  1509. ret = intel_ring_begin(ring, 4);
  1510. if (ret)
  1511. return ret;
  1512. /* FIXME(BDW): Address space and security selectors. */
  1513. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1514. intel_ring_emit(ring, offset);
  1515. intel_ring_emit(ring, 0);
  1516. intel_ring_emit(ring, MI_NOOP);
  1517. intel_ring_advance(ring);
  1518. return 0;
  1519. }
  1520. static int
  1521. hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1522. u32 offset, u32 len,
  1523. unsigned flags)
  1524. {
  1525. int ret;
  1526. ret = intel_ring_begin(ring, 2);
  1527. if (ret)
  1528. return ret;
  1529. intel_ring_emit(ring,
  1530. MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
  1531. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
  1532. /* bit0-7 is the length on GEN6+ */
  1533. intel_ring_emit(ring, offset);
  1534. intel_ring_advance(ring);
  1535. return 0;
  1536. }
  1537. static int
  1538. gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1539. u32 offset, u32 len,
  1540. unsigned flags)
  1541. {
  1542. int ret;
  1543. ret = intel_ring_begin(ring, 2);
  1544. if (ret)
  1545. return ret;
  1546. intel_ring_emit(ring,
  1547. MI_BATCH_BUFFER_START |
  1548. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1549. /* bit0-7 is the length on GEN6+ */
  1550. intel_ring_emit(ring, offset);
  1551. intel_ring_advance(ring);
  1552. return 0;
  1553. }
  1554. /* Blitter support (SandyBridge+) */
  1555. static int gen6_ring_flush(struct intel_ring_buffer *ring,
  1556. u32 invalidate, u32 flush)
  1557. {
  1558. struct drm_device *dev = ring->dev;
  1559. uint32_t cmd;
  1560. int ret;
  1561. ret = intel_ring_begin(ring, 4);
  1562. if (ret)
  1563. return ret;
  1564. cmd = MI_FLUSH_DW;
  1565. if (INTEL_INFO(ring->dev)->gen >= 8)
  1566. cmd += 1;
  1567. /*
  1568. * Bspec vol 1c.3 - blitter engine command streamer:
  1569. * "If ENABLED, all TLBs will be invalidated once the flush
  1570. * operation is complete. This bit is only valid when the
  1571. * Post-Sync Operation field is a value of 1h or 3h."
  1572. */
  1573. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1574. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1575. MI_FLUSH_DW_OP_STOREDW;
  1576. intel_ring_emit(ring, cmd);
  1577. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1578. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1579. intel_ring_emit(ring, 0); /* upper addr */
  1580. intel_ring_emit(ring, 0); /* value */
  1581. } else {
  1582. intel_ring_emit(ring, 0);
  1583. intel_ring_emit(ring, MI_NOOP);
  1584. }
  1585. intel_ring_advance(ring);
  1586. if (IS_GEN7(dev) && !invalidate && flush)
  1587. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1588. return 0;
  1589. }
  1590. int intel_init_render_ring_buffer(struct drm_device *dev)
  1591. {
  1592. struct drm_i915_private *dev_priv = dev->dev_private;
  1593. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1594. ring->name = "render ring";
  1595. ring->id = RCS;
  1596. ring->mmio_base = RENDER_RING_BASE;
  1597. if (INTEL_INFO(dev)->gen >= 6) {
  1598. ring->add_request = gen6_add_request;
  1599. ring->flush = gen7_render_ring_flush;
  1600. if (INTEL_INFO(dev)->gen == 6)
  1601. ring->flush = gen6_render_ring_flush;
  1602. if (INTEL_INFO(dev)->gen >= 8) {
  1603. ring->flush = gen8_render_ring_flush;
  1604. ring->irq_get = gen8_ring_get_irq;
  1605. ring->irq_put = gen8_ring_put_irq;
  1606. } else {
  1607. ring->irq_get = gen6_ring_get_irq;
  1608. ring->irq_put = gen6_ring_put_irq;
  1609. }
  1610. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1611. ring->get_seqno = gen6_ring_get_seqno;
  1612. ring->set_seqno = ring_set_seqno;
  1613. ring->sync_to = gen6_ring_sync;
  1614. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1615. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
  1616. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
  1617. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1618. ring->signal_mbox[RCS] = GEN6_NOSYNC;
  1619. ring->signal_mbox[VCS] = GEN6_VRSYNC;
  1620. ring->signal_mbox[BCS] = GEN6_BRSYNC;
  1621. ring->signal_mbox[VECS] = GEN6_VERSYNC;
  1622. } else if (IS_GEN5(dev)) {
  1623. ring->add_request = pc_render_add_request;
  1624. ring->flush = gen4_render_ring_flush;
  1625. ring->get_seqno = pc_render_get_seqno;
  1626. ring->set_seqno = pc_render_set_seqno;
  1627. ring->irq_get = gen5_ring_get_irq;
  1628. ring->irq_put = gen5_ring_put_irq;
  1629. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1630. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1631. } else {
  1632. ring->add_request = i9xx_add_request;
  1633. if (INTEL_INFO(dev)->gen < 4)
  1634. ring->flush = gen2_render_ring_flush;
  1635. else
  1636. ring->flush = gen4_render_ring_flush;
  1637. ring->get_seqno = ring_get_seqno;
  1638. ring->set_seqno = ring_set_seqno;
  1639. if (IS_GEN2(dev)) {
  1640. ring->irq_get = i8xx_ring_get_irq;
  1641. ring->irq_put = i8xx_ring_put_irq;
  1642. } else {
  1643. ring->irq_get = i9xx_ring_get_irq;
  1644. ring->irq_put = i9xx_ring_put_irq;
  1645. }
  1646. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1647. }
  1648. ring->write_tail = ring_write_tail;
  1649. if (IS_HASWELL(dev))
  1650. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1651. else if (IS_GEN8(dev))
  1652. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1653. else if (INTEL_INFO(dev)->gen >= 6)
  1654. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1655. else if (INTEL_INFO(dev)->gen >= 4)
  1656. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1657. else if (IS_I830(dev) || IS_845G(dev))
  1658. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1659. else
  1660. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1661. ring->init = init_render_ring;
  1662. ring->cleanup = render_ring_cleanup;
  1663. /* Workaround batchbuffer to combat CS tlb bug. */
  1664. if (HAS_BROKEN_CS_TLB(dev)) {
  1665. struct drm_i915_gem_object *obj;
  1666. int ret;
  1667. obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
  1668. if (obj == NULL) {
  1669. DRM_ERROR("Failed to allocate batch bo\n");
  1670. return -ENOMEM;
  1671. }
  1672. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  1673. if (ret != 0) {
  1674. drm_gem_object_unreference(&obj->base);
  1675. DRM_ERROR("Failed to ping batch bo\n");
  1676. return ret;
  1677. }
  1678. ring->scratch.obj = obj;
  1679. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  1680. }
  1681. return intel_init_ring_buffer(dev, ring);
  1682. }
  1683. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1684. {
  1685. struct drm_i915_private *dev_priv = dev->dev_private;
  1686. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1687. int ret;
  1688. ring->name = "render ring";
  1689. ring->id = RCS;
  1690. ring->mmio_base = RENDER_RING_BASE;
  1691. if (INTEL_INFO(dev)->gen >= 6) {
  1692. /* non-kms not supported on gen6+ */
  1693. return -ENODEV;
  1694. }
  1695. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  1696. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  1697. * the special gen5 functions. */
  1698. ring->add_request = i9xx_add_request;
  1699. if (INTEL_INFO(dev)->gen < 4)
  1700. ring->flush = gen2_render_ring_flush;
  1701. else
  1702. ring->flush = gen4_render_ring_flush;
  1703. ring->get_seqno = ring_get_seqno;
  1704. ring->set_seqno = ring_set_seqno;
  1705. if (IS_GEN2(dev)) {
  1706. ring->irq_get = i8xx_ring_get_irq;
  1707. ring->irq_put = i8xx_ring_put_irq;
  1708. } else {
  1709. ring->irq_get = i9xx_ring_get_irq;
  1710. ring->irq_put = i9xx_ring_put_irq;
  1711. }
  1712. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1713. ring->write_tail = ring_write_tail;
  1714. if (INTEL_INFO(dev)->gen >= 4)
  1715. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1716. else if (IS_I830(dev) || IS_845G(dev))
  1717. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1718. else
  1719. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1720. ring->init = init_render_ring;
  1721. ring->cleanup = render_ring_cleanup;
  1722. ring->dev = dev;
  1723. INIT_LIST_HEAD(&ring->active_list);
  1724. INIT_LIST_HEAD(&ring->request_list);
  1725. ring->size = size;
  1726. ring->effective_size = ring->size;
  1727. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1728. ring->effective_size -= 128;
  1729. ring->virtual_start = ioremap_wc(start, size);
  1730. if (ring->virtual_start == NULL) {
  1731. DRM_ERROR("can not ioremap virtual address for"
  1732. " ring buffer\n");
  1733. return -ENOMEM;
  1734. }
  1735. if (!I915_NEED_GFX_HWS(dev)) {
  1736. ret = init_phys_status_page(ring);
  1737. if (ret)
  1738. return ret;
  1739. }
  1740. return 0;
  1741. }
  1742. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1743. {
  1744. struct drm_i915_private *dev_priv = dev->dev_private;
  1745. struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
  1746. ring->name = "bsd ring";
  1747. ring->id = VCS;
  1748. ring->write_tail = ring_write_tail;
  1749. if (INTEL_INFO(dev)->gen >= 6) {
  1750. ring->mmio_base = GEN6_BSD_RING_BASE;
  1751. /* gen6 bsd needs a special wa for tail updates */
  1752. if (IS_GEN6(dev))
  1753. ring->write_tail = gen6_bsd_ring_write_tail;
  1754. ring->flush = gen6_bsd_ring_flush;
  1755. ring->add_request = gen6_add_request;
  1756. ring->get_seqno = gen6_ring_get_seqno;
  1757. ring->set_seqno = ring_set_seqno;
  1758. if (INTEL_INFO(dev)->gen >= 8) {
  1759. ring->irq_enable_mask =
  1760. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  1761. ring->irq_get = gen8_ring_get_irq;
  1762. ring->irq_put = gen8_ring_put_irq;
  1763. ring->dispatch_execbuffer =
  1764. gen8_ring_dispatch_execbuffer;
  1765. } else {
  1766. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  1767. ring->irq_get = gen6_ring_get_irq;
  1768. ring->irq_put = gen6_ring_put_irq;
  1769. ring->dispatch_execbuffer =
  1770. gen6_ring_dispatch_execbuffer;
  1771. }
  1772. ring->sync_to = gen6_ring_sync;
  1773. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
  1774. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1775. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
  1776. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
  1777. ring->signal_mbox[RCS] = GEN6_RVSYNC;
  1778. ring->signal_mbox[VCS] = GEN6_NOSYNC;
  1779. ring->signal_mbox[BCS] = GEN6_BVSYNC;
  1780. ring->signal_mbox[VECS] = GEN6_VEVSYNC;
  1781. } else {
  1782. ring->mmio_base = BSD_RING_BASE;
  1783. ring->flush = bsd_ring_flush;
  1784. ring->add_request = i9xx_add_request;
  1785. ring->get_seqno = ring_get_seqno;
  1786. ring->set_seqno = ring_set_seqno;
  1787. if (IS_GEN5(dev)) {
  1788. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  1789. ring->irq_get = gen5_ring_get_irq;
  1790. ring->irq_put = gen5_ring_put_irq;
  1791. } else {
  1792. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  1793. ring->irq_get = i9xx_ring_get_irq;
  1794. ring->irq_put = i9xx_ring_put_irq;
  1795. }
  1796. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1797. }
  1798. ring->init = init_ring_common;
  1799. return intel_init_ring_buffer(dev, ring);
  1800. }
  1801. int intel_init_blt_ring_buffer(struct drm_device *dev)
  1802. {
  1803. struct drm_i915_private *dev_priv = dev->dev_private;
  1804. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  1805. ring->name = "blitter ring";
  1806. ring->id = BCS;
  1807. ring->mmio_base = BLT_RING_BASE;
  1808. ring->write_tail = ring_write_tail;
  1809. ring->flush = gen6_ring_flush;
  1810. ring->add_request = gen6_add_request;
  1811. ring->get_seqno = gen6_ring_get_seqno;
  1812. ring->set_seqno = ring_set_seqno;
  1813. if (INTEL_INFO(dev)->gen >= 8) {
  1814. ring->irq_enable_mask =
  1815. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  1816. ring->irq_get = gen8_ring_get_irq;
  1817. ring->irq_put = gen8_ring_put_irq;
  1818. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1819. } else {
  1820. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  1821. ring->irq_get = gen6_ring_get_irq;
  1822. ring->irq_put = gen6_ring_put_irq;
  1823. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1824. }
  1825. ring->sync_to = gen6_ring_sync;
  1826. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
  1827. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
  1828. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  1829. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
  1830. ring->signal_mbox[RCS] = GEN6_RBSYNC;
  1831. ring->signal_mbox[VCS] = GEN6_VBSYNC;
  1832. ring->signal_mbox[BCS] = GEN6_NOSYNC;
  1833. ring->signal_mbox[VECS] = GEN6_VEBSYNC;
  1834. ring->init = init_ring_common;
  1835. return intel_init_ring_buffer(dev, ring);
  1836. }
  1837. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  1838. {
  1839. struct drm_i915_private *dev_priv = dev->dev_private;
  1840. struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
  1841. ring->name = "video enhancement ring";
  1842. ring->id = VECS;
  1843. ring->mmio_base = VEBOX_RING_BASE;
  1844. ring->write_tail = ring_write_tail;
  1845. ring->flush = gen6_ring_flush;
  1846. ring->add_request = gen6_add_request;
  1847. ring->get_seqno = gen6_ring_get_seqno;
  1848. ring->set_seqno = ring_set_seqno;
  1849. if (INTEL_INFO(dev)->gen >= 8) {
  1850. ring->irq_enable_mask =
  1851. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  1852. ring->irq_get = gen8_ring_get_irq;
  1853. ring->irq_put = gen8_ring_put_irq;
  1854. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1855. } else {
  1856. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  1857. ring->irq_get = hsw_vebox_get_irq;
  1858. ring->irq_put = hsw_vebox_put_irq;
  1859. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1860. }
  1861. ring->sync_to = gen6_ring_sync;
  1862. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
  1863. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
  1864. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
  1865. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  1866. ring->signal_mbox[RCS] = GEN6_RVESYNC;
  1867. ring->signal_mbox[VCS] = GEN6_VVESYNC;
  1868. ring->signal_mbox[BCS] = GEN6_BVESYNC;
  1869. ring->signal_mbox[VECS] = GEN6_NOSYNC;
  1870. ring->init = init_ring_common;
  1871. return intel_init_ring_buffer(dev, ring);
  1872. }
  1873. int
  1874. intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
  1875. {
  1876. int ret;
  1877. if (!ring->gpu_caches_dirty)
  1878. return 0;
  1879. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1880. if (ret)
  1881. return ret;
  1882. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1883. ring->gpu_caches_dirty = false;
  1884. return 0;
  1885. }
  1886. int
  1887. intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
  1888. {
  1889. uint32_t flush_domains;
  1890. int ret;
  1891. flush_domains = 0;
  1892. if (ring->gpu_caches_dirty)
  1893. flush_domains = I915_GEM_GPU_DOMAINS;
  1894. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1895. if (ret)
  1896. return ret;
  1897. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1898. ring->gpu_caches_dirty = false;
  1899. return 0;
  1900. }