huge_memory.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/highmem.h>
  11. #include <linux/hugetlb.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/shrinker.h>
  16. #include <linux/mm_inline.h>
  17. #include <linux/swapops.h>
  18. #include <linux/dax.h>
  19. #include <linux/khugepaged.h>
  20. #include <linux/freezer.h>
  21. #include <linux/pfn_t.h>
  22. #include <linux/mman.h>
  23. #include <linux/memremap.h>
  24. #include <linux/pagemap.h>
  25. #include <linux/debugfs.h>
  26. #include <linux/migrate.h>
  27. #include <linux/hashtable.h>
  28. #include <linux/userfaultfd_k.h>
  29. #include <linux/page_idle.h>
  30. #include <linux/shmem_fs.h>
  31. #include <asm/tlb.h>
  32. #include <asm/pgalloc.h>
  33. #include "internal.h"
  34. /*
  35. * By default transparent hugepage support is disabled in order that avoid
  36. * to risk increase the memory footprint of applications without a guaranteed
  37. * benefit. When transparent hugepage support is enabled, is for all mappings,
  38. * and khugepaged scans all mappings.
  39. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  40. * for all hugepage allocations.
  41. */
  42. unsigned long transparent_hugepage_flags __read_mostly =
  43. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  44. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  45. #endif
  46. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  47. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  48. #endif
  49. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  50. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  51. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  52. static struct shrinker deferred_split_shrinker;
  53. static atomic_t huge_zero_refcount;
  54. struct page *huge_zero_page __read_mostly;
  55. static struct page *get_huge_zero_page(void)
  56. {
  57. struct page *zero_page;
  58. retry:
  59. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  60. return READ_ONCE(huge_zero_page);
  61. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  62. HPAGE_PMD_ORDER);
  63. if (!zero_page) {
  64. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  65. return NULL;
  66. }
  67. count_vm_event(THP_ZERO_PAGE_ALLOC);
  68. preempt_disable();
  69. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  70. preempt_enable();
  71. __free_pages(zero_page, compound_order(zero_page));
  72. goto retry;
  73. }
  74. /* We take additional reference here. It will be put back by shrinker */
  75. atomic_set(&huge_zero_refcount, 2);
  76. preempt_enable();
  77. return READ_ONCE(huge_zero_page);
  78. }
  79. static void put_huge_zero_page(void)
  80. {
  81. /*
  82. * Counter should never go to zero here. Only shrinker can put
  83. * last reference.
  84. */
  85. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  86. }
  87. struct page *mm_get_huge_zero_page(struct mm_struct *mm)
  88. {
  89. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  90. return READ_ONCE(huge_zero_page);
  91. if (!get_huge_zero_page())
  92. return NULL;
  93. if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  94. put_huge_zero_page();
  95. return READ_ONCE(huge_zero_page);
  96. }
  97. void mm_put_huge_zero_page(struct mm_struct *mm)
  98. {
  99. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  100. put_huge_zero_page();
  101. }
  102. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  103. struct shrink_control *sc)
  104. {
  105. /* we can free zero page only if last reference remains */
  106. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  107. }
  108. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  109. struct shrink_control *sc)
  110. {
  111. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  112. struct page *zero_page = xchg(&huge_zero_page, NULL);
  113. BUG_ON(zero_page == NULL);
  114. __free_pages(zero_page, compound_order(zero_page));
  115. return HPAGE_PMD_NR;
  116. }
  117. return 0;
  118. }
  119. static struct shrinker huge_zero_page_shrinker = {
  120. .count_objects = shrink_huge_zero_page_count,
  121. .scan_objects = shrink_huge_zero_page_scan,
  122. .seeks = DEFAULT_SEEKS,
  123. };
  124. #ifdef CONFIG_SYSFS
  125. static ssize_t triple_flag_store(struct kobject *kobj,
  126. struct kobj_attribute *attr,
  127. const char *buf, size_t count,
  128. enum transparent_hugepage_flag enabled,
  129. enum transparent_hugepage_flag deferred,
  130. enum transparent_hugepage_flag req_madv)
  131. {
  132. if (!memcmp("defer", buf,
  133. min(sizeof("defer")-1, count))) {
  134. if (enabled == deferred)
  135. return -EINVAL;
  136. clear_bit(enabled, &transparent_hugepage_flags);
  137. clear_bit(req_madv, &transparent_hugepage_flags);
  138. set_bit(deferred, &transparent_hugepage_flags);
  139. } else if (!memcmp("always", buf,
  140. min(sizeof("always")-1, count))) {
  141. clear_bit(deferred, &transparent_hugepage_flags);
  142. clear_bit(req_madv, &transparent_hugepage_flags);
  143. set_bit(enabled, &transparent_hugepage_flags);
  144. } else if (!memcmp("madvise", buf,
  145. min(sizeof("madvise")-1, count))) {
  146. clear_bit(enabled, &transparent_hugepage_flags);
  147. clear_bit(deferred, &transparent_hugepage_flags);
  148. set_bit(req_madv, &transparent_hugepage_flags);
  149. } else if (!memcmp("never", buf,
  150. min(sizeof("never")-1, count))) {
  151. clear_bit(enabled, &transparent_hugepage_flags);
  152. clear_bit(req_madv, &transparent_hugepage_flags);
  153. clear_bit(deferred, &transparent_hugepage_flags);
  154. } else
  155. return -EINVAL;
  156. return count;
  157. }
  158. static ssize_t enabled_show(struct kobject *kobj,
  159. struct kobj_attribute *attr, char *buf)
  160. {
  161. if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
  162. return sprintf(buf, "[always] madvise never\n");
  163. else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
  164. return sprintf(buf, "always [madvise] never\n");
  165. else
  166. return sprintf(buf, "always madvise [never]\n");
  167. }
  168. static ssize_t enabled_store(struct kobject *kobj,
  169. struct kobj_attribute *attr,
  170. const char *buf, size_t count)
  171. {
  172. ssize_t ret;
  173. ret = triple_flag_store(kobj, attr, buf, count,
  174. TRANSPARENT_HUGEPAGE_FLAG,
  175. TRANSPARENT_HUGEPAGE_FLAG,
  176. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  177. if (ret > 0) {
  178. int err = start_stop_khugepaged();
  179. if (err)
  180. ret = err;
  181. }
  182. return ret;
  183. }
  184. static struct kobj_attribute enabled_attr =
  185. __ATTR(enabled, 0644, enabled_show, enabled_store);
  186. ssize_t single_hugepage_flag_show(struct kobject *kobj,
  187. struct kobj_attribute *attr, char *buf,
  188. enum transparent_hugepage_flag flag)
  189. {
  190. return sprintf(buf, "%d\n",
  191. !!test_bit(flag, &transparent_hugepage_flags));
  192. }
  193. ssize_t single_hugepage_flag_store(struct kobject *kobj,
  194. struct kobj_attribute *attr,
  195. const char *buf, size_t count,
  196. enum transparent_hugepage_flag flag)
  197. {
  198. unsigned long value;
  199. int ret;
  200. ret = kstrtoul(buf, 10, &value);
  201. if (ret < 0)
  202. return ret;
  203. if (value > 1)
  204. return -EINVAL;
  205. if (value)
  206. set_bit(flag, &transparent_hugepage_flags);
  207. else
  208. clear_bit(flag, &transparent_hugepage_flags);
  209. return count;
  210. }
  211. /*
  212. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  213. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  214. * memory just to allocate one more hugepage.
  215. */
  216. static ssize_t defrag_show(struct kobject *kobj,
  217. struct kobj_attribute *attr, char *buf)
  218. {
  219. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  220. return sprintf(buf, "[always] defer madvise never\n");
  221. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  222. return sprintf(buf, "always [defer] madvise never\n");
  223. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  224. return sprintf(buf, "always defer [madvise] never\n");
  225. else
  226. return sprintf(buf, "always defer madvise [never]\n");
  227. }
  228. static ssize_t defrag_store(struct kobject *kobj,
  229. struct kobj_attribute *attr,
  230. const char *buf, size_t count)
  231. {
  232. return triple_flag_store(kobj, attr, buf, count,
  233. TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
  234. TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
  235. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  236. }
  237. static struct kobj_attribute defrag_attr =
  238. __ATTR(defrag, 0644, defrag_show, defrag_store);
  239. static ssize_t use_zero_page_show(struct kobject *kobj,
  240. struct kobj_attribute *attr, char *buf)
  241. {
  242. return single_hugepage_flag_show(kobj, attr, buf,
  243. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  244. }
  245. static ssize_t use_zero_page_store(struct kobject *kobj,
  246. struct kobj_attribute *attr, const char *buf, size_t count)
  247. {
  248. return single_hugepage_flag_store(kobj, attr, buf, count,
  249. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  250. }
  251. static struct kobj_attribute use_zero_page_attr =
  252. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  253. static ssize_t hpage_pmd_size_show(struct kobject *kobj,
  254. struct kobj_attribute *attr, char *buf)
  255. {
  256. return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
  257. }
  258. static struct kobj_attribute hpage_pmd_size_attr =
  259. __ATTR_RO(hpage_pmd_size);
  260. #ifdef CONFIG_DEBUG_VM
  261. static ssize_t debug_cow_show(struct kobject *kobj,
  262. struct kobj_attribute *attr, char *buf)
  263. {
  264. return single_hugepage_flag_show(kobj, attr, buf,
  265. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  266. }
  267. static ssize_t debug_cow_store(struct kobject *kobj,
  268. struct kobj_attribute *attr,
  269. const char *buf, size_t count)
  270. {
  271. return single_hugepage_flag_store(kobj, attr, buf, count,
  272. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  273. }
  274. static struct kobj_attribute debug_cow_attr =
  275. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  276. #endif /* CONFIG_DEBUG_VM */
  277. static struct attribute *hugepage_attr[] = {
  278. &enabled_attr.attr,
  279. &defrag_attr.attr,
  280. &use_zero_page_attr.attr,
  281. &hpage_pmd_size_attr.attr,
  282. #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
  283. &shmem_enabled_attr.attr,
  284. #endif
  285. #ifdef CONFIG_DEBUG_VM
  286. &debug_cow_attr.attr,
  287. #endif
  288. NULL,
  289. };
  290. static struct attribute_group hugepage_attr_group = {
  291. .attrs = hugepage_attr,
  292. };
  293. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  294. {
  295. int err;
  296. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  297. if (unlikely(!*hugepage_kobj)) {
  298. pr_err("failed to create transparent hugepage kobject\n");
  299. return -ENOMEM;
  300. }
  301. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  302. if (err) {
  303. pr_err("failed to register transparent hugepage group\n");
  304. goto delete_obj;
  305. }
  306. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  307. if (err) {
  308. pr_err("failed to register transparent hugepage group\n");
  309. goto remove_hp_group;
  310. }
  311. return 0;
  312. remove_hp_group:
  313. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  314. delete_obj:
  315. kobject_put(*hugepage_kobj);
  316. return err;
  317. }
  318. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  319. {
  320. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  321. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  322. kobject_put(hugepage_kobj);
  323. }
  324. #else
  325. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  326. {
  327. return 0;
  328. }
  329. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  330. {
  331. }
  332. #endif /* CONFIG_SYSFS */
  333. static int __init hugepage_init(void)
  334. {
  335. int err;
  336. struct kobject *hugepage_kobj;
  337. if (!has_transparent_hugepage()) {
  338. transparent_hugepage_flags = 0;
  339. return -EINVAL;
  340. }
  341. /*
  342. * hugepages can't be allocated by the buddy allocator
  343. */
  344. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
  345. /*
  346. * we use page->mapping and page->index in second tail page
  347. * as list_head: assuming THP order >= 2
  348. */
  349. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  350. err = hugepage_init_sysfs(&hugepage_kobj);
  351. if (err)
  352. goto err_sysfs;
  353. err = khugepaged_init();
  354. if (err)
  355. goto err_slab;
  356. err = register_shrinker(&huge_zero_page_shrinker);
  357. if (err)
  358. goto err_hzp_shrinker;
  359. err = register_shrinker(&deferred_split_shrinker);
  360. if (err)
  361. goto err_split_shrinker;
  362. /*
  363. * By default disable transparent hugepages on smaller systems,
  364. * where the extra memory used could hurt more than TLB overhead
  365. * is likely to save. The admin can still enable it through /sys.
  366. */
  367. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  368. transparent_hugepage_flags = 0;
  369. return 0;
  370. }
  371. err = start_stop_khugepaged();
  372. if (err)
  373. goto err_khugepaged;
  374. return 0;
  375. err_khugepaged:
  376. unregister_shrinker(&deferred_split_shrinker);
  377. err_split_shrinker:
  378. unregister_shrinker(&huge_zero_page_shrinker);
  379. err_hzp_shrinker:
  380. khugepaged_destroy();
  381. err_slab:
  382. hugepage_exit_sysfs(hugepage_kobj);
  383. err_sysfs:
  384. return err;
  385. }
  386. subsys_initcall(hugepage_init);
  387. static int __init setup_transparent_hugepage(char *str)
  388. {
  389. int ret = 0;
  390. if (!str)
  391. goto out;
  392. if (!strcmp(str, "always")) {
  393. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  394. &transparent_hugepage_flags);
  395. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  396. &transparent_hugepage_flags);
  397. ret = 1;
  398. } else if (!strcmp(str, "madvise")) {
  399. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  400. &transparent_hugepage_flags);
  401. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  402. &transparent_hugepage_flags);
  403. ret = 1;
  404. } else if (!strcmp(str, "never")) {
  405. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  406. &transparent_hugepage_flags);
  407. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  408. &transparent_hugepage_flags);
  409. ret = 1;
  410. }
  411. out:
  412. if (!ret)
  413. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  414. return ret;
  415. }
  416. __setup("transparent_hugepage=", setup_transparent_hugepage);
  417. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  418. {
  419. if (likely(vma->vm_flags & VM_WRITE))
  420. pmd = pmd_mkwrite(pmd);
  421. return pmd;
  422. }
  423. static inline struct list_head *page_deferred_list(struct page *page)
  424. {
  425. /*
  426. * ->lru in the tail pages is occupied by compound_head.
  427. * Let's use ->mapping + ->index in the second tail page as list_head.
  428. */
  429. return (struct list_head *)&page[2].mapping;
  430. }
  431. void prep_transhuge_page(struct page *page)
  432. {
  433. /*
  434. * we use page->mapping and page->indexlru in second tail page
  435. * as list_head: assuming THP order >= 2
  436. */
  437. INIT_LIST_HEAD(page_deferred_list(page));
  438. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  439. }
  440. unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
  441. loff_t off, unsigned long flags, unsigned long size)
  442. {
  443. unsigned long addr;
  444. loff_t off_end = off + len;
  445. loff_t off_align = round_up(off, size);
  446. unsigned long len_pad;
  447. if (off_end <= off_align || (off_end - off_align) < size)
  448. return 0;
  449. len_pad = len + size;
  450. if (len_pad < len || (off + len_pad) < off)
  451. return 0;
  452. addr = current->mm->get_unmapped_area(filp, 0, len_pad,
  453. off >> PAGE_SHIFT, flags);
  454. if (IS_ERR_VALUE(addr))
  455. return 0;
  456. addr += (off - addr) & (size - 1);
  457. return addr;
  458. }
  459. unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
  460. unsigned long len, unsigned long pgoff, unsigned long flags)
  461. {
  462. loff_t off = (loff_t)pgoff << PAGE_SHIFT;
  463. if (addr)
  464. goto out;
  465. if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
  466. goto out;
  467. addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
  468. if (addr)
  469. return addr;
  470. out:
  471. return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
  472. }
  473. EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
  474. static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
  475. gfp_t gfp)
  476. {
  477. struct vm_area_struct *vma = vmf->vma;
  478. struct mem_cgroup *memcg;
  479. pgtable_t pgtable;
  480. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  481. VM_BUG_ON_PAGE(!PageCompound(page), page);
  482. if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
  483. put_page(page);
  484. count_vm_event(THP_FAULT_FALLBACK);
  485. return VM_FAULT_FALLBACK;
  486. }
  487. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  488. if (unlikely(!pgtable)) {
  489. mem_cgroup_cancel_charge(page, memcg, true);
  490. put_page(page);
  491. return VM_FAULT_OOM;
  492. }
  493. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  494. /*
  495. * The memory barrier inside __SetPageUptodate makes sure that
  496. * clear_huge_page writes become visible before the set_pmd_at()
  497. * write.
  498. */
  499. __SetPageUptodate(page);
  500. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  501. if (unlikely(!pmd_none(*vmf->pmd))) {
  502. spin_unlock(vmf->ptl);
  503. mem_cgroup_cancel_charge(page, memcg, true);
  504. put_page(page);
  505. pte_free(vma->vm_mm, pgtable);
  506. } else {
  507. pmd_t entry;
  508. /* Deliver the page fault to userland */
  509. if (userfaultfd_missing(vma)) {
  510. int ret;
  511. spin_unlock(vmf->ptl);
  512. mem_cgroup_cancel_charge(page, memcg, true);
  513. put_page(page);
  514. pte_free(vma->vm_mm, pgtable);
  515. ret = handle_userfault(vmf, VM_UFFD_MISSING);
  516. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  517. return ret;
  518. }
  519. entry = mk_huge_pmd(page, vma->vm_page_prot);
  520. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  521. page_add_new_anon_rmap(page, vma, haddr, true);
  522. mem_cgroup_commit_charge(page, memcg, false, true);
  523. lru_cache_add_active_or_unevictable(page, vma);
  524. pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
  525. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  526. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  527. atomic_long_inc(&vma->vm_mm->nr_ptes);
  528. spin_unlock(vmf->ptl);
  529. count_vm_event(THP_FAULT_ALLOC);
  530. }
  531. return 0;
  532. }
  533. /*
  534. * If THP defrag is set to always then directly reclaim/compact as necessary
  535. * If set to defer then do only background reclaim/compact and defer to khugepaged
  536. * If set to madvise and the VMA is flagged then directly reclaim/compact
  537. * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
  538. */
  539. static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
  540. {
  541. bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
  542. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
  543. &transparent_hugepage_flags) && vma_madvised)
  544. return GFP_TRANSHUGE;
  545. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
  546. &transparent_hugepage_flags))
  547. return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
  548. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
  549. &transparent_hugepage_flags))
  550. return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
  551. return GFP_TRANSHUGE_LIGHT;
  552. }
  553. /* Caller must hold page table lock. */
  554. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  555. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  556. struct page *zero_page)
  557. {
  558. pmd_t entry;
  559. if (!pmd_none(*pmd))
  560. return false;
  561. entry = mk_pmd(zero_page, vma->vm_page_prot);
  562. entry = pmd_mkhuge(entry);
  563. if (pgtable)
  564. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  565. set_pmd_at(mm, haddr, pmd, entry);
  566. atomic_long_inc(&mm->nr_ptes);
  567. return true;
  568. }
  569. int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
  570. {
  571. struct vm_area_struct *vma = vmf->vma;
  572. gfp_t gfp;
  573. struct page *page;
  574. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  575. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  576. return VM_FAULT_FALLBACK;
  577. if (unlikely(anon_vma_prepare(vma)))
  578. return VM_FAULT_OOM;
  579. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  580. return VM_FAULT_OOM;
  581. if (!(vmf->flags & FAULT_FLAG_WRITE) &&
  582. !mm_forbids_zeropage(vma->vm_mm) &&
  583. transparent_hugepage_use_zero_page()) {
  584. pgtable_t pgtable;
  585. struct page *zero_page;
  586. bool set;
  587. int ret;
  588. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  589. if (unlikely(!pgtable))
  590. return VM_FAULT_OOM;
  591. zero_page = mm_get_huge_zero_page(vma->vm_mm);
  592. if (unlikely(!zero_page)) {
  593. pte_free(vma->vm_mm, pgtable);
  594. count_vm_event(THP_FAULT_FALLBACK);
  595. return VM_FAULT_FALLBACK;
  596. }
  597. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  598. ret = 0;
  599. set = false;
  600. if (pmd_none(*vmf->pmd)) {
  601. if (userfaultfd_missing(vma)) {
  602. spin_unlock(vmf->ptl);
  603. ret = handle_userfault(vmf, VM_UFFD_MISSING);
  604. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  605. } else {
  606. set_huge_zero_page(pgtable, vma->vm_mm, vma,
  607. haddr, vmf->pmd, zero_page);
  608. spin_unlock(vmf->ptl);
  609. set = true;
  610. }
  611. } else
  612. spin_unlock(vmf->ptl);
  613. if (!set)
  614. pte_free(vma->vm_mm, pgtable);
  615. return ret;
  616. }
  617. gfp = alloc_hugepage_direct_gfpmask(vma);
  618. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  619. if (unlikely(!page)) {
  620. count_vm_event(THP_FAULT_FALLBACK);
  621. return VM_FAULT_FALLBACK;
  622. }
  623. prep_transhuge_page(page);
  624. return __do_huge_pmd_anonymous_page(vmf, page, gfp);
  625. }
  626. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  627. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
  628. {
  629. struct mm_struct *mm = vma->vm_mm;
  630. pmd_t entry;
  631. spinlock_t *ptl;
  632. ptl = pmd_lock(mm, pmd);
  633. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  634. if (pfn_t_devmap(pfn))
  635. entry = pmd_mkdevmap(entry);
  636. if (write) {
  637. entry = pmd_mkyoung(pmd_mkdirty(entry));
  638. entry = maybe_pmd_mkwrite(entry, vma);
  639. }
  640. set_pmd_at(mm, addr, pmd, entry);
  641. update_mmu_cache_pmd(vma, addr, pmd);
  642. spin_unlock(ptl);
  643. }
  644. int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  645. pmd_t *pmd, pfn_t pfn, bool write)
  646. {
  647. pgprot_t pgprot = vma->vm_page_prot;
  648. /*
  649. * If we had pmd_special, we could avoid all these restrictions,
  650. * but we need to be consistent with PTEs and architectures that
  651. * can't support a 'special' bit.
  652. */
  653. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  654. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  655. (VM_PFNMAP|VM_MIXEDMAP));
  656. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  657. BUG_ON(!pfn_t_devmap(pfn));
  658. if (addr < vma->vm_start || addr >= vma->vm_end)
  659. return VM_FAULT_SIGBUS;
  660. track_pfn_insert(vma, &pgprot, pfn);
  661. insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
  662. return VM_FAULT_NOPAGE;
  663. }
  664. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
  665. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  666. pmd_t *pmd)
  667. {
  668. pmd_t _pmd;
  669. /*
  670. * We should set the dirty bit only for FOLL_WRITE but for now
  671. * the dirty bit in the pmd is meaningless. And if the dirty
  672. * bit will become meaningful and we'll only set it with
  673. * FOLL_WRITE, an atomic set_bit will be required on the pmd to
  674. * set the young bit, instead of the current set_pmd_at.
  675. */
  676. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  677. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  678. pmd, _pmd, 1))
  679. update_mmu_cache_pmd(vma, addr, pmd);
  680. }
  681. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  682. pmd_t *pmd, int flags)
  683. {
  684. unsigned long pfn = pmd_pfn(*pmd);
  685. struct mm_struct *mm = vma->vm_mm;
  686. struct dev_pagemap *pgmap;
  687. struct page *page;
  688. assert_spin_locked(pmd_lockptr(mm, pmd));
  689. /*
  690. * When we COW a devmap PMD entry, we split it into PTEs, so we should
  691. * not be in this function with `flags & FOLL_COW` set.
  692. */
  693. WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
  694. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  695. return NULL;
  696. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  697. /* pass */;
  698. else
  699. return NULL;
  700. if (flags & FOLL_TOUCH)
  701. touch_pmd(vma, addr, pmd);
  702. /*
  703. * device mapped pages can only be returned if the
  704. * caller will manage the page reference count.
  705. */
  706. if (!(flags & FOLL_GET))
  707. return ERR_PTR(-EEXIST);
  708. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  709. pgmap = get_dev_pagemap(pfn, NULL);
  710. if (!pgmap)
  711. return ERR_PTR(-EFAULT);
  712. page = pfn_to_page(pfn);
  713. get_page(page);
  714. put_dev_pagemap(pgmap);
  715. return page;
  716. }
  717. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  718. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  719. struct vm_area_struct *vma)
  720. {
  721. spinlock_t *dst_ptl, *src_ptl;
  722. struct page *src_page;
  723. pmd_t pmd;
  724. pgtable_t pgtable = NULL;
  725. int ret = -ENOMEM;
  726. /* Skip if can be re-fill on fault */
  727. if (!vma_is_anonymous(vma))
  728. return 0;
  729. pgtable = pte_alloc_one(dst_mm, addr);
  730. if (unlikely(!pgtable))
  731. goto out;
  732. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  733. src_ptl = pmd_lockptr(src_mm, src_pmd);
  734. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  735. ret = -EAGAIN;
  736. pmd = *src_pmd;
  737. if (unlikely(!pmd_trans_huge(pmd))) {
  738. pte_free(dst_mm, pgtable);
  739. goto out_unlock;
  740. }
  741. /*
  742. * When page table lock is held, the huge zero pmd should not be
  743. * under splitting since we don't split the page itself, only pmd to
  744. * a page table.
  745. */
  746. if (is_huge_zero_pmd(pmd)) {
  747. struct page *zero_page;
  748. /*
  749. * get_huge_zero_page() will never allocate a new page here,
  750. * since we already have a zero page to copy. It just takes a
  751. * reference.
  752. */
  753. zero_page = mm_get_huge_zero_page(dst_mm);
  754. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  755. zero_page);
  756. ret = 0;
  757. goto out_unlock;
  758. }
  759. src_page = pmd_page(pmd);
  760. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  761. get_page(src_page);
  762. page_dup_rmap(src_page, true);
  763. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  764. atomic_long_inc(&dst_mm->nr_ptes);
  765. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  766. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  767. pmd = pmd_mkold(pmd_wrprotect(pmd));
  768. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  769. ret = 0;
  770. out_unlock:
  771. spin_unlock(src_ptl);
  772. spin_unlock(dst_ptl);
  773. out:
  774. return ret;
  775. }
  776. void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
  777. {
  778. pmd_t entry;
  779. unsigned long haddr;
  780. bool write = vmf->flags & FAULT_FLAG_WRITE;
  781. vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
  782. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  783. goto unlock;
  784. entry = pmd_mkyoung(orig_pmd);
  785. if (write)
  786. entry = pmd_mkdirty(entry);
  787. haddr = vmf->address & HPAGE_PMD_MASK;
  788. if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
  789. update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
  790. unlock:
  791. spin_unlock(vmf->ptl);
  792. }
  793. static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
  794. struct page *page)
  795. {
  796. struct vm_area_struct *vma = vmf->vma;
  797. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  798. struct mem_cgroup *memcg;
  799. pgtable_t pgtable;
  800. pmd_t _pmd;
  801. int ret = 0, i;
  802. struct page **pages;
  803. unsigned long mmun_start; /* For mmu_notifiers */
  804. unsigned long mmun_end; /* For mmu_notifiers */
  805. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  806. GFP_KERNEL);
  807. if (unlikely(!pages)) {
  808. ret |= VM_FAULT_OOM;
  809. goto out;
  810. }
  811. for (i = 0; i < HPAGE_PMD_NR; i++) {
  812. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
  813. vmf->address, page_to_nid(page));
  814. if (unlikely(!pages[i] ||
  815. mem_cgroup_try_charge(pages[i], vma->vm_mm,
  816. GFP_KERNEL, &memcg, false))) {
  817. if (pages[i])
  818. put_page(pages[i]);
  819. while (--i >= 0) {
  820. memcg = (void *)page_private(pages[i]);
  821. set_page_private(pages[i], 0);
  822. mem_cgroup_cancel_charge(pages[i], memcg,
  823. false);
  824. put_page(pages[i]);
  825. }
  826. kfree(pages);
  827. ret |= VM_FAULT_OOM;
  828. goto out;
  829. }
  830. set_page_private(pages[i], (unsigned long)memcg);
  831. }
  832. for (i = 0; i < HPAGE_PMD_NR; i++) {
  833. copy_user_highpage(pages[i], page + i,
  834. haddr + PAGE_SIZE * i, vma);
  835. __SetPageUptodate(pages[i]);
  836. cond_resched();
  837. }
  838. mmun_start = haddr;
  839. mmun_end = haddr + HPAGE_PMD_SIZE;
  840. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  841. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  842. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  843. goto out_free_pages;
  844. VM_BUG_ON_PAGE(!PageHead(page), page);
  845. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  846. /* leave pmd empty until pte is filled */
  847. pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
  848. pmd_populate(vma->vm_mm, &_pmd, pgtable);
  849. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  850. pte_t entry;
  851. entry = mk_pte(pages[i], vma->vm_page_prot);
  852. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  853. memcg = (void *)page_private(pages[i]);
  854. set_page_private(pages[i], 0);
  855. page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
  856. mem_cgroup_commit_charge(pages[i], memcg, false, false);
  857. lru_cache_add_active_or_unevictable(pages[i], vma);
  858. vmf->pte = pte_offset_map(&_pmd, haddr);
  859. VM_BUG_ON(!pte_none(*vmf->pte));
  860. set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
  861. pte_unmap(vmf->pte);
  862. }
  863. kfree(pages);
  864. smp_wmb(); /* make pte visible before pmd */
  865. pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
  866. page_remove_rmap(page, true);
  867. spin_unlock(vmf->ptl);
  868. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  869. ret |= VM_FAULT_WRITE;
  870. put_page(page);
  871. out:
  872. return ret;
  873. out_free_pages:
  874. spin_unlock(vmf->ptl);
  875. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  876. for (i = 0; i < HPAGE_PMD_NR; i++) {
  877. memcg = (void *)page_private(pages[i]);
  878. set_page_private(pages[i], 0);
  879. mem_cgroup_cancel_charge(pages[i], memcg, false);
  880. put_page(pages[i]);
  881. }
  882. kfree(pages);
  883. goto out;
  884. }
  885. int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
  886. {
  887. struct vm_area_struct *vma = vmf->vma;
  888. struct page *page = NULL, *new_page;
  889. struct mem_cgroup *memcg;
  890. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  891. unsigned long mmun_start; /* For mmu_notifiers */
  892. unsigned long mmun_end; /* For mmu_notifiers */
  893. gfp_t huge_gfp; /* for allocation and charge */
  894. int ret = 0;
  895. vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
  896. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  897. if (is_huge_zero_pmd(orig_pmd))
  898. goto alloc;
  899. spin_lock(vmf->ptl);
  900. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  901. goto out_unlock;
  902. page = pmd_page(orig_pmd);
  903. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  904. /*
  905. * We can only reuse the page if nobody else maps the huge page or it's
  906. * part.
  907. */
  908. if (page_trans_huge_mapcount(page, NULL) == 1) {
  909. pmd_t entry;
  910. entry = pmd_mkyoung(orig_pmd);
  911. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  912. if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
  913. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  914. ret |= VM_FAULT_WRITE;
  915. goto out_unlock;
  916. }
  917. get_page(page);
  918. spin_unlock(vmf->ptl);
  919. alloc:
  920. if (transparent_hugepage_enabled(vma) &&
  921. !transparent_hugepage_debug_cow()) {
  922. huge_gfp = alloc_hugepage_direct_gfpmask(vma);
  923. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  924. } else
  925. new_page = NULL;
  926. if (likely(new_page)) {
  927. prep_transhuge_page(new_page);
  928. } else {
  929. if (!page) {
  930. split_huge_pmd(vma, vmf->pmd, vmf->address);
  931. ret |= VM_FAULT_FALLBACK;
  932. } else {
  933. ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
  934. if (ret & VM_FAULT_OOM) {
  935. split_huge_pmd(vma, vmf->pmd, vmf->address);
  936. ret |= VM_FAULT_FALLBACK;
  937. }
  938. put_page(page);
  939. }
  940. count_vm_event(THP_FAULT_FALLBACK);
  941. goto out;
  942. }
  943. if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
  944. huge_gfp, &memcg, true))) {
  945. put_page(new_page);
  946. split_huge_pmd(vma, vmf->pmd, vmf->address);
  947. if (page)
  948. put_page(page);
  949. ret |= VM_FAULT_FALLBACK;
  950. count_vm_event(THP_FAULT_FALLBACK);
  951. goto out;
  952. }
  953. count_vm_event(THP_FAULT_ALLOC);
  954. if (!page)
  955. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  956. else
  957. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  958. __SetPageUptodate(new_page);
  959. mmun_start = haddr;
  960. mmun_end = haddr + HPAGE_PMD_SIZE;
  961. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  962. spin_lock(vmf->ptl);
  963. if (page)
  964. put_page(page);
  965. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
  966. spin_unlock(vmf->ptl);
  967. mem_cgroup_cancel_charge(new_page, memcg, true);
  968. put_page(new_page);
  969. goto out_mn;
  970. } else {
  971. pmd_t entry;
  972. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  973. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  974. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  975. page_add_new_anon_rmap(new_page, vma, haddr, true);
  976. mem_cgroup_commit_charge(new_page, memcg, false, true);
  977. lru_cache_add_active_or_unevictable(new_page, vma);
  978. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  979. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  980. if (!page) {
  981. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  982. } else {
  983. VM_BUG_ON_PAGE(!PageHead(page), page);
  984. page_remove_rmap(page, true);
  985. put_page(page);
  986. }
  987. ret |= VM_FAULT_WRITE;
  988. }
  989. spin_unlock(vmf->ptl);
  990. out_mn:
  991. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  992. out:
  993. return ret;
  994. out_unlock:
  995. spin_unlock(vmf->ptl);
  996. return ret;
  997. }
  998. /*
  999. * FOLL_FORCE can write to even unwritable pmd's, but only
  1000. * after we've gone through a COW cycle and they are dirty.
  1001. */
  1002. static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
  1003. {
  1004. return pmd_write(pmd) ||
  1005. ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
  1006. }
  1007. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1008. unsigned long addr,
  1009. pmd_t *pmd,
  1010. unsigned int flags)
  1011. {
  1012. struct mm_struct *mm = vma->vm_mm;
  1013. struct page *page = NULL;
  1014. assert_spin_locked(pmd_lockptr(mm, pmd));
  1015. if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
  1016. goto out;
  1017. /* Avoid dumping huge zero page */
  1018. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1019. return ERR_PTR(-EFAULT);
  1020. /* Full NUMA hinting faults to serialise migration in fault paths */
  1021. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1022. goto out;
  1023. page = pmd_page(*pmd);
  1024. VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
  1025. if (flags & FOLL_TOUCH)
  1026. touch_pmd(vma, addr, pmd);
  1027. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1028. /*
  1029. * We don't mlock() pte-mapped THPs. This way we can avoid
  1030. * leaking mlocked pages into non-VM_LOCKED VMAs.
  1031. *
  1032. * For anon THP:
  1033. *
  1034. * In most cases the pmd is the only mapping of the page as we
  1035. * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
  1036. * writable private mappings in populate_vma_page_range().
  1037. *
  1038. * The only scenario when we have the page shared here is if we
  1039. * mlocking read-only mapping shared over fork(). We skip
  1040. * mlocking such pages.
  1041. *
  1042. * For file THP:
  1043. *
  1044. * We can expect PageDoubleMap() to be stable under page lock:
  1045. * for file pages we set it in page_add_file_rmap(), which
  1046. * requires page to be locked.
  1047. */
  1048. if (PageAnon(page) && compound_mapcount(page) != 1)
  1049. goto skip_mlock;
  1050. if (PageDoubleMap(page) || !page->mapping)
  1051. goto skip_mlock;
  1052. if (!trylock_page(page))
  1053. goto skip_mlock;
  1054. lru_add_drain();
  1055. if (page->mapping && !PageDoubleMap(page))
  1056. mlock_vma_page(page);
  1057. unlock_page(page);
  1058. }
  1059. skip_mlock:
  1060. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1061. VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
  1062. if (flags & FOLL_GET)
  1063. get_page(page);
  1064. out:
  1065. return page;
  1066. }
  1067. /* NUMA hinting page fault entry point for trans huge pmds */
  1068. int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
  1069. {
  1070. struct vm_area_struct *vma = vmf->vma;
  1071. struct anon_vma *anon_vma = NULL;
  1072. struct page *page;
  1073. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1074. int page_nid = -1, this_nid = numa_node_id();
  1075. int target_nid, last_cpupid = -1;
  1076. bool page_locked;
  1077. bool migrated = false;
  1078. bool was_writable;
  1079. int flags = 0;
  1080. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1081. if (unlikely(!pmd_same(pmd, *vmf->pmd)))
  1082. goto out_unlock;
  1083. /*
  1084. * If there are potential migrations, wait for completion and retry
  1085. * without disrupting NUMA hinting information. Do not relock and
  1086. * check_same as the page may no longer be mapped.
  1087. */
  1088. if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
  1089. page = pmd_page(*vmf->pmd);
  1090. spin_unlock(vmf->ptl);
  1091. wait_on_page_locked(page);
  1092. goto out;
  1093. }
  1094. page = pmd_page(pmd);
  1095. BUG_ON(is_huge_zero_page(page));
  1096. page_nid = page_to_nid(page);
  1097. last_cpupid = page_cpupid_last(page);
  1098. count_vm_numa_event(NUMA_HINT_FAULTS);
  1099. if (page_nid == this_nid) {
  1100. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1101. flags |= TNF_FAULT_LOCAL;
  1102. }
  1103. /* See similar comment in do_numa_page for explanation */
  1104. if (!pmd_write(pmd))
  1105. flags |= TNF_NO_GROUP;
  1106. /*
  1107. * Acquire the page lock to serialise THP migrations but avoid dropping
  1108. * page_table_lock if at all possible
  1109. */
  1110. page_locked = trylock_page(page);
  1111. target_nid = mpol_misplaced(page, vma, haddr);
  1112. if (target_nid == -1) {
  1113. /* If the page was locked, there are no parallel migrations */
  1114. if (page_locked)
  1115. goto clear_pmdnuma;
  1116. }
  1117. /* Migration could have started since the pmd_trans_migrating check */
  1118. if (!page_locked) {
  1119. spin_unlock(vmf->ptl);
  1120. wait_on_page_locked(page);
  1121. page_nid = -1;
  1122. goto out;
  1123. }
  1124. /*
  1125. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1126. * to serialises splits
  1127. */
  1128. get_page(page);
  1129. spin_unlock(vmf->ptl);
  1130. anon_vma = page_lock_anon_vma_read(page);
  1131. /* Confirm the PMD did not change while page_table_lock was released */
  1132. spin_lock(vmf->ptl);
  1133. if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
  1134. unlock_page(page);
  1135. put_page(page);
  1136. page_nid = -1;
  1137. goto out_unlock;
  1138. }
  1139. /* Bail if we fail to protect against THP splits for any reason */
  1140. if (unlikely(!anon_vma)) {
  1141. put_page(page);
  1142. page_nid = -1;
  1143. goto clear_pmdnuma;
  1144. }
  1145. /*
  1146. * Migrate the THP to the requested node, returns with page unlocked
  1147. * and access rights restored.
  1148. */
  1149. spin_unlock(vmf->ptl);
  1150. migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
  1151. vmf->pmd, pmd, vmf->address, page, target_nid);
  1152. if (migrated) {
  1153. flags |= TNF_MIGRATED;
  1154. page_nid = target_nid;
  1155. } else
  1156. flags |= TNF_MIGRATE_FAIL;
  1157. goto out;
  1158. clear_pmdnuma:
  1159. BUG_ON(!PageLocked(page));
  1160. was_writable = pmd_write(pmd);
  1161. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1162. pmd = pmd_mkyoung(pmd);
  1163. if (was_writable)
  1164. pmd = pmd_mkwrite(pmd);
  1165. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
  1166. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1167. unlock_page(page);
  1168. out_unlock:
  1169. spin_unlock(vmf->ptl);
  1170. out:
  1171. if (anon_vma)
  1172. page_unlock_anon_vma_read(anon_vma);
  1173. if (page_nid != -1)
  1174. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
  1175. vmf->flags);
  1176. return 0;
  1177. }
  1178. /*
  1179. * Return true if we do MADV_FREE successfully on entire pmd page.
  1180. * Otherwise, return false.
  1181. */
  1182. bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1183. pmd_t *pmd, unsigned long addr, unsigned long next)
  1184. {
  1185. spinlock_t *ptl;
  1186. pmd_t orig_pmd;
  1187. struct page *page;
  1188. struct mm_struct *mm = tlb->mm;
  1189. bool ret = false;
  1190. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1191. ptl = pmd_trans_huge_lock(pmd, vma);
  1192. if (!ptl)
  1193. goto out_unlocked;
  1194. orig_pmd = *pmd;
  1195. if (is_huge_zero_pmd(orig_pmd))
  1196. goto out;
  1197. page = pmd_page(orig_pmd);
  1198. /*
  1199. * If other processes are mapping this page, we couldn't discard
  1200. * the page unless they all do MADV_FREE so let's skip the page.
  1201. */
  1202. if (page_mapcount(page) != 1)
  1203. goto out;
  1204. if (!trylock_page(page))
  1205. goto out;
  1206. /*
  1207. * If user want to discard part-pages of THP, split it so MADV_FREE
  1208. * will deactivate only them.
  1209. */
  1210. if (next - addr != HPAGE_PMD_SIZE) {
  1211. get_page(page);
  1212. spin_unlock(ptl);
  1213. split_huge_page(page);
  1214. put_page(page);
  1215. unlock_page(page);
  1216. goto out_unlocked;
  1217. }
  1218. if (PageDirty(page))
  1219. ClearPageDirty(page);
  1220. unlock_page(page);
  1221. if (PageActive(page))
  1222. deactivate_page(page);
  1223. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1224. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1225. tlb->fullmm);
  1226. orig_pmd = pmd_mkold(orig_pmd);
  1227. orig_pmd = pmd_mkclean(orig_pmd);
  1228. set_pmd_at(mm, addr, pmd, orig_pmd);
  1229. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1230. }
  1231. ret = true;
  1232. out:
  1233. spin_unlock(ptl);
  1234. out_unlocked:
  1235. return ret;
  1236. }
  1237. static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
  1238. {
  1239. pgtable_t pgtable;
  1240. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1241. pte_free(mm, pgtable);
  1242. atomic_long_dec(&mm->nr_ptes);
  1243. }
  1244. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1245. pmd_t *pmd, unsigned long addr)
  1246. {
  1247. pmd_t orig_pmd;
  1248. spinlock_t *ptl;
  1249. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1250. ptl = __pmd_trans_huge_lock(pmd, vma);
  1251. if (!ptl)
  1252. return 0;
  1253. /*
  1254. * For architectures like ppc64 we look at deposited pgtable
  1255. * when calling pmdp_huge_get_and_clear. So do the
  1256. * pgtable_trans_huge_withdraw after finishing pmdp related
  1257. * operations.
  1258. */
  1259. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1260. tlb->fullmm);
  1261. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1262. if (vma_is_dax(vma)) {
  1263. spin_unlock(ptl);
  1264. if (is_huge_zero_pmd(orig_pmd))
  1265. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1266. } else if (is_huge_zero_pmd(orig_pmd)) {
  1267. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1268. atomic_long_dec(&tlb->mm->nr_ptes);
  1269. spin_unlock(ptl);
  1270. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1271. } else {
  1272. struct page *page = pmd_page(orig_pmd);
  1273. page_remove_rmap(page, true);
  1274. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1275. VM_BUG_ON_PAGE(!PageHead(page), page);
  1276. if (PageAnon(page)) {
  1277. pgtable_t pgtable;
  1278. pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
  1279. pte_free(tlb->mm, pgtable);
  1280. atomic_long_dec(&tlb->mm->nr_ptes);
  1281. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1282. } else {
  1283. if (arch_needs_pgtable_deposit())
  1284. zap_deposited_table(tlb->mm, pmd);
  1285. add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
  1286. }
  1287. spin_unlock(ptl);
  1288. tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
  1289. }
  1290. return 1;
  1291. }
  1292. #ifndef pmd_move_must_withdraw
  1293. static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
  1294. spinlock_t *old_pmd_ptl,
  1295. struct vm_area_struct *vma)
  1296. {
  1297. /*
  1298. * With split pmd lock we also need to move preallocated
  1299. * PTE page table if new_pmd is on different PMD page table.
  1300. *
  1301. * We also don't deposit and withdraw tables for file pages.
  1302. */
  1303. return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
  1304. }
  1305. #endif
  1306. bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
  1307. unsigned long new_addr, unsigned long old_end,
  1308. pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
  1309. {
  1310. spinlock_t *old_ptl, *new_ptl;
  1311. pmd_t pmd;
  1312. struct mm_struct *mm = vma->vm_mm;
  1313. bool force_flush = false;
  1314. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1315. (new_addr & ~HPAGE_PMD_MASK) ||
  1316. old_end - old_addr < HPAGE_PMD_SIZE)
  1317. return false;
  1318. /*
  1319. * The destination pmd shouldn't be established, free_pgtables()
  1320. * should have release it.
  1321. */
  1322. if (WARN_ON(!pmd_none(*new_pmd))) {
  1323. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1324. return false;
  1325. }
  1326. /*
  1327. * We don't have to worry about the ordering of src and dst
  1328. * ptlocks because exclusive mmap_sem prevents deadlock.
  1329. */
  1330. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1331. if (old_ptl) {
  1332. new_ptl = pmd_lockptr(mm, new_pmd);
  1333. if (new_ptl != old_ptl)
  1334. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1335. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1336. if (pmd_present(pmd) && pmd_dirty(pmd))
  1337. force_flush = true;
  1338. VM_BUG_ON(!pmd_none(*new_pmd));
  1339. if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
  1340. pgtable_t pgtable;
  1341. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1342. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1343. }
  1344. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1345. if (new_ptl != old_ptl)
  1346. spin_unlock(new_ptl);
  1347. if (force_flush)
  1348. flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
  1349. else
  1350. *need_flush = true;
  1351. spin_unlock(old_ptl);
  1352. return true;
  1353. }
  1354. return false;
  1355. }
  1356. /*
  1357. * Returns
  1358. * - 0 if PMD could not be locked
  1359. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1360. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1361. */
  1362. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1363. unsigned long addr, pgprot_t newprot, int prot_numa)
  1364. {
  1365. struct mm_struct *mm = vma->vm_mm;
  1366. spinlock_t *ptl;
  1367. int ret = 0;
  1368. ptl = __pmd_trans_huge_lock(pmd, vma);
  1369. if (ptl) {
  1370. pmd_t entry;
  1371. bool preserve_write = prot_numa && pmd_write(*pmd);
  1372. ret = 1;
  1373. /*
  1374. * Avoid trapping faults against the zero page. The read-only
  1375. * data is likely to be read-cached on the local CPU and
  1376. * local/remote hits to the zero page are not interesting.
  1377. */
  1378. if (prot_numa && is_huge_zero_pmd(*pmd)) {
  1379. spin_unlock(ptl);
  1380. return ret;
  1381. }
  1382. if (!prot_numa || !pmd_protnone(*pmd)) {
  1383. entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
  1384. entry = pmd_modify(entry, newprot);
  1385. if (preserve_write)
  1386. entry = pmd_mkwrite(entry);
  1387. ret = HPAGE_PMD_NR;
  1388. set_pmd_at(mm, addr, pmd, entry);
  1389. BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
  1390. pmd_write(entry));
  1391. }
  1392. spin_unlock(ptl);
  1393. }
  1394. return ret;
  1395. }
  1396. /*
  1397. * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
  1398. *
  1399. * Note that if it returns page table lock pointer, this routine returns without
  1400. * unlocking page table lock. So callers must unlock it.
  1401. */
  1402. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1403. {
  1404. spinlock_t *ptl;
  1405. ptl = pmd_lock(vma->vm_mm, pmd);
  1406. if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
  1407. return ptl;
  1408. spin_unlock(ptl);
  1409. return NULL;
  1410. }
  1411. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  1412. unsigned long haddr, pmd_t *pmd)
  1413. {
  1414. struct mm_struct *mm = vma->vm_mm;
  1415. pgtable_t pgtable;
  1416. pmd_t _pmd;
  1417. int i;
  1418. /* leave pmd empty until pte is filled */
  1419. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1420. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1421. pmd_populate(mm, &_pmd, pgtable);
  1422. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1423. pte_t *pte, entry;
  1424. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  1425. entry = pte_mkspecial(entry);
  1426. pte = pte_offset_map(&_pmd, haddr);
  1427. VM_BUG_ON(!pte_none(*pte));
  1428. set_pte_at(mm, haddr, pte, entry);
  1429. pte_unmap(pte);
  1430. }
  1431. smp_wmb(); /* make pte visible before pmd */
  1432. pmd_populate(mm, pmd, pgtable);
  1433. }
  1434. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  1435. unsigned long haddr, bool freeze)
  1436. {
  1437. struct mm_struct *mm = vma->vm_mm;
  1438. struct page *page;
  1439. pgtable_t pgtable;
  1440. pmd_t _pmd;
  1441. bool young, write, dirty, soft_dirty;
  1442. unsigned long addr;
  1443. int i;
  1444. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  1445. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1446. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  1447. VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
  1448. count_vm_event(THP_SPLIT_PMD);
  1449. if (!vma_is_anonymous(vma)) {
  1450. _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1451. /*
  1452. * We are going to unmap this huge page. So
  1453. * just go ahead and zap it
  1454. */
  1455. if (arch_needs_pgtable_deposit())
  1456. zap_deposited_table(mm, pmd);
  1457. if (vma_is_dax(vma))
  1458. return;
  1459. page = pmd_page(_pmd);
  1460. if (!PageReferenced(page) && pmd_young(_pmd))
  1461. SetPageReferenced(page);
  1462. page_remove_rmap(page, true);
  1463. put_page(page);
  1464. add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
  1465. return;
  1466. } else if (is_huge_zero_pmd(*pmd)) {
  1467. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  1468. }
  1469. page = pmd_page(*pmd);
  1470. VM_BUG_ON_PAGE(!page_count(page), page);
  1471. page_ref_add(page, HPAGE_PMD_NR - 1);
  1472. write = pmd_write(*pmd);
  1473. young = pmd_young(*pmd);
  1474. dirty = pmd_dirty(*pmd);
  1475. soft_dirty = pmd_soft_dirty(*pmd);
  1476. pmdp_huge_split_prepare(vma, haddr, pmd);
  1477. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1478. pmd_populate(mm, &_pmd, pgtable);
  1479. for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
  1480. pte_t entry, *pte;
  1481. /*
  1482. * Note that NUMA hinting access restrictions are not
  1483. * transferred to avoid any possibility of altering
  1484. * permissions across VMAs.
  1485. */
  1486. if (freeze) {
  1487. swp_entry_t swp_entry;
  1488. swp_entry = make_migration_entry(page + i, write);
  1489. entry = swp_entry_to_pte(swp_entry);
  1490. if (soft_dirty)
  1491. entry = pte_swp_mksoft_dirty(entry);
  1492. } else {
  1493. entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
  1494. entry = maybe_mkwrite(entry, vma);
  1495. if (!write)
  1496. entry = pte_wrprotect(entry);
  1497. if (!young)
  1498. entry = pte_mkold(entry);
  1499. if (soft_dirty)
  1500. entry = pte_mksoft_dirty(entry);
  1501. }
  1502. if (dirty)
  1503. SetPageDirty(page + i);
  1504. pte = pte_offset_map(&_pmd, addr);
  1505. BUG_ON(!pte_none(*pte));
  1506. set_pte_at(mm, addr, pte, entry);
  1507. atomic_inc(&page[i]._mapcount);
  1508. pte_unmap(pte);
  1509. }
  1510. /*
  1511. * Set PG_double_map before dropping compound_mapcount to avoid
  1512. * false-negative page_mapped().
  1513. */
  1514. if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
  1515. for (i = 0; i < HPAGE_PMD_NR; i++)
  1516. atomic_inc(&page[i]._mapcount);
  1517. }
  1518. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  1519. /* Last compound_mapcount is gone. */
  1520. __dec_node_page_state(page, NR_ANON_THPS);
  1521. if (TestClearPageDoubleMap(page)) {
  1522. /* No need in mapcount reference anymore */
  1523. for (i = 0; i < HPAGE_PMD_NR; i++)
  1524. atomic_dec(&page[i]._mapcount);
  1525. }
  1526. }
  1527. smp_wmb(); /* make pte visible before pmd */
  1528. /*
  1529. * Up to this point the pmd is present and huge and userland has the
  1530. * whole access to the hugepage during the split (which happens in
  1531. * place). If we overwrite the pmd with the not-huge version pointing
  1532. * to the pte here (which of course we could if all CPUs were bug
  1533. * free), userland could trigger a small page size TLB miss on the
  1534. * small sized TLB while the hugepage TLB entry is still established in
  1535. * the huge TLB. Some CPU doesn't like that.
  1536. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
  1537. * 383 on page 93. Intel should be safe but is also warns that it's
  1538. * only safe if the permission and cache attributes of the two entries
  1539. * loaded in the two TLB is identical (which should be the case here).
  1540. * But it is generally safer to never allow small and huge TLB entries
  1541. * for the same virtual address to be loaded simultaneously. So instead
  1542. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  1543. * current pmd notpresent (atomically because here the pmd_trans_huge
  1544. * and pmd_trans_splitting must remain set at all times on the pmd
  1545. * until the split is complete for this pmd), then we flush the SMP TLB
  1546. * and finally we write the non-huge version of the pmd entry with
  1547. * pmd_populate.
  1548. */
  1549. pmdp_invalidate(vma, haddr, pmd);
  1550. pmd_populate(mm, pmd, pgtable);
  1551. if (freeze) {
  1552. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1553. page_remove_rmap(page + i, false);
  1554. put_page(page + i);
  1555. }
  1556. }
  1557. }
  1558. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1559. unsigned long address, bool freeze, struct page *page)
  1560. {
  1561. spinlock_t *ptl;
  1562. struct mm_struct *mm = vma->vm_mm;
  1563. unsigned long haddr = address & HPAGE_PMD_MASK;
  1564. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
  1565. ptl = pmd_lock(mm, pmd);
  1566. /*
  1567. * If caller asks to setup a migration entries, we need a page to check
  1568. * pmd against. Otherwise we can end up replacing wrong page.
  1569. */
  1570. VM_BUG_ON(freeze && !page);
  1571. if (page && page != pmd_page(*pmd))
  1572. goto out;
  1573. if (pmd_trans_huge(*pmd)) {
  1574. page = pmd_page(*pmd);
  1575. if (PageMlocked(page))
  1576. clear_page_mlock(page);
  1577. } else if (!pmd_devmap(*pmd))
  1578. goto out;
  1579. __split_huge_pmd_locked(vma, pmd, haddr, freeze);
  1580. out:
  1581. spin_unlock(ptl);
  1582. mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
  1583. }
  1584. void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
  1585. bool freeze, struct page *page)
  1586. {
  1587. pgd_t *pgd;
  1588. pud_t *pud;
  1589. pmd_t *pmd;
  1590. pgd = pgd_offset(vma->vm_mm, address);
  1591. if (!pgd_present(*pgd))
  1592. return;
  1593. pud = pud_offset(pgd, address);
  1594. if (!pud_present(*pud))
  1595. return;
  1596. pmd = pmd_offset(pud, address);
  1597. __split_huge_pmd(vma, pmd, address, freeze, page);
  1598. }
  1599. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  1600. unsigned long start,
  1601. unsigned long end,
  1602. long adjust_next)
  1603. {
  1604. /*
  1605. * If the new start address isn't hpage aligned and it could
  1606. * previously contain an hugepage: check if we need to split
  1607. * an huge pmd.
  1608. */
  1609. if (start & ~HPAGE_PMD_MASK &&
  1610. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  1611. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  1612. split_huge_pmd_address(vma, start, false, NULL);
  1613. /*
  1614. * If the new end address isn't hpage aligned and it could
  1615. * previously contain an hugepage: check if we need to split
  1616. * an huge pmd.
  1617. */
  1618. if (end & ~HPAGE_PMD_MASK &&
  1619. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  1620. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  1621. split_huge_pmd_address(vma, end, false, NULL);
  1622. /*
  1623. * If we're also updating the vma->vm_next->vm_start, if the new
  1624. * vm_next->vm_start isn't page aligned and it could previously
  1625. * contain an hugepage: check if we need to split an huge pmd.
  1626. */
  1627. if (adjust_next > 0) {
  1628. struct vm_area_struct *next = vma->vm_next;
  1629. unsigned long nstart = next->vm_start;
  1630. nstart += adjust_next << PAGE_SHIFT;
  1631. if (nstart & ~HPAGE_PMD_MASK &&
  1632. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  1633. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  1634. split_huge_pmd_address(next, nstart, false, NULL);
  1635. }
  1636. }
  1637. static void freeze_page(struct page *page)
  1638. {
  1639. enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
  1640. TTU_RMAP_LOCKED;
  1641. int i, ret;
  1642. VM_BUG_ON_PAGE(!PageHead(page), page);
  1643. if (PageAnon(page))
  1644. ttu_flags |= TTU_MIGRATION;
  1645. /* We only need TTU_SPLIT_HUGE_PMD once */
  1646. ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
  1647. for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
  1648. /* Cut short if the page is unmapped */
  1649. if (page_count(page) == 1)
  1650. return;
  1651. ret = try_to_unmap(page + i, ttu_flags);
  1652. }
  1653. VM_BUG_ON_PAGE(ret, page + i - 1);
  1654. }
  1655. static void unfreeze_page(struct page *page)
  1656. {
  1657. int i;
  1658. for (i = 0; i < HPAGE_PMD_NR; i++)
  1659. remove_migration_ptes(page + i, page + i, true);
  1660. }
  1661. static void __split_huge_page_tail(struct page *head, int tail,
  1662. struct lruvec *lruvec, struct list_head *list)
  1663. {
  1664. struct page *page_tail = head + tail;
  1665. VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
  1666. VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
  1667. /*
  1668. * tail_page->_refcount is zero and not changing from under us. But
  1669. * get_page_unless_zero() may be running from under us on the
  1670. * tail_page. If we used atomic_set() below instead of atomic_inc() or
  1671. * atomic_add(), we would then run atomic_set() concurrently with
  1672. * get_page_unless_zero(), and atomic_set() is implemented in C not
  1673. * using locked ops. spin_unlock on x86 sometime uses locked ops
  1674. * because of PPro errata 66, 92, so unless somebody can guarantee
  1675. * atomic_set() here would be safe on all archs (and not only on x86),
  1676. * it's safer to use atomic_inc()/atomic_add().
  1677. */
  1678. if (PageAnon(head)) {
  1679. page_ref_inc(page_tail);
  1680. } else {
  1681. /* Additional pin to radix tree */
  1682. page_ref_add(page_tail, 2);
  1683. }
  1684. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  1685. page_tail->flags |= (head->flags &
  1686. ((1L << PG_referenced) |
  1687. (1L << PG_swapbacked) |
  1688. (1L << PG_mlocked) |
  1689. (1L << PG_uptodate) |
  1690. (1L << PG_active) |
  1691. (1L << PG_locked) |
  1692. (1L << PG_unevictable) |
  1693. (1L << PG_dirty)));
  1694. /*
  1695. * After clearing PageTail the gup refcount can be released.
  1696. * Page flags also must be visible before we make the page non-compound.
  1697. */
  1698. smp_wmb();
  1699. clear_compound_head(page_tail);
  1700. if (page_is_young(head))
  1701. set_page_young(page_tail);
  1702. if (page_is_idle(head))
  1703. set_page_idle(page_tail);
  1704. /* ->mapping in first tail page is compound_mapcount */
  1705. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  1706. page_tail);
  1707. page_tail->mapping = head->mapping;
  1708. page_tail->index = head->index + tail;
  1709. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  1710. lru_add_page_tail(head, page_tail, lruvec, list);
  1711. }
  1712. static void __split_huge_page(struct page *page, struct list_head *list,
  1713. unsigned long flags)
  1714. {
  1715. struct page *head = compound_head(page);
  1716. struct zone *zone = page_zone(head);
  1717. struct lruvec *lruvec;
  1718. pgoff_t end = -1;
  1719. int i;
  1720. lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
  1721. /* complete memcg works before add pages to LRU */
  1722. mem_cgroup_split_huge_fixup(head);
  1723. if (!PageAnon(page))
  1724. end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
  1725. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1726. __split_huge_page_tail(head, i, lruvec, list);
  1727. /* Some pages can be beyond i_size: drop them from page cache */
  1728. if (head[i].index >= end) {
  1729. __ClearPageDirty(head + i);
  1730. __delete_from_page_cache(head + i, NULL);
  1731. if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
  1732. shmem_uncharge(head->mapping->host, 1);
  1733. put_page(head + i);
  1734. }
  1735. }
  1736. ClearPageCompound(head);
  1737. /* See comment in __split_huge_page_tail() */
  1738. if (PageAnon(head)) {
  1739. page_ref_inc(head);
  1740. } else {
  1741. /* Additional pin to radix tree */
  1742. page_ref_add(head, 2);
  1743. spin_unlock(&head->mapping->tree_lock);
  1744. }
  1745. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  1746. unfreeze_page(head);
  1747. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1748. struct page *subpage = head + i;
  1749. if (subpage == page)
  1750. continue;
  1751. unlock_page(subpage);
  1752. /*
  1753. * Subpages may be freed if there wasn't any mapping
  1754. * like if add_to_swap() is running on a lru page that
  1755. * had its mapping zapped. And freeing these pages
  1756. * requires taking the lru_lock so we do the put_page
  1757. * of the tail pages after the split is complete.
  1758. */
  1759. put_page(subpage);
  1760. }
  1761. }
  1762. int total_mapcount(struct page *page)
  1763. {
  1764. int i, compound, ret;
  1765. VM_BUG_ON_PAGE(PageTail(page), page);
  1766. if (likely(!PageCompound(page)))
  1767. return atomic_read(&page->_mapcount) + 1;
  1768. compound = compound_mapcount(page);
  1769. if (PageHuge(page))
  1770. return compound;
  1771. ret = compound;
  1772. for (i = 0; i < HPAGE_PMD_NR; i++)
  1773. ret += atomic_read(&page[i]._mapcount) + 1;
  1774. /* File pages has compound_mapcount included in _mapcount */
  1775. if (!PageAnon(page))
  1776. return ret - compound * HPAGE_PMD_NR;
  1777. if (PageDoubleMap(page))
  1778. ret -= HPAGE_PMD_NR;
  1779. return ret;
  1780. }
  1781. /*
  1782. * This calculates accurately how many mappings a transparent hugepage
  1783. * has (unlike page_mapcount() which isn't fully accurate). This full
  1784. * accuracy is primarily needed to know if copy-on-write faults can
  1785. * reuse the page and change the mapping to read-write instead of
  1786. * copying them. At the same time this returns the total_mapcount too.
  1787. *
  1788. * The function returns the highest mapcount any one of the subpages
  1789. * has. If the return value is one, even if different processes are
  1790. * mapping different subpages of the transparent hugepage, they can
  1791. * all reuse it, because each process is reusing a different subpage.
  1792. *
  1793. * The total_mapcount is instead counting all virtual mappings of the
  1794. * subpages. If the total_mapcount is equal to "one", it tells the
  1795. * caller all mappings belong to the same "mm" and in turn the
  1796. * anon_vma of the transparent hugepage can become the vma->anon_vma
  1797. * local one as no other process may be mapping any of the subpages.
  1798. *
  1799. * It would be more accurate to replace page_mapcount() with
  1800. * page_trans_huge_mapcount(), however we only use
  1801. * page_trans_huge_mapcount() in the copy-on-write faults where we
  1802. * need full accuracy to avoid breaking page pinning, because
  1803. * page_trans_huge_mapcount() is slower than page_mapcount().
  1804. */
  1805. int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
  1806. {
  1807. int i, ret, _total_mapcount, mapcount;
  1808. /* hugetlbfs shouldn't call it */
  1809. VM_BUG_ON_PAGE(PageHuge(page), page);
  1810. if (likely(!PageTransCompound(page))) {
  1811. mapcount = atomic_read(&page->_mapcount) + 1;
  1812. if (total_mapcount)
  1813. *total_mapcount = mapcount;
  1814. return mapcount;
  1815. }
  1816. page = compound_head(page);
  1817. _total_mapcount = ret = 0;
  1818. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1819. mapcount = atomic_read(&page[i]._mapcount) + 1;
  1820. ret = max(ret, mapcount);
  1821. _total_mapcount += mapcount;
  1822. }
  1823. if (PageDoubleMap(page)) {
  1824. ret -= 1;
  1825. _total_mapcount -= HPAGE_PMD_NR;
  1826. }
  1827. mapcount = compound_mapcount(page);
  1828. ret += mapcount;
  1829. _total_mapcount += mapcount;
  1830. if (total_mapcount)
  1831. *total_mapcount = _total_mapcount;
  1832. return ret;
  1833. }
  1834. /*
  1835. * This function splits huge page into normal pages. @page can point to any
  1836. * subpage of huge page to split. Split doesn't change the position of @page.
  1837. *
  1838. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  1839. * The huge page must be locked.
  1840. *
  1841. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  1842. *
  1843. * Both head page and tail pages will inherit mapping, flags, and so on from
  1844. * the hugepage.
  1845. *
  1846. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  1847. * they are not mapped.
  1848. *
  1849. * Returns 0 if the hugepage is split successfully.
  1850. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  1851. * us.
  1852. */
  1853. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1854. {
  1855. struct page *head = compound_head(page);
  1856. struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
  1857. struct anon_vma *anon_vma = NULL;
  1858. struct address_space *mapping = NULL;
  1859. int count, mapcount, extra_pins, ret;
  1860. bool mlocked;
  1861. unsigned long flags;
  1862. VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
  1863. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1864. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1865. VM_BUG_ON_PAGE(!PageCompound(page), page);
  1866. if (PageAnon(head)) {
  1867. /*
  1868. * The caller does not necessarily hold an mmap_sem that would
  1869. * prevent the anon_vma disappearing so we first we take a
  1870. * reference to it and then lock the anon_vma for write. This
  1871. * is similar to page_lock_anon_vma_read except the write lock
  1872. * is taken to serialise against parallel split or collapse
  1873. * operations.
  1874. */
  1875. anon_vma = page_get_anon_vma(head);
  1876. if (!anon_vma) {
  1877. ret = -EBUSY;
  1878. goto out;
  1879. }
  1880. extra_pins = 0;
  1881. mapping = NULL;
  1882. anon_vma_lock_write(anon_vma);
  1883. } else {
  1884. mapping = head->mapping;
  1885. /* Truncated ? */
  1886. if (!mapping) {
  1887. ret = -EBUSY;
  1888. goto out;
  1889. }
  1890. /* Addidional pins from radix tree */
  1891. extra_pins = HPAGE_PMD_NR;
  1892. anon_vma = NULL;
  1893. i_mmap_lock_read(mapping);
  1894. }
  1895. /*
  1896. * Racy check if we can split the page, before freeze_page() will
  1897. * split PMDs
  1898. */
  1899. if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
  1900. ret = -EBUSY;
  1901. goto out_unlock;
  1902. }
  1903. mlocked = PageMlocked(page);
  1904. freeze_page(head);
  1905. VM_BUG_ON_PAGE(compound_mapcount(head), head);
  1906. /* Make sure the page is not on per-CPU pagevec as it takes pin */
  1907. if (mlocked)
  1908. lru_add_drain();
  1909. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1910. spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
  1911. if (mapping) {
  1912. void **pslot;
  1913. spin_lock(&mapping->tree_lock);
  1914. pslot = radix_tree_lookup_slot(&mapping->page_tree,
  1915. page_index(head));
  1916. /*
  1917. * Check if the head page is present in radix tree.
  1918. * We assume all tail are present too, if head is there.
  1919. */
  1920. if (radix_tree_deref_slot_protected(pslot,
  1921. &mapping->tree_lock) != head)
  1922. goto fail;
  1923. }
  1924. /* Prevent deferred_split_scan() touching ->_refcount */
  1925. spin_lock(&pgdata->split_queue_lock);
  1926. count = page_count(head);
  1927. mapcount = total_mapcount(head);
  1928. if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
  1929. if (!list_empty(page_deferred_list(head))) {
  1930. pgdata->split_queue_len--;
  1931. list_del(page_deferred_list(head));
  1932. }
  1933. if (mapping)
  1934. __dec_node_page_state(page, NR_SHMEM_THPS);
  1935. spin_unlock(&pgdata->split_queue_lock);
  1936. __split_huge_page(page, list, flags);
  1937. ret = 0;
  1938. } else {
  1939. if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
  1940. pr_alert("total_mapcount: %u, page_count(): %u\n",
  1941. mapcount, count);
  1942. if (PageTail(page))
  1943. dump_page(head, NULL);
  1944. dump_page(page, "total_mapcount(head) > 0");
  1945. BUG();
  1946. }
  1947. spin_unlock(&pgdata->split_queue_lock);
  1948. fail: if (mapping)
  1949. spin_unlock(&mapping->tree_lock);
  1950. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  1951. unfreeze_page(head);
  1952. ret = -EBUSY;
  1953. }
  1954. out_unlock:
  1955. if (anon_vma) {
  1956. anon_vma_unlock_write(anon_vma);
  1957. put_anon_vma(anon_vma);
  1958. }
  1959. if (mapping)
  1960. i_mmap_unlock_read(mapping);
  1961. out:
  1962. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  1963. return ret;
  1964. }
  1965. void free_transhuge_page(struct page *page)
  1966. {
  1967. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  1968. unsigned long flags;
  1969. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  1970. if (!list_empty(page_deferred_list(page))) {
  1971. pgdata->split_queue_len--;
  1972. list_del(page_deferred_list(page));
  1973. }
  1974. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  1975. free_compound_page(page);
  1976. }
  1977. void deferred_split_huge_page(struct page *page)
  1978. {
  1979. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  1980. unsigned long flags;
  1981. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  1982. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  1983. if (list_empty(page_deferred_list(page))) {
  1984. count_vm_event(THP_DEFERRED_SPLIT_PAGE);
  1985. list_add_tail(page_deferred_list(page), &pgdata->split_queue);
  1986. pgdata->split_queue_len++;
  1987. }
  1988. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  1989. }
  1990. static unsigned long deferred_split_count(struct shrinker *shrink,
  1991. struct shrink_control *sc)
  1992. {
  1993. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  1994. return ACCESS_ONCE(pgdata->split_queue_len);
  1995. }
  1996. static unsigned long deferred_split_scan(struct shrinker *shrink,
  1997. struct shrink_control *sc)
  1998. {
  1999. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2000. unsigned long flags;
  2001. LIST_HEAD(list), *pos, *next;
  2002. struct page *page;
  2003. int split = 0;
  2004. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2005. /* Take pin on all head pages to avoid freeing them under us */
  2006. list_for_each_safe(pos, next, &pgdata->split_queue) {
  2007. page = list_entry((void *)pos, struct page, mapping);
  2008. page = compound_head(page);
  2009. if (get_page_unless_zero(page)) {
  2010. list_move(page_deferred_list(page), &list);
  2011. } else {
  2012. /* We lost race with put_compound_page() */
  2013. list_del_init(page_deferred_list(page));
  2014. pgdata->split_queue_len--;
  2015. }
  2016. if (!--sc->nr_to_scan)
  2017. break;
  2018. }
  2019. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2020. list_for_each_safe(pos, next, &list) {
  2021. page = list_entry((void *)pos, struct page, mapping);
  2022. lock_page(page);
  2023. /* split_huge_page() removes page from list on success */
  2024. if (!split_huge_page(page))
  2025. split++;
  2026. unlock_page(page);
  2027. put_page(page);
  2028. }
  2029. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2030. list_splice_tail(&list, &pgdata->split_queue);
  2031. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2032. /*
  2033. * Stop shrinker if we didn't split any page, but the queue is empty.
  2034. * This can happen if pages were freed under us.
  2035. */
  2036. if (!split && list_empty(&pgdata->split_queue))
  2037. return SHRINK_STOP;
  2038. return split;
  2039. }
  2040. static struct shrinker deferred_split_shrinker = {
  2041. .count_objects = deferred_split_count,
  2042. .scan_objects = deferred_split_scan,
  2043. .seeks = DEFAULT_SEEKS,
  2044. .flags = SHRINKER_NUMA_AWARE,
  2045. };
  2046. #ifdef CONFIG_DEBUG_FS
  2047. static int split_huge_pages_set(void *data, u64 val)
  2048. {
  2049. struct zone *zone;
  2050. struct page *page;
  2051. unsigned long pfn, max_zone_pfn;
  2052. unsigned long total = 0, split = 0;
  2053. if (val != 1)
  2054. return -EINVAL;
  2055. for_each_populated_zone(zone) {
  2056. max_zone_pfn = zone_end_pfn(zone);
  2057. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  2058. if (!pfn_valid(pfn))
  2059. continue;
  2060. page = pfn_to_page(pfn);
  2061. if (!get_page_unless_zero(page))
  2062. continue;
  2063. if (zone != page_zone(page))
  2064. goto next;
  2065. if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
  2066. goto next;
  2067. total++;
  2068. lock_page(page);
  2069. if (!split_huge_page(page))
  2070. split++;
  2071. unlock_page(page);
  2072. next:
  2073. put_page(page);
  2074. }
  2075. }
  2076. pr_info("%lu of %lu THP split\n", split, total);
  2077. return 0;
  2078. }
  2079. DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
  2080. "%llu\n");
  2081. static int __init split_huge_pages_debugfs(void)
  2082. {
  2083. void *ret;
  2084. ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
  2085. &split_huge_pages_fops);
  2086. if (!ret)
  2087. pr_warn("Failed to create split_huge_pages in debugfs");
  2088. return 0;
  2089. }
  2090. late_initcall(split_huge_pages_debugfs);
  2091. #endif