oom_kill.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. * Copyright (C) 2010 Google, Inc.
  8. * Rewritten by David Rientjes
  9. *
  10. * The routines in this file are used to kill a process when
  11. * we're seriously out of memory. This gets called from __alloc_pages()
  12. * in mm/page_alloc.c when we really run out of memory.
  13. *
  14. * Since we won't call these routines often (on a well-configured
  15. * machine) this file will double as a 'coding guide' and a signpost
  16. * for newbie kernel hackers. It features several pointers to major
  17. * kernel subsystems and hints as to where to find out what things do.
  18. */
  19. #include <linux/oom.h>
  20. #include <linux/mm.h>
  21. #include <linux/err.h>
  22. #include <linux/gfp.h>
  23. #include <linux/sched.h>
  24. #include <linux/swap.h>
  25. #include <linux/timex.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/cpuset.h>
  28. #include <linux/export.h>
  29. #include <linux/notifier.h>
  30. #include <linux/memcontrol.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/security.h>
  33. #include <linux/ptrace.h>
  34. #include <linux/freezer.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/ratelimit.h>
  37. #include <linux/kthread.h>
  38. #include <linux/init.h>
  39. #include <asm/tlb.h>
  40. #include "internal.h"
  41. #define CREATE_TRACE_POINTS
  42. #include <trace/events/oom.h>
  43. int sysctl_panic_on_oom;
  44. int sysctl_oom_kill_allocating_task;
  45. int sysctl_oom_dump_tasks = 1;
  46. DEFINE_MUTEX(oom_lock);
  47. #ifdef CONFIG_NUMA
  48. /**
  49. * has_intersects_mems_allowed() - check task eligiblity for kill
  50. * @start: task struct of which task to consider
  51. * @mask: nodemask passed to page allocator for mempolicy ooms
  52. *
  53. * Task eligibility is determined by whether or not a candidate task, @tsk,
  54. * shares the same mempolicy nodes as current if it is bound by such a policy
  55. * and whether or not it has the same set of allowed cpuset nodes.
  56. */
  57. static bool has_intersects_mems_allowed(struct task_struct *start,
  58. const nodemask_t *mask)
  59. {
  60. struct task_struct *tsk;
  61. bool ret = false;
  62. rcu_read_lock();
  63. for_each_thread(start, tsk) {
  64. if (mask) {
  65. /*
  66. * If this is a mempolicy constrained oom, tsk's
  67. * cpuset is irrelevant. Only return true if its
  68. * mempolicy intersects current, otherwise it may be
  69. * needlessly killed.
  70. */
  71. ret = mempolicy_nodemask_intersects(tsk, mask);
  72. } else {
  73. /*
  74. * This is not a mempolicy constrained oom, so only
  75. * check the mems of tsk's cpuset.
  76. */
  77. ret = cpuset_mems_allowed_intersects(current, tsk);
  78. }
  79. if (ret)
  80. break;
  81. }
  82. rcu_read_unlock();
  83. return ret;
  84. }
  85. #else
  86. static bool has_intersects_mems_allowed(struct task_struct *tsk,
  87. const nodemask_t *mask)
  88. {
  89. return true;
  90. }
  91. #endif /* CONFIG_NUMA */
  92. /*
  93. * The process p may have detached its own ->mm while exiting or through
  94. * use_mm(), but one or more of its subthreads may still have a valid
  95. * pointer. Return p, or any of its subthreads with a valid ->mm, with
  96. * task_lock() held.
  97. */
  98. struct task_struct *find_lock_task_mm(struct task_struct *p)
  99. {
  100. struct task_struct *t;
  101. rcu_read_lock();
  102. for_each_thread(p, t) {
  103. task_lock(t);
  104. if (likely(t->mm))
  105. goto found;
  106. task_unlock(t);
  107. }
  108. t = NULL;
  109. found:
  110. rcu_read_unlock();
  111. return t;
  112. }
  113. /*
  114. * order == -1 means the oom kill is required by sysrq, otherwise only
  115. * for display purposes.
  116. */
  117. static inline bool is_sysrq_oom(struct oom_control *oc)
  118. {
  119. return oc->order == -1;
  120. }
  121. static inline bool is_memcg_oom(struct oom_control *oc)
  122. {
  123. return oc->memcg != NULL;
  124. }
  125. /* return true if the task is not adequate as candidate victim task. */
  126. static bool oom_unkillable_task(struct task_struct *p,
  127. struct mem_cgroup *memcg, const nodemask_t *nodemask)
  128. {
  129. if (is_global_init(p))
  130. return true;
  131. if (p->flags & PF_KTHREAD)
  132. return true;
  133. /* When mem_cgroup_out_of_memory() and p is not member of the group */
  134. if (memcg && !task_in_mem_cgroup(p, memcg))
  135. return true;
  136. /* p may not have freeable memory in nodemask */
  137. if (!has_intersects_mems_allowed(p, nodemask))
  138. return true;
  139. return false;
  140. }
  141. /**
  142. * oom_badness - heuristic function to determine which candidate task to kill
  143. * @p: task struct of which task we should calculate
  144. * @totalpages: total present RAM allowed for page allocation
  145. *
  146. * The heuristic for determining which task to kill is made to be as simple and
  147. * predictable as possible. The goal is to return the highest value for the
  148. * task consuming the most memory to avoid subsequent oom failures.
  149. */
  150. unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
  151. const nodemask_t *nodemask, unsigned long totalpages)
  152. {
  153. long points;
  154. long adj;
  155. if (oom_unkillable_task(p, memcg, nodemask))
  156. return 0;
  157. p = find_lock_task_mm(p);
  158. if (!p)
  159. return 0;
  160. /*
  161. * Do not even consider tasks which are explicitly marked oom
  162. * unkillable or have been already oom reaped or the are in
  163. * the middle of vfork
  164. */
  165. adj = (long)p->signal->oom_score_adj;
  166. if (adj == OOM_SCORE_ADJ_MIN ||
  167. test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
  168. in_vfork(p)) {
  169. task_unlock(p);
  170. return 0;
  171. }
  172. /*
  173. * The baseline for the badness score is the proportion of RAM that each
  174. * task's rss, pagetable and swap space use.
  175. */
  176. points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
  177. atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
  178. task_unlock(p);
  179. /*
  180. * Root processes get 3% bonus, just like the __vm_enough_memory()
  181. * implementation used by LSMs.
  182. */
  183. if (has_capability_noaudit(p, CAP_SYS_ADMIN))
  184. points -= (points * 3) / 100;
  185. /* Normalize to oom_score_adj units */
  186. adj *= totalpages / 1000;
  187. points += adj;
  188. /*
  189. * Never return 0 for an eligible task regardless of the root bonus and
  190. * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
  191. */
  192. return points > 0 ? points : 1;
  193. }
  194. enum oom_constraint {
  195. CONSTRAINT_NONE,
  196. CONSTRAINT_CPUSET,
  197. CONSTRAINT_MEMORY_POLICY,
  198. CONSTRAINT_MEMCG,
  199. };
  200. /*
  201. * Determine the type of allocation constraint.
  202. */
  203. static enum oom_constraint constrained_alloc(struct oom_control *oc)
  204. {
  205. struct zone *zone;
  206. struct zoneref *z;
  207. enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
  208. bool cpuset_limited = false;
  209. int nid;
  210. if (is_memcg_oom(oc)) {
  211. oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
  212. return CONSTRAINT_MEMCG;
  213. }
  214. /* Default to all available memory */
  215. oc->totalpages = totalram_pages + total_swap_pages;
  216. if (!IS_ENABLED(CONFIG_NUMA))
  217. return CONSTRAINT_NONE;
  218. if (!oc->zonelist)
  219. return CONSTRAINT_NONE;
  220. /*
  221. * Reach here only when __GFP_NOFAIL is used. So, we should avoid
  222. * to kill current.We have to random task kill in this case.
  223. * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
  224. */
  225. if (oc->gfp_mask & __GFP_THISNODE)
  226. return CONSTRAINT_NONE;
  227. /*
  228. * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
  229. * the page allocator means a mempolicy is in effect. Cpuset policy
  230. * is enforced in get_page_from_freelist().
  231. */
  232. if (oc->nodemask &&
  233. !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
  234. oc->totalpages = total_swap_pages;
  235. for_each_node_mask(nid, *oc->nodemask)
  236. oc->totalpages += node_spanned_pages(nid);
  237. return CONSTRAINT_MEMORY_POLICY;
  238. }
  239. /* Check this allocation failure is caused by cpuset's wall function */
  240. for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
  241. high_zoneidx, oc->nodemask)
  242. if (!cpuset_zone_allowed(zone, oc->gfp_mask))
  243. cpuset_limited = true;
  244. if (cpuset_limited) {
  245. oc->totalpages = total_swap_pages;
  246. for_each_node_mask(nid, cpuset_current_mems_allowed)
  247. oc->totalpages += node_spanned_pages(nid);
  248. return CONSTRAINT_CPUSET;
  249. }
  250. return CONSTRAINT_NONE;
  251. }
  252. static int oom_evaluate_task(struct task_struct *task, void *arg)
  253. {
  254. struct oom_control *oc = arg;
  255. unsigned long points;
  256. if (oom_unkillable_task(task, NULL, oc->nodemask))
  257. goto next;
  258. /*
  259. * This task already has access to memory reserves and is being killed.
  260. * Don't allow any other task to have access to the reserves unless
  261. * the task has MMF_OOM_SKIP because chances that it would release
  262. * any memory is quite low.
  263. */
  264. if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
  265. if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
  266. goto next;
  267. goto abort;
  268. }
  269. /*
  270. * If task is allocating a lot of memory and has been marked to be
  271. * killed first if it triggers an oom, then select it.
  272. */
  273. if (oom_task_origin(task)) {
  274. points = ULONG_MAX;
  275. goto select;
  276. }
  277. points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
  278. if (!points || points < oc->chosen_points)
  279. goto next;
  280. /* Prefer thread group leaders for display purposes */
  281. if (points == oc->chosen_points && thread_group_leader(oc->chosen))
  282. goto next;
  283. select:
  284. if (oc->chosen)
  285. put_task_struct(oc->chosen);
  286. get_task_struct(task);
  287. oc->chosen = task;
  288. oc->chosen_points = points;
  289. next:
  290. return 0;
  291. abort:
  292. if (oc->chosen)
  293. put_task_struct(oc->chosen);
  294. oc->chosen = (void *)-1UL;
  295. return 1;
  296. }
  297. /*
  298. * Simple selection loop. We choose the process with the highest number of
  299. * 'points'. In case scan was aborted, oc->chosen is set to -1.
  300. */
  301. static void select_bad_process(struct oom_control *oc)
  302. {
  303. if (is_memcg_oom(oc))
  304. mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
  305. else {
  306. struct task_struct *p;
  307. rcu_read_lock();
  308. for_each_process(p)
  309. if (oom_evaluate_task(p, oc))
  310. break;
  311. rcu_read_unlock();
  312. }
  313. oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
  314. }
  315. /**
  316. * dump_tasks - dump current memory state of all system tasks
  317. * @memcg: current's memory controller, if constrained
  318. * @nodemask: nodemask passed to page allocator for mempolicy ooms
  319. *
  320. * Dumps the current memory state of all eligible tasks. Tasks not in the same
  321. * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
  322. * are not shown.
  323. * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
  324. * swapents, oom_score_adj value, and name.
  325. */
  326. static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
  327. {
  328. struct task_struct *p;
  329. struct task_struct *task;
  330. pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
  331. rcu_read_lock();
  332. for_each_process(p) {
  333. if (oom_unkillable_task(p, memcg, nodemask))
  334. continue;
  335. task = find_lock_task_mm(p);
  336. if (!task) {
  337. /*
  338. * This is a kthread or all of p's threads have already
  339. * detached their mm's. There's no need to report
  340. * them; they can't be oom killed anyway.
  341. */
  342. continue;
  343. }
  344. pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
  345. task->pid, from_kuid(&init_user_ns, task_uid(task)),
  346. task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
  347. atomic_long_read(&task->mm->nr_ptes),
  348. mm_nr_pmds(task->mm),
  349. get_mm_counter(task->mm, MM_SWAPENTS),
  350. task->signal->oom_score_adj, task->comm);
  351. task_unlock(task);
  352. }
  353. rcu_read_unlock();
  354. }
  355. static void dump_header(struct oom_control *oc, struct task_struct *p)
  356. {
  357. nodemask_t *nm = (oc->nodemask) ? oc->nodemask : &cpuset_current_mems_allowed;
  358. pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n",
  359. current->comm, oc->gfp_mask, &oc->gfp_mask,
  360. nodemask_pr_args(nm), oc->order,
  361. current->signal->oom_score_adj);
  362. if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
  363. pr_warn("COMPACTION is disabled!!!\n");
  364. cpuset_print_current_mems_allowed();
  365. dump_stack();
  366. if (oc->memcg)
  367. mem_cgroup_print_oom_info(oc->memcg, p);
  368. else
  369. show_mem(SHOW_MEM_FILTER_NODES);
  370. if (sysctl_oom_dump_tasks)
  371. dump_tasks(oc->memcg, oc->nodemask);
  372. }
  373. /*
  374. * Number of OOM victims in flight
  375. */
  376. static atomic_t oom_victims = ATOMIC_INIT(0);
  377. static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
  378. static bool oom_killer_disabled __read_mostly;
  379. #define K(x) ((x) << (PAGE_SHIFT-10))
  380. /*
  381. * task->mm can be NULL if the task is the exited group leader. So to
  382. * determine whether the task is using a particular mm, we examine all the
  383. * task's threads: if one of those is using this mm then this task was also
  384. * using it.
  385. */
  386. bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
  387. {
  388. struct task_struct *t;
  389. for_each_thread(p, t) {
  390. struct mm_struct *t_mm = READ_ONCE(t->mm);
  391. if (t_mm)
  392. return t_mm == mm;
  393. }
  394. return false;
  395. }
  396. #ifdef CONFIG_MMU
  397. /*
  398. * OOM Reaper kernel thread which tries to reap the memory used by the OOM
  399. * victim (if that is possible) to help the OOM killer to move on.
  400. */
  401. static struct task_struct *oom_reaper_th;
  402. static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
  403. static struct task_struct *oom_reaper_list;
  404. static DEFINE_SPINLOCK(oom_reaper_lock);
  405. static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
  406. {
  407. struct mmu_gather tlb;
  408. struct vm_area_struct *vma;
  409. struct zap_details details = {.check_swap_entries = true,
  410. .ignore_dirty = true};
  411. bool ret = true;
  412. /*
  413. * We have to make sure to not race with the victim exit path
  414. * and cause premature new oom victim selection:
  415. * __oom_reap_task_mm exit_mm
  416. * mmget_not_zero
  417. * mmput
  418. * atomic_dec_and_test
  419. * exit_oom_victim
  420. * [...]
  421. * out_of_memory
  422. * select_bad_process
  423. * # no TIF_MEMDIE task selects new victim
  424. * unmap_page_range # frees some memory
  425. */
  426. mutex_lock(&oom_lock);
  427. if (!down_read_trylock(&mm->mmap_sem)) {
  428. ret = false;
  429. goto unlock_oom;
  430. }
  431. /*
  432. * increase mm_users only after we know we will reap something so
  433. * that the mmput_async is called only when we have reaped something
  434. * and delayed __mmput doesn't matter that much
  435. */
  436. if (!mmget_not_zero(mm)) {
  437. up_read(&mm->mmap_sem);
  438. goto unlock_oom;
  439. }
  440. /*
  441. * Tell all users of get_user/copy_from_user etc... that the content
  442. * is no longer stable. No barriers really needed because unmapping
  443. * should imply barriers already and the reader would hit a page fault
  444. * if it stumbled over a reaped memory.
  445. */
  446. set_bit(MMF_UNSTABLE, &mm->flags);
  447. tlb_gather_mmu(&tlb, mm, 0, -1);
  448. for (vma = mm->mmap ; vma; vma = vma->vm_next) {
  449. if (is_vm_hugetlb_page(vma))
  450. continue;
  451. /*
  452. * mlocked VMAs require explicit munlocking before unmap.
  453. * Let's keep it simple here and skip such VMAs.
  454. */
  455. if (vma->vm_flags & VM_LOCKED)
  456. continue;
  457. /*
  458. * Only anonymous pages have a good chance to be dropped
  459. * without additional steps which we cannot afford as we
  460. * are OOM already.
  461. *
  462. * We do not even care about fs backed pages because all
  463. * which are reclaimable have already been reclaimed and
  464. * we do not want to block exit_mmap by keeping mm ref
  465. * count elevated without a good reason.
  466. */
  467. if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
  468. unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
  469. &details);
  470. }
  471. tlb_finish_mmu(&tlb, 0, -1);
  472. pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
  473. task_pid_nr(tsk), tsk->comm,
  474. K(get_mm_counter(mm, MM_ANONPAGES)),
  475. K(get_mm_counter(mm, MM_FILEPAGES)),
  476. K(get_mm_counter(mm, MM_SHMEMPAGES)));
  477. up_read(&mm->mmap_sem);
  478. /*
  479. * Drop our reference but make sure the mmput slow path is called from a
  480. * different context because we shouldn't risk we get stuck there and
  481. * put the oom_reaper out of the way.
  482. */
  483. mmput_async(mm);
  484. unlock_oom:
  485. mutex_unlock(&oom_lock);
  486. return ret;
  487. }
  488. #define MAX_OOM_REAP_RETRIES 10
  489. static void oom_reap_task(struct task_struct *tsk)
  490. {
  491. int attempts = 0;
  492. struct mm_struct *mm = tsk->signal->oom_mm;
  493. /* Retry the down_read_trylock(mmap_sem) a few times */
  494. while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
  495. schedule_timeout_idle(HZ/10);
  496. if (attempts <= MAX_OOM_REAP_RETRIES)
  497. goto done;
  498. pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
  499. task_pid_nr(tsk), tsk->comm);
  500. debug_show_all_locks();
  501. done:
  502. tsk->oom_reaper_list = NULL;
  503. /*
  504. * Hide this mm from OOM killer because it has been either reaped or
  505. * somebody can't call up_write(mmap_sem).
  506. */
  507. set_bit(MMF_OOM_SKIP, &mm->flags);
  508. /* Drop a reference taken by wake_oom_reaper */
  509. put_task_struct(tsk);
  510. }
  511. static int oom_reaper(void *unused)
  512. {
  513. while (true) {
  514. struct task_struct *tsk = NULL;
  515. wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
  516. spin_lock(&oom_reaper_lock);
  517. if (oom_reaper_list != NULL) {
  518. tsk = oom_reaper_list;
  519. oom_reaper_list = tsk->oom_reaper_list;
  520. }
  521. spin_unlock(&oom_reaper_lock);
  522. if (tsk)
  523. oom_reap_task(tsk);
  524. }
  525. return 0;
  526. }
  527. static void wake_oom_reaper(struct task_struct *tsk)
  528. {
  529. if (!oom_reaper_th)
  530. return;
  531. /* tsk is already queued? */
  532. if (tsk == oom_reaper_list || tsk->oom_reaper_list)
  533. return;
  534. get_task_struct(tsk);
  535. spin_lock(&oom_reaper_lock);
  536. tsk->oom_reaper_list = oom_reaper_list;
  537. oom_reaper_list = tsk;
  538. spin_unlock(&oom_reaper_lock);
  539. wake_up(&oom_reaper_wait);
  540. }
  541. static int __init oom_init(void)
  542. {
  543. oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
  544. if (IS_ERR(oom_reaper_th)) {
  545. pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
  546. PTR_ERR(oom_reaper_th));
  547. oom_reaper_th = NULL;
  548. }
  549. return 0;
  550. }
  551. subsys_initcall(oom_init)
  552. #else
  553. static inline void wake_oom_reaper(struct task_struct *tsk)
  554. {
  555. }
  556. #endif /* CONFIG_MMU */
  557. /**
  558. * mark_oom_victim - mark the given task as OOM victim
  559. * @tsk: task to mark
  560. *
  561. * Has to be called with oom_lock held and never after
  562. * oom has been disabled already.
  563. *
  564. * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
  565. * under task_lock or operate on the current).
  566. */
  567. static void mark_oom_victim(struct task_struct *tsk)
  568. {
  569. struct mm_struct *mm = tsk->mm;
  570. WARN_ON(oom_killer_disabled);
  571. /* OOM killer might race with memcg OOM */
  572. if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
  573. return;
  574. /* oom_mm is bound to the signal struct life time. */
  575. if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
  576. atomic_inc(&tsk->signal->oom_mm->mm_count);
  577. /*
  578. * Make sure that the task is woken up from uninterruptible sleep
  579. * if it is frozen because OOM killer wouldn't be able to free
  580. * any memory and livelock. freezing_slow_path will tell the freezer
  581. * that TIF_MEMDIE tasks should be ignored.
  582. */
  583. __thaw_task(tsk);
  584. atomic_inc(&oom_victims);
  585. }
  586. /**
  587. * exit_oom_victim - note the exit of an OOM victim
  588. */
  589. void exit_oom_victim(void)
  590. {
  591. clear_thread_flag(TIF_MEMDIE);
  592. if (!atomic_dec_return(&oom_victims))
  593. wake_up_all(&oom_victims_wait);
  594. }
  595. /**
  596. * oom_killer_enable - enable OOM killer
  597. */
  598. void oom_killer_enable(void)
  599. {
  600. oom_killer_disabled = false;
  601. }
  602. /**
  603. * oom_killer_disable - disable OOM killer
  604. * @timeout: maximum timeout to wait for oom victims in jiffies
  605. *
  606. * Forces all page allocations to fail rather than trigger OOM killer.
  607. * Will block and wait until all OOM victims are killed or the given
  608. * timeout expires.
  609. *
  610. * The function cannot be called when there are runnable user tasks because
  611. * the userspace would see unexpected allocation failures as a result. Any
  612. * new usage of this function should be consulted with MM people.
  613. *
  614. * Returns true if successful and false if the OOM killer cannot be
  615. * disabled.
  616. */
  617. bool oom_killer_disable(signed long timeout)
  618. {
  619. signed long ret;
  620. /*
  621. * Make sure to not race with an ongoing OOM killer. Check that the
  622. * current is not killed (possibly due to sharing the victim's memory).
  623. */
  624. if (mutex_lock_killable(&oom_lock))
  625. return false;
  626. oom_killer_disabled = true;
  627. mutex_unlock(&oom_lock);
  628. ret = wait_event_interruptible_timeout(oom_victims_wait,
  629. !atomic_read(&oom_victims), timeout);
  630. if (ret <= 0) {
  631. oom_killer_enable();
  632. return false;
  633. }
  634. return true;
  635. }
  636. static inline bool __task_will_free_mem(struct task_struct *task)
  637. {
  638. struct signal_struct *sig = task->signal;
  639. /*
  640. * A coredumping process may sleep for an extended period in exit_mm(),
  641. * so the oom killer cannot assume that the process will promptly exit
  642. * and release memory.
  643. */
  644. if (sig->flags & SIGNAL_GROUP_COREDUMP)
  645. return false;
  646. if (sig->flags & SIGNAL_GROUP_EXIT)
  647. return true;
  648. if (thread_group_empty(task) && (task->flags & PF_EXITING))
  649. return true;
  650. return false;
  651. }
  652. /*
  653. * Checks whether the given task is dying or exiting and likely to
  654. * release its address space. This means that all threads and processes
  655. * sharing the same mm have to be killed or exiting.
  656. * Caller has to make sure that task->mm is stable (hold task_lock or
  657. * it operates on the current).
  658. */
  659. static bool task_will_free_mem(struct task_struct *task)
  660. {
  661. struct mm_struct *mm = task->mm;
  662. struct task_struct *p;
  663. bool ret = true;
  664. /*
  665. * Skip tasks without mm because it might have passed its exit_mm and
  666. * exit_oom_victim. oom_reaper could have rescued that but do not rely
  667. * on that for now. We can consider find_lock_task_mm in future.
  668. */
  669. if (!mm)
  670. return false;
  671. if (!__task_will_free_mem(task))
  672. return false;
  673. /*
  674. * This task has already been drained by the oom reaper so there are
  675. * only small chances it will free some more
  676. */
  677. if (test_bit(MMF_OOM_SKIP, &mm->flags))
  678. return false;
  679. if (atomic_read(&mm->mm_users) <= 1)
  680. return true;
  681. /*
  682. * Make sure that all tasks which share the mm with the given tasks
  683. * are dying as well to make sure that a) nobody pins its mm and
  684. * b) the task is also reapable by the oom reaper.
  685. */
  686. rcu_read_lock();
  687. for_each_process(p) {
  688. if (!process_shares_mm(p, mm))
  689. continue;
  690. if (same_thread_group(task, p))
  691. continue;
  692. ret = __task_will_free_mem(p);
  693. if (!ret)
  694. break;
  695. }
  696. rcu_read_unlock();
  697. return ret;
  698. }
  699. static void oom_kill_process(struct oom_control *oc, const char *message)
  700. {
  701. struct task_struct *p = oc->chosen;
  702. unsigned int points = oc->chosen_points;
  703. struct task_struct *victim = p;
  704. struct task_struct *child;
  705. struct task_struct *t;
  706. struct mm_struct *mm;
  707. unsigned int victim_points = 0;
  708. static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  709. DEFAULT_RATELIMIT_BURST);
  710. bool can_oom_reap = true;
  711. /*
  712. * If the task is already exiting, don't alarm the sysadmin or kill
  713. * its children or threads, just set TIF_MEMDIE so it can die quickly
  714. */
  715. task_lock(p);
  716. if (task_will_free_mem(p)) {
  717. mark_oom_victim(p);
  718. wake_oom_reaper(p);
  719. task_unlock(p);
  720. put_task_struct(p);
  721. return;
  722. }
  723. task_unlock(p);
  724. if (__ratelimit(&oom_rs))
  725. dump_header(oc, p);
  726. pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
  727. message, task_pid_nr(p), p->comm, points);
  728. /*
  729. * If any of p's children has a different mm and is eligible for kill,
  730. * the one with the highest oom_badness() score is sacrificed for its
  731. * parent. This attempts to lose the minimal amount of work done while
  732. * still freeing memory.
  733. */
  734. read_lock(&tasklist_lock);
  735. for_each_thread(p, t) {
  736. list_for_each_entry(child, &t->children, sibling) {
  737. unsigned int child_points;
  738. if (process_shares_mm(child, p->mm))
  739. continue;
  740. /*
  741. * oom_badness() returns 0 if the thread is unkillable
  742. */
  743. child_points = oom_badness(child,
  744. oc->memcg, oc->nodemask, oc->totalpages);
  745. if (child_points > victim_points) {
  746. put_task_struct(victim);
  747. victim = child;
  748. victim_points = child_points;
  749. get_task_struct(victim);
  750. }
  751. }
  752. }
  753. read_unlock(&tasklist_lock);
  754. p = find_lock_task_mm(victim);
  755. if (!p) {
  756. put_task_struct(victim);
  757. return;
  758. } else if (victim != p) {
  759. get_task_struct(p);
  760. put_task_struct(victim);
  761. victim = p;
  762. }
  763. /* Get a reference to safely compare mm after task_unlock(victim) */
  764. mm = victim->mm;
  765. atomic_inc(&mm->mm_count);
  766. /*
  767. * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
  768. * the OOM victim from depleting the memory reserves from the user
  769. * space under its control.
  770. */
  771. do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
  772. mark_oom_victim(victim);
  773. pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
  774. task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
  775. K(get_mm_counter(victim->mm, MM_ANONPAGES)),
  776. K(get_mm_counter(victim->mm, MM_FILEPAGES)),
  777. K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
  778. task_unlock(victim);
  779. /*
  780. * Kill all user processes sharing victim->mm in other thread groups, if
  781. * any. They don't get access to memory reserves, though, to avoid
  782. * depletion of all memory. This prevents mm->mmap_sem livelock when an
  783. * oom killed thread cannot exit because it requires the semaphore and
  784. * its contended by another thread trying to allocate memory itself.
  785. * That thread will now get access to memory reserves since it has a
  786. * pending fatal signal.
  787. */
  788. rcu_read_lock();
  789. for_each_process(p) {
  790. if (!process_shares_mm(p, mm))
  791. continue;
  792. if (same_thread_group(p, victim))
  793. continue;
  794. if (is_global_init(p)) {
  795. can_oom_reap = false;
  796. set_bit(MMF_OOM_SKIP, &mm->flags);
  797. pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
  798. task_pid_nr(victim), victim->comm,
  799. task_pid_nr(p), p->comm);
  800. continue;
  801. }
  802. /*
  803. * No use_mm() user needs to read from the userspace so we are
  804. * ok to reap it.
  805. */
  806. if (unlikely(p->flags & PF_KTHREAD))
  807. continue;
  808. do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
  809. }
  810. rcu_read_unlock();
  811. if (can_oom_reap)
  812. wake_oom_reaper(victim);
  813. mmdrop(mm);
  814. put_task_struct(victim);
  815. }
  816. #undef K
  817. /*
  818. * Determines whether the kernel must panic because of the panic_on_oom sysctl.
  819. */
  820. static void check_panic_on_oom(struct oom_control *oc,
  821. enum oom_constraint constraint)
  822. {
  823. if (likely(!sysctl_panic_on_oom))
  824. return;
  825. if (sysctl_panic_on_oom != 2) {
  826. /*
  827. * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
  828. * does not panic for cpuset, mempolicy, or memcg allocation
  829. * failures.
  830. */
  831. if (constraint != CONSTRAINT_NONE)
  832. return;
  833. }
  834. /* Do not panic for oom kills triggered by sysrq */
  835. if (is_sysrq_oom(oc))
  836. return;
  837. dump_header(oc, NULL);
  838. panic("Out of memory: %s panic_on_oom is enabled\n",
  839. sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
  840. }
  841. static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
  842. int register_oom_notifier(struct notifier_block *nb)
  843. {
  844. return blocking_notifier_chain_register(&oom_notify_list, nb);
  845. }
  846. EXPORT_SYMBOL_GPL(register_oom_notifier);
  847. int unregister_oom_notifier(struct notifier_block *nb)
  848. {
  849. return blocking_notifier_chain_unregister(&oom_notify_list, nb);
  850. }
  851. EXPORT_SYMBOL_GPL(unregister_oom_notifier);
  852. /**
  853. * out_of_memory - kill the "best" process when we run out of memory
  854. * @oc: pointer to struct oom_control
  855. *
  856. * If we run out of memory, we have the choice between either
  857. * killing a random task (bad), letting the system crash (worse)
  858. * OR try to be smart about which process to kill. Note that we
  859. * don't have to be perfect here, we just have to be good.
  860. */
  861. bool out_of_memory(struct oom_control *oc)
  862. {
  863. unsigned long freed = 0;
  864. enum oom_constraint constraint = CONSTRAINT_NONE;
  865. if (oom_killer_disabled)
  866. return false;
  867. if (!is_memcg_oom(oc)) {
  868. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  869. if (freed > 0)
  870. /* Got some memory back in the last second. */
  871. return true;
  872. }
  873. /*
  874. * If current has a pending SIGKILL or is exiting, then automatically
  875. * select it. The goal is to allow it to allocate so that it may
  876. * quickly exit and free its memory.
  877. */
  878. if (task_will_free_mem(current)) {
  879. mark_oom_victim(current);
  880. wake_oom_reaper(current);
  881. return true;
  882. }
  883. /*
  884. * The OOM killer does not compensate for IO-less reclaim.
  885. * pagefault_out_of_memory lost its gfp context so we have to
  886. * make sure exclude 0 mask - all other users should have at least
  887. * ___GFP_DIRECT_RECLAIM to get here.
  888. */
  889. if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
  890. return true;
  891. /*
  892. * Check if there were limitations on the allocation (only relevant for
  893. * NUMA and memcg) that may require different handling.
  894. */
  895. constraint = constrained_alloc(oc);
  896. if (constraint != CONSTRAINT_MEMORY_POLICY)
  897. oc->nodemask = NULL;
  898. check_panic_on_oom(oc, constraint);
  899. if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
  900. current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
  901. current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
  902. get_task_struct(current);
  903. oc->chosen = current;
  904. oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
  905. return true;
  906. }
  907. select_bad_process(oc);
  908. /* Found nothing?!?! Either we hang forever, or we panic. */
  909. if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
  910. dump_header(oc, NULL);
  911. panic("Out of memory and no killable processes...\n");
  912. }
  913. if (oc->chosen && oc->chosen != (void *)-1UL) {
  914. oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
  915. "Memory cgroup out of memory");
  916. /*
  917. * Give the killed process a good chance to exit before trying
  918. * to allocate memory again.
  919. */
  920. schedule_timeout_killable(1);
  921. }
  922. return !!oc->chosen;
  923. }
  924. /*
  925. * The pagefault handler calls here because it is out of memory, so kill a
  926. * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
  927. * killing is already in progress so do nothing.
  928. */
  929. void pagefault_out_of_memory(void)
  930. {
  931. struct oom_control oc = {
  932. .zonelist = NULL,
  933. .nodemask = NULL,
  934. .memcg = NULL,
  935. .gfp_mask = 0,
  936. .order = 0,
  937. };
  938. if (mem_cgroup_oom_synchronize(true))
  939. return;
  940. if (!mutex_trylock(&oom_lock))
  941. return;
  942. out_of_memory(&oc);
  943. mutex_unlock(&oom_lock);
  944. }