memcontrol.c 154 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106
  1. /* memcontrol.c - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * Memory thresholds
  10. * Copyright (C) 2009 Nokia Corporation
  11. * Author: Kirill A. Shutemov
  12. *
  13. * Kernel Memory Controller
  14. * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15. * Authors: Glauber Costa and Suleiman Souhlal
  16. *
  17. * Native page reclaim
  18. * Charge lifetime sanitation
  19. * Lockless page tracking & accounting
  20. * Unified hierarchy configuration model
  21. * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22. *
  23. * This program is free software; you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation; either version 2 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. */
  33. #include <linux/page_counter.h>
  34. #include <linux/memcontrol.h>
  35. #include <linux/cgroup.h>
  36. #include <linux/mm.h>
  37. #include <linux/hugetlb.h>
  38. #include <linux/pagemap.h>
  39. #include <linux/smp.h>
  40. #include <linux/page-flags.h>
  41. #include <linux/backing-dev.h>
  42. #include <linux/bit_spinlock.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/limits.h>
  45. #include <linux/export.h>
  46. #include <linux/mutex.h>
  47. #include <linux/rbtree.h>
  48. #include <linux/slab.h>
  49. #include <linux/swap.h>
  50. #include <linux/swapops.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/eventfd.h>
  53. #include <linux/poll.h>
  54. #include <linux/sort.h>
  55. #include <linux/fs.h>
  56. #include <linux/seq_file.h>
  57. #include <linux/vmpressure.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/swap_cgroup.h>
  60. #include <linux/cpu.h>
  61. #include <linux/oom.h>
  62. #include <linux/lockdep.h>
  63. #include <linux/file.h>
  64. #include <linux/tracehook.h>
  65. #include "internal.h"
  66. #include <net/sock.h>
  67. #include <net/ip.h>
  68. #include "slab.h"
  69. #include <linux/uaccess.h>
  70. #include <trace/events/vmscan.h>
  71. struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  72. EXPORT_SYMBOL(memory_cgrp_subsys);
  73. struct mem_cgroup *root_mem_cgroup __read_mostly;
  74. #define MEM_CGROUP_RECLAIM_RETRIES 5
  75. /* Socket memory accounting disabled? */
  76. static bool cgroup_memory_nosocket;
  77. /* Kernel memory accounting disabled? */
  78. static bool cgroup_memory_nokmem;
  79. /* Whether the swap controller is active */
  80. #ifdef CONFIG_MEMCG_SWAP
  81. int do_swap_account __read_mostly;
  82. #else
  83. #define do_swap_account 0
  84. #endif
  85. /* Whether legacy memory+swap accounting is active */
  86. static bool do_memsw_account(void)
  87. {
  88. return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
  89. }
  90. static const char * const mem_cgroup_stat_names[] = {
  91. "cache",
  92. "rss",
  93. "rss_huge",
  94. "mapped_file",
  95. "dirty",
  96. "writeback",
  97. "swap",
  98. };
  99. static const char * const mem_cgroup_events_names[] = {
  100. "pgpgin",
  101. "pgpgout",
  102. "pgfault",
  103. "pgmajfault",
  104. };
  105. static const char * const mem_cgroup_lru_names[] = {
  106. "inactive_anon",
  107. "active_anon",
  108. "inactive_file",
  109. "active_file",
  110. "unevictable",
  111. };
  112. #define THRESHOLDS_EVENTS_TARGET 128
  113. #define SOFTLIMIT_EVENTS_TARGET 1024
  114. #define NUMAINFO_EVENTS_TARGET 1024
  115. /*
  116. * Cgroups above their limits are maintained in a RB-Tree, independent of
  117. * their hierarchy representation
  118. */
  119. struct mem_cgroup_tree_per_node {
  120. struct rb_root rb_root;
  121. spinlock_t lock;
  122. };
  123. struct mem_cgroup_tree {
  124. struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
  125. };
  126. static struct mem_cgroup_tree soft_limit_tree __read_mostly;
  127. /* for OOM */
  128. struct mem_cgroup_eventfd_list {
  129. struct list_head list;
  130. struct eventfd_ctx *eventfd;
  131. };
  132. /*
  133. * cgroup_event represents events which userspace want to receive.
  134. */
  135. struct mem_cgroup_event {
  136. /*
  137. * memcg which the event belongs to.
  138. */
  139. struct mem_cgroup *memcg;
  140. /*
  141. * eventfd to signal userspace about the event.
  142. */
  143. struct eventfd_ctx *eventfd;
  144. /*
  145. * Each of these stored in a list by the cgroup.
  146. */
  147. struct list_head list;
  148. /*
  149. * register_event() callback will be used to add new userspace
  150. * waiter for changes related to this event. Use eventfd_signal()
  151. * on eventfd to send notification to userspace.
  152. */
  153. int (*register_event)(struct mem_cgroup *memcg,
  154. struct eventfd_ctx *eventfd, const char *args);
  155. /*
  156. * unregister_event() callback will be called when userspace closes
  157. * the eventfd or on cgroup removing. This callback must be set,
  158. * if you want provide notification functionality.
  159. */
  160. void (*unregister_event)(struct mem_cgroup *memcg,
  161. struct eventfd_ctx *eventfd);
  162. /*
  163. * All fields below needed to unregister event when
  164. * userspace closes eventfd.
  165. */
  166. poll_table pt;
  167. wait_queue_head_t *wqh;
  168. wait_queue_t wait;
  169. struct work_struct remove;
  170. };
  171. static void mem_cgroup_threshold(struct mem_cgroup *memcg);
  172. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
  173. /* Stuffs for move charges at task migration. */
  174. /*
  175. * Types of charges to be moved.
  176. */
  177. #define MOVE_ANON 0x1U
  178. #define MOVE_FILE 0x2U
  179. #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
  180. /* "mc" and its members are protected by cgroup_mutex */
  181. static struct move_charge_struct {
  182. spinlock_t lock; /* for from, to */
  183. struct mm_struct *mm;
  184. struct mem_cgroup *from;
  185. struct mem_cgroup *to;
  186. unsigned long flags;
  187. unsigned long precharge;
  188. unsigned long moved_charge;
  189. unsigned long moved_swap;
  190. struct task_struct *moving_task; /* a task moving charges */
  191. wait_queue_head_t waitq; /* a waitq for other context */
  192. } mc = {
  193. .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
  194. .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
  195. };
  196. /*
  197. * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
  198. * limit reclaim to prevent infinite loops, if they ever occur.
  199. */
  200. #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
  201. #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
  202. enum charge_type {
  203. MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  204. MEM_CGROUP_CHARGE_TYPE_ANON,
  205. MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
  206. MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
  207. NR_CHARGE_TYPE,
  208. };
  209. /* for encoding cft->private value on file */
  210. enum res_type {
  211. _MEM,
  212. _MEMSWAP,
  213. _OOM_TYPE,
  214. _KMEM,
  215. _TCP,
  216. };
  217. #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
  218. #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
  219. #define MEMFILE_ATTR(val) ((val) & 0xffff)
  220. /* Used for OOM nofiier */
  221. #define OOM_CONTROL (0)
  222. /* Some nice accessors for the vmpressure. */
  223. struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
  224. {
  225. if (!memcg)
  226. memcg = root_mem_cgroup;
  227. return &memcg->vmpressure;
  228. }
  229. struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
  230. {
  231. return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
  232. }
  233. static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
  234. {
  235. return (memcg == root_mem_cgroup);
  236. }
  237. #ifndef CONFIG_SLOB
  238. /*
  239. * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
  240. * The main reason for not using cgroup id for this:
  241. * this works better in sparse environments, where we have a lot of memcgs,
  242. * but only a few kmem-limited. Or also, if we have, for instance, 200
  243. * memcgs, and none but the 200th is kmem-limited, we'd have to have a
  244. * 200 entry array for that.
  245. *
  246. * The current size of the caches array is stored in memcg_nr_cache_ids. It
  247. * will double each time we have to increase it.
  248. */
  249. static DEFINE_IDA(memcg_cache_ida);
  250. int memcg_nr_cache_ids;
  251. /* Protects memcg_nr_cache_ids */
  252. static DECLARE_RWSEM(memcg_cache_ids_sem);
  253. void memcg_get_cache_ids(void)
  254. {
  255. down_read(&memcg_cache_ids_sem);
  256. }
  257. void memcg_put_cache_ids(void)
  258. {
  259. up_read(&memcg_cache_ids_sem);
  260. }
  261. /*
  262. * MIN_SIZE is different than 1, because we would like to avoid going through
  263. * the alloc/free process all the time. In a small machine, 4 kmem-limited
  264. * cgroups is a reasonable guess. In the future, it could be a parameter or
  265. * tunable, but that is strictly not necessary.
  266. *
  267. * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
  268. * this constant directly from cgroup, but it is understandable that this is
  269. * better kept as an internal representation in cgroup.c. In any case, the
  270. * cgrp_id space is not getting any smaller, and we don't have to necessarily
  271. * increase ours as well if it increases.
  272. */
  273. #define MEMCG_CACHES_MIN_SIZE 4
  274. #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
  275. /*
  276. * A lot of the calls to the cache allocation functions are expected to be
  277. * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
  278. * conditional to this static branch, we'll have to allow modules that does
  279. * kmem_cache_alloc and the such to see this symbol as well
  280. */
  281. DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
  282. EXPORT_SYMBOL(memcg_kmem_enabled_key);
  283. #endif /* !CONFIG_SLOB */
  284. /**
  285. * mem_cgroup_css_from_page - css of the memcg associated with a page
  286. * @page: page of interest
  287. *
  288. * If memcg is bound to the default hierarchy, css of the memcg associated
  289. * with @page is returned. The returned css remains associated with @page
  290. * until it is released.
  291. *
  292. * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
  293. * is returned.
  294. */
  295. struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
  296. {
  297. struct mem_cgroup *memcg;
  298. memcg = page->mem_cgroup;
  299. if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
  300. memcg = root_mem_cgroup;
  301. return &memcg->css;
  302. }
  303. /**
  304. * page_cgroup_ino - return inode number of the memcg a page is charged to
  305. * @page: the page
  306. *
  307. * Look up the closest online ancestor of the memory cgroup @page is charged to
  308. * and return its inode number or 0 if @page is not charged to any cgroup. It
  309. * is safe to call this function without holding a reference to @page.
  310. *
  311. * Note, this function is inherently racy, because there is nothing to prevent
  312. * the cgroup inode from getting torn down and potentially reallocated a moment
  313. * after page_cgroup_ino() returns, so it only should be used by callers that
  314. * do not care (such as procfs interfaces).
  315. */
  316. ino_t page_cgroup_ino(struct page *page)
  317. {
  318. struct mem_cgroup *memcg;
  319. unsigned long ino = 0;
  320. rcu_read_lock();
  321. memcg = READ_ONCE(page->mem_cgroup);
  322. while (memcg && !(memcg->css.flags & CSS_ONLINE))
  323. memcg = parent_mem_cgroup(memcg);
  324. if (memcg)
  325. ino = cgroup_ino(memcg->css.cgroup);
  326. rcu_read_unlock();
  327. return ino;
  328. }
  329. static struct mem_cgroup_per_node *
  330. mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
  331. {
  332. int nid = page_to_nid(page);
  333. return memcg->nodeinfo[nid];
  334. }
  335. static struct mem_cgroup_tree_per_node *
  336. soft_limit_tree_node(int nid)
  337. {
  338. return soft_limit_tree.rb_tree_per_node[nid];
  339. }
  340. static struct mem_cgroup_tree_per_node *
  341. soft_limit_tree_from_page(struct page *page)
  342. {
  343. int nid = page_to_nid(page);
  344. return soft_limit_tree.rb_tree_per_node[nid];
  345. }
  346. static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
  347. struct mem_cgroup_tree_per_node *mctz,
  348. unsigned long new_usage_in_excess)
  349. {
  350. struct rb_node **p = &mctz->rb_root.rb_node;
  351. struct rb_node *parent = NULL;
  352. struct mem_cgroup_per_node *mz_node;
  353. if (mz->on_tree)
  354. return;
  355. mz->usage_in_excess = new_usage_in_excess;
  356. if (!mz->usage_in_excess)
  357. return;
  358. while (*p) {
  359. parent = *p;
  360. mz_node = rb_entry(parent, struct mem_cgroup_per_node,
  361. tree_node);
  362. if (mz->usage_in_excess < mz_node->usage_in_excess)
  363. p = &(*p)->rb_left;
  364. /*
  365. * We can't avoid mem cgroups that are over their soft
  366. * limit by the same amount
  367. */
  368. else if (mz->usage_in_excess >= mz_node->usage_in_excess)
  369. p = &(*p)->rb_right;
  370. }
  371. rb_link_node(&mz->tree_node, parent, p);
  372. rb_insert_color(&mz->tree_node, &mctz->rb_root);
  373. mz->on_tree = true;
  374. }
  375. static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
  376. struct mem_cgroup_tree_per_node *mctz)
  377. {
  378. if (!mz->on_tree)
  379. return;
  380. rb_erase(&mz->tree_node, &mctz->rb_root);
  381. mz->on_tree = false;
  382. }
  383. static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
  384. struct mem_cgroup_tree_per_node *mctz)
  385. {
  386. unsigned long flags;
  387. spin_lock_irqsave(&mctz->lock, flags);
  388. __mem_cgroup_remove_exceeded(mz, mctz);
  389. spin_unlock_irqrestore(&mctz->lock, flags);
  390. }
  391. static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
  392. {
  393. unsigned long nr_pages = page_counter_read(&memcg->memory);
  394. unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
  395. unsigned long excess = 0;
  396. if (nr_pages > soft_limit)
  397. excess = nr_pages - soft_limit;
  398. return excess;
  399. }
  400. static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
  401. {
  402. unsigned long excess;
  403. struct mem_cgroup_per_node *mz;
  404. struct mem_cgroup_tree_per_node *mctz;
  405. mctz = soft_limit_tree_from_page(page);
  406. /*
  407. * Necessary to update all ancestors when hierarchy is used.
  408. * because their event counter is not touched.
  409. */
  410. for (; memcg; memcg = parent_mem_cgroup(memcg)) {
  411. mz = mem_cgroup_page_nodeinfo(memcg, page);
  412. excess = soft_limit_excess(memcg);
  413. /*
  414. * We have to update the tree if mz is on RB-tree or
  415. * mem is over its softlimit.
  416. */
  417. if (excess || mz->on_tree) {
  418. unsigned long flags;
  419. spin_lock_irqsave(&mctz->lock, flags);
  420. /* if on-tree, remove it */
  421. if (mz->on_tree)
  422. __mem_cgroup_remove_exceeded(mz, mctz);
  423. /*
  424. * Insert again. mz->usage_in_excess will be updated.
  425. * If excess is 0, no tree ops.
  426. */
  427. __mem_cgroup_insert_exceeded(mz, mctz, excess);
  428. spin_unlock_irqrestore(&mctz->lock, flags);
  429. }
  430. }
  431. }
  432. static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
  433. {
  434. struct mem_cgroup_tree_per_node *mctz;
  435. struct mem_cgroup_per_node *mz;
  436. int nid;
  437. for_each_node(nid) {
  438. mz = mem_cgroup_nodeinfo(memcg, nid);
  439. mctz = soft_limit_tree_node(nid);
  440. mem_cgroup_remove_exceeded(mz, mctz);
  441. }
  442. }
  443. static struct mem_cgroup_per_node *
  444. __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
  445. {
  446. struct rb_node *rightmost = NULL;
  447. struct mem_cgroup_per_node *mz;
  448. retry:
  449. mz = NULL;
  450. rightmost = rb_last(&mctz->rb_root);
  451. if (!rightmost)
  452. goto done; /* Nothing to reclaim from */
  453. mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
  454. /*
  455. * Remove the node now but someone else can add it back,
  456. * we will to add it back at the end of reclaim to its correct
  457. * position in the tree.
  458. */
  459. __mem_cgroup_remove_exceeded(mz, mctz);
  460. if (!soft_limit_excess(mz->memcg) ||
  461. !css_tryget_online(&mz->memcg->css))
  462. goto retry;
  463. done:
  464. return mz;
  465. }
  466. static struct mem_cgroup_per_node *
  467. mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
  468. {
  469. struct mem_cgroup_per_node *mz;
  470. spin_lock_irq(&mctz->lock);
  471. mz = __mem_cgroup_largest_soft_limit_node(mctz);
  472. spin_unlock_irq(&mctz->lock);
  473. return mz;
  474. }
  475. /*
  476. * Return page count for single (non recursive) @memcg.
  477. *
  478. * Implementation Note: reading percpu statistics for memcg.
  479. *
  480. * Both of vmstat[] and percpu_counter has threshold and do periodic
  481. * synchronization to implement "quick" read. There are trade-off between
  482. * reading cost and precision of value. Then, we may have a chance to implement
  483. * a periodic synchronization of counter in memcg's counter.
  484. *
  485. * But this _read() function is used for user interface now. The user accounts
  486. * memory usage by memory cgroup and he _always_ requires exact value because
  487. * he accounts memory. Even if we provide quick-and-fuzzy read, we always
  488. * have to visit all online cpus and make sum. So, for now, unnecessary
  489. * synchronization is not implemented. (just implemented for cpu hotplug)
  490. *
  491. * If there are kernel internal actions which can make use of some not-exact
  492. * value, and reading all cpu value can be performance bottleneck in some
  493. * common workload, threshold and synchronization as vmstat[] should be
  494. * implemented.
  495. */
  496. static unsigned long
  497. mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
  498. {
  499. long val = 0;
  500. int cpu;
  501. /* Per-cpu values can be negative, use a signed accumulator */
  502. for_each_possible_cpu(cpu)
  503. val += per_cpu(memcg->stat->count[idx], cpu);
  504. /*
  505. * Summing races with updates, so val may be negative. Avoid exposing
  506. * transient negative values.
  507. */
  508. if (val < 0)
  509. val = 0;
  510. return val;
  511. }
  512. static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
  513. enum mem_cgroup_events_index idx)
  514. {
  515. unsigned long val = 0;
  516. int cpu;
  517. for_each_possible_cpu(cpu)
  518. val += per_cpu(memcg->stat->events[idx], cpu);
  519. return val;
  520. }
  521. static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
  522. struct page *page,
  523. bool compound, int nr_pages)
  524. {
  525. /*
  526. * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
  527. * counted as CACHE even if it's on ANON LRU.
  528. */
  529. if (PageAnon(page))
  530. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
  531. nr_pages);
  532. else
  533. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
  534. nr_pages);
  535. if (compound) {
  536. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  537. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
  538. nr_pages);
  539. }
  540. /* pagein of a big page is an event. So, ignore page size */
  541. if (nr_pages > 0)
  542. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
  543. else {
  544. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
  545. nr_pages = -nr_pages; /* for event */
  546. }
  547. __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
  548. }
  549. unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
  550. int nid, unsigned int lru_mask)
  551. {
  552. struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
  553. unsigned long nr = 0;
  554. enum lru_list lru;
  555. VM_BUG_ON((unsigned)nid >= nr_node_ids);
  556. for_each_lru(lru) {
  557. if (!(BIT(lru) & lru_mask))
  558. continue;
  559. nr += mem_cgroup_get_lru_size(lruvec, lru);
  560. }
  561. return nr;
  562. }
  563. static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
  564. unsigned int lru_mask)
  565. {
  566. unsigned long nr = 0;
  567. int nid;
  568. for_each_node_state(nid, N_MEMORY)
  569. nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
  570. return nr;
  571. }
  572. static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
  573. enum mem_cgroup_events_target target)
  574. {
  575. unsigned long val, next;
  576. val = __this_cpu_read(memcg->stat->nr_page_events);
  577. next = __this_cpu_read(memcg->stat->targets[target]);
  578. /* from time_after() in jiffies.h */
  579. if ((long)next - (long)val < 0) {
  580. switch (target) {
  581. case MEM_CGROUP_TARGET_THRESH:
  582. next = val + THRESHOLDS_EVENTS_TARGET;
  583. break;
  584. case MEM_CGROUP_TARGET_SOFTLIMIT:
  585. next = val + SOFTLIMIT_EVENTS_TARGET;
  586. break;
  587. case MEM_CGROUP_TARGET_NUMAINFO:
  588. next = val + NUMAINFO_EVENTS_TARGET;
  589. break;
  590. default:
  591. break;
  592. }
  593. __this_cpu_write(memcg->stat->targets[target], next);
  594. return true;
  595. }
  596. return false;
  597. }
  598. /*
  599. * Check events in order.
  600. *
  601. */
  602. static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
  603. {
  604. /* threshold event is triggered in finer grain than soft limit */
  605. if (unlikely(mem_cgroup_event_ratelimit(memcg,
  606. MEM_CGROUP_TARGET_THRESH))) {
  607. bool do_softlimit;
  608. bool do_numainfo __maybe_unused;
  609. do_softlimit = mem_cgroup_event_ratelimit(memcg,
  610. MEM_CGROUP_TARGET_SOFTLIMIT);
  611. #if MAX_NUMNODES > 1
  612. do_numainfo = mem_cgroup_event_ratelimit(memcg,
  613. MEM_CGROUP_TARGET_NUMAINFO);
  614. #endif
  615. mem_cgroup_threshold(memcg);
  616. if (unlikely(do_softlimit))
  617. mem_cgroup_update_tree(memcg, page);
  618. #if MAX_NUMNODES > 1
  619. if (unlikely(do_numainfo))
  620. atomic_inc(&memcg->numainfo_events);
  621. #endif
  622. }
  623. }
  624. struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
  625. {
  626. /*
  627. * mm_update_next_owner() may clear mm->owner to NULL
  628. * if it races with swapoff, page migration, etc.
  629. * So this can be called with p == NULL.
  630. */
  631. if (unlikely(!p))
  632. return NULL;
  633. return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
  634. }
  635. EXPORT_SYMBOL(mem_cgroup_from_task);
  636. static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
  637. {
  638. struct mem_cgroup *memcg = NULL;
  639. rcu_read_lock();
  640. do {
  641. /*
  642. * Page cache insertions can happen withou an
  643. * actual mm context, e.g. during disk probing
  644. * on boot, loopback IO, acct() writes etc.
  645. */
  646. if (unlikely(!mm))
  647. memcg = root_mem_cgroup;
  648. else {
  649. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  650. if (unlikely(!memcg))
  651. memcg = root_mem_cgroup;
  652. }
  653. } while (!css_tryget_online(&memcg->css));
  654. rcu_read_unlock();
  655. return memcg;
  656. }
  657. /**
  658. * mem_cgroup_iter - iterate over memory cgroup hierarchy
  659. * @root: hierarchy root
  660. * @prev: previously returned memcg, NULL on first invocation
  661. * @reclaim: cookie for shared reclaim walks, NULL for full walks
  662. *
  663. * Returns references to children of the hierarchy below @root, or
  664. * @root itself, or %NULL after a full round-trip.
  665. *
  666. * Caller must pass the return value in @prev on subsequent
  667. * invocations for reference counting, or use mem_cgroup_iter_break()
  668. * to cancel a hierarchy walk before the round-trip is complete.
  669. *
  670. * Reclaimers can specify a zone and a priority level in @reclaim to
  671. * divide up the memcgs in the hierarchy among all concurrent
  672. * reclaimers operating on the same zone and priority.
  673. */
  674. struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
  675. struct mem_cgroup *prev,
  676. struct mem_cgroup_reclaim_cookie *reclaim)
  677. {
  678. struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
  679. struct cgroup_subsys_state *css = NULL;
  680. struct mem_cgroup *memcg = NULL;
  681. struct mem_cgroup *pos = NULL;
  682. if (mem_cgroup_disabled())
  683. return NULL;
  684. if (!root)
  685. root = root_mem_cgroup;
  686. if (prev && !reclaim)
  687. pos = prev;
  688. if (!root->use_hierarchy && root != root_mem_cgroup) {
  689. if (prev)
  690. goto out;
  691. return root;
  692. }
  693. rcu_read_lock();
  694. if (reclaim) {
  695. struct mem_cgroup_per_node *mz;
  696. mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
  697. iter = &mz->iter[reclaim->priority];
  698. if (prev && reclaim->generation != iter->generation)
  699. goto out_unlock;
  700. while (1) {
  701. pos = READ_ONCE(iter->position);
  702. if (!pos || css_tryget(&pos->css))
  703. break;
  704. /*
  705. * css reference reached zero, so iter->position will
  706. * be cleared by ->css_released. However, we should not
  707. * rely on this happening soon, because ->css_released
  708. * is called from a work queue, and by busy-waiting we
  709. * might block it. So we clear iter->position right
  710. * away.
  711. */
  712. (void)cmpxchg(&iter->position, pos, NULL);
  713. }
  714. }
  715. if (pos)
  716. css = &pos->css;
  717. for (;;) {
  718. css = css_next_descendant_pre(css, &root->css);
  719. if (!css) {
  720. /*
  721. * Reclaimers share the hierarchy walk, and a
  722. * new one might jump in right at the end of
  723. * the hierarchy - make sure they see at least
  724. * one group and restart from the beginning.
  725. */
  726. if (!prev)
  727. continue;
  728. break;
  729. }
  730. /*
  731. * Verify the css and acquire a reference. The root
  732. * is provided by the caller, so we know it's alive
  733. * and kicking, and don't take an extra reference.
  734. */
  735. memcg = mem_cgroup_from_css(css);
  736. if (css == &root->css)
  737. break;
  738. if (css_tryget(css))
  739. break;
  740. memcg = NULL;
  741. }
  742. if (reclaim) {
  743. /*
  744. * The position could have already been updated by a competing
  745. * thread, so check that the value hasn't changed since we read
  746. * it to avoid reclaiming from the same cgroup twice.
  747. */
  748. (void)cmpxchg(&iter->position, pos, memcg);
  749. if (pos)
  750. css_put(&pos->css);
  751. if (!memcg)
  752. iter->generation++;
  753. else if (!prev)
  754. reclaim->generation = iter->generation;
  755. }
  756. out_unlock:
  757. rcu_read_unlock();
  758. out:
  759. if (prev && prev != root)
  760. css_put(&prev->css);
  761. return memcg;
  762. }
  763. /**
  764. * mem_cgroup_iter_break - abort a hierarchy walk prematurely
  765. * @root: hierarchy root
  766. * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
  767. */
  768. void mem_cgroup_iter_break(struct mem_cgroup *root,
  769. struct mem_cgroup *prev)
  770. {
  771. if (!root)
  772. root = root_mem_cgroup;
  773. if (prev && prev != root)
  774. css_put(&prev->css);
  775. }
  776. static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
  777. {
  778. struct mem_cgroup *memcg = dead_memcg;
  779. struct mem_cgroup_reclaim_iter *iter;
  780. struct mem_cgroup_per_node *mz;
  781. int nid;
  782. int i;
  783. while ((memcg = parent_mem_cgroup(memcg))) {
  784. for_each_node(nid) {
  785. mz = mem_cgroup_nodeinfo(memcg, nid);
  786. for (i = 0; i <= DEF_PRIORITY; i++) {
  787. iter = &mz->iter[i];
  788. cmpxchg(&iter->position,
  789. dead_memcg, NULL);
  790. }
  791. }
  792. }
  793. }
  794. /*
  795. * Iteration constructs for visiting all cgroups (under a tree). If
  796. * loops are exited prematurely (break), mem_cgroup_iter_break() must
  797. * be used for reference counting.
  798. */
  799. #define for_each_mem_cgroup_tree(iter, root) \
  800. for (iter = mem_cgroup_iter(root, NULL, NULL); \
  801. iter != NULL; \
  802. iter = mem_cgroup_iter(root, iter, NULL))
  803. #define for_each_mem_cgroup(iter) \
  804. for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
  805. iter != NULL; \
  806. iter = mem_cgroup_iter(NULL, iter, NULL))
  807. /**
  808. * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
  809. * @memcg: hierarchy root
  810. * @fn: function to call for each task
  811. * @arg: argument passed to @fn
  812. *
  813. * This function iterates over tasks attached to @memcg or to any of its
  814. * descendants and calls @fn for each task. If @fn returns a non-zero
  815. * value, the function breaks the iteration loop and returns the value.
  816. * Otherwise, it will iterate over all tasks and return 0.
  817. *
  818. * This function must not be called for the root memory cgroup.
  819. */
  820. int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
  821. int (*fn)(struct task_struct *, void *), void *arg)
  822. {
  823. struct mem_cgroup *iter;
  824. int ret = 0;
  825. BUG_ON(memcg == root_mem_cgroup);
  826. for_each_mem_cgroup_tree(iter, memcg) {
  827. struct css_task_iter it;
  828. struct task_struct *task;
  829. css_task_iter_start(&iter->css, &it);
  830. while (!ret && (task = css_task_iter_next(&it)))
  831. ret = fn(task, arg);
  832. css_task_iter_end(&it);
  833. if (ret) {
  834. mem_cgroup_iter_break(memcg, iter);
  835. break;
  836. }
  837. }
  838. return ret;
  839. }
  840. /**
  841. * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
  842. * @page: the page
  843. * @zone: zone of the page
  844. *
  845. * This function is only safe when following the LRU page isolation
  846. * and putback protocol: the LRU lock must be held, and the page must
  847. * either be PageLRU() or the caller must have isolated/allocated it.
  848. */
  849. struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
  850. {
  851. struct mem_cgroup_per_node *mz;
  852. struct mem_cgroup *memcg;
  853. struct lruvec *lruvec;
  854. if (mem_cgroup_disabled()) {
  855. lruvec = &pgdat->lruvec;
  856. goto out;
  857. }
  858. memcg = page->mem_cgroup;
  859. /*
  860. * Swapcache readahead pages are added to the LRU - and
  861. * possibly migrated - before they are charged.
  862. */
  863. if (!memcg)
  864. memcg = root_mem_cgroup;
  865. mz = mem_cgroup_page_nodeinfo(memcg, page);
  866. lruvec = &mz->lruvec;
  867. out:
  868. /*
  869. * Since a node can be onlined after the mem_cgroup was created,
  870. * we have to be prepared to initialize lruvec->zone here;
  871. * and if offlined then reonlined, we need to reinitialize it.
  872. */
  873. if (unlikely(lruvec->pgdat != pgdat))
  874. lruvec->pgdat = pgdat;
  875. return lruvec;
  876. }
  877. /**
  878. * mem_cgroup_update_lru_size - account for adding or removing an lru page
  879. * @lruvec: mem_cgroup per zone lru vector
  880. * @lru: index of lru list the page is sitting on
  881. * @zid: zone id of the accounted pages
  882. * @nr_pages: positive when adding or negative when removing
  883. *
  884. * This function must be called under lru_lock, just before a page is added
  885. * to or just after a page is removed from an lru list (that ordering being
  886. * so as to allow it to check that lru_size 0 is consistent with list_empty).
  887. */
  888. void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
  889. int zid, int nr_pages)
  890. {
  891. struct mem_cgroup_per_node *mz;
  892. unsigned long *lru_size;
  893. long size;
  894. if (mem_cgroup_disabled())
  895. return;
  896. mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
  897. lru_size = &mz->lru_zone_size[zid][lru];
  898. if (nr_pages < 0)
  899. *lru_size += nr_pages;
  900. size = *lru_size;
  901. if (WARN_ONCE(size < 0,
  902. "%s(%p, %d, %d): lru_size %ld\n",
  903. __func__, lruvec, lru, nr_pages, size)) {
  904. VM_BUG_ON(1);
  905. *lru_size = 0;
  906. }
  907. if (nr_pages > 0)
  908. *lru_size += nr_pages;
  909. }
  910. bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
  911. {
  912. struct mem_cgroup *task_memcg;
  913. struct task_struct *p;
  914. bool ret;
  915. p = find_lock_task_mm(task);
  916. if (p) {
  917. task_memcg = get_mem_cgroup_from_mm(p->mm);
  918. task_unlock(p);
  919. } else {
  920. /*
  921. * All threads may have already detached their mm's, but the oom
  922. * killer still needs to detect if they have already been oom
  923. * killed to prevent needlessly killing additional tasks.
  924. */
  925. rcu_read_lock();
  926. task_memcg = mem_cgroup_from_task(task);
  927. css_get(&task_memcg->css);
  928. rcu_read_unlock();
  929. }
  930. ret = mem_cgroup_is_descendant(task_memcg, memcg);
  931. css_put(&task_memcg->css);
  932. return ret;
  933. }
  934. /**
  935. * mem_cgroup_margin - calculate chargeable space of a memory cgroup
  936. * @memcg: the memory cgroup
  937. *
  938. * Returns the maximum amount of memory @mem can be charged with, in
  939. * pages.
  940. */
  941. static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
  942. {
  943. unsigned long margin = 0;
  944. unsigned long count;
  945. unsigned long limit;
  946. count = page_counter_read(&memcg->memory);
  947. limit = READ_ONCE(memcg->memory.limit);
  948. if (count < limit)
  949. margin = limit - count;
  950. if (do_memsw_account()) {
  951. count = page_counter_read(&memcg->memsw);
  952. limit = READ_ONCE(memcg->memsw.limit);
  953. if (count <= limit)
  954. margin = min(margin, limit - count);
  955. else
  956. margin = 0;
  957. }
  958. return margin;
  959. }
  960. /*
  961. * A routine for checking "mem" is under move_account() or not.
  962. *
  963. * Checking a cgroup is mc.from or mc.to or under hierarchy of
  964. * moving cgroups. This is for waiting at high-memory pressure
  965. * caused by "move".
  966. */
  967. static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
  968. {
  969. struct mem_cgroup *from;
  970. struct mem_cgroup *to;
  971. bool ret = false;
  972. /*
  973. * Unlike task_move routines, we access mc.to, mc.from not under
  974. * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
  975. */
  976. spin_lock(&mc.lock);
  977. from = mc.from;
  978. to = mc.to;
  979. if (!from)
  980. goto unlock;
  981. ret = mem_cgroup_is_descendant(from, memcg) ||
  982. mem_cgroup_is_descendant(to, memcg);
  983. unlock:
  984. spin_unlock(&mc.lock);
  985. return ret;
  986. }
  987. static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
  988. {
  989. if (mc.moving_task && current != mc.moving_task) {
  990. if (mem_cgroup_under_move(memcg)) {
  991. DEFINE_WAIT(wait);
  992. prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
  993. /* moving charge context might have finished. */
  994. if (mc.moving_task)
  995. schedule();
  996. finish_wait(&mc.waitq, &wait);
  997. return true;
  998. }
  999. }
  1000. return false;
  1001. }
  1002. #define K(x) ((x) << (PAGE_SHIFT-10))
  1003. /**
  1004. * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
  1005. * @memcg: The memory cgroup that went over limit
  1006. * @p: Task that is going to be killed
  1007. *
  1008. * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
  1009. * enabled
  1010. */
  1011. void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
  1012. {
  1013. struct mem_cgroup *iter;
  1014. unsigned int i;
  1015. rcu_read_lock();
  1016. if (p) {
  1017. pr_info("Task in ");
  1018. pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
  1019. pr_cont(" killed as a result of limit of ");
  1020. } else {
  1021. pr_info("Memory limit reached of cgroup ");
  1022. }
  1023. pr_cont_cgroup_path(memcg->css.cgroup);
  1024. pr_cont("\n");
  1025. rcu_read_unlock();
  1026. pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
  1027. K((u64)page_counter_read(&memcg->memory)),
  1028. K((u64)memcg->memory.limit), memcg->memory.failcnt);
  1029. pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
  1030. K((u64)page_counter_read(&memcg->memsw)),
  1031. K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
  1032. pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
  1033. K((u64)page_counter_read(&memcg->kmem)),
  1034. K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
  1035. for_each_mem_cgroup_tree(iter, memcg) {
  1036. pr_info("Memory cgroup stats for ");
  1037. pr_cont_cgroup_path(iter->css.cgroup);
  1038. pr_cont(":");
  1039. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  1040. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  1041. continue;
  1042. pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
  1043. K(mem_cgroup_read_stat(iter, i)));
  1044. }
  1045. for (i = 0; i < NR_LRU_LISTS; i++)
  1046. pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
  1047. K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
  1048. pr_cont("\n");
  1049. }
  1050. }
  1051. /*
  1052. * This function returns the number of memcg under hierarchy tree. Returns
  1053. * 1(self count) if no children.
  1054. */
  1055. static int mem_cgroup_count_children(struct mem_cgroup *memcg)
  1056. {
  1057. int num = 0;
  1058. struct mem_cgroup *iter;
  1059. for_each_mem_cgroup_tree(iter, memcg)
  1060. num++;
  1061. return num;
  1062. }
  1063. /*
  1064. * Return the memory (and swap, if configured) limit for a memcg.
  1065. */
  1066. unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
  1067. {
  1068. unsigned long limit;
  1069. limit = memcg->memory.limit;
  1070. if (mem_cgroup_swappiness(memcg)) {
  1071. unsigned long memsw_limit;
  1072. unsigned long swap_limit;
  1073. memsw_limit = memcg->memsw.limit;
  1074. swap_limit = memcg->swap.limit;
  1075. swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
  1076. limit = min(limit + swap_limit, memsw_limit);
  1077. }
  1078. return limit;
  1079. }
  1080. static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1081. int order)
  1082. {
  1083. struct oom_control oc = {
  1084. .zonelist = NULL,
  1085. .nodemask = NULL,
  1086. .memcg = memcg,
  1087. .gfp_mask = gfp_mask,
  1088. .order = order,
  1089. };
  1090. bool ret;
  1091. mutex_lock(&oom_lock);
  1092. ret = out_of_memory(&oc);
  1093. mutex_unlock(&oom_lock);
  1094. return ret;
  1095. }
  1096. #if MAX_NUMNODES > 1
  1097. /**
  1098. * test_mem_cgroup_node_reclaimable
  1099. * @memcg: the target memcg
  1100. * @nid: the node ID to be checked.
  1101. * @noswap : specify true here if the user wants flle only information.
  1102. *
  1103. * This function returns whether the specified memcg contains any
  1104. * reclaimable pages on a node. Returns true if there are any reclaimable
  1105. * pages in the node.
  1106. */
  1107. static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
  1108. int nid, bool noswap)
  1109. {
  1110. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
  1111. return true;
  1112. if (noswap || !total_swap_pages)
  1113. return false;
  1114. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
  1115. return true;
  1116. return false;
  1117. }
  1118. /*
  1119. * Always updating the nodemask is not very good - even if we have an empty
  1120. * list or the wrong list here, we can start from some node and traverse all
  1121. * nodes based on the zonelist. So update the list loosely once per 10 secs.
  1122. *
  1123. */
  1124. static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
  1125. {
  1126. int nid;
  1127. /*
  1128. * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
  1129. * pagein/pageout changes since the last update.
  1130. */
  1131. if (!atomic_read(&memcg->numainfo_events))
  1132. return;
  1133. if (atomic_inc_return(&memcg->numainfo_updating) > 1)
  1134. return;
  1135. /* make a nodemask where this memcg uses memory from */
  1136. memcg->scan_nodes = node_states[N_MEMORY];
  1137. for_each_node_mask(nid, node_states[N_MEMORY]) {
  1138. if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
  1139. node_clear(nid, memcg->scan_nodes);
  1140. }
  1141. atomic_set(&memcg->numainfo_events, 0);
  1142. atomic_set(&memcg->numainfo_updating, 0);
  1143. }
  1144. /*
  1145. * Selecting a node where we start reclaim from. Because what we need is just
  1146. * reducing usage counter, start from anywhere is O,K. Considering
  1147. * memory reclaim from current node, there are pros. and cons.
  1148. *
  1149. * Freeing memory from current node means freeing memory from a node which
  1150. * we'll use or we've used. So, it may make LRU bad. And if several threads
  1151. * hit limits, it will see a contention on a node. But freeing from remote
  1152. * node means more costs for memory reclaim because of memory latency.
  1153. *
  1154. * Now, we use round-robin. Better algorithm is welcomed.
  1155. */
  1156. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1157. {
  1158. int node;
  1159. mem_cgroup_may_update_nodemask(memcg);
  1160. node = memcg->last_scanned_node;
  1161. node = next_node_in(node, memcg->scan_nodes);
  1162. /*
  1163. * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
  1164. * last time it really checked all the LRUs due to rate limiting.
  1165. * Fallback to the current node in that case for simplicity.
  1166. */
  1167. if (unlikely(node == MAX_NUMNODES))
  1168. node = numa_node_id();
  1169. memcg->last_scanned_node = node;
  1170. return node;
  1171. }
  1172. #else
  1173. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1174. {
  1175. return 0;
  1176. }
  1177. #endif
  1178. static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
  1179. pg_data_t *pgdat,
  1180. gfp_t gfp_mask,
  1181. unsigned long *total_scanned)
  1182. {
  1183. struct mem_cgroup *victim = NULL;
  1184. int total = 0;
  1185. int loop = 0;
  1186. unsigned long excess;
  1187. unsigned long nr_scanned;
  1188. struct mem_cgroup_reclaim_cookie reclaim = {
  1189. .pgdat = pgdat,
  1190. .priority = 0,
  1191. };
  1192. excess = soft_limit_excess(root_memcg);
  1193. while (1) {
  1194. victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
  1195. if (!victim) {
  1196. loop++;
  1197. if (loop >= 2) {
  1198. /*
  1199. * If we have not been able to reclaim
  1200. * anything, it might because there are
  1201. * no reclaimable pages under this hierarchy
  1202. */
  1203. if (!total)
  1204. break;
  1205. /*
  1206. * We want to do more targeted reclaim.
  1207. * excess >> 2 is not to excessive so as to
  1208. * reclaim too much, nor too less that we keep
  1209. * coming back to reclaim from this cgroup
  1210. */
  1211. if (total >= (excess >> 2) ||
  1212. (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
  1213. break;
  1214. }
  1215. continue;
  1216. }
  1217. total += mem_cgroup_shrink_node(victim, gfp_mask, false,
  1218. pgdat, &nr_scanned);
  1219. *total_scanned += nr_scanned;
  1220. if (!soft_limit_excess(root_memcg))
  1221. break;
  1222. }
  1223. mem_cgroup_iter_break(root_memcg, victim);
  1224. return total;
  1225. }
  1226. #ifdef CONFIG_LOCKDEP
  1227. static struct lockdep_map memcg_oom_lock_dep_map = {
  1228. .name = "memcg_oom_lock",
  1229. };
  1230. #endif
  1231. static DEFINE_SPINLOCK(memcg_oom_lock);
  1232. /*
  1233. * Check OOM-Killer is already running under our hierarchy.
  1234. * If someone is running, return false.
  1235. */
  1236. static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
  1237. {
  1238. struct mem_cgroup *iter, *failed = NULL;
  1239. spin_lock(&memcg_oom_lock);
  1240. for_each_mem_cgroup_tree(iter, memcg) {
  1241. if (iter->oom_lock) {
  1242. /*
  1243. * this subtree of our hierarchy is already locked
  1244. * so we cannot give a lock.
  1245. */
  1246. failed = iter;
  1247. mem_cgroup_iter_break(memcg, iter);
  1248. break;
  1249. } else
  1250. iter->oom_lock = true;
  1251. }
  1252. if (failed) {
  1253. /*
  1254. * OK, we failed to lock the whole subtree so we have
  1255. * to clean up what we set up to the failing subtree
  1256. */
  1257. for_each_mem_cgroup_tree(iter, memcg) {
  1258. if (iter == failed) {
  1259. mem_cgroup_iter_break(memcg, iter);
  1260. break;
  1261. }
  1262. iter->oom_lock = false;
  1263. }
  1264. } else
  1265. mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
  1266. spin_unlock(&memcg_oom_lock);
  1267. return !failed;
  1268. }
  1269. static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
  1270. {
  1271. struct mem_cgroup *iter;
  1272. spin_lock(&memcg_oom_lock);
  1273. mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
  1274. for_each_mem_cgroup_tree(iter, memcg)
  1275. iter->oom_lock = false;
  1276. spin_unlock(&memcg_oom_lock);
  1277. }
  1278. static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
  1279. {
  1280. struct mem_cgroup *iter;
  1281. spin_lock(&memcg_oom_lock);
  1282. for_each_mem_cgroup_tree(iter, memcg)
  1283. iter->under_oom++;
  1284. spin_unlock(&memcg_oom_lock);
  1285. }
  1286. static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
  1287. {
  1288. struct mem_cgroup *iter;
  1289. /*
  1290. * When a new child is created while the hierarchy is under oom,
  1291. * mem_cgroup_oom_lock() may not be called. Watch for underflow.
  1292. */
  1293. spin_lock(&memcg_oom_lock);
  1294. for_each_mem_cgroup_tree(iter, memcg)
  1295. if (iter->under_oom > 0)
  1296. iter->under_oom--;
  1297. spin_unlock(&memcg_oom_lock);
  1298. }
  1299. static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
  1300. struct oom_wait_info {
  1301. struct mem_cgroup *memcg;
  1302. wait_queue_t wait;
  1303. };
  1304. static int memcg_oom_wake_function(wait_queue_t *wait,
  1305. unsigned mode, int sync, void *arg)
  1306. {
  1307. struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
  1308. struct mem_cgroup *oom_wait_memcg;
  1309. struct oom_wait_info *oom_wait_info;
  1310. oom_wait_info = container_of(wait, struct oom_wait_info, wait);
  1311. oom_wait_memcg = oom_wait_info->memcg;
  1312. if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
  1313. !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
  1314. return 0;
  1315. return autoremove_wake_function(wait, mode, sync, arg);
  1316. }
  1317. static void memcg_oom_recover(struct mem_cgroup *memcg)
  1318. {
  1319. /*
  1320. * For the following lockless ->under_oom test, the only required
  1321. * guarantee is that it must see the state asserted by an OOM when
  1322. * this function is called as a result of userland actions
  1323. * triggered by the notification of the OOM. This is trivially
  1324. * achieved by invoking mem_cgroup_mark_under_oom() before
  1325. * triggering notification.
  1326. */
  1327. if (memcg && memcg->under_oom)
  1328. __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
  1329. }
  1330. static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
  1331. {
  1332. if (!current->memcg_may_oom)
  1333. return;
  1334. /*
  1335. * We are in the middle of the charge context here, so we
  1336. * don't want to block when potentially sitting on a callstack
  1337. * that holds all kinds of filesystem and mm locks.
  1338. *
  1339. * Also, the caller may handle a failed allocation gracefully
  1340. * (like optional page cache readahead) and so an OOM killer
  1341. * invocation might not even be necessary.
  1342. *
  1343. * That's why we don't do anything here except remember the
  1344. * OOM context and then deal with it at the end of the page
  1345. * fault when the stack is unwound, the locks are released,
  1346. * and when we know whether the fault was overall successful.
  1347. */
  1348. css_get(&memcg->css);
  1349. current->memcg_in_oom = memcg;
  1350. current->memcg_oom_gfp_mask = mask;
  1351. current->memcg_oom_order = order;
  1352. }
  1353. /**
  1354. * mem_cgroup_oom_synchronize - complete memcg OOM handling
  1355. * @handle: actually kill/wait or just clean up the OOM state
  1356. *
  1357. * This has to be called at the end of a page fault if the memcg OOM
  1358. * handler was enabled.
  1359. *
  1360. * Memcg supports userspace OOM handling where failed allocations must
  1361. * sleep on a waitqueue until the userspace task resolves the
  1362. * situation. Sleeping directly in the charge context with all kinds
  1363. * of locks held is not a good idea, instead we remember an OOM state
  1364. * in the task and mem_cgroup_oom_synchronize() has to be called at
  1365. * the end of the page fault to complete the OOM handling.
  1366. *
  1367. * Returns %true if an ongoing memcg OOM situation was detected and
  1368. * completed, %false otherwise.
  1369. */
  1370. bool mem_cgroup_oom_synchronize(bool handle)
  1371. {
  1372. struct mem_cgroup *memcg = current->memcg_in_oom;
  1373. struct oom_wait_info owait;
  1374. bool locked;
  1375. /* OOM is global, do not handle */
  1376. if (!memcg)
  1377. return false;
  1378. if (!handle)
  1379. goto cleanup;
  1380. owait.memcg = memcg;
  1381. owait.wait.flags = 0;
  1382. owait.wait.func = memcg_oom_wake_function;
  1383. owait.wait.private = current;
  1384. INIT_LIST_HEAD(&owait.wait.task_list);
  1385. prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
  1386. mem_cgroup_mark_under_oom(memcg);
  1387. locked = mem_cgroup_oom_trylock(memcg);
  1388. if (locked)
  1389. mem_cgroup_oom_notify(memcg);
  1390. if (locked && !memcg->oom_kill_disable) {
  1391. mem_cgroup_unmark_under_oom(memcg);
  1392. finish_wait(&memcg_oom_waitq, &owait.wait);
  1393. mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
  1394. current->memcg_oom_order);
  1395. } else {
  1396. schedule();
  1397. mem_cgroup_unmark_under_oom(memcg);
  1398. finish_wait(&memcg_oom_waitq, &owait.wait);
  1399. }
  1400. if (locked) {
  1401. mem_cgroup_oom_unlock(memcg);
  1402. /*
  1403. * There is no guarantee that an OOM-lock contender
  1404. * sees the wakeups triggered by the OOM kill
  1405. * uncharges. Wake any sleepers explicitely.
  1406. */
  1407. memcg_oom_recover(memcg);
  1408. }
  1409. cleanup:
  1410. current->memcg_in_oom = NULL;
  1411. css_put(&memcg->css);
  1412. return true;
  1413. }
  1414. /**
  1415. * lock_page_memcg - lock a page->mem_cgroup binding
  1416. * @page: the page
  1417. *
  1418. * This function protects unlocked LRU pages from being moved to
  1419. * another cgroup and stabilizes their page->mem_cgroup binding.
  1420. */
  1421. void lock_page_memcg(struct page *page)
  1422. {
  1423. struct mem_cgroup *memcg;
  1424. unsigned long flags;
  1425. /*
  1426. * The RCU lock is held throughout the transaction. The fast
  1427. * path can get away without acquiring the memcg->move_lock
  1428. * because page moving starts with an RCU grace period.
  1429. */
  1430. rcu_read_lock();
  1431. if (mem_cgroup_disabled())
  1432. return;
  1433. again:
  1434. memcg = page->mem_cgroup;
  1435. if (unlikely(!memcg))
  1436. return;
  1437. if (atomic_read(&memcg->moving_account) <= 0)
  1438. return;
  1439. spin_lock_irqsave(&memcg->move_lock, flags);
  1440. if (memcg != page->mem_cgroup) {
  1441. spin_unlock_irqrestore(&memcg->move_lock, flags);
  1442. goto again;
  1443. }
  1444. /*
  1445. * When charge migration first begins, we can have locked and
  1446. * unlocked page stat updates happening concurrently. Track
  1447. * the task who has the lock for unlock_page_memcg().
  1448. */
  1449. memcg->move_lock_task = current;
  1450. memcg->move_lock_flags = flags;
  1451. return;
  1452. }
  1453. EXPORT_SYMBOL(lock_page_memcg);
  1454. /**
  1455. * unlock_page_memcg - unlock a page->mem_cgroup binding
  1456. * @page: the page
  1457. */
  1458. void unlock_page_memcg(struct page *page)
  1459. {
  1460. struct mem_cgroup *memcg = page->mem_cgroup;
  1461. if (memcg && memcg->move_lock_task == current) {
  1462. unsigned long flags = memcg->move_lock_flags;
  1463. memcg->move_lock_task = NULL;
  1464. memcg->move_lock_flags = 0;
  1465. spin_unlock_irqrestore(&memcg->move_lock, flags);
  1466. }
  1467. rcu_read_unlock();
  1468. }
  1469. EXPORT_SYMBOL(unlock_page_memcg);
  1470. /*
  1471. * size of first charge trial. "32" comes from vmscan.c's magic value.
  1472. * TODO: maybe necessary to use big numbers in big irons.
  1473. */
  1474. #define CHARGE_BATCH 32U
  1475. struct memcg_stock_pcp {
  1476. struct mem_cgroup *cached; /* this never be root cgroup */
  1477. unsigned int nr_pages;
  1478. struct work_struct work;
  1479. unsigned long flags;
  1480. #define FLUSHING_CACHED_CHARGE 0
  1481. };
  1482. static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
  1483. static DEFINE_MUTEX(percpu_charge_mutex);
  1484. /**
  1485. * consume_stock: Try to consume stocked charge on this cpu.
  1486. * @memcg: memcg to consume from.
  1487. * @nr_pages: how many pages to charge.
  1488. *
  1489. * The charges will only happen if @memcg matches the current cpu's memcg
  1490. * stock, and at least @nr_pages are available in that stock. Failure to
  1491. * service an allocation will refill the stock.
  1492. *
  1493. * returns true if successful, false otherwise.
  1494. */
  1495. static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1496. {
  1497. struct memcg_stock_pcp *stock;
  1498. unsigned long flags;
  1499. bool ret = false;
  1500. if (nr_pages > CHARGE_BATCH)
  1501. return ret;
  1502. local_irq_save(flags);
  1503. stock = this_cpu_ptr(&memcg_stock);
  1504. if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
  1505. stock->nr_pages -= nr_pages;
  1506. ret = true;
  1507. }
  1508. local_irq_restore(flags);
  1509. return ret;
  1510. }
  1511. /*
  1512. * Returns stocks cached in percpu and reset cached information.
  1513. */
  1514. static void drain_stock(struct memcg_stock_pcp *stock)
  1515. {
  1516. struct mem_cgroup *old = stock->cached;
  1517. if (stock->nr_pages) {
  1518. page_counter_uncharge(&old->memory, stock->nr_pages);
  1519. if (do_memsw_account())
  1520. page_counter_uncharge(&old->memsw, stock->nr_pages);
  1521. css_put_many(&old->css, stock->nr_pages);
  1522. stock->nr_pages = 0;
  1523. }
  1524. stock->cached = NULL;
  1525. }
  1526. static void drain_local_stock(struct work_struct *dummy)
  1527. {
  1528. struct memcg_stock_pcp *stock;
  1529. unsigned long flags;
  1530. local_irq_save(flags);
  1531. stock = this_cpu_ptr(&memcg_stock);
  1532. drain_stock(stock);
  1533. clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
  1534. local_irq_restore(flags);
  1535. }
  1536. /*
  1537. * Cache charges(val) to local per_cpu area.
  1538. * This will be consumed by consume_stock() function, later.
  1539. */
  1540. static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1541. {
  1542. struct memcg_stock_pcp *stock;
  1543. unsigned long flags;
  1544. local_irq_save(flags);
  1545. stock = this_cpu_ptr(&memcg_stock);
  1546. if (stock->cached != memcg) { /* reset if necessary */
  1547. drain_stock(stock);
  1548. stock->cached = memcg;
  1549. }
  1550. stock->nr_pages += nr_pages;
  1551. local_irq_restore(flags);
  1552. }
  1553. /*
  1554. * Drains all per-CPU charge caches for given root_memcg resp. subtree
  1555. * of the hierarchy under it.
  1556. */
  1557. static void drain_all_stock(struct mem_cgroup *root_memcg)
  1558. {
  1559. int cpu, curcpu;
  1560. /* If someone's already draining, avoid adding running more workers. */
  1561. if (!mutex_trylock(&percpu_charge_mutex))
  1562. return;
  1563. /* Notify other cpus that system-wide "drain" is running */
  1564. get_online_cpus();
  1565. curcpu = get_cpu();
  1566. for_each_online_cpu(cpu) {
  1567. struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
  1568. struct mem_cgroup *memcg;
  1569. memcg = stock->cached;
  1570. if (!memcg || !stock->nr_pages)
  1571. continue;
  1572. if (!mem_cgroup_is_descendant(memcg, root_memcg))
  1573. continue;
  1574. if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
  1575. if (cpu == curcpu)
  1576. drain_local_stock(&stock->work);
  1577. else
  1578. schedule_work_on(cpu, &stock->work);
  1579. }
  1580. }
  1581. put_cpu();
  1582. put_online_cpus();
  1583. mutex_unlock(&percpu_charge_mutex);
  1584. }
  1585. static int memcg_hotplug_cpu_dead(unsigned int cpu)
  1586. {
  1587. struct memcg_stock_pcp *stock;
  1588. stock = &per_cpu(memcg_stock, cpu);
  1589. drain_stock(stock);
  1590. return 0;
  1591. }
  1592. static void reclaim_high(struct mem_cgroup *memcg,
  1593. unsigned int nr_pages,
  1594. gfp_t gfp_mask)
  1595. {
  1596. do {
  1597. if (page_counter_read(&memcg->memory) <= memcg->high)
  1598. continue;
  1599. mem_cgroup_events(memcg, MEMCG_HIGH, 1);
  1600. try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
  1601. } while ((memcg = parent_mem_cgroup(memcg)));
  1602. }
  1603. static void high_work_func(struct work_struct *work)
  1604. {
  1605. struct mem_cgroup *memcg;
  1606. memcg = container_of(work, struct mem_cgroup, high_work);
  1607. reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
  1608. }
  1609. /*
  1610. * Scheduled by try_charge() to be executed from the userland return path
  1611. * and reclaims memory over the high limit.
  1612. */
  1613. void mem_cgroup_handle_over_high(void)
  1614. {
  1615. unsigned int nr_pages = current->memcg_nr_pages_over_high;
  1616. struct mem_cgroup *memcg;
  1617. if (likely(!nr_pages))
  1618. return;
  1619. memcg = get_mem_cgroup_from_mm(current->mm);
  1620. reclaim_high(memcg, nr_pages, GFP_KERNEL);
  1621. css_put(&memcg->css);
  1622. current->memcg_nr_pages_over_high = 0;
  1623. }
  1624. static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1625. unsigned int nr_pages)
  1626. {
  1627. unsigned int batch = max(CHARGE_BATCH, nr_pages);
  1628. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  1629. struct mem_cgroup *mem_over_limit;
  1630. struct page_counter *counter;
  1631. unsigned long nr_reclaimed;
  1632. bool may_swap = true;
  1633. bool drained = false;
  1634. if (mem_cgroup_is_root(memcg))
  1635. return 0;
  1636. retry:
  1637. if (consume_stock(memcg, nr_pages))
  1638. return 0;
  1639. if (!do_memsw_account() ||
  1640. page_counter_try_charge(&memcg->memsw, batch, &counter)) {
  1641. if (page_counter_try_charge(&memcg->memory, batch, &counter))
  1642. goto done_restock;
  1643. if (do_memsw_account())
  1644. page_counter_uncharge(&memcg->memsw, batch);
  1645. mem_over_limit = mem_cgroup_from_counter(counter, memory);
  1646. } else {
  1647. mem_over_limit = mem_cgroup_from_counter(counter, memsw);
  1648. may_swap = false;
  1649. }
  1650. if (batch > nr_pages) {
  1651. batch = nr_pages;
  1652. goto retry;
  1653. }
  1654. /*
  1655. * Unlike in global OOM situations, memcg is not in a physical
  1656. * memory shortage. Allow dying and OOM-killed tasks to
  1657. * bypass the last charges so that they can exit quickly and
  1658. * free their memory.
  1659. */
  1660. if (unlikely(test_thread_flag(TIF_MEMDIE) ||
  1661. fatal_signal_pending(current) ||
  1662. current->flags & PF_EXITING))
  1663. goto force;
  1664. /*
  1665. * Prevent unbounded recursion when reclaim operations need to
  1666. * allocate memory. This might exceed the limits temporarily,
  1667. * but we prefer facilitating memory reclaim and getting back
  1668. * under the limit over triggering OOM kills in these cases.
  1669. */
  1670. if (unlikely(current->flags & PF_MEMALLOC))
  1671. goto force;
  1672. if (unlikely(task_in_memcg_oom(current)))
  1673. goto nomem;
  1674. if (!gfpflags_allow_blocking(gfp_mask))
  1675. goto nomem;
  1676. mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
  1677. nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
  1678. gfp_mask, may_swap);
  1679. if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
  1680. goto retry;
  1681. if (!drained) {
  1682. drain_all_stock(mem_over_limit);
  1683. drained = true;
  1684. goto retry;
  1685. }
  1686. if (gfp_mask & __GFP_NORETRY)
  1687. goto nomem;
  1688. /*
  1689. * Even though the limit is exceeded at this point, reclaim
  1690. * may have been able to free some pages. Retry the charge
  1691. * before killing the task.
  1692. *
  1693. * Only for regular pages, though: huge pages are rather
  1694. * unlikely to succeed so close to the limit, and we fall back
  1695. * to regular pages anyway in case of failure.
  1696. */
  1697. if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
  1698. goto retry;
  1699. /*
  1700. * At task move, charge accounts can be doubly counted. So, it's
  1701. * better to wait until the end of task_move if something is going on.
  1702. */
  1703. if (mem_cgroup_wait_acct_move(mem_over_limit))
  1704. goto retry;
  1705. if (nr_retries--)
  1706. goto retry;
  1707. if (gfp_mask & __GFP_NOFAIL)
  1708. goto force;
  1709. if (fatal_signal_pending(current))
  1710. goto force;
  1711. mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
  1712. mem_cgroup_oom(mem_over_limit, gfp_mask,
  1713. get_order(nr_pages * PAGE_SIZE));
  1714. nomem:
  1715. if (!(gfp_mask & __GFP_NOFAIL))
  1716. return -ENOMEM;
  1717. force:
  1718. /*
  1719. * The allocation either can't fail or will lead to more memory
  1720. * being freed very soon. Allow memory usage go over the limit
  1721. * temporarily by force charging it.
  1722. */
  1723. page_counter_charge(&memcg->memory, nr_pages);
  1724. if (do_memsw_account())
  1725. page_counter_charge(&memcg->memsw, nr_pages);
  1726. css_get_many(&memcg->css, nr_pages);
  1727. return 0;
  1728. done_restock:
  1729. css_get_many(&memcg->css, batch);
  1730. if (batch > nr_pages)
  1731. refill_stock(memcg, batch - nr_pages);
  1732. /*
  1733. * If the hierarchy is above the normal consumption range, schedule
  1734. * reclaim on returning to userland. We can perform reclaim here
  1735. * if __GFP_RECLAIM but let's always punt for simplicity and so that
  1736. * GFP_KERNEL can consistently be used during reclaim. @memcg is
  1737. * not recorded as it most likely matches current's and won't
  1738. * change in the meantime. As high limit is checked again before
  1739. * reclaim, the cost of mismatch is negligible.
  1740. */
  1741. do {
  1742. if (page_counter_read(&memcg->memory) > memcg->high) {
  1743. /* Don't bother a random interrupted task */
  1744. if (in_interrupt()) {
  1745. schedule_work(&memcg->high_work);
  1746. break;
  1747. }
  1748. current->memcg_nr_pages_over_high += batch;
  1749. set_notify_resume(current);
  1750. break;
  1751. }
  1752. } while ((memcg = parent_mem_cgroup(memcg)));
  1753. return 0;
  1754. }
  1755. static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
  1756. {
  1757. if (mem_cgroup_is_root(memcg))
  1758. return;
  1759. page_counter_uncharge(&memcg->memory, nr_pages);
  1760. if (do_memsw_account())
  1761. page_counter_uncharge(&memcg->memsw, nr_pages);
  1762. css_put_many(&memcg->css, nr_pages);
  1763. }
  1764. static void lock_page_lru(struct page *page, int *isolated)
  1765. {
  1766. struct zone *zone = page_zone(page);
  1767. spin_lock_irq(zone_lru_lock(zone));
  1768. if (PageLRU(page)) {
  1769. struct lruvec *lruvec;
  1770. lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
  1771. ClearPageLRU(page);
  1772. del_page_from_lru_list(page, lruvec, page_lru(page));
  1773. *isolated = 1;
  1774. } else
  1775. *isolated = 0;
  1776. }
  1777. static void unlock_page_lru(struct page *page, int isolated)
  1778. {
  1779. struct zone *zone = page_zone(page);
  1780. if (isolated) {
  1781. struct lruvec *lruvec;
  1782. lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
  1783. VM_BUG_ON_PAGE(PageLRU(page), page);
  1784. SetPageLRU(page);
  1785. add_page_to_lru_list(page, lruvec, page_lru(page));
  1786. }
  1787. spin_unlock_irq(zone_lru_lock(zone));
  1788. }
  1789. static void commit_charge(struct page *page, struct mem_cgroup *memcg,
  1790. bool lrucare)
  1791. {
  1792. int isolated;
  1793. VM_BUG_ON_PAGE(page->mem_cgroup, page);
  1794. /*
  1795. * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
  1796. * may already be on some other mem_cgroup's LRU. Take care of it.
  1797. */
  1798. if (lrucare)
  1799. lock_page_lru(page, &isolated);
  1800. /*
  1801. * Nobody should be changing or seriously looking at
  1802. * page->mem_cgroup at this point:
  1803. *
  1804. * - the page is uncharged
  1805. *
  1806. * - the page is off-LRU
  1807. *
  1808. * - an anonymous fault has exclusive page access, except for
  1809. * a locked page table
  1810. *
  1811. * - a page cache insertion, a swapin fault, or a migration
  1812. * have the page locked
  1813. */
  1814. page->mem_cgroup = memcg;
  1815. if (lrucare)
  1816. unlock_page_lru(page, isolated);
  1817. }
  1818. #ifndef CONFIG_SLOB
  1819. static int memcg_alloc_cache_id(void)
  1820. {
  1821. int id, size;
  1822. int err;
  1823. id = ida_simple_get(&memcg_cache_ida,
  1824. 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
  1825. if (id < 0)
  1826. return id;
  1827. if (id < memcg_nr_cache_ids)
  1828. return id;
  1829. /*
  1830. * There's no space for the new id in memcg_caches arrays,
  1831. * so we have to grow them.
  1832. */
  1833. down_write(&memcg_cache_ids_sem);
  1834. size = 2 * (id + 1);
  1835. if (size < MEMCG_CACHES_MIN_SIZE)
  1836. size = MEMCG_CACHES_MIN_SIZE;
  1837. else if (size > MEMCG_CACHES_MAX_SIZE)
  1838. size = MEMCG_CACHES_MAX_SIZE;
  1839. err = memcg_update_all_caches(size);
  1840. if (!err)
  1841. err = memcg_update_all_list_lrus(size);
  1842. if (!err)
  1843. memcg_nr_cache_ids = size;
  1844. up_write(&memcg_cache_ids_sem);
  1845. if (err) {
  1846. ida_simple_remove(&memcg_cache_ida, id);
  1847. return err;
  1848. }
  1849. return id;
  1850. }
  1851. static void memcg_free_cache_id(int id)
  1852. {
  1853. ida_simple_remove(&memcg_cache_ida, id);
  1854. }
  1855. struct memcg_kmem_cache_create_work {
  1856. struct mem_cgroup *memcg;
  1857. struct kmem_cache *cachep;
  1858. struct work_struct work;
  1859. };
  1860. static struct workqueue_struct *memcg_kmem_cache_create_wq;
  1861. static void memcg_kmem_cache_create_func(struct work_struct *w)
  1862. {
  1863. struct memcg_kmem_cache_create_work *cw =
  1864. container_of(w, struct memcg_kmem_cache_create_work, work);
  1865. struct mem_cgroup *memcg = cw->memcg;
  1866. struct kmem_cache *cachep = cw->cachep;
  1867. memcg_create_kmem_cache(memcg, cachep);
  1868. css_put(&memcg->css);
  1869. kfree(cw);
  1870. }
  1871. /*
  1872. * Enqueue the creation of a per-memcg kmem_cache.
  1873. */
  1874. static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
  1875. struct kmem_cache *cachep)
  1876. {
  1877. struct memcg_kmem_cache_create_work *cw;
  1878. cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
  1879. if (!cw)
  1880. return;
  1881. css_get(&memcg->css);
  1882. cw->memcg = memcg;
  1883. cw->cachep = cachep;
  1884. INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
  1885. queue_work(memcg_kmem_cache_create_wq, &cw->work);
  1886. }
  1887. static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
  1888. struct kmem_cache *cachep)
  1889. {
  1890. /*
  1891. * We need to stop accounting when we kmalloc, because if the
  1892. * corresponding kmalloc cache is not yet created, the first allocation
  1893. * in __memcg_schedule_kmem_cache_create will recurse.
  1894. *
  1895. * However, it is better to enclose the whole function. Depending on
  1896. * the debugging options enabled, INIT_WORK(), for instance, can
  1897. * trigger an allocation. This too, will make us recurse. Because at
  1898. * this point we can't allow ourselves back into memcg_kmem_get_cache,
  1899. * the safest choice is to do it like this, wrapping the whole function.
  1900. */
  1901. current->memcg_kmem_skip_account = 1;
  1902. __memcg_schedule_kmem_cache_create(memcg, cachep);
  1903. current->memcg_kmem_skip_account = 0;
  1904. }
  1905. static inline bool memcg_kmem_bypass(void)
  1906. {
  1907. if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
  1908. return true;
  1909. return false;
  1910. }
  1911. /**
  1912. * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
  1913. * @cachep: the original global kmem cache
  1914. *
  1915. * Return the kmem_cache we're supposed to use for a slab allocation.
  1916. * We try to use the current memcg's version of the cache.
  1917. *
  1918. * If the cache does not exist yet, if we are the first user of it, we
  1919. * create it asynchronously in a workqueue and let the current allocation
  1920. * go through with the original cache.
  1921. *
  1922. * This function takes a reference to the cache it returns to assure it
  1923. * won't get destroyed while we are working with it. Once the caller is
  1924. * done with it, memcg_kmem_put_cache() must be called to release the
  1925. * reference.
  1926. */
  1927. struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
  1928. {
  1929. struct mem_cgroup *memcg;
  1930. struct kmem_cache *memcg_cachep;
  1931. int kmemcg_id;
  1932. VM_BUG_ON(!is_root_cache(cachep));
  1933. if (memcg_kmem_bypass())
  1934. return cachep;
  1935. if (current->memcg_kmem_skip_account)
  1936. return cachep;
  1937. memcg = get_mem_cgroup_from_mm(current->mm);
  1938. kmemcg_id = READ_ONCE(memcg->kmemcg_id);
  1939. if (kmemcg_id < 0)
  1940. goto out;
  1941. memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
  1942. if (likely(memcg_cachep))
  1943. return memcg_cachep;
  1944. /*
  1945. * If we are in a safe context (can wait, and not in interrupt
  1946. * context), we could be be predictable and return right away.
  1947. * This would guarantee that the allocation being performed
  1948. * already belongs in the new cache.
  1949. *
  1950. * However, there are some clashes that can arrive from locking.
  1951. * For instance, because we acquire the slab_mutex while doing
  1952. * memcg_create_kmem_cache, this means no further allocation
  1953. * could happen with the slab_mutex held. So it's better to
  1954. * defer everything.
  1955. */
  1956. memcg_schedule_kmem_cache_create(memcg, cachep);
  1957. out:
  1958. css_put(&memcg->css);
  1959. return cachep;
  1960. }
  1961. /**
  1962. * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
  1963. * @cachep: the cache returned by memcg_kmem_get_cache
  1964. */
  1965. void memcg_kmem_put_cache(struct kmem_cache *cachep)
  1966. {
  1967. if (!is_root_cache(cachep))
  1968. css_put(&cachep->memcg_params.memcg->css);
  1969. }
  1970. /**
  1971. * memcg_kmem_charge: charge a kmem page
  1972. * @page: page to charge
  1973. * @gfp: reclaim mode
  1974. * @order: allocation order
  1975. * @memcg: memory cgroup to charge
  1976. *
  1977. * Returns 0 on success, an error code on failure.
  1978. */
  1979. int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
  1980. struct mem_cgroup *memcg)
  1981. {
  1982. unsigned int nr_pages = 1 << order;
  1983. struct page_counter *counter;
  1984. int ret;
  1985. ret = try_charge(memcg, gfp, nr_pages);
  1986. if (ret)
  1987. return ret;
  1988. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
  1989. !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
  1990. cancel_charge(memcg, nr_pages);
  1991. return -ENOMEM;
  1992. }
  1993. page->mem_cgroup = memcg;
  1994. return 0;
  1995. }
  1996. /**
  1997. * memcg_kmem_charge: charge a kmem page to the current memory cgroup
  1998. * @page: page to charge
  1999. * @gfp: reclaim mode
  2000. * @order: allocation order
  2001. *
  2002. * Returns 0 on success, an error code on failure.
  2003. */
  2004. int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
  2005. {
  2006. struct mem_cgroup *memcg;
  2007. int ret = 0;
  2008. if (memcg_kmem_bypass())
  2009. return 0;
  2010. memcg = get_mem_cgroup_from_mm(current->mm);
  2011. if (!mem_cgroup_is_root(memcg)) {
  2012. ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
  2013. if (!ret)
  2014. __SetPageKmemcg(page);
  2015. }
  2016. css_put(&memcg->css);
  2017. return ret;
  2018. }
  2019. /**
  2020. * memcg_kmem_uncharge: uncharge a kmem page
  2021. * @page: page to uncharge
  2022. * @order: allocation order
  2023. */
  2024. void memcg_kmem_uncharge(struct page *page, int order)
  2025. {
  2026. struct mem_cgroup *memcg = page->mem_cgroup;
  2027. unsigned int nr_pages = 1 << order;
  2028. if (!memcg)
  2029. return;
  2030. VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
  2031. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
  2032. page_counter_uncharge(&memcg->kmem, nr_pages);
  2033. page_counter_uncharge(&memcg->memory, nr_pages);
  2034. if (do_memsw_account())
  2035. page_counter_uncharge(&memcg->memsw, nr_pages);
  2036. page->mem_cgroup = NULL;
  2037. /* slab pages do not have PageKmemcg flag set */
  2038. if (PageKmemcg(page))
  2039. __ClearPageKmemcg(page);
  2040. css_put_many(&memcg->css, nr_pages);
  2041. }
  2042. #endif /* !CONFIG_SLOB */
  2043. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  2044. /*
  2045. * Because tail pages are not marked as "used", set it. We're under
  2046. * zone_lru_lock and migration entries setup in all page mappings.
  2047. */
  2048. void mem_cgroup_split_huge_fixup(struct page *head)
  2049. {
  2050. int i;
  2051. if (mem_cgroup_disabled())
  2052. return;
  2053. for (i = 1; i < HPAGE_PMD_NR; i++)
  2054. head[i].mem_cgroup = head->mem_cgroup;
  2055. __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
  2056. HPAGE_PMD_NR);
  2057. }
  2058. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  2059. #ifdef CONFIG_MEMCG_SWAP
  2060. static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
  2061. bool charge)
  2062. {
  2063. int val = (charge) ? 1 : -1;
  2064. this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
  2065. }
  2066. /**
  2067. * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
  2068. * @entry: swap entry to be moved
  2069. * @from: mem_cgroup which the entry is moved from
  2070. * @to: mem_cgroup which the entry is moved to
  2071. *
  2072. * It succeeds only when the swap_cgroup's record for this entry is the same
  2073. * as the mem_cgroup's id of @from.
  2074. *
  2075. * Returns 0 on success, -EINVAL on failure.
  2076. *
  2077. * The caller must have charged to @to, IOW, called page_counter_charge() about
  2078. * both res and memsw, and called css_get().
  2079. */
  2080. static int mem_cgroup_move_swap_account(swp_entry_t entry,
  2081. struct mem_cgroup *from, struct mem_cgroup *to)
  2082. {
  2083. unsigned short old_id, new_id;
  2084. old_id = mem_cgroup_id(from);
  2085. new_id = mem_cgroup_id(to);
  2086. if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
  2087. mem_cgroup_swap_statistics(from, false);
  2088. mem_cgroup_swap_statistics(to, true);
  2089. return 0;
  2090. }
  2091. return -EINVAL;
  2092. }
  2093. #else
  2094. static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
  2095. struct mem_cgroup *from, struct mem_cgroup *to)
  2096. {
  2097. return -EINVAL;
  2098. }
  2099. #endif
  2100. static DEFINE_MUTEX(memcg_limit_mutex);
  2101. static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
  2102. unsigned long limit)
  2103. {
  2104. unsigned long curusage;
  2105. unsigned long oldusage;
  2106. bool enlarge = false;
  2107. int retry_count;
  2108. int ret;
  2109. /*
  2110. * For keeping hierarchical_reclaim simple, how long we should retry
  2111. * is depends on callers. We set our retry-count to be function
  2112. * of # of children which we should visit in this loop.
  2113. */
  2114. retry_count = MEM_CGROUP_RECLAIM_RETRIES *
  2115. mem_cgroup_count_children(memcg);
  2116. oldusage = page_counter_read(&memcg->memory);
  2117. do {
  2118. if (signal_pending(current)) {
  2119. ret = -EINTR;
  2120. break;
  2121. }
  2122. mutex_lock(&memcg_limit_mutex);
  2123. if (limit > memcg->memsw.limit) {
  2124. mutex_unlock(&memcg_limit_mutex);
  2125. ret = -EINVAL;
  2126. break;
  2127. }
  2128. if (limit > memcg->memory.limit)
  2129. enlarge = true;
  2130. ret = page_counter_limit(&memcg->memory, limit);
  2131. mutex_unlock(&memcg_limit_mutex);
  2132. if (!ret)
  2133. break;
  2134. try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
  2135. curusage = page_counter_read(&memcg->memory);
  2136. /* Usage is reduced ? */
  2137. if (curusage >= oldusage)
  2138. retry_count--;
  2139. else
  2140. oldusage = curusage;
  2141. } while (retry_count);
  2142. if (!ret && enlarge)
  2143. memcg_oom_recover(memcg);
  2144. return ret;
  2145. }
  2146. static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
  2147. unsigned long limit)
  2148. {
  2149. unsigned long curusage;
  2150. unsigned long oldusage;
  2151. bool enlarge = false;
  2152. int retry_count;
  2153. int ret;
  2154. /* see mem_cgroup_resize_res_limit */
  2155. retry_count = MEM_CGROUP_RECLAIM_RETRIES *
  2156. mem_cgroup_count_children(memcg);
  2157. oldusage = page_counter_read(&memcg->memsw);
  2158. do {
  2159. if (signal_pending(current)) {
  2160. ret = -EINTR;
  2161. break;
  2162. }
  2163. mutex_lock(&memcg_limit_mutex);
  2164. if (limit < memcg->memory.limit) {
  2165. mutex_unlock(&memcg_limit_mutex);
  2166. ret = -EINVAL;
  2167. break;
  2168. }
  2169. if (limit > memcg->memsw.limit)
  2170. enlarge = true;
  2171. ret = page_counter_limit(&memcg->memsw, limit);
  2172. mutex_unlock(&memcg_limit_mutex);
  2173. if (!ret)
  2174. break;
  2175. try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
  2176. curusage = page_counter_read(&memcg->memsw);
  2177. /* Usage is reduced ? */
  2178. if (curusage >= oldusage)
  2179. retry_count--;
  2180. else
  2181. oldusage = curusage;
  2182. } while (retry_count);
  2183. if (!ret && enlarge)
  2184. memcg_oom_recover(memcg);
  2185. return ret;
  2186. }
  2187. unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
  2188. gfp_t gfp_mask,
  2189. unsigned long *total_scanned)
  2190. {
  2191. unsigned long nr_reclaimed = 0;
  2192. struct mem_cgroup_per_node *mz, *next_mz = NULL;
  2193. unsigned long reclaimed;
  2194. int loop = 0;
  2195. struct mem_cgroup_tree_per_node *mctz;
  2196. unsigned long excess;
  2197. unsigned long nr_scanned;
  2198. if (order > 0)
  2199. return 0;
  2200. mctz = soft_limit_tree_node(pgdat->node_id);
  2201. /*
  2202. * Do not even bother to check the largest node if the root
  2203. * is empty. Do it lockless to prevent lock bouncing. Races
  2204. * are acceptable as soft limit is best effort anyway.
  2205. */
  2206. if (RB_EMPTY_ROOT(&mctz->rb_root))
  2207. return 0;
  2208. /*
  2209. * This loop can run a while, specially if mem_cgroup's continuously
  2210. * keep exceeding their soft limit and putting the system under
  2211. * pressure
  2212. */
  2213. do {
  2214. if (next_mz)
  2215. mz = next_mz;
  2216. else
  2217. mz = mem_cgroup_largest_soft_limit_node(mctz);
  2218. if (!mz)
  2219. break;
  2220. nr_scanned = 0;
  2221. reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
  2222. gfp_mask, &nr_scanned);
  2223. nr_reclaimed += reclaimed;
  2224. *total_scanned += nr_scanned;
  2225. spin_lock_irq(&mctz->lock);
  2226. __mem_cgroup_remove_exceeded(mz, mctz);
  2227. /*
  2228. * If we failed to reclaim anything from this memory cgroup
  2229. * it is time to move on to the next cgroup
  2230. */
  2231. next_mz = NULL;
  2232. if (!reclaimed)
  2233. next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
  2234. excess = soft_limit_excess(mz->memcg);
  2235. /*
  2236. * One school of thought says that we should not add
  2237. * back the node to the tree if reclaim returns 0.
  2238. * But our reclaim could return 0, simply because due
  2239. * to priority we are exposing a smaller subset of
  2240. * memory to reclaim from. Consider this as a longer
  2241. * term TODO.
  2242. */
  2243. /* If excess == 0, no tree ops */
  2244. __mem_cgroup_insert_exceeded(mz, mctz, excess);
  2245. spin_unlock_irq(&mctz->lock);
  2246. css_put(&mz->memcg->css);
  2247. loop++;
  2248. /*
  2249. * Could not reclaim anything and there are no more
  2250. * mem cgroups to try or we seem to be looping without
  2251. * reclaiming anything.
  2252. */
  2253. if (!nr_reclaimed &&
  2254. (next_mz == NULL ||
  2255. loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
  2256. break;
  2257. } while (!nr_reclaimed);
  2258. if (next_mz)
  2259. css_put(&next_mz->memcg->css);
  2260. return nr_reclaimed;
  2261. }
  2262. /*
  2263. * Test whether @memcg has children, dead or alive. Note that this
  2264. * function doesn't care whether @memcg has use_hierarchy enabled and
  2265. * returns %true if there are child csses according to the cgroup
  2266. * hierarchy. Testing use_hierarchy is the caller's responsiblity.
  2267. */
  2268. static inline bool memcg_has_children(struct mem_cgroup *memcg)
  2269. {
  2270. bool ret;
  2271. rcu_read_lock();
  2272. ret = css_next_child(NULL, &memcg->css);
  2273. rcu_read_unlock();
  2274. return ret;
  2275. }
  2276. /*
  2277. * Reclaims as many pages from the given memcg as possible.
  2278. *
  2279. * Caller is responsible for holding css reference for memcg.
  2280. */
  2281. static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
  2282. {
  2283. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  2284. /* we call try-to-free pages for make this cgroup empty */
  2285. lru_add_drain_all();
  2286. /* try to free all pages in this cgroup */
  2287. while (nr_retries && page_counter_read(&memcg->memory)) {
  2288. int progress;
  2289. if (signal_pending(current))
  2290. return -EINTR;
  2291. progress = try_to_free_mem_cgroup_pages(memcg, 1,
  2292. GFP_KERNEL, true);
  2293. if (!progress) {
  2294. nr_retries--;
  2295. /* maybe some writeback is necessary */
  2296. congestion_wait(BLK_RW_ASYNC, HZ/10);
  2297. }
  2298. }
  2299. return 0;
  2300. }
  2301. static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
  2302. char *buf, size_t nbytes,
  2303. loff_t off)
  2304. {
  2305. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2306. if (mem_cgroup_is_root(memcg))
  2307. return -EINVAL;
  2308. return mem_cgroup_force_empty(memcg) ?: nbytes;
  2309. }
  2310. static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
  2311. struct cftype *cft)
  2312. {
  2313. return mem_cgroup_from_css(css)->use_hierarchy;
  2314. }
  2315. static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
  2316. struct cftype *cft, u64 val)
  2317. {
  2318. int retval = 0;
  2319. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2320. struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
  2321. if (memcg->use_hierarchy == val)
  2322. return 0;
  2323. /*
  2324. * If parent's use_hierarchy is set, we can't make any modifications
  2325. * in the child subtrees. If it is unset, then the change can
  2326. * occur, provided the current cgroup has no children.
  2327. *
  2328. * For the root cgroup, parent_mem is NULL, we allow value to be
  2329. * set if there are no children.
  2330. */
  2331. if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
  2332. (val == 1 || val == 0)) {
  2333. if (!memcg_has_children(memcg))
  2334. memcg->use_hierarchy = val;
  2335. else
  2336. retval = -EBUSY;
  2337. } else
  2338. retval = -EINVAL;
  2339. return retval;
  2340. }
  2341. static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
  2342. {
  2343. struct mem_cgroup *iter;
  2344. int i;
  2345. memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
  2346. for_each_mem_cgroup_tree(iter, memcg) {
  2347. for (i = 0; i < MEMCG_NR_STAT; i++)
  2348. stat[i] += mem_cgroup_read_stat(iter, i);
  2349. }
  2350. }
  2351. static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
  2352. {
  2353. struct mem_cgroup *iter;
  2354. int i;
  2355. memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
  2356. for_each_mem_cgroup_tree(iter, memcg) {
  2357. for (i = 0; i < MEMCG_NR_EVENTS; i++)
  2358. events[i] += mem_cgroup_read_events(iter, i);
  2359. }
  2360. }
  2361. static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
  2362. {
  2363. unsigned long val = 0;
  2364. if (mem_cgroup_is_root(memcg)) {
  2365. struct mem_cgroup *iter;
  2366. for_each_mem_cgroup_tree(iter, memcg) {
  2367. val += mem_cgroup_read_stat(iter,
  2368. MEM_CGROUP_STAT_CACHE);
  2369. val += mem_cgroup_read_stat(iter,
  2370. MEM_CGROUP_STAT_RSS);
  2371. if (swap)
  2372. val += mem_cgroup_read_stat(iter,
  2373. MEM_CGROUP_STAT_SWAP);
  2374. }
  2375. } else {
  2376. if (!swap)
  2377. val = page_counter_read(&memcg->memory);
  2378. else
  2379. val = page_counter_read(&memcg->memsw);
  2380. }
  2381. return val;
  2382. }
  2383. enum {
  2384. RES_USAGE,
  2385. RES_LIMIT,
  2386. RES_MAX_USAGE,
  2387. RES_FAILCNT,
  2388. RES_SOFT_LIMIT,
  2389. };
  2390. static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
  2391. struct cftype *cft)
  2392. {
  2393. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2394. struct page_counter *counter;
  2395. switch (MEMFILE_TYPE(cft->private)) {
  2396. case _MEM:
  2397. counter = &memcg->memory;
  2398. break;
  2399. case _MEMSWAP:
  2400. counter = &memcg->memsw;
  2401. break;
  2402. case _KMEM:
  2403. counter = &memcg->kmem;
  2404. break;
  2405. case _TCP:
  2406. counter = &memcg->tcpmem;
  2407. break;
  2408. default:
  2409. BUG();
  2410. }
  2411. switch (MEMFILE_ATTR(cft->private)) {
  2412. case RES_USAGE:
  2413. if (counter == &memcg->memory)
  2414. return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
  2415. if (counter == &memcg->memsw)
  2416. return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
  2417. return (u64)page_counter_read(counter) * PAGE_SIZE;
  2418. case RES_LIMIT:
  2419. return (u64)counter->limit * PAGE_SIZE;
  2420. case RES_MAX_USAGE:
  2421. return (u64)counter->watermark * PAGE_SIZE;
  2422. case RES_FAILCNT:
  2423. return counter->failcnt;
  2424. case RES_SOFT_LIMIT:
  2425. return (u64)memcg->soft_limit * PAGE_SIZE;
  2426. default:
  2427. BUG();
  2428. }
  2429. }
  2430. #ifndef CONFIG_SLOB
  2431. static int memcg_online_kmem(struct mem_cgroup *memcg)
  2432. {
  2433. int memcg_id;
  2434. if (cgroup_memory_nokmem)
  2435. return 0;
  2436. BUG_ON(memcg->kmemcg_id >= 0);
  2437. BUG_ON(memcg->kmem_state);
  2438. memcg_id = memcg_alloc_cache_id();
  2439. if (memcg_id < 0)
  2440. return memcg_id;
  2441. static_branch_inc(&memcg_kmem_enabled_key);
  2442. /*
  2443. * A memory cgroup is considered kmem-online as soon as it gets
  2444. * kmemcg_id. Setting the id after enabling static branching will
  2445. * guarantee no one starts accounting before all call sites are
  2446. * patched.
  2447. */
  2448. memcg->kmemcg_id = memcg_id;
  2449. memcg->kmem_state = KMEM_ONLINE;
  2450. return 0;
  2451. }
  2452. static void memcg_offline_kmem(struct mem_cgroup *memcg)
  2453. {
  2454. struct cgroup_subsys_state *css;
  2455. struct mem_cgroup *parent, *child;
  2456. int kmemcg_id;
  2457. if (memcg->kmem_state != KMEM_ONLINE)
  2458. return;
  2459. /*
  2460. * Clear the online state before clearing memcg_caches array
  2461. * entries. The slab_mutex in memcg_deactivate_kmem_caches()
  2462. * guarantees that no cache will be created for this cgroup
  2463. * after we are done (see memcg_create_kmem_cache()).
  2464. */
  2465. memcg->kmem_state = KMEM_ALLOCATED;
  2466. memcg_deactivate_kmem_caches(memcg);
  2467. kmemcg_id = memcg->kmemcg_id;
  2468. BUG_ON(kmemcg_id < 0);
  2469. parent = parent_mem_cgroup(memcg);
  2470. if (!parent)
  2471. parent = root_mem_cgroup;
  2472. /*
  2473. * Change kmemcg_id of this cgroup and all its descendants to the
  2474. * parent's id, and then move all entries from this cgroup's list_lrus
  2475. * to ones of the parent. After we have finished, all list_lrus
  2476. * corresponding to this cgroup are guaranteed to remain empty. The
  2477. * ordering is imposed by list_lru_node->lock taken by
  2478. * memcg_drain_all_list_lrus().
  2479. */
  2480. rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
  2481. css_for_each_descendant_pre(css, &memcg->css) {
  2482. child = mem_cgroup_from_css(css);
  2483. BUG_ON(child->kmemcg_id != kmemcg_id);
  2484. child->kmemcg_id = parent->kmemcg_id;
  2485. if (!memcg->use_hierarchy)
  2486. break;
  2487. }
  2488. rcu_read_unlock();
  2489. memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
  2490. memcg_free_cache_id(kmemcg_id);
  2491. }
  2492. static void memcg_free_kmem(struct mem_cgroup *memcg)
  2493. {
  2494. /* css_alloc() failed, offlining didn't happen */
  2495. if (unlikely(memcg->kmem_state == KMEM_ONLINE))
  2496. memcg_offline_kmem(memcg);
  2497. if (memcg->kmem_state == KMEM_ALLOCATED) {
  2498. memcg_destroy_kmem_caches(memcg);
  2499. static_branch_dec(&memcg_kmem_enabled_key);
  2500. WARN_ON(page_counter_read(&memcg->kmem));
  2501. }
  2502. }
  2503. #else
  2504. static int memcg_online_kmem(struct mem_cgroup *memcg)
  2505. {
  2506. return 0;
  2507. }
  2508. static void memcg_offline_kmem(struct mem_cgroup *memcg)
  2509. {
  2510. }
  2511. static void memcg_free_kmem(struct mem_cgroup *memcg)
  2512. {
  2513. }
  2514. #endif /* !CONFIG_SLOB */
  2515. static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
  2516. unsigned long limit)
  2517. {
  2518. int ret;
  2519. mutex_lock(&memcg_limit_mutex);
  2520. ret = page_counter_limit(&memcg->kmem, limit);
  2521. mutex_unlock(&memcg_limit_mutex);
  2522. return ret;
  2523. }
  2524. static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
  2525. {
  2526. int ret;
  2527. mutex_lock(&memcg_limit_mutex);
  2528. ret = page_counter_limit(&memcg->tcpmem, limit);
  2529. if (ret)
  2530. goto out;
  2531. if (!memcg->tcpmem_active) {
  2532. /*
  2533. * The active flag needs to be written after the static_key
  2534. * update. This is what guarantees that the socket activation
  2535. * function is the last one to run. See mem_cgroup_sk_alloc()
  2536. * for details, and note that we don't mark any socket as
  2537. * belonging to this memcg until that flag is up.
  2538. *
  2539. * We need to do this, because static_keys will span multiple
  2540. * sites, but we can't control their order. If we mark a socket
  2541. * as accounted, but the accounting functions are not patched in
  2542. * yet, we'll lose accounting.
  2543. *
  2544. * We never race with the readers in mem_cgroup_sk_alloc(),
  2545. * because when this value change, the code to process it is not
  2546. * patched in yet.
  2547. */
  2548. static_branch_inc(&memcg_sockets_enabled_key);
  2549. memcg->tcpmem_active = true;
  2550. }
  2551. out:
  2552. mutex_unlock(&memcg_limit_mutex);
  2553. return ret;
  2554. }
  2555. /*
  2556. * The user of this function is...
  2557. * RES_LIMIT.
  2558. */
  2559. static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
  2560. char *buf, size_t nbytes, loff_t off)
  2561. {
  2562. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2563. unsigned long nr_pages;
  2564. int ret;
  2565. buf = strstrip(buf);
  2566. ret = page_counter_memparse(buf, "-1", &nr_pages);
  2567. if (ret)
  2568. return ret;
  2569. switch (MEMFILE_ATTR(of_cft(of)->private)) {
  2570. case RES_LIMIT:
  2571. if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
  2572. ret = -EINVAL;
  2573. break;
  2574. }
  2575. switch (MEMFILE_TYPE(of_cft(of)->private)) {
  2576. case _MEM:
  2577. ret = mem_cgroup_resize_limit(memcg, nr_pages);
  2578. break;
  2579. case _MEMSWAP:
  2580. ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
  2581. break;
  2582. case _KMEM:
  2583. ret = memcg_update_kmem_limit(memcg, nr_pages);
  2584. break;
  2585. case _TCP:
  2586. ret = memcg_update_tcp_limit(memcg, nr_pages);
  2587. break;
  2588. }
  2589. break;
  2590. case RES_SOFT_LIMIT:
  2591. memcg->soft_limit = nr_pages;
  2592. ret = 0;
  2593. break;
  2594. }
  2595. return ret ?: nbytes;
  2596. }
  2597. static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
  2598. size_t nbytes, loff_t off)
  2599. {
  2600. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2601. struct page_counter *counter;
  2602. switch (MEMFILE_TYPE(of_cft(of)->private)) {
  2603. case _MEM:
  2604. counter = &memcg->memory;
  2605. break;
  2606. case _MEMSWAP:
  2607. counter = &memcg->memsw;
  2608. break;
  2609. case _KMEM:
  2610. counter = &memcg->kmem;
  2611. break;
  2612. case _TCP:
  2613. counter = &memcg->tcpmem;
  2614. break;
  2615. default:
  2616. BUG();
  2617. }
  2618. switch (MEMFILE_ATTR(of_cft(of)->private)) {
  2619. case RES_MAX_USAGE:
  2620. page_counter_reset_watermark(counter);
  2621. break;
  2622. case RES_FAILCNT:
  2623. counter->failcnt = 0;
  2624. break;
  2625. default:
  2626. BUG();
  2627. }
  2628. return nbytes;
  2629. }
  2630. static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
  2631. struct cftype *cft)
  2632. {
  2633. return mem_cgroup_from_css(css)->move_charge_at_immigrate;
  2634. }
  2635. #ifdef CONFIG_MMU
  2636. static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
  2637. struct cftype *cft, u64 val)
  2638. {
  2639. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2640. if (val & ~MOVE_MASK)
  2641. return -EINVAL;
  2642. /*
  2643. * No kind of locking is needed in here, because ->can_attach() will
  2644. * check this value once in the beginning of the process, and then carry
  2645. * on with stale data. This means that changes to this value will only
  2646. * affect task migrations starting after the change.
  2647. */
  2648. memcg->move_charge_at_immigrate = val;
  2649. return 0;
  2650. }
  2651. #else
  2652. static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
  2653. struct cftype *cft, u64 val)
  2654. {
  2655. return -ENOSYS;
  2656. }
  2657. #endif
  2658. #ifdef CONFIG_NUMA
  2659. static int memcg_numa_stat_show(struct seq_file *m, void *v)
  2660. {
  2661. struct numa_stat {
  2662. const char *name;
  2663. unsigned int lru_mask;
  2664. };
  2665. static const struct numa_stat stats[] = {
  2666. { "total", LRU_ALL },
  2667. { "file", LRU_ALL_FILE },
  2668. { "anon", LRU_ALL_ANON },
  2669. { "unevictable", BIT(LRU_UNEVICTABLE) },
  2670. };
  2671. const struct numa_stat *stat;
  2672. int nid;
  2673. unsigned long nr;
  2674. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  2675. for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
  2676. nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
  2677. seq_printf(m, "%s=%lu", stat->name, nr);
  2678. for_each_node_state(nid, N_MEMORY) {
  2679. nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  2680. stat->lru_mask);
  2681. seq_printf(m, " N%d=%lu", nid, nr);
  2682. }
  2683. seq_putc(m, '\n');
  2684. }
  2685. for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
  2686. struct mem_cgroup *iter;
  2687. nr = 0;
  2688. for_each_mem_cgroup_tree(iter, memcg)
  2689. nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
  2690. seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
  2691. for_each_node_state(nid, N_MEMORY) {
  2692. nr = 0;
  2693. for_each_mem_cgroup_tree(iter, memcg)
  2694. nr += mem_cgroup_node_nr_lru_pages(
  2695. iter, nid, stat->lru_mask);
  2696. seq_printf(m, " N%d=%lu", nid, nr);
  2697. }
  2698. seq_putc(m, '\n');
  2699. }
  2700. return 0;
  2701. }
  2702. #endif /* CONFIG_NUMA */
  2703. static int memcg_stat_show(struct seq_file *m, void *v)
  2704. {
  2705. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  2706. unsigned long memory, memsw;
  2707. struct mem_cgroup *mi;
  2708. unsigned int i;
  2709. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
  2710. MEM_CGROUP_STAT_NSTATS);
  2711. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
  2712. MEM_CGROUP_EVENTS_NSTATS);
  2713. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
  2714. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  2715. if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
  2716. continue;
  2717. seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
  2718. mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
  2719. }
  2720. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
  2721. seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
  2722. mem_cgroup_read_events(memcg, i));
  2723. for (i = 0; i < NR_LRU_LISTS; i++)
  2724. seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
  2725. mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
  2726. /* Hierarchical information */
  2727. memory = memsw = PAGE_COUNTER_MAX;
  2728. for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
  2729. memory = min(memory, mi->memory.limit);
  2730. memsw = min(memsw, mi->memsw.limit);
  2731. }
  2732. seq_printf(m, "hierarchical_memory_limit %llu\n",
  2733. (u64)memory * PAGE_SIZE);
  2734. if (do_memsw_account())
  2735. seq_printf(m, "hierarchical_memsw_limit %llu\n",
  2736. (u64)memsw * PAGE_SIZE);
  2737. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  2738. unsigned long long val = 0;
  2739. if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
  2740. continue;
  2741. for_each_mem_cgroup_tree(mi, memcg)
  2742. val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
  2743. seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
  2744. }
  2745. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
  2746. unsigned long long val = 0;
  2747. for_each_mem_cgroup_tree(mi, memcg)
  2748. val += mem_cgroup_read_events(mi, i);
  2749. seq_printf(m, "total_%s %llu\n",
  2750. mem_cgroup_events_names[i], val);
  2751. }
  2752. for (i = 0; i < NR_LRU_LISTS; i++) {
  2753. unsigned long long val = 0;
  2754. for_each_mem_cgroup_tree(mi, memcg)
  2755. val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
  2756. seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
  2757. }
  2758. #ifdef CONFIG_DEBUG_VM
  2759. {
  2760. pg_data_t *pgdat;
  2761. struct mem_cgroup_per_node *mz;
  2762. struct zone_reclaim_stat *rstat;
  2763. unsigned long recent_rotated[2] = {0, 0};
  2764. unsigned long recent_scanned[2] = {0, 0};
  2765. for_each_online_pgdat(pgdat) {
  2766. mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
  2767. rstat = &mz->lruvec.reclaim_stat;
  2768. recent_rotated[0] += rstat->recent_rotated[0];
  2769. recent_rotated[1] += rstat->recent_rotated[1];
  2770. recent_scanned[0] += rstat->recent_scanned[0];
  2771. recent_scanned[1] += rstat->recent_scanned[1];
  2772. }
  2773. seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
  2774. seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
  2775. seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
  2776. seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
  2777. }
  2778. #endif
  2779. return 0;
  2780. }
  2781. static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
  2782. struct cftype *cft)
  2783. {
  2784. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2785. return mem_cgroup_swappiness(memcg);
  2786. }
  2787. static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
  2788. struct cftype *cft, u64 val)
  2789. {
  2790. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2791. if (val > 100)
  2792. return -EINVAL;
  2793. if (css->parent)
  2794. memcg->swappiness = val;
  2795. else
  2796. vm_swappiness = val;
  2797. return 0;
  2798. }
  2799. static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
  2800. {
  2801. struct mem_cgroup_threshold_ary *t;
  2802. unsigned long usage;
  2803. int i;
  2804. rcu_read_lock();
  2805. if (!swap)
  2806. t = rcu_dereference(memcg->thresholds.primary);
  2807. else
  2808. t = rcu_dereference(memcg->memsw_thresholds.primary);
  2809. if (!t)
  2810. goto unlock;
  2811. usage = mem_cgroup_usage(memcg, swap);
  2812. /*
  2813. * current_threshold points to threshold just below or equal to usage.
  2814. * If it's not true, a threshold was crossed after last
  2815. * call of __mem_cgroup_threshold().
  2816. */
  2817. i = t->current_threshold;
  2818. /*
  2819. * Iterate backward over array of thresholds starting from
  2820. * current_threshold and check if a threshold is crossed.
  2821. * If none of thresholds below usage is crossed, we read
  2822. * only one element of the array here.
  2823. */
  2824. for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
  2825. eventfd_signal(t->entries[i].eventfd, 1);
  2826. /* i = current_threshold + 1 */
  2827. i++;
  2828. /*
  2829. * Iterate forward over array of thresholds starting from
  2830. * current_threshold+1 and check if a threshold is crossed.
  2831. * If none of thresholds above usage is crossed, we read
  2832. * only one element of the array here.
  2833. */
  2834. for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
  2835. eventfd_signal(t->entries[i].eventfd, 1);
  2836. /* Update current_threshold */
  2837. t->current_threshold = i - 1;
  2838. unlock:
  2839. rcu_read_unlock();
  2840. }
  2841. static void mem_cgroup_threshold(struct mem_cgroup *memcg)
  2842. {
  2843. while (memcg) {
  2844. __mem_cgroup_threshold(memcg, false);
  2845. if (do_memsw_account())
  2846. __mem_cgroup_threshold(memcg, true);
  2847. memcg = parent_mem_cgroup(memcg);
  2848. }
  2849. }
  2850. static int compare_thresholds(const void *a, const void *b)
  2851. {
  2852. const struct mem_cgroup_threshold *_a = a;
  2853. const struct mem_cgroup_threshold *_b = b;
  2854. if (_a->threshold > _b->threshold)
  2855. return 1;
  2856. if (_a->threshold < _b->threshold)
  2857. return -1;
  2858. return 0;
  2859. }
  2860. static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
  2861. {
  2862. struct mem_cgroup_eventfd_list *ev;
  2863. spin_lock(&memcg_oom_lock);
  2864. list_for_each_entry(ev, &memcg->oom_notify, list)
  2865. eventfd_signal(ev->eventfd, 1);
  2866. spin_unlock(&memcg_oom_lock);
  2867. return 0;
  2868. }
  2869. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
  2870. {
  2871. struct mem_cgroup *iter;
  2872. for_each_mem_cgroup_tree(iter, memcg)
  2873. mem_cgroup_oom_notify_cb(iter);
  2874. }
  2875. static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
  2876. struct eventfd_ctx *eventfd, const char *args, enum res_type type)
  2877. {
  2878. struct mem_cgroup_thresholds *thresholds;
  2879. struct mem_cgroup_threshold_ary *new;
  2880. unsigned long threshold;
  2881. unsigned long usage;
  2882. int i, size, ret;
  2883. ret = page_counter_memparse(args, "-1", &threshold);
  2884. if (ret)
  2885. return ret;
  2886. mutex_lock(&memcg->thresholds_lock);
  2887. if (type == _MEM) {
  2888. thresholds = &memcg->thresholds;
  2889. usage = mem_cgroup_usage(memcg, false);
  2890. } else if (type == _MEMSWAP) {
  2891. thresholds = &memcg->memsw_thresholds;
  2892. usage = mem_cgroup_usage(memcg, true);
  2893. } else
  2894. BUG();
  2895. /* Check if a threshold crossed before adding a new one */
  2896. if (thresholds->primary)
  2897. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  2898. size = thresholds->primary ? thresholds->primary->size + 1 : 1;
  2899. /* Allocate memory for new array of thresholds */
  2900. new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
  2901. GFP_KERNEL);
  2902. if (!new) {
  2903. ret = -ENOMEM;
  2904. goto unlock;
  2905. }
  2906. new->size = size;
  2907. /* Copy thresholds (if any) to new array */
  2908. if (thresholds->primary) {
  2909. memcpy(new->entries, thresholds->primary->entries, (size - 1) *
  2910. sizeof(struct mem_cgroup_threshold));
  2911. }
  2912. /* Add new threshold */
  2913. new->entries[size - 1].eventfd = eventfd;
  2914. new->entries[size - 1].threshold = threshold;
  2915. /* Sort thresholds. Registering of new threshold isn't time-critical */
  2916. sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
  2917. compare_thresholds, NULL);
  2918. /* Find current threshold */
  2919. new->current_threshold = -1;
  2920. for (i = 0; i < size; i++) {
  2921. if (new->entries[i].threshold <= usage) {
  2922. /*
  2923. * new->current_threshold will not be used until
  2924. * rcu_assign_pointer(), so it's safe to increment
  2925. * it here.
  2926. */
  2927. ++new->current_threshold;
  2928. } else
  2929. break;
  2930. }
  2931. /* Free old spare buffer and save old primary buffer as spare */
  2932. kfree(thresholds->spare);
  2933. thresholds->spare = thresholds->primary;
  2934. rcu_assign_pointer(thresholds->primary, new);
  2935. /* To be sure that nobody uses thresholds */
  2936. synchronize_rcu();
  2937. unlock:
  2938. mutex_unlock(&memcg->thresholds_lock);
  2939. return ret;
  2940. }
  2941. static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
  2942. struct eventfd_ctx *eventfd, const char *args)
  2943. {
  2944. return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
  2945. }
  2946. static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
  2947. struct eventfd_ctx *eventfd, const char *args)
  2948. {
  2949. return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
  2950. }
  2951. static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  2952. struct eventfd_ctx *eventfd, enum res_type type)
  2953. {
  2954. struct mem_cgroup_thresholds *thresholds;
  2955. struct mem_cgroup_threshold_ary *new;
  2956. unsigned long usage;
  2957. int i, j, size;
  2958. mutex_lock(&memcg->thresholds_lock);
  2959. if (type == _MEM) {
  2960. thresholds = &memcg->thresholds;
  2961. usage = mem_cgroup_usage(memcg, false);
  2962. } else if (type == _MEMSWAP) {
  2963. thresholds = &memcg->memsw_thresholds;
  2964. usage = mem_cgroup_usage(memcg, true);
  2965. } else
  2966. BUG();
  2967. if (!thresholds->primary)
  2968. goto unlock;
  2969. /* Check if a threshold crossed before removing */
  2970. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  2971. /* Calculate new number of threshold */
  2972. size = 0;
  2973. for (i = 0; i < thresholds->primary->size; i++) {
  2974. if (thresholds->primary->entries[i].eventfd != eventfd)
  2975. size++;
  2976. }
  2977. new = thresholds->spare;
  2978. /* Set thresholds array to NULL if we don't have thresholds */
  2979. if (!size) {
  2980. kfree(new);
  2981. new = NULL;
  2982. goto swap_buffers;
  2983. }
  2984. new->size = size;
  2985. /* Copy thresholds and find current threshold */
  2986. new->current_threshold = -1;
  2987. for (i = 0, j = 0; i < thresholds->primary->size; i++) {
  2988. if (thresholds->primary->entries[i].eventfd == eventfd)
  2989. continue;
  2990. new->entries[j] = thresholds->primary->entries[i];
  2991. if (new->entries[j].threshold <= usage) {
  2992. /*
  2993. * new->current_threshold will not be used
  2994. * until rcu_assign_pointer(), so it's safe to increment
  2995. * it here.
  2996. */
  2997. ++new->current_threshold;
  2998. }
  2999. j++;
  3000. }
  3001. swap_buffers:
  3002. /* Swap primary and spare array */
  3003. thresholds->spare = thresholds->primary;
  3004. rcu_assign_pointer(thresholds->primary, new);
  3005. /* To be sure that nobody uses thresholds */
  3006. synchronize_rcu();
  3007. /* If all events are unregistered, free the spare array */
  3008. if (!new) {
  3009. kfree(thresholds->spare);
  3010. thresholds->spare = NULL;
  3011. }
  3012. unlock:
  3013. mutex_unlock(&memcg->thresholds_lock);
  3014. }
  3015. static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  3016. struct eventfd_ctx *eventfd)
  3017. {
  3018. return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
  3019. }
  3020. static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  3021. struct eventfd_ctx *eventfd)
  3022. {
  3023. return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
  3024. }
  3025. static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
  3026. struct eventfd_ctx *eventfd, const char *args)
  3027. {
  3028. struct mem_cgroup_eventfd_list *event;
  3029. event = kmalloc(sizeof(*event), GFP_KERNEL);
  3030. if (!event)
  3031. return -ENOMEM;
  3032. spin_lock(&memcg_oom_lock);
  3033. event->eventfd = eventfd;
  3034. list_add(&event->list, &memcg->oom_notify);
  3035. /* already in OOM ? */
  3036. if (memcg->under_oom)
  3037. eventfd_signal(eventfd, 1);
  3038. spin_unlock(&memcg_oom_lock);
  3039. return 0;
  3040. }
  3041. static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
  3042. struct eventfd_ctx *eventfd)
  3043. {
  3044. struct mem_cgroup_eventfd_list *ev, *tmp;
  3045. spin_lock(&memcg_oom_lock);
  3046. list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
  3047. if (ev->eventfd == eventfd) {
  3048. list_del(&ev->list);
  3049. kfree(ev);
  3050. }
  3051. }
  3052. spin_unlock(&memcg_oom_lock);
  3053. }
  3054. static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
  3055. {
  3056. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
  3057. seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
  3058. seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
  3059. return 0;
  3060. }
  3061. static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
  3062. struct cftype *cft, u64 val)
  3063. {
  3064. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3065. /* cannot set to root cgroup and only 0 and 1 are allowed */
  3066. if (!css->parent || !((val == 0) || (val == 1)))
  3067. return -EINVAL;
  3068. memcg->oom_kill_disable = val;
  3069. if (!val)
  3070. memcg_oom_recover(memcg);
  3071. return 0;
  3072. }
  3073. #ifdef CONFIG_CGROUP_WRITEBACK
  3074. struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
  3075. {
  3076. return &memcg->cgwb_list;
  3077. }
  3078. static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
  3079. {
  3080. return wb_domain_init(&memcg->cgwb_domain, gfp);
  3081. }
  3082. static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
  3083. {
  3084. wb_domain_exit(&memcg->cgwb_domain);
  3085. }
  3086. static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
  3087. {
  3088. wb_domain_size_changed(&memcg->cgwb_domain);
  3089. }
  3090. struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
  3091. {
  3092. struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
  3093. if (!memcg->css.parent)
  3094. return NULL;
  3095. return &memcg->cgwb_domain;
  3096. }
  3097. /**
  3098. * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
  3099. * @wb: bdi_writeback in question
  3100. * @pfilepages: out parameter for number of file pages
  3101. * @pheadroom: out parameter for number of allocatable pages according to memcg
  3102. * @pdirty: out parameter for number of dirty pages
  3103. * @pwriteback: out parameter for number of pages under writeback
  3104. *
  3105. * Determine the numbers of file, headroom, dirty, and writeback pages in
  3106. * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
  3107. * is a bit more involved.
  3108. *
  3109. * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
  3110. * headroom is calculated as the lowest headroom of itself and the
  3111. * ancestors. Note that this doesn't consider the actual amount of
  3112. * available memory in the system. The caller should further cap
  3113. * *@pheadroom accordingly.
  3114. */
  3115. void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
  3116. unsigned long *pheadroom, unsigned long *pdirty,
  3117. unsigned long *pwriteback)
  3118. {
  3119. struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
  3120. struct mem_cgroup *parent;
  3121. *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
  3122. /* this should eventually include NR_UNSTABLE_NFS */
  3123. *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
  3124. *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
  3125. (1 << LRU_ACTIVE_FILE));
  3126. *pheadroom = PAGE_COUNTER_MAX;
  3127. while ((parent = parent_mem_cgroup(memcg))) {
  3128. unsigned long ceiling = min(memcg->memory.limit, memcg->high);
  3129. unsigned long used = page_counter_read(&memcg->memory);
  3130. *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
  3131. memcg = parent;
  3132. }
  3133. }
  3134. #else /* CONFIG_CGROUP_WRITEBACK */
  3135. static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
  3136. {
  3137. return 0;
  3138. }
  3139. static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
  3140. {
  3141. }
  3142. static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
  3143. {
  3144. }
  3145. #endif /* CONFIG_CGROUP_WRITEBACK */
  3146. /*
  3147. * DO NOT USE IN NEW FILES.
  3148. *
  3149. * "cgroup.event_control" implementation.
  3150. *
  3151. * This is way over-engineered. It tries to support fully configurable
  3152. * events for each user. Such level of flexibility is completely
  3153. * unnecessary especially in the light of the planned unified hierarchy.
  3154. *
  3155. * Please deprecate this and replace with something simpler if at all
  3156. * possible.
  3157. */
  3158. /*
  3159. * Unregister event and free resources.
  3160. *
  3161. * Gets called from workqueue.
  3162. */
  3163. static void memcg_event_remove(struct work_struct *work)
  3164. {
  3165. struct mem_cgroup_event *event =
  3166. container_of(work, struct mem_cgroup_event, remove);
  3167. struct mem_cgroup *memcg = event->memcg;
  3168. remove_wait_queue(event->wqh, &event->wait);
  3169. event->unregister_event(memcg, event->eventfd);
  3170. /* Notify userspace the event is going away. */
  3171. eventfd_signal(event->eventfd, 1);
  3172. eventfd_ctx_put(event->eventfd);
  3173. kfree(event);
  3174. css_put(&memcg->css);
  3175. }
  3176. /*
  3177. * Gets called on POLLHUP on eventfd when user closes it.
  3178. *
  3179. * Called with wqh->lock held and interrupts disabled.
  3180. */
  3181. static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
  3182. int sync, void *key)
  3183. {
  3184. struct mem_cgroup_event *event =
  3185. container_of(wait, struct mem_cgroup_event, wait);
  3186. struct mem_cgroup *memcg = event->memcg;
  3187. unsigned long flags = (unsigned long)key;
  3188. if (flags & POLLHUP) {
  3189. /*
  3190. * If the event has been detached at cgroup removal, we
  3191. * can simply return knowing the other side will cleanup
  3192. * for us.
  3193. *
  3194. * We can't race against event freeing since the other
  3195. * side will require wqh->lock via remove_wait_queue(),
  3196. * which we hold.
  3197. */
  3198. spin_lock(&memcg->event_list_lock);
  3199. if (!list_empty(&event->list)) {
  3200. list_del_init(&event->list);
  3201. /*
  3202. * We are in atomic context, but cgroup_event_remove()
  3203. * may sleep, so we have to call it in workqueue.
  3204. */
  3205. schedule_work(&event->remove);
  3206. }
  3207. spin_unlock(&memcg->event_list_lock);
  3208. }
  3209. return 0;
  3210. }
  3211. static void memcg_event_ptable_queue_proc(struct file *file,
  3212. wait_queue_head_t *wqh, poll_table *pt)
  3213. {
  3214. struct mem_cgroup_event *event =
  3215. container_of(pt, struct mem_cgroup_event, pt);
  3216. event->wqh = wqh;
  3217. add_wait_queue(wqh, &event->wait);
  3218. }
  3219. /*
  3220. * DO NOT USE IN NEW FILES.
  3221. *
  3222. * Parse input and register new cgroup event handler.
  3223. *
  3224. * Input must be in format '<event_fd> <control_fd> <args>'.
  3225. * Interpretation of args is defined by control file implementation.
  3226. */
  3227. static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
  3228. char *buf, size_t nbytes, loff_t off)
  3229. {
  3230. struct cgroup_subsys_state *css = of_css(of);
  3231. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3232. struct mem_cgroup_event *event;
  3233. struct cgroup_subsys_state *cfile_css;
  3234. unsigned int efd, cfd;
  3235. struct fd efile;
  3236. struct fd cfile;
  3237. const char *name;
  3238. char *endp;
  3239. int ret;
  3240. buf = strstrip(buf);
  3241. efd = simple_strtoul(buf, &endp, 10);
  3242. if (*endp != ' ')
  3243. return -EINVAL;
  3244. buf = endp + 1;
  3245. cfd = simple_strtoul(buf, &endp, 10);
  3246. if ((*endp != ' ') && (*endp != '\0'))
  3247. return -EINVAL;
  3248. buf = endp + 1;
  3249. event = kzalloc(sizeof(*event), GFP_KERNEL);
  3250. if (!event)
  3251. return -ENOMEM;
  3252. event->memcg = memcg;
  3253. INIT_LIST_HEAD(&event->list);
  3254. init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
  3255. init_waitqueue_func_entry(&event->wait, memcg_event_wake);
  3256. INIT_WORK(&event->remove, memcg_event_remove);
  3257. efile = fdget(efd);
  3258. if (!efile.file) {
  3259. ret = -EBADF;
  3260. goto out_kfree;
  3261. }
  3262. event->eventfd = eventfd_ctx_fileget(efile.file);
  3263. if (IS_ERR(event->eventfd)) {
  3264. ret = PTR_ERR(event->eventfd);
  3265. goto out_put_efile;
  3266. }
  3267. cfile = fdget(cfd);
  3268. if (!cfile.file) {
  3269. ret = -EBADF;
  3270. goto out_put_eventfd;
  3271. }
  3272. /* the process need read permission on control file */
  3273. /* AV: shouldn't we check that it's been opened for read instead? */
  3274. ret = inode_permission(file_inode(cfile.file), MAY_READ);
  3275. if (ret < 0)
  3276. goto out_put_cfile;
  3277. /*
  3278. * Determine the event callbacks and set them in @event. This used
  3279. * to be done via struct cftype but cgroup core no longer knows
  3280. * about these events. The following is crude but the whole thing
  3281. * is for compatibility anyway.
  3282. *
  3283. * DO NOT ADD NEW FILES.
  3284. */
  3285. name = cfile.file->f_path.dentry->d_name.name;
  3286. if (!strcmp(name, "memory.usage_in_bytes")) {
  3287. event->register_event = mem_cgroup_usage_register_event;
  3288. event->unregister_event = mem_cgroup_usage_unregister_event;
  3289. } else if (!strcmp(name, "memory.oom_control")) {
  3290. event->register_event = mem_cgroup_oom_register_event;
  3291. event->unregister_event = mem_cgroup_oom_unregister_event;
  3292. } else if (!strcmp(name, "memory.pressure_level")) {
  3293. event->register_event = vmpressure_register_event;
  3294. event->unregister_event = vmpressure_unregister_event;
  3295. } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
  3296. event->register_event = memsw_cgroup_usage_register_event;
  3297. event->unregister_event = memsw_cgroup_usage_unregister_event;
  3298. } else {
  3299. ret = -EINVAL;
  3300. goto out_put_cfile;
  3301. }
  3302. /*
  3303. * Verify @cfile should belong to @css. Also, remaining events are
  3304. * automatically removed on cgroup destruction but the removal is
  3305. * asynchronous, so take an extra ref on @css.
  3306. */
  3307. cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
  3308. &memory_cgrp_subsys);
  3309. ret = -EINVAL;
  3310. if (IS_ERR(cfile_css))
  3311. goto out_put_cfile;
  3312. if (cfile_css != css) {
  3313. css_put(cfile_css);
  3314. goto out_put_cfile;
  3315. }
  3316. ret = event->register_event(memcg, event->eventfd, buf);
  3317. if (ret)
  3318. goto out_put_css;
  3319. efile.file->f_op->poll(efile.file, &event->pt);
  3320. spin_lock(&memcg->event_list_lock);
  3321. list_add(&event->list, &memcg->event_list);
  3322. spin_unlock(&memcg->event_list_lock);
  3323. fdput(cfile);
  3324. fdput(efile);
  3325. return nbytes;
  3326. out_put_css:
  3327. css_put(css);
  3328. out_put_cfile:
  3329. fdput(cfile);
  3330. out_put_eventfd:
  3331. eventfd_ctx_put(event->eventfd);
  3332. out_put_efile:
  3333. fdput(efile);
  3334. out_kfree:
  3335. kfree(event);
  3336. return ret;
  3337. }
  3338. static struct cftype mem_cgroup_legacy_files[] = {
  3339. {
  3340. .name = "usage_in_bytes",
  3341. .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
  3342. .read_u64 = mem_cgroup_read_u64,
  3343. },
  3344. {
  3345. .name = "max_usage_in_bytes",
  3346. .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
  3347. .write = mem_cgroup_reset,
  3348. .read_u64 = mem_cgroup_read_u64,
  3349. },
  3350. {
  3351. .name = "limit_in_bytes",
  3352. .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
  3353. .write = mem_cgroup_write,
  3354. .read_u64 = mem_cgroup_read_u64,
  3355. },
  3356. {
  3357. .name = "soft_limit_in_bytes",
  3358. .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
  3359. .write = mem_cgroup_write,
  3360. .read_u64 = mem_cgroup_read_u64,
  3361. },
  3362. {
  3363. .name = "failcnt",
  3364. .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
  3365. .write = mem_cgroup_reset,
  3366. .read_u64 = mem_cgroup_read_u64,
  3367. },
  3368. {
  3369. .name = "stat",
  3370. .seq_show = memcg_stat_show,
  3371. },
  3372. {
  3373. .name = "force_empty",
  3374. .write = mem_cgroup_force_empty_write,
  3375. },
  3376. {
  3377. .name = "use_hierarchy",
  3378. .write_u64 = mem_cgroup_hierarchy_write,
  3379. .read_u64 = mem_cgroup_hierarchy_read,
  3380. },
  3381. {
  3382. .name = "cgroup.event_control", /* XXX: for compat */
  3383. .write = memcg_write_event_control,
  3384. .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
  3385. },
  3386. {
  3387. .name = "swappiness",
  3388. .read_u64 = mem_cgroup_swappiness_read,
  3389. .write_u64 = mem_cgroup_swappiness_write,
  3390. },
  3391. {
  3392. .name = "move_charge_at_immigrate",
  3393. .read_u64 = mem_cgroup_move_charge_read,
  3394. .write_u64 = mem_cgroup_move_charge_write,
  3395. },
  3396. {
  3397. .name = "oom_control",
  3398. .seq_show = mem_cgroup_oom_control_read,
  3399. .write_u64 = mem_cgroup_oom_control_write,
  3400. .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
  3401. },
  3402. {
  3403. .name = "pressure_level",
  3404. },
  3405. #ifdef CONFIG_NUMA
  3406. {
  3407. .name = "numa_stat",
  3408. .seq_show = memcg_numa_stat_show,
  3409. },
  3410. #endif
  3411. {
  3412. .name = "kmem.limit_in_bytes",
  3413. .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
  3414. .write = mem_cgroup_write,
  3415. .read_u64 = mem_cgroup_read_u64,
  3416. },
  3417. {
  3418. .name = "kmem.usage_in_bytes",
  3419. .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
  3420. .read_u64 = mem_cgroup_read_u64,
  3421. },
  3422. {
  3423. .name = "kmem.failcnt",
  3424. .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
  3425. .write = mem_cgroup_reset,
  3426. .read_u64 = mem_cgroup_read_u64,
  3427. },
  3428. {
  3429. .name = "kmem.max_usage_in_bytes",
  3430. .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
  3431. .write = mem_cgroup_reset,
  3432. .read_u64 = mem_cgroup_read_u64,
  3433. },
  3434. #ifdef CONFIG_SLABINFO
  3435. {
  3436. .name = "kmem.slabinfo",
  3437. .seq_start = slab_start,
  3438. .seq_next = slab_next,
  3439. .seq_stop = slab_stop,
  3440. .seq_show = memcg_slab_show,
  3441. },
  3442. #endif
  3443. {
  3444. .name = "kmem.tcp.limit_in_bytes",
  3445. .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
  3446. .write = mem_cgroup_write,
  3447. .read_u64 = mem_cgroup_read_u64,
  3448. },
  3449. {
  3450. .name = "kmem.tcp.usage_in_bytes",
  3451. .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
  3452. .read_u64 = mem_cgroup_read_u64,
  3453. },
  3454. {
  3455. .name = "kmem.tcp.failcnt",
  3456. .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
  3457. .write = mem_cgroup_reset,
  3458. .read_u64 = mem_cgroup_read_u64,
  3459. },
  3460. {
  3461. .name = "kmem.tcp.max_usage_in_bytes",
  3462. .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
  3463. .write = mem_cgroup_reset,
  3464. .read_u64 = mem_cgroup_read_u64,
  3465. },
  3466. { }, /* terminate */
  3467. };
  3468. /*
  3469. * Private memory cgroup IDR
  3470. *
  3471. * Swap-out records and page cache shadow entries need to store memcg
  3472. * references in constrained space, so we maintain an ID space that is
  3473. * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
  3474. * memory-controlled cgroups to 64k.
  3475. *
  3476. * However, there usually are many references to the oflline CSS after
  3477. * the cgroup has been destroyed, such as page cache or reclaimable
  3478. * slab objects, that don't need to hang on to the ID. We want to keep
  3479. * those dead CSS from occupying IDs, or we might quickly exhaust the
  3480. * relatively small ID space and prevent the creation of new cgroups
  3481. * even when there are much fewer than 64k cgroups - possibly none.
  3482. *
  3483. * Maintain a private 16-bit ID space for memcg, and allow the ID to
  3484. * be freed and recycled when it's no longer needed, which is usually
  3485. * when the CSS is offlined.
  3486. *
  3487. * The only exception to that are records of swapped out tmpfs/shmem
  3488. * pages that need to be attributed to live ancestors on swapin. But
  3489. * those references are manageable from userspace.
  3490. */
  3491. static DEFINE_IDR(mem_cgroup_idr);
  3492. static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
  3493. {
  3494. VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
  3495. atomic_add(n, &memcg->id.ref);
  3496. }
  3497. static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
  3498. {
  3499. VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
  3500. if (atomic_sub_and_test(n, &memcg->id.ref)) {
  3501. idr_remove(&mem_cgroup_idr, memcg->id.id);
  3502. memcg->id.id = 0;
  3503. /* Memcg ID pins CSS */
  3504. css_put(&memcg->css);
  3505. }
  3506. }
  3507. static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
  3508. {
  3509. mem_cgroup_id_get_many(memcg, 1);
  3510. }
  3511. static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
  3512. {
  3513. mem_cgroup_id_put_many(memcg, 1);
  3514. }
  3515. /**
  3516. * mem_cgroup_from_id - look up a memcg from a memcg id
  3517. * @id: the memcg id to look up
  3518. *
  3519. * Caller must hold rcu_read_lock().
  3520. */
  3521. struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
  3522. {
  3523. WARN_ON_ONCE(!rcu_read_lock_held());
  3524. return idr_find(&mem_cgroup_idr, id);
  3525. }
  3526. static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
  3527. {
  3528. struct mem_cgroup_per_node *pn;
  3529. int tmp = node;
  3530. /*
  3531. * This routine is called against possible nodes.
  3532. * But it's BUG to call kmalloc() against offline node.
  3533. *
  3534. * TODO: this routine can waste much memory for nodes which will
  3535. * never be onlined. It's better to use memory hotplug callback
  3536. * function.
  3537. */
  3538. if (!node_state(node, N_NORMAL_MEMORY))
  3539. tmp = -1;
  3540. pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
  3541. if (!pn)
  3542. return 1;
  3543. lruvec_init(&pn->lruvec);
  3544. pn->usage_in_excess = 0;
  3545. pn->on_tree = false;
  3546. pn->memcg = memcg;
  3547. memcg->nodeinfo[node] = pn;
  3548. return 0;
  3549. }
  3550. static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
  3551. {
  3552. kfree(memcg->nodeinfo[node]);
  3553. }
  3554. static void mem_cgroup_free(struct mem_cgroup *memcg)
  3555. {
  3556. int node;
  3557. memcg_wb_domain_exit(memcg);
  3558. for_each_node(node)
  3559. free_mem_cgroup_per_node_info(memcg, node);
  3560. free_percpu(memcg->stat);
  3561. kfree(memcg);
  3562. }
  3563. static struct mem_cgroup *mem_cgroup_alloc(void)
  3564. {
  3565. struct mem_cgroup *memcg;
  3566. size_t size;
  3567. int node;
  3568. size = sizeof(struct mem_cgroup);
  3569. size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
  3570. memcg = kzalloc(size, GFP_KERNEL);
  3571. if (!memcg)
  3572. return NULL;
  3573. memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
  3574. 1, MEM_CGROUP_ID_MAX,
  3575. GFP_KERNEL);
  3576. if (memcg->id.id < 0)
  3577. goto fail;
  3578. memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
  3579. if (!memcg->stat)
  3580. goto fail;
  3581. for_each_node(node)
  3582. if (alloc_mem_cgroup_per_node_info(memcg, node))
  3583. goto fail;
  3584. if (memcg_wb_domain_init(memcg, GFP_KERNEL))
  3585. goto fail;
  3586. INIT_WORK(&memcg->high_work, high_work_func);
  3587. memcg->last_scanned_node = MAX_NUMNODES;
  3588. INIT_LIST_HEAD(&memcg->oom_notify);
  3589. mutex_init(&memcg->thresholds_lock);
  3590. spin_lock_init(&memcg->move_lock);
  3591. vmpressure_init(&memcg->vmpressure);
  3592. INIT_LIST_HEAD(&memcg->event_list);
  3593. spin_lock_init(&memcg->event_list_lock);
  3594. memcg->socket_pressure = jiffies;
  3595. #ifndef CONFIG_SLOB
  3596. memcg->kmemcg_id = -1;
  3597. #endif
  3598. #ifdef CONFIG_CGROUP_WRITEBACK
  3599. INIT_LIST_HEAD(&memcg->cgwb_list);
  3600. #endif
  3601. idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
  3602. return memcg;
  3603. fail:
  3604. if (memcg->id.id > 0)
  3605. idr_remove(&mem_cgroup_idr, memcg->id.id);
  3606. mem_cgroup_free(memcg);
  3607. return NULL;
  3608. }
  3609. static struct cgroup_subsys_state * __ref
  3610. mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  3611. {
  3612. struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
  3613. struct mem_cgroup *memcg;
  3614. long error = -ENOMEM;
  3615. memcg = mem_cgroup_alloc();
  3616. if (!memcg)
  3617. return ERR_PTR(error);
  3618. memcg->high = PAGE_COUNTER_MAX;
  3619. memcg->soft_limit = PAGE_COUNTER_MAX;
  3620. if (parent) {
  3621. memcg->swappiness = mem_cgroup_swappiness(parent);
  3622. memcg->oom_kill_disable = parent->oom_kill_disable;
  3623. }
  3624. if (parent && parent->use_hierarchy) {
  3625. memcg->use_hierarchy = true;
  3626. page_counter_init(&memcg->memory, &parent->memory);
  3627. page_counter_init(&memcg->swap, &parent->swap);
  3628. page_counter_init(&memcg->memsw, &parent->memsw);
  3629. page_counter_init(&memcg->kmem, &parent->kmem);
  3630. page_counter_init(&memcg->tcpmem, &parent->tcpmem);
  3631. } else {
  3632. page_counter_init(&memcg->memory, NULL);
  3633. page_counter_init(&memcg->swap, NULL);
  3634. page_counter_init(&memcg->memsw, NULL);
  3635. page_counter_init(&memcg->kmem, NULL);
  3636. page_counter_init(&memcg->tcpmem, NULL);
  3637. /*
  3638. * Deeper hierachy with use_hierarchy == false doesn't make
  3639. * much sense so let cgroup subsystem know about this
  3640. * unfortunate state in our controller.
  3641. */
  3642. if (parent != root_mem_cgroup)
  3643. memory_cgrp_subsys.broken_hierarchy = true;
  3644. }
  3645. /* The following stuff does not apply to the root */
  3646. if (!parent) {
  3647. root_mem_cgroup = memcg;
  3648. return &memcg->css;
  3649. }
  3650. error = memcg_online_kmem(memcg);
  3651. if (error)
  3652. goto fail;
  3653. if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
  3654. static_branch_inc(&memcg_sockets_enabled_key);
  3655. return &memcg->css;
  3656. fail:
  3657. mem_cgroup_free(memcg);
  3658. return ERR_PTR(-ENOMEM);
  3659. }
  3660. static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
  3661. {
  3662. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3663. /* Online state pins memcg ID, memcg ID pins CSS */
  3664. atomic_set(&memcg->id.ref, 1);
  3665. css_get(css);
  3666. return 0;
  3667. }
  3668. static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
  3669. {
  3670. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3671. struct mem_cgroup_event *event, *tmp;
  3672. /*
  3673. * Unregister events and notify userspace.
  3674. * Notify userspace about cgroup removing only after rmdir of cgroup
  3675. * directory to avoid race between userspace and kernelspace.
  3676. */
  3677. spin_lock(&memcg->event_list_lock);
  3678. list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
  3679. list_del_init(&event->list);
  3680. schedule_work(&event->remove);
  3681. }
  3682. spin_unlock(&memcg->event_list_lock);
  3683. memcg_offline_kmem(memcg);
  3684. wb_memcg_offline(memcg);
  3685. mem_cgroup_id_put(memcg);
  3686. }
  3687. static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
  3688. {
  3689. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3690. invalidate_reclaim_iterators(memcg);
  3691. }
  3692. static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
  3693. {
  3694. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3695. if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
  3696. static_branch_dec(&memcg_sockets_enabled_key);
  3697. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
  3698. static_branch_dec(&memcg_sockets_enabled_key);
  3699. vmpressure_cleanup(&memcg->vmpressure);
  3700. cancel_work_sync(&memcg->high_work);
  3701. mem_cgroup_remove_from_trees(memcg);
  3702. memcg_free_kmem(memcg);
  3703. mem_cgroup_free(memcg);
  3704. }
  3705. /**
  3706. * mem_cgroup_css_reset - reset the states of a mem_cgroup
  3707. * @css: the target css
  3708. *
  3709. * Reset the states of the mem_cgroup associated with @css. This is
  3710. * invoked when the userland requests disabling on the default hierarchy
  3711. * but the memcg is pinned through dependency. The memcg should stop
  3712. * applying policies and should revert to the vanilla state as it may be
  3713. * made visible again.
  3714. *
  3715. * The current implementation only resets the essential configurations.
  3716. * This needs to be expanded to cover all the visible parts.
  3717. */
  3718. static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
  3719. {
  3720. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3721. page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
  3722. page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
  3723. page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
  3724. page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
  3725. page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
  3726. memcg->low = 0;
  3727. memcg->high = PAGE_COUNTER_MAX;
  3728. memcg->soft_limit = PAGE_COUNTER_MAX;
  3729. memcg_wb_domain_size_changed(memcg);
  3730. }
  3731. #ifdef CONFIG_MMU
  3732. /* Handlers for move charge at task migration. */
  3733. static int mem_cgroup_do_precharge(unsigned long count)
  3734. {
  3735. int ret;
  3736. /* Try a single bulk charge without reclaim first, kswapd may wake */
  3737. ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
  3738. if (!ret) {
  3739. mc.precharge += count;
  3740. return ret;
  3741. }
  3742. /* Try charges one by one with reclaim, but do not retry */
  3743. while (count--) {
  3744. ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
  3745. if (ret)
  3746. return ret;
  3747. mc.precharge++;
  3748. cond_resched();
  3749. }
  3750. return 0;
  3751. }
  3752. union mc_target {
  3753. struct page *page;
  3754. swp_entry_t ent;
  3755. };
  3756. enum mc_target_type {
  3757. MC_TARGET_NONE = 0,
  3758. MC_TARGET_PAGE,
  3759. MC_TARGET_SWAP,
  3760. };
  3761. static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
  3762. unsigned long addr, pte_t ptent)
  3763. {
  3764. struct page *page = vm_normal_page(vma, addr, ptent);
  3765. if (!page || !page_mapped(page))
  3766. return NULL;
  3767. if (PageAnon(page)) {
  3768. if (!(mc.flags & MOVE_ANON))
  3769. return NULL;
  3770. } else {
  3771. if (!(mc.flags & MOVE_FILE))
  3772. return NULL;
  3773. }
  3774. if (!get_page_unless_zero(page))
  3775. return NULL;
  3776. return page;
  3777. }
  3778. #ifdef CONFIG_SWAP
  3779. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  3780. pte_t ptent, swp_entry_t *entry)
  3781. {
  3782. struct page *page = NULL;
  3783. swp_entry_t ent = pte_to_swp_entry(ptent);
  3784. if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
  3785. return NULL;
  3786. /*
  3787. * Because lookup_swap_cache() updates some statistics counter,
  3788. * we call find_get_page() with swapper_space directly.
  3789. */
  3790. page = find_get_page(swap_address_space(ent), swp_offset(ent));
  3791. if (do_memsw_account())
  3792. entry->val = ent.val;
  3793. return page;
  3794. }
  3795. #else
  3796. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  3797. pte_t ptent, swp_entry_t *entry)
  3798. {
  3799. return NULL;
  3800. }
  3801. #endif
  3802. static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
  3803. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  3804. {
  3805. struct page *page = NULL;
  3806. struct address_space *mapping;
  3807. pgoff_t pgoff;
  3808. if (!vma->vm_file) /* anonymous vma */
  3809. return NULL;
  3810. if (!(mc.flags & MOVE_FILE))
  3811. return NULL;
  3812. mapping = vma->vm_file->f_mapping;
  3813. pgoff = linear_page_index(vma, addr);
  3814. /* page is moved even if it's not RSS of this task(page-faulted). */
  3815. #ifdef CONFIG_SWAP
  3816. /* shmem/tmpfs may report page out on swap: account for that too. */
  3817. if (shmem_mapping(mapping)) {
  3818. page = find_get_entry(mapping, pgoff);
  3819. if (radix_tree_exceptional_entry(page)) {
  3820. swp_entry_t swp = radix_to_swp_entry(page);
  3821. if (do_memsw_account())
  3822. *entry = swp;
  3823. page = find_get_page(swap_address_space(swp),
  3824. swp_offset(swp));
  3825. }
  3826. } else
  3827. page = find_get_page(mapping, pgoff);
  3828. #else
  3829. page = find_get_page(mapping, pgoff);
  3830. #endif
  3831. return page;
  3832. }
  3833. /**
  3834. * mem_cgroup_move_account - move account of the page
  3835. * @page: the page
  3836. * @compound: charge the page as compound or small page
  3837. * @from: mem_cgroup which the page is moved from.
  3838. * @to: mem_cgroup which the page is moved to. @from != @to.
  3839. *
  3840. * The caller must make sure the page is not on LRU (isolate_page() is useful.)
  3841. *
  3842. * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
  3843. * from old cgroup.
  3844. */
  3845. static int mem_cgroup_move_account(struct page *page,
  3846. bool compound,
  3847. struct mem_cgroup *from,
  3848. struct mem_cgroup *to)
  3849. {
  3850. unsigned long flags;
  3851. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  3852. int ret;
  3853. bool anon;
  3854. VM_BUG_ON(from == to);
  3855. VM_BUG_ON_PAGE(PageLRU(page), page);
  3856. VM_BUG_ON(compound && !PageTransHuge(page));
  3857. /*
  3858. * Prevent mem_cgroup_migrate() from looking at
  3859. * page->mem_cgroup of its source page while we change it.
  3860. */
  3861. ret = -EBUSY;
  3862. if (!trylock_page(page))
  3863. goto out;
  3864. ret = -EINVAL;
  3865. if (page->mem_cgroup != from)
  3866. goto out_unlock;
  3867. anon = PageAnon(page);
  3868. spin_lock_irqsave(&from->move_lock, flags);
  3869. if (!anon && page_mapped(page)) {
  3870. __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
  3871. nr_pages);
  3872. __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
  3873. nr_pages);
  3874. }
  3875. /*
  3876. * move_lock grabbed above and caller set from->moving_account, so
  3877. * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
  3878. * So mapping should be stable for dirty pages.
  3879. */
  3880. if (!anon && PageDirty(page)) {
  3881. struct address_space *mapping = page_mapping(page);
  3882. if (mapping_cap_account_dirty(mapping)) {
  3883. __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
  3884. nr_pages);
  3885. __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
  3886. nr_pages);
  3887. }
  3888. }
  3889. if (PageWriteback(page)) {
  3890. __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
  3891. nr_pages);
  3892. __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
  3893. nr_pages);
  3894. }
  3895. /*
  3896. * It is safe to change page->mem_cgroup here because the page
  3897. * is referenced, charged, and isolated - we can't race with
  3898. * uncharging, charging, migration, or LRU putback.
  3899. */
  3900. /* caller should have done css_get */
  3901. page->mem_cgroup = to;
  3902. spin_unlock_irqrestore(&from->move_lock, flags);
  3903. ret = 0;
  3904. local_irq_disable();
  3905. mem_cgroup_charge_statistics(to, page, compound, nr_pages);
  3906. memcg_check_events(to, page);
  3907. mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
  3908. memcg_check_events(from, page);
  3909. local_irq_enable();
  3910. out_unlock:
  3911. unlock_page(page);
  3912. out:
  3913. return ret;
  3914. }
  3915. /**
  3916. * get_mctgt_type - get target type of moving charge
  3917. * @vma: the vma the pte to be checked belongs
  3918. * @addr: the address corresponding to the pte to be checked
  3919. * @ptent: the pte to be checked
  3920. * @target: the pointer the target page or swap ent will be stored(can be NULL)
  3921. *
  3922. * Returns
  3923. * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
  3924. * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
  3925. * move charge. if @target is not NULL, the page is stored in target->page
  3926. * with extra refcnt got(Callers should handle it).
  3927. * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
  3928. * target for charge migration. if @target is not NULL, the entry is stored
  3929. * in target->ent.
  3930. *
  3931. * Called with pte lock held.
  3932. */
  3933. static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
  3934. unsigned long addr, pte_t ptent, union mc_target *target)
  3935. {
  3936. struct page *page = NULL;
  3937. enum mc_target_type ret = MC_TARGET_NONE;
  3938. swp_entry_t ent = { .val = 0 };
  3939. if (pte_present(ptent))
  3940. page = mc_handle_present_pte(vma, addr, ptent);
  3941. else if (is_swap_pte(ptent))
  3942. page = mc_handle_swap_pte(vma, ptent, &ent);
  3943. else if (pte_none(ptent))
  3944. page = mc_handle_file_pte(vma, addr, ptent, &ent);
  3945. if (!page && !ent.val)
  3946. return ret;
  3947. if (page) {
  3948. /*
  3949. * Do only loose check w/o serialization.
  3950. * mem_cgroup_move_account() checks the page is valid or
  3951. * not under LRU exclusion.
  3952. */
  3953. if (page->mem_cgroup == mc.from) {
  3954. ret = MC_TARGET_PAGE;
  3955. if (target)
  3956. target->page = page;
  3957. }
  3958. if (!ret || !target)
  3959. put_page(page);
  3960. }
  3961. /* There is a swap entry and a page doesn't exist or isn't charged */
  3962. if (ent.val && !ret &&
  3963. mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
  3964. ret = MC_TARGET_SWAP;
  3965. if (target)
  3966. target->ent = ent;
  3967. }
  3968. return ret;
  3969. }
  3970. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3971. /*
  3972. * We don't consider swapping or file mapped pages because THP does not
  3973. * support them for now.
  3974. * Caller should make sure that pmd_trans_huge(pmd) is true.
  3975. */
  3976. static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  3977. unsigned long addr, pmd_t pmd, union mc_target *target)
  3978. {
  3979. struct page *page = NULL;
  3980. enum mc_target_type ret = MC_TARGET_NONE;
  3981. page = pmd_page(pmd);
  3982. VM_BUG_ON_PAGE(!page || !PageHead(page), page);
  3983. if (!(mc.flags & MOVE_ANON))
  3984. return ret;
  3985. if (page->mem_cgroup == mc.from) {
  3986. ret = MC_TARGET_PAGE;
  3987. if (target) {
  3988. get_page(page);
  3989. target->page = page;
  3990. }
  3991. }
  3992. return ret;
  3993. }
  3994. #else
  3995. static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  3996. unsigned long addr, pmd_t pmd, union mc_target *target)
  3997. {
  3998. return MC_TARGET_NONE;
  3999. }
  4000. #endif
  4001. static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
  4002. unsigned long addr, unsigned long end,
  4003. struct mm_walk *walk)
  4004. {
  4005. struct vm_area_struct *vma = walk->vma;
  4006. pte_t *pte;
  4007. spinlock_t *ptl;
  4008. ptl = pmd_trans_huge_lock(pmd, vma);
  4009. if (ptl) {
  4010. if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
  4011. mc.precharge += HPAGE_PMD_NR;
  4012. spin_unlock(ptl);
  4013. return 0;
  4014. }
  4015. if (pmd_trans_unstable(pmd))
  4016. return 0;
  4017. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4018. for (; addr != end; pte++, addr += PAGE_SIZE)
  4019. if (get_mctgt_type(vma, addr, *pte, NULL))
  4020. mc.precharge++; /* increment precharge temporarily */
  4021. pte_unmap_unlock(pte - 1, ptl);
  4022. cond_resched();
  4023. return 0;
  4024. }
  4025. static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
  4026. {
  4027. unsigned long precharge;
  4028. struct mm_walk mem_cgroup_count_precharge_walk = {
  4029. .pmd_entry = mem_cgroup_count_precharge_pte_range,
  4030. .mm = mm,
  4031. };
  4032. down_read(&mm->mmap_sem);
  4033. walk_page_range(0, mm->highest_vm_end,
  4034. &mem_cgroup_count_precharge_walk);
  4035. up_read(&mm->mmap_sem);
  4036. precharge = mc.precharge;
  4037. mc.precharge = 0;
  4038. return precharge;
  4039. }
  4040. static int mem_cgroup_precharge_mc(struct mm_struct *mm)
  4041. {
  4042. unsigned long precharge = mem_cgroup_count_precharge(mm);
  4043. VM_BUG_ON(mc.moving_task);
  4044. mc.moving_task = current;
  4045. return mem_cgroup_do_precharge(precharge);
  4046. }
  4047. /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
  4048. static void __mem_cgroup_clear_mc(void)
  4049. {
  4050. struct mem_cgroup *from = mc.from;
  4051. struct mem_cgroup *to = mc.to;
  4052. /* we must uncharge all the leftover precharges from mc.to */
  4053. if (mc.precharge) {
  4054. cancel_charge(mc.to, mc.precharge);
  4055. mc.precharge = 0;
  4056. }
  4057. /*
  4058. * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
  4059. * we must uncharge here.
  4060. */
  4061. if (mc.moved_charge) {
  4062. cancel_charge(mc.from, mc.moved_charge);
  4063. mc.moved_charge = 0;
  4064. }
  4065. /* we must fixup refcnts and charges */
  4066. if (mc.moved_swap) {
  4067. /* uncharge swap account from the old cgroup */
  4068. if (!mem_cgroup_is_root(mc.from))
  4069. page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
  4070. mem_cgroup_id_put_many(mc.from, mc.moved_swap);
  4071. /*
  4072. * we charged both to->memory and to->memsw, so we
  4073. * should uncharge to->memory.
  4074. */
  4075. if (!mem_cgroup_is_root(mc.to))
  4076. page_counter_uncharge(&mc.to->memory, mc.moved_swap);
  4077. mem_cgroup_id_get_many(mc.to, mc.moved_swap);
  4078. css_put_many(&mc.to->css, mc.moved_swap);
  4079. mc.moved_swap = 0;
  4080. }
  4081. memcg_oom_recover(from);
  4082. memcg_oom_recover(to);
  4083. wake_up_all(&mc.waitq);
  4084. }
  4085. static void mem_cgroup_clear_mc(void)
  4086. {
  4087. struct mm_struct *mm = mc.mm;
  4088. /*
  4089. * we must clear moving_task before waking up waiters at the end of
  4090. * task migration.
  4091. */
  4092. mc.moving_task = NULL;
  4093. __mem_cgroup_clear_mc();
  4094. spin_lock(&mc.lock);
  4095. mc.from = NULL;
  4096. mc.to = NULL;
  4097. mc.mm = NULL;
  4098. spin_unlock(&mc.lock);
  4099. mmput(mm);
  4100. }
  4101. static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
  4102. {
  4103. struct cgroup_subsys_state *css;
  4104. struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
  4105. struct mem_cgroup *from;
  4106. struct task_struct *leader, *p;
  4107. struct mm_struct *mm;
  4108. unsigned long move_flags;
  4109. int ret = 0;
  4110. /* charge immigration isn't supported on the default hierarchy */
  4111. if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
  4112. return 0;
  4113. /*
  4114. * Multi-process migrations only happen on the default hierarchy
  4115. * where charge immigration is not used. Perform charge
  4116. * immigration if @tset contains a leader and whine if there are
  4117. * multiple.
  4118. */
  4119. p = NULL;
  4120. cgroup_taskset_for_each_leader(leader, css, tset) {
  4121. WARN_ON_ONCE(p);
  4122. p = leader;
  4123. memcg = mem_cgroup_from_css(css);
  4124. }
  4125. if (!p)
  4126. return 0;
  4127. /*
  4128. * We are now commited to this value whatever it is. Changes in this
  4129. * tunable will only affect upcoming migrations, not the current one.
  4130. * So we need to save it, and keep it going.
  4131. */
  4132. move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
  4133. if (!move_flags)
  4134. return 0;
  4135. from = mem_cgroup_from_task(p);
  4136. VM_BUG_ON(from == memcg);
  4137. mm = get_task_mm(p);
  4138. if (!mm)
  4139. return 0;
  4140. /* We move charges only when we move a owner of the mm */
  4141. if (mm->owner == p) {
  4142. VM_BUG_ON(mc.from);
  4143. VM_BUG_ON(mc.to);
  4144. VM_BUG_ON(mc.precharge);
  4145. VM_BUG_ON(mc.moved_charge);
  4146. VM_BUG_ON(mc.moved_swap);
  4147. spin_lock(&mc.lock);
  4148. mc.mm = mm;
  4149. mc.from = from;
  4150. mc.to = memcg;
  4151. mc.flags = move_flags;
  4152. spin_unlock(&mc.lock);
  4153. /* We set mc.moving_task later */
  4154. ret = mem_cgroup_precharge_mc(mm);
  4155. if (ret)
  4156. mem_cgroup_clear_mc();
  4157. } else {
  4158. mmput(mm);
  4159. }
  4160. return ret;
  4161. }
  4162. static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
  4163. {
  4164. if (mc.to)
  4165. mem_cgroup_clear_mc();
  4166. }
  4167. static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
  4168. unsigned long addr, unsigned long end,
  4169. struct mm_walk *walk)
  4170. {
  4171. int ret = 0;
  4172. struct vm_area_struct *vma = walk->vma;
  4173. pte_t *pte;
  4174. spinlock_t *ptl;
  4175. enum mc_target_type target_type;
  4176. union mc_target target;
  4177. struct page *page;
  4178. ptl = pmd_trans_huge_lock(pmd, vma);
  4179. if (ptl) {
  4180. if (mc.precharge < HPAGE_PMD_NR) {
  4181. spin_unlock(ptl);
  4182. return 0;
  4183. }
  4184. target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
  4185. if (target_type == MC_TARGET_PAGE) {
  4186. page = target.page;
  4187. if (!isolate_lru_page(page)) {
  4188. if (!mem_cgroup_move_account(page, true,
  4189. mc.from, mc.to)) {
  4190. mc.precharge -= HPAGE_PMD_NR;
  4191. mc.moved_charge += HPAGE_PMD_NR;
  4192. }
  4193. putback_lru_page(page);
  4194. }
  4195. put_page(page);
  4196. }
  4197. spin_unlock(ptl);
  4198. return 0;
  4199. }
  4200. if (pmd_trans_unstable(pmd))
  4201. return 0;
  4202. retry:
  4203. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4204. for (; addr != end; addr += PAGE_SIZE) {
  4205. pte_t ptent = *(pte++);
  4206. swp_entry_t ent;
  4207. if (!mc.precharge)
  4208. break;
  4209. switch (get_mctgt_type(vma, addr, ptent, &target)) {
  4210. case MC_TARGET_PAGE:
  4211. page = target.page;
  4212. /*
  4213. * We can have a part of the split pmd here. Moving it
  4214. * can be done but it would be too convoluted so simply
  4215. * ignore such a partial THP and keep it in original
  4216. * memcg. There should be somebody mapping the head.
  4217. */
  4218. if (PageTransCompound(page))
  4219. goto put;
  4220. if (isolate_lru_page(page))
  4221. goto put;
  4222. if (!mem_cgroup_move_account(page, false,
  4223. mc.from, mc.to)) {
  4224. mc.precharge--;
  4225. /* we uncharge from mc.from later. */
  4226. mc.moved_charge++;
  4227. }
  4228. putback_lru_page(page);
  4229. put: /* get_mctgt_type() gets the page */
  4230. put_page(page);
  4231. break;
  4232. case MC_TARGET_SWAP:
  4233. ent = target.ent;
  4234. if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
  4235. mc.precharge--;
  4236. /* we fixup refcnts and charges later. */
  4237. mc.moved_swap++;
  4238. }
  4239. break;
  4240. default:
  4241. break;
  4242. }
  4243. }
  4244. pte_unmap_unlock(pte - 1, ptl);
  4245. cond_resched();
  4246. if (addr != end) {
  4247. /*
  4248. * We have consumed all precharges we got in can_attach().
  4249. * We try charge one by one, but don't do any additional
  4250. * charges to mc.to if we have failed in charge once in attach()
  4251. * phase.
  4252. */
  4253. ret = mem_cgroup_do_precharge(1);
  4254. if (!ret)
  4255. goto retry;
  4256. }
  4257. return ret;
  4258. }
  4259. static void mem_cgroup_move_charge(void)
  4260. {
  4261. struct mm_walk mem_cgroup_move_charge_walk = {
  4262. .pmd_entry = mem_cgroup_move_charge_pte_range,
  4263. .mm = mc.mm,
  4264. };
  4265. lru_add_drain_all();
  4266. /*
  4267. * Signal lock_page_memcg() to take the memcg's move_lock
  4268. * while we're moving its pages to another memcg. Then wait
  4269. * for already started RCU-only updates to finish.
  4270. */
  4271. atomic_inc(&mc.from->moving_account);
  4272. synchronize_rcu();
  4273. retry:
  4274. if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
  4275. /*
  4276. * Someone who are holding the mmap_sem might be waiting in
  4277. * waitq. So we cancel all extra charges, wake up all waiters,
  4278. * and retry. Because we cancel precharges, we might not be able
  4279. * to move enough charges, but moving charge is a best-effort
  4280. * feature anyway, so it wouldn't be a big problem.
  4281. */
  4282. __mem_cgroup_clear_mc();
  4283. cond_resched();
  4284. goto retry;
  4285. }
  4286. /*
  4287. * When we have consumed all precharges and failed in doing
  4288. * additional charge, the page walk just aborts.
  4289. */
  4290. walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
  4291. up_read(&mc.mm->mmap_sem);
  4292. atomic_dec(&mc.from->moving_account);
  4293. }
  4294. static void mem_cgroup_move_task(void)
  4295. {
  4296. if (mc.to) {
  4297. mem_cgroup_move_charge();
  4298. mem_cgroup_clear_mc();
  4299. }
  4300. }
  4301. #else /* !CONFIG_MMU */
  4302. static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
  4303. {
  4304. return 0;
  4305. }
  4306. static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
  4307. {
  4308. }
  4309. static void mem_cgroup_move_task(void)
  4310. {
  4311. }
  4312. #endif
  4313. /*
  4314. * Cgroup retains root cgroups across [un]mount cycles making it necessary
  4315. * to verify whether we're attached to the default hierarchy on each mount
  4316. * attempt.
  4317. */
  4318. static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
  4319. {
  4320. /*
  4321. * use_hierarchy is forced on the default hierarchy. cgroup core
  4322. * guarantees that @root doesn't have any children, so turning it
  4323. * on for the root memcg is enough.
  4324. */
  4325. if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
  4326. root_mem_cgroup->use_hierarchy = true;
  4327. else
  4328. root_mem_cgroup->use_hierarchy = false;
  4329. }
  4330. static u64 memory_current_read(struct cgroup_subsys_state *css,
  4331. struct cftype *cft)
  4332. {
  4333. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  4334. return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
  4335. }
  4336. static int memory_low_show(struct seq_file *m, void *v)
  4337. {
  4338. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4339. unsigned long low = READ_ONCE(memcg->low);
  4340. if (low == PAGE_COUNTER_MAX)
  4341. seq_puts(m, "max\n");
  4342. else
  4343. seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
  4344. return 0;
  4345. }
  4346. static ssize_t memory_low_write(struct kernfs_open_file *of,
  4347. char *buf, size_t nbytes, loff_t off)
  4348. {
  4349. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4350. unsigned long low;
  4351. int err;
  4352. buf = strstrip(buf);
  4353. err = page_counter_memparse(buf, "max", &low);
  4354. if (err)
  4355. return err;
  4356. memcg->low = low;
  4357. return nbytes;
  4358. }
  4359. static int memory_high_show(struct seq_file *m, void *v)
  4360. {
  4361. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4362. unsigned long high = READ_ONCE(memcg->high);
  4363. if (high == PAGE_COUNTER_MAX)
  4364. seq_puts(m, "max\n");
  4365. else
  4366. seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
  4367. return 0;
  4368. }
  4369. static ssize_t memory_high_write(struct kernfs_open_file *of,
  4370. char *buf, size_t nbytes, loff_t off)
  4371. {
  4372. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4373. unsigned long nr_pages;
  4374. unsigned long high;
  4375. int err;
  4376. buf = strstrip(buf);
  4377. err = page_counter_memparse(buf, "max", &high);
  4378. if (err)
  4379. return err;
  4380. memcg->high = high;
  4381. nr_pages = page_counter_read(&memcg->memory);
  4382. if (nr_pages > high)
  4383. try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
  4384. GFP_KERNEL, true);
  4385. memcg_wb_domain_size_changed(memcg);
  4386. return nbytes;
  4387. }
  4388. static int memory_max_show(struct seq_file *m, void *v)
  4389. {
  4390. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4391. unsigned long max = READ_ONCE(memcg->memory.limit);
  4392. if (max == PAGE_COUNTER_MAX)
  4393. seq_puts(m, "max\n");
  4394. else
  4395. seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
  4396. return 0;
  4397. }
  4398. static ssize_t memory_max_write(struct kernfs_open_file *of,
  4399. char *buf, size_t nbytes, loff_t off)
  4400. {
  4401. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4402. unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
  4403. bool drained = false;
  4404. unsigned long max;
  4405. int err;
  4406. buf = strstrip(buf);
  4407. err = page_counter_memparse(buf, "max", &max);
  4408. if (err)
  4409. return err;
  4410. xchg(&memcg->memory.limit, max);
  4411. for (;;) {
  4412. unsigned long nr_pages = page_counter_read(&memcg->memory);
  4413. if (nr_pages <= max)
  4414. break;
  4415. if (signal_pending(current)) {
  4416. err = -EINTR;
  4417. break;
  4418. }
  4419. if (!drained) {
  4420. drain_all_stock(memcg);
  4421. drained = true;
  4422. continue;
  4423. }
  4424. if (nr_reclaims) {
  4425. if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
  4426. GFP_KERNEL, true))
  4427. nr_reclaims--;
  4428. continue;
  4429. }
  4430. mem_cgroup_events(memcg, MEMCG_OOM, 1);
  4431. if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
  4432. break;
  4433. }
  4434. memcg_wb_domain_size_changed(memcg);
  4435. return nbytes;
  4436. }
  4437. static int memory_events_show(struct seq_file *m, void *v)
  4438. {
  4439. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4440. seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
  4441. seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
  4442. seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
  4443. seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
  4444. return 0;
  4445. }
  4446. static int memory_stat_show(struct seq_file *m, void *v)
  4447. {
  4448. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4449. unsigned long stat[MEMCG_NR_STAT];
  4450. unsigned long events[MEMCG_NR_EVENTS];
  4451. int i;
  4452. /*
  4453. * Provide statistics on the state of the memory subsystem as
  4454. * well as cumulative event counters that show past behavior.
  4455. *
  4456. * This list is ordered following a combination of these gradients:
  4457. * 1) generic big picture -> specifics and details
  4458. * 2) reflecting userspace activity -> reflecting kernel heuristics
  4459. *
  4460. * Current memory state:
  4461. */
  4462. tree_stat(memcg, stat);
  4463. tree_events(memcg, events);
  4464. seq_printf(m, "anon %llu\n",
  4465. (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
  4466. seq_printf(m, "file %llu\n",
  4467. (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
  4468. seq_printf(m, "kernel_stack %llu\n",
  4469. (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
  4470. seq_printf(m, "slab %llu\n",
  4471. (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
  4472. stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
  4473. seq_printf(m, "sock %llu\n",
  4474. (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
  4475. seq_printf(m, "file_mapped %llu\n",
  4476. (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
  4477. seq_printf(m, "file_dirty %llu\n",
  4478. (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
  4479. seq_printf(m, "file_writeback %llu\n",
  4480. (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
  4481. for (i = 0; i < NR_LRU_LISTS; i++) {
  4482. struct mem_cgroup *mi;
  4483. unsigned long val = 0;
  4484. for_each_mem_cgroup_tree(mi, memcg)
  4485. val += mem_cgroup_nr_lru_pages(mi, BIT(i));
  4486. seq_printf(m, "%s %llu\n",
  4487. mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
  4488. }
  4489. seq_printf(m, "slab_reclaimable %llu\n",
  4490. (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
  4491. seq_printf(m, "slab_unreclaimable %llu\n",
  4492. (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
  4493. /* Accumulated memory events */
  4494. seq_printf(m, "pgfault %lu\n",
  4495. events[MEM_CGROUP_EVENTS_PGFAULT]);
  4496. seq_printf(m, "pgmajfault %lu\n",
  4497. events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
  4498. return 0;
  4499. }
  4500. static struct cftype memory_files[] = {
  4501. {
  4502. .name = "current",
  4503. .flags = CFTYPE_NOT_ON_ROOT,
  4504. .read_u64 = memory_current_read,
  4505. },
  4506. {
  4507. .name = "low",
  4508. .flags = CFTYPE_NOT_ON_ROOT,
  4509. .seq_show = memory_low_show,
  4510. .write = memory_low_write,
  4511. },
  4512. {
  4513. .name = "high",
  4514. .flags = CFTYPE_NOT_ON_ROOT,
  4515. .seq_show = memory_high_show,
  4516. .write = memory_high_write,
  4517. },
  4518. {
  4519. .name = "max",
  4520. .flags = CFTYPE_NOT_ON_ROOT,
  4521. .seq_show = memory_max_show,
  4522. .write = memory_max_write,
  4523. },
  4524. {
  4525. .name = "events",
  4526. .flags = CFTYPE_NOT_ON_ROOT,
  4527. .file_offset = offsetof(struct mem_cgroup, events_file),
  4528. .seq_show = memory_events_show,
  4529. },
  4530. {
  4531. .name = "stat",
  4532. .flags = CFTYPE_NOT_ON_ROOT,
  4533. .seq_show = memory_stat_show,
  4534. },
  4535. { } /* terminate */
  4536. };
  4537. struct cgroup_subsys memory_cgrp_subsys = {
  4538. .css_alloc = mem_cgroup_css_alloc,
  4539. .css_online = mem_cgroup_css_online,
  4540. .css_offline = mem_cgroup_css_offline,
  4541. .css_released = mem_cgroup_css_released,
  4542. .css_free = mem_cgroup_css_free,
  4543. .css_reset = mem_cgroup_css_reset,
  4544. .can_attach = mem_cgroup_can_attach,
  4545. .cancel_attach = mem_cgroup_cancel_attach,
  4546. .post_attach = mem_cgroup_move_task,
  4547. .bind = mem_cgroup_bind,
  4548. .dfl_cftypes = memory_files,
  4549. .legacy_cftypes = mem_cgroup_legacy_files,
  4550. .early_init = 0,
  4551. };
  4552. /**
  4553. * mem_cgroup_low - check if memory consumption is below the normal range
  4554. * @root: the highest ancestor to consider
  4555. * @memcg: the memory cgroup to check
  4556. *
  4557. * Returns %true if memory consumption of @memcg, and that of all
  4558. * configurable ancestors up to @root, is below the normal range.
  4559. */
  4560. bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
  4561. {
  4562. if (mem_cgroup_disabled())
  4563. return false;
  4564. /*
  4565. * The toplevel group doesn't have a configurable range, so
  4566. * it's never low when looked at directly, and it is not
  4567. * considered an ancestor when assessing the hierarchy.
  4568. */
  4569. if (memcg == root_mem_cgroup)
  4570. return false;
  4571. if (page_counter_read(&memcg->memory) >= memcg->low)
  4572. return false;
  4573. while (memcg != root) {
  4574. memcg = parent_mem_cgroup(memcg);
  4575. if (memcg == root_mem_cgroup)
  4576. break;
  4577. if (page_counter_read(&memcg->memory) >= memcg->low)
  4578. return false;
  4579. }
  4580. return true;
  4581. }
  4582. /**
  4583. * mem_cgroup_try_charge - try charging a page
  4584. * @page: page to charge
  4585. * @mm: mm context of the victim
  4586. * @gfp_mask: reclaim mode
  4587. * @memcgp: charged memcg return
  4588. * @compound: charge the page as compound or small page
  4589. *
  4590. * Try to charge @page to the memcg that @mm belongs to, reclaiming
  4591. * pages according to @gfp_mask if necessary.
  4592. *
  4593. * Returns 0 on success, with *@memcgp pointing to the charged memcg.
  4594. * Otherwise, an error code is returned.
  4595. *
  4596. * After page->mapping has been set up, the caller must finalize the
  4597. * charge with mem_cgroup_commit_charge(). Or abort the transaction
  4598. * with mem_cgroup_cancel_charge() in case page instantiation fails.
  4599. */
  4600. int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
  4601. gfp_t gfp_mask, struct mem_cgroup **memcgp,
  4602. bool compound)
  4603. {
  4604. struct mem_cgroup *memcg = NULL;
  4605. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  4606. int ret = 0;
  4607. if (mem_cgroup_disabled())
  4608. goto out;
  4609. if (PageSwapCache(page)) {
  4610. /*
  4611. * Every swap fault against a single page tries to charge the
  4612. * page, bail as early as possible. shmem_unuse() encounters
  4613. * already charged pages, too. The USED bit is protected by
  4614. * the page lock, which serializes swap cache removal, which
  4615. * in turn serializes uncharging.
  4616. */
  4617. VM_BUG_ON_PAGE(!PageLocked(page), page);
  4618. if (page->mem_cgroup)
  4619. goto out;
  4620. if (do_swap_account) {
  4621. swp_entry_t ent = { .val = page_private(page), };
  4622. unsigned short id = lookup_swap_cgroup_id(ent);
  4623. rcu_read_lock();
  4624. memcg = mem_cgroup_from_id(id);
  4625. if (memcg && !css_tryget_online(&memcg->css))
  4626. memcg = NULL;
  4627. rcu_read_unlock();
  4628. }
  4629. }
  4630. if (!memcg)
  4631. memcg = get_mem_cgroup_from_mm(mm);
  4632. ret = try_charge(memcg, gfp_mask, nr_pages);
  4633. css_put(&memcg->css);
  4634. out:
  4635. *memcgp = memcg;
  4636. return ret;
  4637. }
  4638. /**
  4639. * mem_cgroup_commit_charge - commit a page charge
  4640. * @page: page to charge
  4641. * @memcg: memcg to charge the page to
  4642. * @lrucare: page might be on LRU already
  4643. * @compound: charge the page as compound or small page
  4644. *
  4645. * Finalize a charge transaction started by mem_cgroup_try_charge(),
  4646. * after page->mapping has been set up. This must happen atomically
  4647. * as part of the page instantiation, i.e. under the page table lock
  4648. * for anonymous pages, under the page lock for page and swap cache.
  4649. *
  4650. * In addition, the page must not be on the LRU during the commit, to
  4651. * prevent racing with task migration. If it might be, use @lrucare.
  4652. *
  4653. * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
  4654. */
  4655. void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
  4656. bool lrucare, bool compound)
  4657. {
  4658. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  4659. VM_BUG_ON_PAGE(!page->mapping, page);
  4660. VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
  4661. if (mem_cgroup_disabled())
  4662. return;
  4663. /*
  4664. * Swap faults will attempt to charge the same page multiple
  4665. * times. But reuse_swap_page() might have removed the page
  4666. * from swapcache already, so we can't check PageSwapCache().
  4667. */
  4668. if (!memcg)
  4669. return;
  4670. commit_charge(page, memcg, lrucare);
  4671. local_irq_disable();
  4672. mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
  4673. memcg_check_events(memcg, page);
  4674. local_irq_enable();
  4675. if (do_memsw_account() && PageSwapCache(page)) {
  4676. swp_entry_t entry = { .val = page_private(page) };
  4677. /*
  4678. * The swap entry might not get freed for a long time,
  4679. * let's not wait for it. The page already received a
  4680. * memory+swap charge, drop the swap entry duplicate.
  4681. */
  4682. mem_cgroup_uncharge_swap(entry);
  4683. }
  4684. }
  4685. /**
  4686. * mem_cgroup_cancel_charge - cancel a page charge
  4687. * @page: page to charge
  4688. * @memcg: memcg to charge the page to
  4689. * @compound: charge the page as compound or small page
  4690. *
  4691. * Cancel a charge transaction started by mem_cgroup_try_charge().
  4692. */
  4693. void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
  4694. bool compound)
  4695. {
  4696. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  4697. if (mem_cgroup_disabled())
  4698. return;
  4699. /*
  4700. * Swap faults will attempt to charge the same page multiple
  4701. * times. But reuse_swap_page() might have removed the page
  4702. * from swapcache already, so we can't check PageSwapCache().
  4703. */
  4704. if (!memcg)
  4705. return;
  4706. cancel_charge(memcg, nr_pages);
  4707. }
  4708. static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
  4709. unsigned long nr_anon, unsigned long nr_file,
  4710. unsigned long nr_huge, unsigned long nr_kmem,
  4711. struct page *dummy_page)
  4712. {
  4713. unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
  4714. unsigned long flags;
  4715. if (!mem_cgroup_is_root(memcg)) {
  4716. page_counter_uncharge(&memcg->memory, nr_pages);
  4717. if (do_memsw_account())
  4718. page_counter_uncharge(&memcg->memsw, nr_pages);
  4719. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
  4720. page_counter_uncharge(&memcg->kmem, nr_kmem);
  4721. memcg_oom_recover(memcg);
  4722. }
  4723. local_irq_save(flags);
  4724. __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
  4725. __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
  4726. __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
  4727. __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
  4728. __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
  4729. memcg_check_events(memcg, dummy_page);
  4730. local_irq_restore(flags);
  4731. if (!mem_cgroup_is_root(memcg))
  4732. css_put_many(&memcg->css, nr_pages);
  4733. }
  4734. static void uncharge_list(struct list_head *page_list)
  4735. {
  4736. struct mem_cgroup *memcg = NULL;
  4737. unsigned long nr_anon = 0;
  4738. unsigned long nr_file = 0;
  4739. unsigned long nr_huge = 0;
  4740. unsigned long nr_kmem = 0;
  4741. unsigned long pgpgout = 0;
  4742. struct list_head *next;
  4743. struct page *page;
  4744. /*
  4745. * Note that the list can be a single page->lru; hence the
  4746. * do-while loop instead of a simple list_for_each_entry().
  4747. */
  4748. next = page_list->next;
  4749. do {
  4750. page = list_entry(next, struct page, lru);
  4751. next = page->lru.next;
  4752. VM_BUG_ON_PAGE(PageLRU(page), page);
  4753. VM_BUG_ON_PAGE(page_count(page), page);
  4754. if (!page->mem_cgroup)
  4755. continue;
  4756. /*
  4757. * Nobody should be changing or seriously looking at
  4758. * page->mem_cgroup at this point, we have fully
  4759. * exclusive access to the page.
  4760. */
  4761. if (memcg != page->mem_cgroup) {
  4762. if (memcg) {
  4763. uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
  4764. nr_huge, nr_kmem, page);
  4765. pgpgout = nr_anon = nr_file =
  4766. nr_huge = nr_kmem = 0;
  4767. }
  4768. memcg = page->mem_cgroup;
  4769. }
  4770. if (!PageKmemcg(page)) {
  4771. unsigned int nr_pages = 1;
  4772. if (PageTransHuge(page)) {
  4773. nr_pages <<= compound_order(page);
  4774. nr_huge += nr_pages;
  4775. }
  4776. if (PageAnon(page))
  4777. nr_anon += nr_pages;
  4778. else
  4779. nr_file += nr_pages;
  4780. pgpgout++;
  4781. } else {
  4782. nr_kmem += 1 << compound_order(page);
  4783. __ClearPageKmemcg(page);
  4784. }
  4785. page->mem_cgroup = NULL;
  4786. } while (next != page_list);
  4787. if (memcg)
  4788. uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
  4789. nr_huge, nr_kmem, page);
  4790. }
  4791. /**
  4792. * mem_cgroup_uncharge - uncharge a page
  4793. * @page: page to uncharge
  4794. *
  4795. * Uncharge a page previously charged with mem_cgroup_try_charge() and
  4796. * mem_cgroup_commit_charge().
  4797. */
  4798. void mem_cgroup_uncharge(struct page *page)
  4799. {
  4800. if (mem_cgroup_disabled())
  4801. return;
  4802. /* Don't touch page->lru of any random page, pre-check: */
  4803. if (!page->mem_cgroup)
  4804. return;
  4805. INIT_LIST_HEAD(&page->lru);
  4806. uncharge_list(&page->lru);
  4807. }
  4808. /**
  4809. * mem_cgroup_uncharge_list - uncharge a list of page
  4810. * @page_list: list of pages to uncharge
  4811. *
  4812. * Uncharge a list of pages previously charged with
  4813. * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
  4814. */
  4815. void mem_cgroup_uncharge_list(struct list_head *page_list)
  4816. {
  4817. if (mem_cgroup_disabled())
  4818. return;
  4819. if (!list_empty(page_list))
  4820. uncharge_list(page_list);
  4821. }
  4822. /**
  4823. * mem_cgroup_migrate - charge a page's replacement
  4824. * @oldpage: currently circulating page
  4825. * @newpage: replacement page
  4826. *
  4827. * Charge @newpage as a replacement page for @oldpage. @oldpage will
  4828. * be uncharged upon free.
  4829. *
  4830. * Both pages must be locked, @newpage->mapping must be set up.
  4831. */
  4832. void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
  4833. {
  4834. struct mem_cgroup *memcg;
  4835. unsigned int nr_pages;
  4836. bool compound;
  4837. unsigned long flags;
  4838. VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
  4839. VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
  4840. VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
  4841. VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
  4842. newpage);
  4843. if (mem_cgroup_disabled())
  4844. return;
  4845. /* Page cache replacement: new page already charged? */
  4846. if (newpage->mem_cgroup)
  4847. return;
  4848. /* Swapcache readahead pages can get replaced before being charged */
  4849. memcg = oldpage->mem_cgroup;
  4850. if (!memcg)
  4851. return;
  4852. /* Force-charge the new page. The old one will be freed soon */
  4853. compound = PageTransHuge(newpage);
  4854. nr_pages = compound ? hpage_nr_pages(newpage) : 1;
  4855. page_counter_charge(&memcg->memory, nr_pages);
  4856. if (do_memsw_account())
  4857. page_counter_charge(&memcg->memsw, nr_pages);
  4858. css_get_many(&memcg->css, nr_pages);
  4859. commit_charge(newpage, memcg, false);
  4860. local_irq_save(flags);
  4861. mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
  4862. memcg_check_events(memcg, newpage);
  4863. local_irq_restore(flags);
  4864. }
  4865. DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
  4866. EXPORT_SYMBOL(memcg_sockets_enabled_key);
  4867. void mem_cgroup_sk_alloc(struct sock *sk)
  4868. {
  4869. struct mem_cgroup *memcg;
  4870. if (!mem_cgroup_sockets_enabled)
  4871. return;
  4872. /*
  4873. * Socket cloning can throw us here with sk_memcg already
  4874. * filled. It won't however, necessarily happen from
  4875. * process context. So the test for root memcg given
  4876. * the current task's memcg won't help us in this case.
  4877. *
  4878. * Respecting the original socket's memcg is a better
  4879. * decision in this case.
  4880. */
  4881. if (sk->sk_memcg) {
  4882. BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
  4883. css_get(&sk->sk_memcg->css);
  4884. return;
  4885. }
  4886. rcu_read_lock();
  4887. memcg = mem_cgroup_from_task(current);
  4888. if (memcg == root_mem_cgroup)
  4889. goto out;
  4890. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
  4891. goto out;
  4892. if (css_tryget_online(&memcg->css))
  4893. sk->sk_memcg = memcg;
  4894. out:
  4895. rcu_read_unlock();
  4896. }
  4897. void mem_cgroup_sk_free(struct sock *sk)
  4898. {
  4899. if (sk->sk_memcg)
  4900. css_put(&sk->sk_memcg->css);
  4901. }
  4902. /**
  4903. * mem_cgroup_charge_skmem - charge socket memory
  4904. * @memcg: memcg to charge
  4905. * @nr_pages: number of pages to charge
  4906. *
  4907. * Charges @nr_pages to @memcg. Returns %true if the charge fit within
  4908. * @memcg's configured limit, %false if the charge had to be forced.
  4909. */
  4910. bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
  4911. {
  4912. gfp_t gfp_mask = GFP_KERNEL;
  4913. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
  4914. struct page_counter *fail;
  4915. if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
  4916. memcg->tcpmem_pressure = 0;
  4917. return true;
  4918. }
  4919. page_counter_charge(&memcg->tcpmem, nr_pages);
  4920. memcg->tcpmem_pressure = 1;
  4921. return false;
  4922. }
  4923. /* Don't block in the packet receive path */
  4924. if (in_softirq())
  4925. gfp_mask = GFP_NOWAIT;
  4926. this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
  4927. if (try_charge(memcg, gfp_mask, nr_pages) == 0)
  4928. return true;
  4929. try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
  4930. return false;
  4931. }
  4932. /**
  4933. * mem_cgroup_uncharge_skmem - uncharge socket memory
  4934. * @memcg - memcg to uncharge
  4935. * @nr_pages - number of pages to uncharge
  4936. */
  4937. void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
  4938. {
  4939. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
  4940. page_counter_uncharge(&memcg->tcpmem, nr_pages);
  4941. return;
  4942. }
  4943. this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
  4944. page_counter_uncharge(&memcg->memory, nr_pages);
  4945. css_put_many(&memcg->css, nr_pages);
  4946. }
  4947. static int __init cgroup_memory(char *s)
  4948. {
  4949. char *token;
  4950. while ((token = strsep(&s, ",")) != NULL) {
  4951. if (!*token)
  4952. continue;
  4953. if (!strcmp(token, "nosocket"))
  4954. cgroup_memory_nosocket = true;
  4955. if (!strcmp(token, "nokmem"))
  4956. cgroup_memory_nokmem = true;
  4957. }
  4958. return 0;
  4959. }
  4960. __setup("cgroup.memory=", cgroup_memory);
  4961. /*
  4962. * subsys_initcall() for memory controller.
  4963. *
  4964. * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
  4965. * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
  4966. * basically everything that doesn't depend on a specific mem_cgroup structure
  4967. * should be initialized from here.
  4968. */
  4969. static int __init mem_cgroup_init(void)
  4970. {
  4971. int cpu, node;
  4972. #ifndef CONFIG_SLOB
  4973. /*
  4974. * Kmem cache creation is mostly done with the slab_mutex held,
  4975. * so use a special workqueue to avoid stalling all worker
  4976. * threads in case lots of cgroups are created simultaneously.
  4977. */
  4978. memcg_kmem_cache_create_wq =
  4979. alloc_ordered_workqueue("memcg_kmem_cache_create", 0);
  4980. BUG_ON(!memcg_kmem_cache_create_wq);
  4981. #endif
  4982. cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
  4983. memcg_hotplug_cpu_dead);
  4984. for_each_possible_cpu(cpu)
  4985. INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
  4986. drain_local_stock);
  4987. for_each_node(node) {
  4988. struct mem_cgroup_tree_per_node *rtpn;
  4989. rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
  4990. node_online(node) ? node : NUMA_NO_NODE);
  4991. rtpn->rb_root = RB_ROOT;
  4992. spin_lock_init(&rtpn->lock);
  4993. soft_limit_tree.rb_tree_per_node[node] = rtpn;
  4994. }
  4995. return 0;
  4996. }
  4997. subsys_initcall(mem_cgroup_init);
  4998. #ifdef CONFIG_MEMCG_SWAP
  4999. static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
  5000. {
  5001. while (!atomic_inc_not_zero(&memcg->id.ref)) {
  5002. /*
  5003. * The root cgroup cannot be destroyed, so it's refcount must
  5004. * always be >= 1.
  5005. */
  5006. if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
  5007. VM_BUG_ON(1);
  5008. break;
  5009. }
  5010. memcg = parent_mem_cgroup(memcg);
  5011. if (!memcg)
  5012. memcg = root_mem_cgroup;
  5013. }
  5014. return memcg;
  5015. }
  5016. /**
  5017. * mem_cgroup_swapout - transfer a memsw charge to swap
  5018. * @page: page whose memsw charge to transfer
  5019. * @entry: swap entry to move the charge to
  5020. *
  5021. * Transfer the memsw charge of @page to @entry.
  5022. */
  5023. void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
  5024. {
  5025. struct mem_cgroup *memcg, *swap_memcg;
  5026. unsigned short oldid;
  5027. VM_BUG_ON_PAGE(PageLRU(page), page);
  5028. VM_BUG_ON_PAGE(page_count(page), page);
  5029. if (!do_memsw_account())
  5030. return;
  5031. memcg = page->mem_cgroup;
  5032. /* Readahead page, never charged */
  5033. if (!memcg)
  5034. return;
  5035. /*
  5036. * In case the memcg owning these pages has been offlined and doesn't
  5037. * have an ID allocated to it anymore, charge the closest online
  5038. * ancestor for the swap instead and transfer the memory+swap charge.
  5039. */
  5040. swap_memcg = mem_cgroup_id_get_online(memcg);
  5041. oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
  5042. VM_BUG_ON_PAGE(oldid, page);
  5043. mem_cgroup_swap_statistics(swap_memcg, true);
  5044. page->mem_cgroup = NULL;
  5045. if (!mem_cgroup_is_root(memcg))
  5046. page_counter_uncharge(&memcg->memory, 1);
  5047. if (memcg != swap_memcg) {
  5048. if (!mem_cgroup_is_root(swap_memcg))
  5049. page_counter_charge(&swap_memcg->memsw, 1);
  5050. page_counter_uncharge(&memcg->memsw, 1);
  5051. }
  5052. /*
  5053. * Interrupts should be disabled here because the caller holds the
  5054. * mapping->tree_lock lock which is taken with interrupts-off. It is
  5055. * important here to have the interrupts disabled because it is the
  5056. * only synchronisation we have for udpating the per-CPU variables.
  5057. */
  5058. VM_BUG_ON(!irqs_disabled());
  5059. mem_cgroup_charge_statistics(memcg, page, false, -1);
  5060. memcg_check_events(memcg, page);
  5061. if (!mem_cgroup_is_root(memcg))
  5062. css_put(&memcg->css);
  5063. }
  5064. /*
  5065. * mem_cgroup_try_charge_swap - try charging a swap entry
  5066. * @page: page being added to swap
  5067. * @entry: swap entry to charge
  5068. *
  5069. * Try to charge @entry to the memcg that @page belongs to.
  5070. *
  5071. * Returns 0 on success, -ENOMEM on failure.
  5072. */
  5073. int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
  5074. {
  5075. struct mem_cgroup *memcg;
  5076. struct page_counter *counter;
  5077. unsigned short oldid;
  5078. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
  5079. return 0;
  5080. memcg = page->mem_cgroup;
  5081. /* Readahead page, never charged */
  5082. if (!memcg)
  5083. return 0;
  5084. memcg = mem_cgroup_id_get_online(memcg);
  5085. if (!mem_cgroup_is_root(memcg) &&
  5086. !page_counter_try_charge(&memcg->swap, 1, &counter)) {
  5087. mem_cgroup_id_put(memcg);
  5088. return -ENOMEM;
  5089. }
  5090. oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
  5091. VM_BUG_ON_PAGE(oldid, page);
  5092. mem_cgroup_swap_statistics(memcg, true);
  5093. return 0;
  5094. }
  5095. /**
  5096. * mem_cgroup_uncharge_swap - uncharge a swap entry
  5097. * @entry: swap entry to uncharge
  5098. *
  5099. * Drop the swap charge associated with @entry.
  5100. */
  5101. void mem_cgroup_uncharge_swap(swp_entry_t entry)
  5102. {
  5103. struct mem_cgroup *memcg;
  5104. unsigned short id;
  5105. if (!do_swap_account)
  5106. return;
  5107. id = swap_cgroup_record(entry, 0);
  5108. rcu_read_lock();
  5109. memcg = mem_cgroup_from_id(id);
  5110. if (memcg) {
  5111. if (!mem_cgroup_is_root(memcg)) {
  5112. if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
  5113. page_counter_uncharge(&memcg->swap, 1);
  5114. else
  5115. page_counter_uncharge(&memcg->memsw, 1);
  5116. }
  5117. mem_cgroup_swap_statistics(memcg, false);
  5118. mem_cgroup_id_put(memcg);
  5119. }
  5120. rcu_read_unlock();
  5121. }
  5122. long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
  5123. {
  5124. long nr_swap_pages = get_nr_swap_pages();
  5125. if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
  5126. return nr_swap_pages;
  5127. for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
  5128. nr_swap_pages = min_t(long, nr_swap_pages,
  5129. READ_ONCE(memcg->swap.limit) -
  5130. page_counter_read(&memcg->swap));
  5131. return nr_swap_pages;
  5132. }
  5133. bool mem_cgroup_swap_full(struct page *page)
  5134. {
  5135. struct mem_cgroup *memcg;
  5136. VM_BUG_ON_PAGE(!PageLocked(page), page);
  5137. if (vm_swap_full())
  5138. return true;
  5139. if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
  5140. return false;
  5141. memcg = page->mem_cgroup;
  5142. if (!memcg)
  5143. return false;
  5144. for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
  5145. if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
  5146. return true;
  5147. return false;
  5148. }
  5149. /* for remember boot option*/
  5150. #ifdef CONFIG_MEMCG_SWAP_ENABLED
  5151. static int really_do_swap_account __initdata = 1;
  5152. #else
  5153. static int really_do_swap_account __initdata;
  5154. #endif
  5155. static int __init enable_swap_account(char *s)
  5156. {
  5157. if (!strcmp(s, "1"))
  5158. really_do_swap_account = 1;
  5159. else if (!strcmp(s, "0"))
  5160. really_do_swap_account = 0;
  5161. return 1;
  5162. }
  5163. __setup("swapaccount=", enable_swap_account);
  5164. static u64 swap_current_read(struct cgroup_subsys_state *css,
  5165. struct cftype *cft)
  5166. {
  5167. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  5168. return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
  5169. }
  5170. static int swap_max_show(struct seq_file *m, void *v)
  5171. {
  5172. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  5173. unsigned long max = READ_ONCE(memcg->swap.limit);
  5174. if (max == PAGE_COUNTER_MAX)
  5175. seq_puts(m, "max\n");
  5176. else
  5177. seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
  5178. return 0;
  5179. }
  5180. static ssize_t swap_max_write(struct kernfs_open_file *of,
  5181. char *buf, size_t nbytes, loff_t off)
  5182. {
  5183. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  5184. unsigned long max;
  5185. int err;
  5186. buf = strstrip(buf);
  5187. err = page_counter_memparse(buf, "max", &max);
  5188. if (err)
  5189. return err;
  5190. mutex_lock(&memcg_limit_mutex);
  5191. err = page_counter_limit(&memcg->swap, max);
  5192. mutex_unlock(&memcg_limit_mutex);
  5193. if (err)
  5194. return err;
  5195. return nbytes;
  5196. }
  5197. static struct cftype swap_files[] = {
  5198. {
  5199. .name = "swap.current",
  5200. .flags = CFTYPE_NOT_ON_ROOT,
  5201. .read_u64 = swap_current_read,
  5202. },
  5203. {
  5204. .name = "swap.max",
  5205. .flags = CFTYPE_NOT_ON_ROOT,
  5206. .seq_show = swap_max_show,
  5207. .write = swap_max_write,
  5208. },
  5209. { } /* terminate */
  5210. };
  5211. static struct cftype memsw_cgroup_files[] = {
  5212. {
  5213. .name = "memsw.usage_in_bytes",
  5214. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
  5215. .read_u64 = mem_cgroup_read_u64,
  5216. },
  5217. {
  5218. .name = "memsw.max_usage_in_bytes",
  5219. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
  5220. .write = mem_cgroup_reset,
  5221. .read_u64 = mem_cgroup_read_u64,
  5222. },
  5223. {
  5224. .name = "memsw.limit_in_bytes",
  5225. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
  5226. .write = mem_cgroup_write,
  5227. .read_u64 = mem_cgroup_read_u64,
  5228. },
  5229. {
  5230. .name = "memsw.failcnt",
  5231. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
  5232. .write = mem_cgroup_reset,
  5233. .read_u64 = mem_cgroup_read_u64,
  5234. },
  5235. { }, /* terminate */
  5236. };
  5237. static int __init mem_cgroup_swap_init(void)
  5238. {
  5239. if (!mem_cgroup_disabled() && really_do_swap_account) {
  5240. do_swap_account = 1;
  5241. WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
  5242. swap_files));
  5243. WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
  5244. memsw_cgroup_files));
  5245. }
  5246. return 0;
  5247. }
  5248. subsys_initcall(mem_cgroup_swap_init);
  5249. #endif /* CONFIG_MEMCG_SWAP */