namespace.c 84 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/init.h> /* init_rootfs */
  19. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  20. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  21. #include <linux/uaccess.h>
  22. #include <linux/proc_ns.h>
  23. #include <linux/magic.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/task_work.h>
  26. #include "pnode.h"
  27. #include "internal.h"
  28. /* Maximum number of mounts in a mount namespace */
  29. unsigned int sysctl_mount_max __read_mostly = 100000;
  30. static unsigned int m_hash_mask __read_mostly;
  31. static unsigned int m_hash_shift __read_mostly;
  32. static unsigned int mp_hash_mask __read_mostly;
  33. static unsigned int mp_hash_shift __read_mostly;
  34. static __initdata unsigned long mhash_entries;
  35. static int __init set_mhash_entries(char *str)
  36. {
  37. if (!str)
  38. return 0;
  39. mhash_entries = simple_strtoul(str, &str, 0);
  40. return 1;
  41. }
  42. __setup("mhash_entries=", set_mhash_entries);
  43. static __initdata unsigned long mphash_entries;
  44. static int __init set_mphash_entries(char *str)
  45. {
  46. if (!str)
  47. return 0;
  48. mphash_entries = simple_strtoul(str, &str, 0);
  49. return 1;
  50. }
  51. __setup("mphash_entries=", set_mphash_entries);
  52. static u64 event;
  53. static DEFINE_IDA(mnt_id_ida);
  54. static DEFINE_IDA(mnt_group_ida);
  55. static DEFINE_SPINLOCK(mnt_id_lock);
  56. static int mnt_id_start = 0;
  57. static int mnt_group_start = 1;
  58. static struct hlist_head *mount_hashtable __read_mostly;
  59. static struct hlist_head *mountpoint_hashtable __read_mostly;
  60. static struct kmem_cache *mnt_cache __read_mostly;
  61. static DECLARE_RWSEM(namespace_sem);
  62. /* /sys/fs */
  63. struct kobject *fs_kobj;
  64. EXPORT_SYMBOL_GPL(fs_kobj);
  65. /*
  66. * vfsmount lock may be taken for read to prevent changes to the
  67. * vfsmount hash, ie. during mountpoint lookups or walking back
  68. * up the tree.
  69. *
  70. * It should be taken for write in all cases where the vfsmount
  71. * tree or hash is modified or when a vfsmount structure is modified.
  72. */
  73. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  74. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  75. {
  76. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  77. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  78. tmp = tmp + (tmp >> m_hash_shift);
  79. return &mount_hashtable[tmp & m_hash_mask];
  80. }
  81. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  82. {
  83. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  84. tmp = tmp + (tmp >> mp_hash_shift);
  85. return &mountpoint_hashtable[tmp & mp_hash_mask];
  86. }
  87. static int mnt_alloc_id(struct mount *mnt)
  88. {
  89. int res;
  90. retry:
  91. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  92. spin_lock(&mnt_id_lock);
  93. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  94. if (!res)
  95. mnt_id_start = mnt->mnt_id + 1;
  96. spin_unlock(&mnt_id_lock);
  97. if (res == -EAGAIN)
  98. goto retry;
  99. return res;
  100. }
  101. static void mnt_free_id(struct mount *mnt)
  102. {
  103. int id = mnt->mnt_id;
  104. spin_lock(&mnt_id_lock);
  105. ida_remove(&mnt_id_ida, id);
  106. if (mnt_id_start > id)
  107. mnt_id_start = id;
  108. spin_unlock(&mnt_id_lock);
  109. }
  110. /*
  111. * Allocate a new peer group ID
  112. *
  113. * mnt_group_ida is protected by namespace_sem
  114. */
  115. static int mnt_alloc_group_id(struct mount *mnt)
  116. {
  117. int res;
  118. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  119. return -ENOMEM;
  120. res = ida_get_new_above(&mnt_group_ida,
  121. mnt_group_start,
  122. &mnt->mnt_group_id);
  123. if (!res)
  124. mnt_group_start = mnt->mnt_group_id + 1;
  125. return res;
  126. }
  127. /*
  128. * Release a peer group ID
  129. */
  130. void mnt_release_group_id(struct mount *mnt)
  131. {
  132. int id = mnt->mnt_group_id;
  133. ida_remove(&mnt_group_ida, id);
  134. if (mnt_group_start > id)
  135. mnt_group_start = id;
  136. mnt->mnt_group_id = 0;
  137. }
  138. /*
  139. * vfsmount lock must be held for read
  140. */
  141. static inline void mnt_add_count(struct mount *mnt, int n)
  142. {
  143. #ifdef CONFIG_SMP
  144. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  145. #else
  146. preempt_disable();
  147. mnt->mnt_count += n;
  148. preempt_enable();
  149. #endif
  150. }
  151. /*
  152. * vfsmount lock must be held for write
  153. */
  154. unsigned int mnt_get_count(struct mount *mnt)
  155. {
  156. #ifdef CONFIG_SMP
  157. unsigned int count = 0;
  158. int cpu;
  159. for_each_possible_cpu(cpu) {
  160. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  161. }
  162. return count;
  163. #else
  164. return mnt->mnt_count;
  165. #endif
  166. }
  167. static void drop_mountpoint(struct fs_pin *p)
  168. {
  169. struct mount *m = container_of(p, struct mount, mnt_umount);
  170. dput(m->mnt_ex_mountpoint);
  171. pin_remove(p);
  172. mntput(&m->mnt);
  173. }
  174. static struct mount *alloc_vfsmnt(const char *name)
  175. {
  176. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  177. if (mnt) {
  178. int err;
  179. err = mnt_alloc_id(mnt);
  180. if (err)
  181. goto out_free_cache;
  182. if (name) {
  183. mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
  184. if (!mnt->mnt_devname)
  185. goto out_free_id;
  186. }
  187. #ifdef CONFIG_SMP
  188. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  189. if (!mnt->mnt_pcp)
  190. goto out_free_devname;
  191. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  192. #else
  193. mnt->mnt_count = 1;
  194. mnt->mnt_writers = 0;
  195. #endif
  196. INIT_HLIST_NODE(&mnt->mnt_hash);
  197. INIT_LIST_HEAD(&mnt->mnt_child);
  198. INIT_LIST_HEAD(&mnt->mnt_mounts);
  199. INIT_LIST_HEAD(&mnt->mnt_list);
  200. INIT_LIST_HEAD(&mnt->mnt_expire);
  201. INIT_LIST_HEAD(&mnt->mnt_share);
  202. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  203. INIT_LIST_HEAD(&mnt->mnt_slave);
  204. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  205. #ifdef CONFIG_FSNOTIFY
  206. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  207. #endif
  208. init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
  209. }
  210. return mnt;
  211. #ifdef CONFIG_SMP
  212. out_free_devname:
  213. kfree_const(mnt->mnt_devname);
  214. #endif
  215. out_free_id:
  216. mnt_free_id(mnt);
  217. out_free_cache:
  218. kmem_cache_free(mnt_cache, mnt);
  219. return NULL;
  220. }
  221. /*
  222. * Most r/o checks on a fs are for operations that take
  223. * discrete amounts of time, like a write() or unlink().
  224. * We must keep track of when those operations start
  225. * (for permission checks) and when they end, so that
  226. * we can determine when writes are able to occur to
  227. * a filesystem.
  228. */
  229. /*
  230. * __mnt_is_readonly: check whether a mount is read-only
  231. * @mnt: the mount to check for its write status
  232. *
  233. * This shouldn't be used directly ouside of the VFS.
  234. * It does not guarantee that the filesystem will stay
  235. * r/w, just that it is right *now*. This can not and
  236. * should not be used in place of IS_RDONLY(inode).
  237. * mnt_want/drop_write() will _keep_ the filesystem
  238. * r/w.
  239. */
  240. int __mnt_is_readonly(struct vfsmount *mnt)
  241. {
  242. if (mnt->mnt_flags & MNT_READONLY)
  243. return 1;
  244. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  245. return 1;
  246. return 0;
  247. }
  248. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  249. static inline void mnt_inc_writers(struct mount *mnt)
  250. {
  251. #ifdef CONFIG_SMP
  252. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  253. #else
  254. mnt->mnt_writers++;
  255. #endif
  256. }
  257. static inline void mnt_dec_writers(struct mount *mnt)
  258. {
  259. #ifdef CONFIG_SMP
  260. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  261. #else
  262. mnt->mnt_writers--;
  263. #endif
  264. }
  265. static unsigned int mnt_get_writers(struct mount *mnt)
  266. {
  267. #ifdef CONFIG_SMP
  268. unsigned int count = 0;
  269. int cpu;
  270. for_each_possible_cpu(cpu) {
  271. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  272. }
  273. return count;
  274. #else
  275. return mnt->mnt_writers;
  276. #endif
  277. }
  278. static int mnt_is_readonly(struct vfsmount *mnt)
  279. {
  280. if (mnt->mnt_sb->s_readonly_remount)
  281. return 1;
  282. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  283. smp_rmb();
  284. return __mnt_is_readonly(mnt);
  285. }
  286. /*
  287. * Most r/o & frozen checks on a fs are for operations that take discrete
  288. * amounts of time, like a write() or unlink(). We must keep track of when
  289. * those operations start (for permission checks) and when they end, so that we
  290. * can determine when writes are able to occur to a filesystem.
  291. */
  292. /**
  293. * __mnt_want_write - get write access to a mount without freeze protection
  294. * @m: the mount on which to take a write
  295. *
  296. * This tells the low-level filesystem that a write is about to be performed to
  297. * it, and makes sure that writes are allowed (mnt it read-write) before
  298. * returning success. This operation does not protect against filesystem being
  299. * frozen. When the write operation is finished, __mnt_drop_write() must be
  300. * called. This is effectively a refcount.
  301. */
  302. int __mnt_want_write(struct vfsmount *m)
  303. {
  304. struct mount *mnt = real_mount(m);
  305. int ret = 0;
  306. preempt_disable();
  307. mnt_inc_writers(mnt);
  308. /*
  309. * The store to mnt_inc_writers must be visible before we pass
  310. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  311. * incremented count after it has set MNT_WRITE_HOLD.
  312. */
  313. smp_mb();
  314. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  315. cpu_relax();
  316. /*
  317. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  318. * be set to match its requirements. So we must not load that until
  319. * MNT_WRITE_HOLD is cleared.
  320. */
  321. smp_rmb();
  322. if (mnt_is_readonly(m)) {
  323. mnt_dec_writers(mnt);
  324. ret = -EROFS;
  325. }
  326. preempt_enable();
  327. return ret;
  328. }
  329. /**
  330. * mnt_want_write - get write access to a mount
  331. * @m: the mount on which to take a write
  332. *
  333. * This tells the low-level filesystem that a write is about to be performed to
  334. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  335. * is not frozen) before returning success. When the write operation is
  336. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  337. */
  338. int mnt_want_write(struct vfsmount *m)
  339. {
  340. int ret;
  341. sb_start_write(m->mnt_sb);
  342. ret = __mnt_want_write(m);
  343. if (ret)
  344. sb_end_write(m->mnt_sb);
  345. return ret;
  346. }
  347. EXPORT_SYMBOL_GPL(mnt_want_write);
  348. /**
  349. * mnt_clone_write - get write access to a mount
  350. * @mnt: the mount on which to take a write
  351. *
  352. * This is effectively like mnt_want_write, except
  353. * it must only be used to take an extra write reference
  354. * on a mountpoint that we already know has a write reference
  355. * on it. This allows some optimisation.
  356. *
  357. * After finished, mnt_drop_write must be called as usual to
  358. * drop the reference.
  359. */
  360. int mnt_clone_write(struct vfsmount *mnt)
  361. {
  362. /* superblock may be r/o */
  363. if (__mnt_is_readonly(mnt))
  364. return -EROFS;
  365. preempt_disable();
  366. mnt_inc_writers(real_mount(mnt));
  367. preempt_enable();
  368. return 0;
  369. }
  370. EXPORT_SYMBOL_GPL(mnt_clone_write);
  371. /**
  372. * __mnt_want_write_file - get write access to a file's mount
  373. * @file: the file who's mount on which to take a write
  374. *
  375. * This is like __mnt_want_write, but it takes a file and can
  376. * do some optimisations if the file is open for write already
  377. */
  378. int __mnt_want_write_file(struct file *file)
  379. {
  380. if (!(file->f_mode & FMODE_WRITER))
  381. return __mnt_want_write(file->f_path.mnt);
  382. else
  383. return mnt_clone_write(file->f_path.mnt);
  384. }
  385. /**
  386. * mnt_want_write_file - get write access to a file's mount
  387. * @file: the file who's mount on which to take a write
  388. *
  389. * This is like mnt_want_write, but it takes a file and can
  390. * do some optimisations if the file is open for write already
  391. */
  392. int mnt_want_write_file(struct file *file)
  393. {
  394. int ret;
  395. sb_start_write(file->f_path.mnt->mnt_sb);
  396. ret = __mnt_want_write_file(file);
  397. if (ret)
  398. sb_end_write(file->f_path.mnt->mnt_sb);
  399. return ret;
  400. }
  401. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  402. /**
  403. * __mnt_drop_write - give up write access to a mount
  404. * @mnt: the mount on which to give up write access
  405. *
  406. * Tells the low-level filesystem that we are done
  407. * performing writes to it. Must be matched with
  408. * __mnt_want_write() call above.
  409. */
  410. void __mnt_drop_write(struct vfsmount *mnt)
  411. {
  412. preempt_disable();
  413. mnt_dec_writers(real_mount(mnt));
  414. preempt_enable();
  415. }
  416. /**
  417. * mnt_drop_write - give up write access to a mount
  418. * @mnt: the mount on which to give up write access
  419. *
  420. * Tells the low-level filesystem that we are done performing writes to it and
  421. * also allows filesystem to be frozen again. Must be matched with
  422. * mnt_want_write() call above.
  423. */
  424. void mnt_drop_write(struct vfsmount *mnt)
  425. {
  426. __mnt_drop_write(mnt);
  427. sb_end_write(mnt->mnt_sb);
  428. }
  429. EXPORT_SYMBOL_GPL(mnt_drop_write);
  430. void __mnt_drop_write_file(struct file *file)
  431. {
  432. __mnt_drop_write(file->f_path.mnt);
  433. }
  434. void mnt_drop_write_file(struct file *file)
  435. {
  436. mnt_drop_write(file->f_path.mnt);
  437. }
  438. EXPORT_SYMBOL(mnt_drop_write_file);
  439. static int mnt_make_readonly(struct mount *mnt)
  440. {
  441. int ret = 0;
  442. lock_mount_hash();
  443. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  444. /*
  445. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  446. * should be visible before we do.
  447. */
  448. smp_mb();
  449. /*
  450. * With writers on hold, if this value is zero, then there are
  451. * definitely no active writers (although held writers may subsequently
  452. * increment the count, they'll have to wait, and decrement it after
  453. * seeing MNT_READONLY).
  454. *
  455. * It is OK to have counter incremented on one CPU and decremented on
  456. * another: the sum will add up correctly. The danger would be when we
  457. * sum up each counter, if we read a counter before it is incremented,
  458. * but then read another CPU's count which it has been subsequently
  459. * decremented from -- we would see more decrements than we should.
  460. * MNT_WRITE_HOLD protects against this scenario, because
  461. * mnt_want_write first increments count, then smp_mb, then spins on
  462. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  463. * we're counting up here.
  464. */
  465. if (mnt_get_writers(mnt) > 0)
  466. ret = -EBUSY;
  467. else
  468. mnt->mnt.mnt_flags |= MNT_READONLY;
  469. /*
  470. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  471. * that become unheld will see MNT_READONLY.
  472. */
  473. smp_wmb();
  474. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  475. unlock_mount_hash();
  476. return ret;
  477. }
  478. static void __mnt_unmake_readonly(struct mount *mnt)
  479. {
  480. lock_mount_hash();
  481. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  482. unlock_mount_hash();
  483. }
  484. int sb_prepare_remount_readonly(struct super_block *sb)
  485. {
  486. struct mount *mnt;
  487. int err = 0;
  488. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  489. if (atomic_long_read(&sb->s_remove_count))
  490. return -EBUSY;
  491. lock_mount_hash();
  492. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  493. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  494. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  495. smp_mb();
  496. if (mnt_get_writers(mnt) > 0) {
  497. err = -EBUSY;
  498. break;
  499. }
  500. }
  501. }
  502. if (!err && atomic_long_read(&sb->s_remove_count))
  503. err = -EBUSY;
  504. if (!err) {
  505. sb->s_readonly_remount = 1;
  506. smp_wmb();
  507. }
  508. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  509. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  510. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  511. }
  512. unlock_mount_hash();
  513. return err;
  514. }
  515. static void free_vfsmnt(struct mount *mnt)
  516. {
  517. kfree_const(mnt->mnt_devname);
  518. #ifdef CONFIG_SMP
  519. free_percpu(mnt->mnt_pcp);
  520. #endif
  521. kmem_cache_free(mnt_cache, mnt);
  522. }
  523. static void delayed_free_vfsmnt(struct rcu_head *head)
  524. {
  525. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  526. }
  527. /* call under rcu_read_lock */
  528. int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  529. {
  530. struct mount *mnt;
  531. if (read_seqretry(&mount_lock, seq))
  532. return 1;
  533. if (bastard == NULL)
  534. return 0;
  535. mnt = real_mount(bastard);
  536. mnt_add_count(mnt, 1);
  537. if (likely(!read_seqretry(&mount_lock, seq)))
  538. return 0;
  539. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  540. mnt_add_count(mnt, -1);
  541. return 1;
  542. }
  543. return -1;
  544. }
  545. /* call under rcu_read_lock */
  546. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  547. {
  548. int res = __legitimize_mnt(bastard, seq);
  549. if (likely(!res))
  550. return true;
  551. if (unlikely(res < 0)) {
  552. rcu_read_unlock();
  553. mntput(bastard);
  554. rcu_read_lock();
  555. }
  556. return false;
  557. }
  558. /*
  559. * find the first mount at @dentry on vfsmount @mnt.
  560. * call under rcu_read_lock()
  561. */
  562. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  563. {
  564. struct hlist_head *head = m_hash(mnt, dentry);
  565. struct mount *p;
  566. hlist_for_each_entry_rcu(p, head, mnt_hash)
  567. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  568. return p;
  569. return NULL;
  570. }
  571. /*
  572. * find the last mount at @dentry on vfsmount @mnt.
  573. * mount_lock must be held.
  574. */
  575. struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
  576. {
  577. struct mount *p, *res = NULL;
  578. p = __lookup_mnt(mnt, dentry);
  579. if (!p)
  580. goto out;
  581. if (!(p->mnt.mnt_flags & MNT_UMOUNT))
  582. res = p;
  583. hlist_for_each_entry_continue(p, mnt_hash) {
  584. if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
  585. break;
  586. if (!(p->mnt.mnt_flags & MNT_UMOUNT))
  587. res = p;
  588. }
  589. out:
  590. return res;
  591. }
  592. /*
  593. * lookup_mnt - Return the first child mount mounted at path
  594. *
  595. * "First" means first mounted chronologically. If you create the
  596. * following mounts:
  597. *
  598. * mount /dev/sda1 /mnt
  599. * mount /dev/sda2 /mnt
  600. * mount /dev/sda3 /mnt
  601. *
  602. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  603. * return successively the root dentry and vfsmount of /dev/sda1, then
  604. * /dev/sda2, then /dev/sda3, then NULL.
  605. *
  606. * lookup_mnt takes a reference to the found vfsmount.
  607. */
  608. struct vfsmount *lookup_mnt(const struct path *path)
  609. {
  610. struct mount *child_mnt;
  611. struct vfsmount *m;
  612. unsigned seq;
  613. rcu_read_lock();
  614. do {
  615. seq = read_seqbegin(&mount_lock);
  616. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  617. m = child_mnt ? &child_mnt->mnt : NULL;
  618. } while (!legitimize_mnt(m, seq));
  619. rcu_read_unlock();
  620. return m;
  621. }
  622. /*
  623. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  624. * current mount namespace.
  625. *
  626. * The common case is dentries are not mountpoints at all and that
  627. * test is handled inline. For the slow case when we are actually
  628. * dealing with a mountpoint of some kind, walk through all of the
  629. * mounts in the current mount namespace and test to see if the dentry
  630. * is a mountpoint.
  631. *
  632. * The mount_hashtable is not usable in the context because we
  633. * need to identify all mounts that may be in the current mount
  634. * namespace not just a mount that happens to have some specified
  635. * parent mount.
  636. */
  637. bool __is_local_mountpoint(struct dentry *dentry)
  638. {
  639. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  640. struct mount *mnt;
  641. bool is_covered = false;
  642. if (!d_mountpoint(dentry))
  643. goto out;
  644. down_read(&namespace_sem);
  645. list_for_each_entry(mnt, &ns->list, mnt_list) {
  646. is_covered = (mnt->mnt_mountpoint == dentry);
  647. if (is_covered)
  648. break;
  649. }
  650. up_read(&namespace_sem);
  651. out:
  652. return is_covered;
  653. }
  654. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  655. {
  656. struct hlist_head *chain = mp_hash(dentry);
  657. struct mountpoint *mp;
  658. hlist_for_each_entry(mp, chain, m_hash) {
  659. if (mp->m_dentry == dentry) {
  660. /* might be worth a WARN_ON() */
  661. if (d_unlinked(dentry))
  662. return ERR_PTR(-ENOENT);
  663. mp->m_count++;
  664. return mp;
  665. }
  666. }
  667. return NULL;
  668. }
  669. static struct mountpoint *get_mountpoint(struct dentry *dentry)
  670. {
  671. struct mountpoint *mp, *new = NULL;
  672. int ret;
  673. if (d_mountpoint(dentry)) {
  674. mountpoint:
  675. read_seqlock_excl(&mount_lock);
  676. mp = lookup_mountpoint(dentry);
  677. read_sequnlock_excl(&mount_lock);
  678. if (mp)
  679. goto done;
  680. }
  681. if (!new)
  682. new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  683. if (!new)
  684. return ERR_PTR(-ENOMEM);
  685. /* Exactly one processes may set d_mounted */
  686. ret = d_set_mounted(dentry);
  687. /* Someone else set d_mounted? */
  688. if (ret == -EBUSY)
  689. goto mountpoint;
  690. /* The dentry is not available as a mountpoint? */
  691. mp = ERR_PTR(ret);
  692. if (ret)
  693. goto done;
  694. /* Add the new mountpoint to the hash table */
  695. read_seqlock_excl(&mount_lock);
  696. new->m_dentry = dentry;
  697. new->m_count = 1;
  698. hlist_add_head(&new->m_hash, mp_hash(dentry));
  699. INIT_HLIST_HEAD(&new->m_list);
  700. read_sequnlock_excl(&mount_lock);
  701. mp = new;
  702. new = NULL;
  703. done:
  704. kfree(new);
  705. return mp;
  706. }
  707. static void put_mountpoint(struct mountpoint *mp)
  708. {
  709. if (!--mp->m_count) {
  710. struct dentry *dentry = mp->m_dentry;
  711. BUG_ON(!hlist_empty(&mp->m_list));
  712. spin_lock(&dentry->d_lock);
  713. dentry->d_flags &= ~DCACHE_MOUNTED;
  714. spin_unlock(&dentry->d_lock);
  715. hlist_del(&mp->m_hash);
  716. kfree(mp);
  717. }
  718. }
  719. static inline int check_mnt(struct mount *mnt)
  720. {
  721. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  722. }
  723. /*
  724. * vfsmount lock must be held for write
  725. */
  726. static void touch_mnt_namespace(struct mnt_namespace *ns)
  727. {
  728. if (ns) {
  729. ns->event = ++event;
  730. wake_up_interruptible(&ns->poll);
  731. }
  732. }
  733. /*
  734. * vfsmount lock must be held for write
  735. */
  736. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  737. {
  738. if (ns && ns->event != event) {
  739. ns->event = event;
  740. wake_up_interruptible(&ns->poll);
  741. }
  742. }
  743. /*
  744. * vfsmount lock must be held for write
  745. */
  746. static void unhash_mnt(struct mount *mnt)
  747. {
  748. mnt->mnt_parent = mnt;
  749. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  750. list_del_init(&mnt->mnt_child);
  751. hlist_del_init_rcu(&mnt->mnt_hash);
  752. hlist_del_init(&mnt->mnt_mp_list);
  753. put_mountpoint(mnt->mnt_mp);
  754. mnt->mnt_mp = NULL;
  755. }
  756. /*
  757. * vfsmount lock must be held for write
  758. */
  759. static void detach_mnt(struct mount *mnt, struct path *old_path)
  760. {
  761. old_path->dentry = mnt->mnt_mountpoint;
  762. old_path->mnt = &mnt->mnt_parent->mnt;
  763. unhash_mnt(mnt);
  764. }
  765. /*
  766. * vfsmount lock must be held for write
  767. */
  768. static void umount_mnt(struct mount *mnt)
  769. {
  770. /* old mountpoint will be dropped when we can do that */
  771. mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
  772. unhash_mnt(mnt);
  773. }
  774. /*
  775. * vfsmount lock must be held for write
  776. */
  777. void mnt_set_mountpoint(struct mount *mnt,
  778. struct mountpoint *mp,
  779. struct mount *child_mnt)
  780. {
  781. mp->m_count++;
  782. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  783. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  784. child_mnt->mnt_parent = mnt;
  785. child_mnt->mnt_mp = mp;
  786. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  787. }
  788. /*
  789. * vfsmount lock must be held for write
  790. */
  791. static void attach_mnt(struct mount *mnt,
  792. struct mount *parent,
  793. struct mountpoint *mp)
  794. {
  795. mnt_set_mountpoint(parent, mp, mnt);
  796. hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
  797. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  798. }
  799. static void attach_shadowed(struct mount *mnt,
  800. struct mount *parent,
  801. struct mount *shadows)
  802. {
  803. if (shadows) {
  804. hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
  805. list_add(&mnt->mnt_child, &shadows->mnt_child);
  806. } else {
  807. hlist_add_head_rcu(&mnt->mnt_hash,
  808. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  809. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  810. }
  811. }
  812. /*
  813. * vfsmount lock must be held for write
  814. */
  815. static void commit_tree(struct mount *mnt, struct mount *shadows)
  816. {
  817. struct mount *parent = mnt->mnt_parent;
  818. struct mount *m;
  819. LIST_HEAD(head);
  820. struct mnt_namespace *n = parent->mnt_ns;
  821. BUG_ON(parent == mnt);
  822. list_add_tail(&head, &mnt->mnt_list);
  823. list_for_each_entry(m, &head, mnt_list)
  824. m->mnt_ns = n;
  825. list_splice(&head, n->list.prev);
  826. n->mounts += n->pending_mounts;
  827. n->pending_mounts = 0;
  828. attach_shadowed(mnt, parent, shadows);
  829. touch_mnt_namespace(n);
  830. }
  831. static struct mount *next_mnt(struct mount *p, struct mount *root)
  832. {
  833. struct list_head *next = p->mnt_mounts.next;
  834. if (next == &p->mnt_mounts) {
  835. while (1) {
  836. if (p == root)
  837. return NULL;
  838. next = p->mnt_child.next;
  839. if (next != &p->mnt_parent->mnt_mounts)
  840. break;
  841. p = p->mnt_parent;
  842. }
  843. }
  844. return list_entry(next, struct mount, mnt_child);
  845. }
  846. static struct mount *skip_mnt_tree(struct mount *p)
  847. {
  848. struct list_head *prev = p->mnt_mounts.prev;
  849. while (prev != &p->mnt_mounts) {
  850. p = list_entry(prev, struct mount, mnt_child);
  851. prev = p->mnt_mounts.prev;
  852. }
  853. return p;
  854. }
  855. struct vfsmount *
  856. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  857. {
  858. struct mount *mnt;
  859. struct dentry *root;
  860. if (!type)
  861. return ERR_PTR(-ENODEV);
  862. mnt = alloc_vfsmnt(name);
  863. if (!mnt)
  864. return ERR_PTR(-ENOMEM);
  865. if (flags & MS_KERNMOUNT)
  866. mnt->mnt.mnt_flags = MNT_INTERNAL;
  867. root = mount_fs(type, flags, name, data);
  868. if (IS_ERR(root)) {
  869. mnt_free_id(mnt);
  870. free_vfsmnt(mnt);
  871. return ERR_CAST(root);
  872. }
  873. mnt->mnt.mnt_root = root;
  874. mnt->mnt.mnt_sb = root->d_sb;
  875. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  876. mnt->mnt_parent = mnt;
  877. lock_mount_hash();
  878. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  879. unlock_mount_hash();
  880. return &mnt->mnt;
  881. }
  882. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  883. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  884. int flag)
  885. {
  886. struct super_block *sb = old->mnt.mnt_sb;
  887. struct mount *mnt;
  888. int err;
  889. mnt = alloc_vfsmnt(old->mnt_devname);
  890. if (!mnt)
  891. return ERR_PTR(-ENOMEM);
  892. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  893. mnt->mnt_group_id = 0; /* not a peer of original */
  894. else
  895. mnt->mnt_group_id = old->mnt_group_id;
  896. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  897. err = mnt_alloc_group_id(mnt);
  898. if (err)
  899. goto out_free;
  900. }
  901. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  902. /* Don't allow unprivileged users to change mount flags */
  903. if (flag & CL_UNPRIVILEGED) {
  904. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  905. if (mnt->mnt.mnt_flags & MNT_READONLY)
  906. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  907. if (mnt->mnt.mnt_flags & MNT_NODEV)
  908. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  909. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  910. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  911. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  912. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  913. }
  914. /* Don't allow unprivileged users to reveal what is under a mount */
  915. if ((flag & CL_UNPRIVILEGED) &&
  916. (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
  917. mnt->mnt.mnt_flags |= MNT_LOCKED;
  918. atomic_inc(&sb->s_active);
  919. mnt->mnt.mnt_sb = sb;
  920. mnt->mnt.mnt_root = dget(root);
  921. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  922. mnt->mnt_parent = mnt;
  923. lock_mount_hash();
  924. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  925. unlock_mount_hash();
  926. if ((flag & CL_SLAVE) ||
  927. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  928. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  929. mnt->mnt_master = old;
  930. CLEAR_MNT_SHARED(mnt);
  931. } else if (!(flag & CL_PRIVATE)) {
  932. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  933. list_add(&mnt->mnt_share, &old->mnt_share);
  934. if (IS_MNT_SLAVE(old))
  935. list_add(&mnt->mnt_slave, &old->mnt_slave);
  936. mnt->mnt_master = old->mnt_master;
  937. } else {
  938. CLEAR_MNT_SHARED(mnt);
  939. }
  940. if (flag & CL_MAKE_SHARED)
  941. set_mnt_shared(mnt);
  942. /* stick the duplicate mount on the same expiry list
  943. * as the original if that was on one */
  944. if (flag & CL_EXPIRE) {
  945. if (!list_empty(&old->mnt_expire))
  946. list_add(&mnt->mnt_expire, &old->mnt_expire);
  947. }
  948. return mnt;
  949. out_free:
  950. mnt_free_id(mnt);
  951. free_vfsmnt(mnt);
  952. return ERR_PTR(err);
  953. }
  954. static void cleanup_mnt(struct mount *mnt)
  955. {
  956. /*
  957. * This probably indicates that somebody messed
  958. * up a mnt_want/drop_write() pair. If this
  959. * happens, the filesystem was probably unable
  960. * to make r/w->r/o transitions.
  961. */
  962. /*
  963. * The locking used to deal with mnt_count decrement provides barriers,
  964. * so mnt_get_writers() below is safe.
  965. */
  966. WARN_ON(mnt_get_writers(mnt));
  967. if (unlikely(mnt->mnt_pins.first))
  968. mnt_pin_kill(mnt);
  969. fsnotify_vfsmount_delete(&mnt->mnt);
  970. dput(mnt->mnt.mnt_root);
  971. deactivate_super(mnt->mnt.mnt_sb);
  972. mnt_free_id(mnt);
  973. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  974. }
  975. static void __cleanup_mnt(struct rcu_head *head)
  976. {
  977. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  978. }
  979. static LLIST_HEAD(delayed_mntput_list);
  980. static void delayed_mntput(struct work_struct *unused)
  981. {
  982. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  983. struct llist_node *next;
  984. for (; node; node = next) {
  985. next = llist_next(node);
  986. cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
  987. }
  988. }
  989. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  990. static void mntput_no_expire(struct mount *mnt)
  991. {
  992. rcu_read_lock();
  993. mnt_add_count(mnt, -1);
  994. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  995. rcu_read_unlock();
  996. return;
  997. }
  998. lock_mount_hash();
  999. if (mnt_get_count(mnt)) {
  1000. rcu_read_unlock();
  1001. unlock_mount_hash();
  1002. return;
  1003. }
  1004. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  1005. rcu_read_unlock();
  1006. unlock_mount_hash();
  1007. return;
  1008. }
  1009. mnt->mnt.mnt_flags |= MNT_DOOMED;
  1010. rcu_read_unlock();
  1011. list_del(&mnt->mnt_instance);
  1012. if (unlikely(!list_empty(&mnt->mnt_mounts))) {
  1013. struct mount *p, *tmp;
  1014. list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
  1015. umount_mnt(p);
  1016. }
  1017. }
  1018. unlock_mount_hash();
  1019. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  1020. struct task_struct *task = current;
  1021. if (likely(!(task->flags & PF_KTHREAD))) {
  1022. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  1023. if (!task_work_add(task, &mnt->mnt_rcu, true))
  1024. return;
  1025. }
  1026. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  1027. schedule_delayed_work(&delayed_mntput_work, 1);
  1028. return;
  1029. }
  1030. cleanup_mnt(mnt);
  1031. }
  1032. void mntput(struct vfsmount *mnt)
  1033. {
  1034. if (mnt) {
  1035. struct mount *m = real_mount(mnt);
  1036. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  1037. if (unlikely(m->mnt_expiry_mark))
  1038. m->mnt_expiry_mark = 0;
  1039. mntput_no_expire(m);
  1040. }
  1041. }
  1042. EXPORT_SYMBOL(mntput);
  1043. struct vfsmount *mntget(struct vfsmount *mnt)
  1044. {
  1045. if (mnt)
  1046. mnt_add_count(real_mount(mnt), 1);
  1047. return mnt;
  1048. }
  1049. EXPORT_SYMBOL(mntget);
  1050. /* path_is_mountpoint() - Check if path is a mount in the current
  1051. * namespace.
  1052. *
  1053. * d_mountpoint() can only be used reliably to establish if a dentry is
  1054. * not mounted in any namespace and that common case is handled inline.
  1055. * d_mountpoint() isn't aware of the possibility there may be multiple
  1056. * mounts using a given dentry in a different namespace. This function
  1057. * checks if the passed in path is a mountpoint rather than the dentry
  1058. * alone.
  1059. */
  1060. bool path_is_mountpoint(const struct path *path)
  1061. {
  1062. unsigned seq;
  1063. bool res;
  1064. if (!d_mountpoint(path->dentry))
  1065. return false;
  1066. rcu_read_lock();
  1067. do {
  1068. seq = read_seqbegin(&mount_lock);
  1069. res = __path_is_mountpoint(path);
  1070. } while (read_seqretry(&mount_lock, seq));
  1071. rcu_read_unlock();
  1072. return res;
  1073. }
  1074. EXPORT_SYMBOL(path_is_mountpoint);
  1075. struct vfsmount *mnt_clone_internal(const struct path *path)
  1076. {
  1077. struct mount *p;
  1078. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  1079. if (IS_ERR(p))
  1080. return ERR_CAST(p);
  1081. p->mnt.mnt_flags |= MNT_INTERNAL;
  1082. return &p->mnt;
  1083. }
  1084. static inline void mangle(struct seq_file *m, const char *s)
  1085. {
  1086. seq_escape(m, s, " \t\n\\");
  1087. }
  1088. /*
  1089. * Simple .show_options callback for filesystems which don't want to
  1090. * implement more complex mount option showing.
  1091. *
  1092. * See also save_mount_options().
  1093. */
  1094. int generic_show_options(struct seq_file *m, struct dentry *root)
  1095. {
  1096. const char *options;
  1097. rcu_read_lock();
  1098. options = rcu_dereference(root->d_sb->s_options);
  1099. if (options != NULL && options[0]) {
  1100. seq_putc(m, ',');
  1101. mangle(m, options);
  1102. }
  1103. rcu_read_unlock();
  1104. return 0;
  1105. }
  1106. EXPORT_SYMBOL(generic_show_options);
  1107. /*
  1108. * If filesystem uses generic_show_options(), this function should be
  1109. * called from the fill_super() callback.
  1110. *
  1111. * The .remount_fs callback usually needs to be handled in a special
  1112. * way, to make sure, that previous options are not overwritten if the
  1113. * remount fails.
  1114. *
  1115. * Also note, that if the filesystem's .remount_fs function doesn't
  1116. * reset all options to their default value, but changes only newly
  1117. * given options, then the displayed options will not reflect reality
  1118. * any more.
  1119. */
  1120. void save_mount_options(struct super_block *sb, char *options)
  1121. {
  1122. BUG_ON(sb->s_options);
  1123. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  1124. }
  1125. EXPORT_SYMBOL(save_mount_options);
  1126. void replace_mount_options(struct super_block *sb, char *options)
  1127. {
  1128. char *old = sb->s_options;
  1129. rcu_assign_pointer(sb->s_options, options);
  1130. if (old) {
  1131. synchronize_rcu();
  1132. kfree(old);
  1133. }
  1134. }
  1135. EXPORT_SYMBOL(replace_mount_options);
  1136. #ifdef CONFIG_PROC_FS
  1137. /* iterator; we want it to have access to namespace_sem, thus here... */
  1138. static void *m_start(struct seq_file *m, loff_t *pos)
  1139. {
  1140. struct proc_mounts *p = m->private;
  1141. down_read(&namespace_sem);
  1142. if (p->cached_event == p->ns->event) {
  1143. void *v = p->cached_mount;
  1144. if (*pos == p->cached_index)
  1145. return v;
  1146. if (*pos == p->cached_index + 1) {
  1147. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1148. return p->cached_mount = v;
  1149. }
  1150. }
  1151. p->cached_event = p->ns->event;
  1152. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1153. p->cached_index = *pos;
  1154. return p->cached_mount;
  1155. }
  1156. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1157. {
  1158. struct proc_mounts *p = m->private;
  1159. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1160. p->cached_index = *pos;
  1161. return p->cached_mount;
  1162. }
  1163. static void m_stop(struct seq_file *m, void *v)
  1164. {
  1165. up_read(&namespace_sem);
  1166. }
  1167. static int m_show(struct seq_file *m, void *v)
  1168. {
  1169. struct proc_mounts *p = m->private;
  1170. struct mount *r = list_entry(v, struct mount, mnt_list);
  1171. return p->show(m, &r->mnt);
  1172. }
  1173. const struct seq_operations mounts_op = {
  1174. .start = m_start,
  1175. .next = m_next,
  1176. .stop = m_stop,
  1177. .show = m_show,
  1178. };
  1179. #endif /* CONFIG_PROC_FS */
  1180. /**
  1181. * may_umount_tree - check if a mount tree is busy
  1182. * @mnt: root of mount tree
  1183. *
  1184. * This is called to check if a tree of mounts has any
  1185. * open files, pwds, chroots or sub mounts that are
  1186. * busy.
  1187. */
  1188. int may_umount_tree(struct vfsmount *m)
  1189. {
  1190. struct mount *mnt = real_mount(m);
  1191. int actual_refs = 0;
  1192. int minimum_refs = 0;
  1193. struct mount *p;
  1194. BUG_ON(!m);
  1195. /* write lock needed for mnt_get_count */
  1196. lock_mount_hash();
  1197. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1198. actual_refs += mnt_get_count(p);
  1199. minimum_refs += 2;
  1200. }
  1201. unlock_mount_hash();
  1202. if (actual_refs > minimum_refs)
  1203. return 0;
  1204. return 1;
  1205. }
  1206. EXPORT_SYMBOL(may_umount_tree);
  1207. /**
  1208. * may_umount - check if a mount point is busy
  1209. * @mnt: root of mount
  1210. *
  1211. * This is called to check if a mount point has any
  1212. * open files, pwds, chroots or sub mounts. If the
  1213. * mount has sub mounts this will return busy
  1214. * regardless of whether the sub mounts are busy.
  1215. *
  1216. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1217. * give false negatives. The main reason why it's here is that we need
  1218. * a non-destructive way to look for easily umountable filesystems.
  1219. */
  1220. int may_umount(struct vfsmount *mnt)
  1221. {
  1222. int ret = 1;
  1223. down_read(&namespace_sem);
  1224. lock_mount_hash();
  1225. if (propagate_mount_busy(real_mount(mnt), 2))
  1226. ret = 0;
  1227. unlock_mount_hash();
  1228. up_read(&namespace_sem);
  1229. return ret;
  1230. }
  1231. EXPORT_SYMBOL(may_umount);
  1232. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1233. static void namespace_unlock(void)
  1234. {
  1235. struct hlist_head head;
  1236. hlist_move_list(&unmounted, &head);
  1237. up_write(&namespace_sem);
  1238. if (likely(hlist_empty(&head)))
  1239. return;
  1240. synchronize_rcu();
  1241. group_pin_kill(&head);
  1242. }
  1243. static inline void namespace_lock(void)
  1244. {
  1245. down_write(&namespace_sem);
  1246. }
  1247. enum umount_tree_flags {
  1248. UMOUNT_SYNC = 1,
  1249. UMOUNT_PROPAGATE = 2,
  1250. UMOUNT_CONNECTED = 4,
  1251. };
  1252. static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
  1253. {
  1254. /* Leaving mounts connected is only valid for lazy umounts */
  1255. if (how & UMOUNT_SYNC)
  1256. return true;
  1257. /* A mount without a parent has nothing to be connected to */
  1258. if (!mnt_has_parent(mnt))
  1259. return true;
  1260. /* Because the reference counting rules change when mounts are
  1261. * unmounted and connected, umounted mounts may not be
  1262. * connected to mounted mounts.
  1263. */
  1264. if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
  1265. return true;
  1266. /* Has it been requested that the mount remain connected? */
  1267. if (how & UMOUNT_CONNECTED)
  1268. return false;
  1269. /* Is the mount locked such that it needs to remain connected? */
  1270. if (IS_MNT_LOCKED(mnt))
  1271. return false;
  1272. /* By default disconnect the mount */
  1273. return true;
  1274. }
  1275. /*
  1276. * mount_lock must be held
  1277. * namespace_sem must be held for write
  1278. */
  1279. static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
  1280. {
  1281. LIST_HEAD(tmp_list);
  1282. struct mount *p;
  1283. if (how & UMOUNT_PROPAGATE)
  1284. propagate_mount_unlock(mnt);
  1285. /* Gather the mounts to umount */
  1286. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1287. p->mnt.mnt_flags |= MNT_UMOUNT;
  1288. list_move(&p->mnt_list, &tmp_list);
  1289. }
  1290. /* Hide the mounts from mnt_mounts */
  1291. list_for_each_entry(p, &tmp_list, mnt_list) {
  1292. list_del_init(&p->mnt_child);
  1293. }
  1294. /* Add propogated mounts to the tmp_list */
  1295. if (how & UMOUNT_PROPAGATE)
  1296. propagate_umount(&tmp_list);
  1297. while (!list_empty(&tmp_list)) {
  1298. struct mnt_namespace *ns;
  1299. bool disconnect;
  1300. p = list_first_entry(&tmp_list, struct mount, mnt_list);
  1301. list_del_init(&p->mnt_expire);
  1302. list_del_init(&p->mnt_list);
  1303. ns = p->mnt_ns;
  1304. if (ns) {
  1305. ns->mounts--;
  1306. __touch_mnt_namespace(ns);
  1307. }
  1308. p->mnt_ns = NULL;
  1309. if (how & UMOUNT_SYNC)
  1310. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1311. disconnect = disconnect_mount(p, how);
  1312. pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
  1313. disconnect ? &unmounted : NULL);
  1314. if (mnt_has_parent(p)) {
  1315. mnt_add_count(p->mnt_parent, -1);
  1316. if (!disconnect) {
  1317. /* Don't forget about p */
  1318. list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
  1319. } else {
  1320. umount_mnt(p);
  1321. }
  1322. }
  1323. change_mnt_propagation(p, MS_PRIVATE);
  1324. }
  1325. }
  1326. static void shrink_submounts(struct mount *mnt);
  1327. static int do_umount(struct mount *mnt, int flags)
  1328. {
  1329. struct super_block *sb = mnt->mnt.mnt_sb;
  1330. int retval;
  1331. retval = security_sb_umount(&mnt->mnt, flags);
  1332. if (retval)
  1333. return retval;
  1334. /*
  1335. * Allow userspace to request a mountpoint be expired rather than
  1336. * unmounting unconditionally. Unmount only happens if:
  1337. * (1) the mark is already set (the mark is cleared by mntput())
  1338. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1339. */
  1340. if (flags & MNT_EXPIRE) {
  1341. if (&mnt->mnt == current->fs->root.mnt ||
  1342. flags & (MNT_FORCE | MNT_DETACH))
  1343. return -EINVAL;
  1344. /*
  1345. * probably don't strictly need the lock here if we examined
  1346. * all race cases, but it's a slowpath.
  1347. */
  1348. lock_mount_hash();
  1349. if (mnt_get_count(mnt) != 2) {
  1350. unlock_mount_hash();
  1351. return -EBUSY;
  1352. }
  1353. unlock_mount_hash();
  1354. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1355. return -EAGAIN;
  1356. }
  1357. /*
  1358. * If we may have to abort operations to get out of this
  1359. * mount, and they will themselves hold resources we must
  1360. * allow the fs to do things. In the Unix tradition of
  1361. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1362. * might fail to complete on the first run through as other tasks
  1363. * must return, and the like. Thats for the mount program to worry
  1364. * about for the moment.
  1365. */
  1366. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1367. sb->s_op->umount_begin(sb);
  1368. }
  1369. /*
  1370. * No sense to grab the lock for this test, but test itself looks
  1371. * somewhat bogus. Suggestions for better replacement?
  1372. * Ho-hum... In principle, we might treat that as umount + switch
  1373. * to rootfs. GC would eventually take care of the old vfsmount.
  1374. * Actually it makes sense, especially if rootfs would contain a
  1375. * /reboot - static binary that would close all descriptors and
  1376. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1377. */
  1378. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1379. /*
  1380. * Special case for "unmounting" root ...
  1381. * we just try to remount it readonly.
  1382. */
  1383. if (!capable(CAP_SYS_ADMIN))
  1384. return -EPERM;
  1385. down_write(&sb->s_umount);
  1386. if (!(sb->s_flags & MS_RDONLY))
  1387. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1388. up_write(&sb->s_umount);
  1389. return retval;
  1390. }
  1391. namespace_lock();
  1392. lock_mount_hash();
  1393. event++;
  1394. if (flags & MNT_DETACH) {
  1395. if (!list_empty(&mnt->mnt_list))
  1396. umount_tree(mnt, UMOUNT_PROPAGATE);
  1397. retval = 0;
  1398. } else {
  1399. shrink_submounts(mnt);
  1400. retval = -EBUSY;
  1401. if (!propagate_mount_busy(mnt, 2)) {
  1402. if (!list_empty(&mnt->mnt_list))
  1403. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  1404. retval = 0;
  1405. }
  1406. }
  1407. unlock_mount_hash();
  1408. namespace_unlock();
  1409. return retval;
  1410. }
  1411. /*
  1412. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1413. *
  1414. * During unlink, rmdir, and d_drop it is possible to loose the path
  1415. * to an existing mountpoint, and wind up leaking the mount.
  1416. * detach_mounts allows lazily unmounting those mounts instead of
  1417. * leaking them.
  1418. *
  1419. * The caller may hold dentry->d_inode->i_mutex.
  1420. */
  1421. void __detach_mounts(struct dentry *dentry)
  1422. {
  1423. struct mountpoint *mp;
  1424. struct mount *mnt;
  1425. namespace_lock();
  1426. lock_mount_hash();
  1427. mp = lookup_mountpoint(dentry);
  1428. if (IS_ERR_OR_NULL(mp))
  1429. goto out_unlock;
  1430. event++;
  1431. while (!hlist_empty(&mp->m_list)) {
  1432. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1433. if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
  1434. hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
  1435. umount_mnt(mnt);
  1436. }
  1437. else umount_tree(mnt, UMOUNT_CONNECTED);
  1438. }
  1439. put_mountpoint(mp);
  1440. out_unlock:
  1441. unlock_mount_hash();
  1442. namespace_unlock();
  1443. }
  1444. /*
  1445. * Is the caller allowed to modify his namespace?
  1446. */
  1447. static inline bool may_mount(void)
  1448. {
  1449. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1450. }
  1451. static inline bool may_mandlock(void)
  1452. {
  1453. #ifndef CONFIG_MANDATORY_FILE_LOCKING
  1454. return false;
  1455. #endif
  1456. return capable(CAP_SYS_ADMIN);
  1457. }
  1458. /*
  1459. * Now umount can handle mount points as well as block devices.
  1460. * This is important for filesystems which use unnamed block devices.
  1461. *
  1462. * We now support a flag for forced unmount like the other 'big iron'
  1463. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1464. */
  1465. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1466. {
  1467. struct path path;
  1468. struct mount *mnt;
  1469. int retval;
  1470. int lookup_flags = 0;
  1471. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1472. return -EINVAL;
  1473. if (!may_mount())
  1474. return -EPERM;
  1475. if (!(flags & UMOUNT_NOFOLLOW))
  1476. lookup_flags |= LOOKUP_FOLLOW;
  1477. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1478. if (retval)
  1479. goto out;
  1480. mnt = real_mount(path.mnt);
  1481. retval = -EINVAL;
  1482. if (path.dentry != path.mnt->mnt_root)
  1483. goto dput_and_out;
  1484. if (!check_mnt(mnt))
  1485. goto dput_and_out;
  1486. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1487. goto dput_and_out;
  1488. retval = -EPERM;
  1489. if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
  1490. goto dput_and_out;
  1491. retval = do_umount(mnt, flags);
  1492. dput_and_out:
  1493. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1494. dput(path.dentry);
  1495. mntput_no_expire(mnt);
  1496. out:
  1497. return retval;
  1498. }
  1499. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1500. /*
  1501. * The 2.0 compatible umount. No flags.
  1502. */
  1503. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1504. {
  1505. return sys_umount(name, 0);
  1506. }
  1507. #endif
  1508. static bool is_mnt_ns_file(struct dentry *dentry)
  1509. {
  1510. /* Is this a proxy for a mount namespace? */
  1511. return dentry->d_op == &ns_dentry_operations &&
  1512. dentry->d_fsdata == &mntns_operations;
  1513. }
  1514. struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
  1515. {
  1516. return container_of(ns, struct mnt_namespace, ns);
  1517. }
  1518. static bool mnt_ns_loop(struct dentry *dentry)
  1519. {
  1520. /* Could bind mounting the mount namespace inode cause a
  1521. * mount namespace loop?
  1522. */
  1523. struct mnt_namespace *mnt_ns;
  1524. if (!is_mnt_ns_file(dentry))
  1525. return false;
  1526. mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
  1527. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1528. }
  1529. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1530. int flag)
  1531. {
  1532. struct mount *res, *p, *q, *r, *parent;
  1533. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1534. return ERR_PTR(-EINVAL);
  1535. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1536. return ERR_PTR(-EINVAL);
  1537. res = q = clone_mnt(mnt, dentry, flag);
  1538. if (IS_ERR(q))
  1539. return q;
  1540. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1541. p = mnt;
  1542. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1543. struct mount *s;
  1544. if (!is_subdir(r->mnt_mountpoint, dentry))
  1545. continue;
  1546. for (s = r; s; s = next_mnt(s, r)) {
  1547. struct mount *t = NULL;
  1548. if (!(flag & CL_COPY_UNBINDABLE) &&
  1549. IS_MNT_UNBINDABLE(s)) {
  1550. s = skip_mnt_tree(s);
  1551. continue;
  1552. }
  1553. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1554. is_mnt_ns_file(s->mnt.mnt_root)) {
  1555. s = skip_mnt_tree(s);
  1556. continue;
  1557. }
  1558. while (p != s->mnt_parent) {
  1559. p = p->mnt_parent;
  1560. q = q->mnt_parent;
  1561. }
  1562. p = s;
  1563. parent = q;
  1564. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1565. if (IS_ERR(q))
  1566. goto out;
  1567. lock_mount_hash();
  1568. list_add_tail(&q->mnt_list, &res->mnt_list);
  1569. mnt_set_mountpoint(parent, p->mnt_mp, q);
  1570. if (!list_empty(&parent->mnt_mounts)) {
  1571. t = list_last_entry(&parent->mnt_mounts,
  1572. struct mount, mnt_child);
  1573. if (t->mnt_mp != p->mnt_mp)
  1574. t = NULL;
  1575. }
  1576. attach_shadowed(q, parent, t);
  1577. unlock_mount_hash();
  1578. }
  1579. }
  1580. return res;
  1581. out:
  1582. if (res) {
  1583. lock_mount_hash();
  1584. umount_tree(res, UMOUNT_SYNC);
  1585. unlock_mount_hash();
  1586. }
  1587. return q;
  1588. }
  1589. /* Caller should check returned pointer for errors */
  1590. struct vfsmount *collect_mounts(const struct path *path)
  1591. {
  1592. struct mount *tree;
  1593. namespace_lock();
  1594. if (!check_mnt(real_mount(path->mnt)))
  1595. tree = ERR_PTR(-EINVAL);
  1596. else
  1597. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1598. CL_COPY_ALL | CL_PRIVATE);
  1599. namespace_unlock();
  1600. if (IS_ERR(tree))
  1601. return ERR_CAST(tree);
  1602. return &tree->mnt;
  1603. }
  1604. void drop_collected_mounts(struct vfsmount *mnt)
  1605. {
  1606. namespace_lock();
  1607. lock_mount_hash();
  1608. umount_tree(real_mount(mnt), UMOUNT_SYNC);
  1609. unlock_mount_hash();
  1610. namespace_unlock();
  1611. }
  1612. /**
  1613. * clone_private_mount - create a private clone of a path
  1614. *
  1615. * This creates a new vfsmount, which will be the clone of @path. The new will
  1616. * not be attached anywhere in the namespace and will be private (i.e. changes
  1617. * to the originating mount won't be propagated into this).
  1618. *
  1619. * Release with mntput().
  1620. */
  1621. struct vfsmount *clone_private_mount(const struct path *path)
  1622. {
  1623. struct mount *old_mnt = real_mount(path->mnt);
  1624. struct mount *new_mnt;
  1625. if (IS_MNT_UNBINDABLE(old_mnt))
  1626. return ERR_PTR(-EINVAL);
  1627. new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
  1628. if (IS_ERR(new_mnt))
  1629. return ERR_CAST(new_mnt);
  1630. return &new_mnt->mnt;
  1631. }
  1632. EXPORT_SYMBOL_GPL(clone_private_mount);
  1633. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1634. struct vfsmount *root)
  1635. {
  1636. struct mount *mnt;
  1637. int res = f(root, arg);
  1638. if (res)
  1639. return res;
  1640. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1641. res = f(&mnt->mnt, arg);
  1642. if (res)
  1643. return res;
  1644. }
  1645. return 0;
  1646. }
  1647. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1648. {
  1649. struct mount *p;
  1650. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1651. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1652. mnt_release_group_id(p);
  1653. }
  1654. }
  1655. static int invent_group_ids(struct mount *mnt, bool recurse)
  1656. {
  1657. struct mount *p;
  1658. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1659. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1660. int err = mnt_alloc_group_id(p);
  1661. if (err) {
  1662. cleanup_group_ids(mnt, p);
  1663. return err;
  1664. }
  1665. }
  1666. }
  1667. return 0;
  1668. }
  1669. int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
  1670. {
  1671. unsigned int max = READ_ONCE(sysctl_mount_max);
  1672. unsigned int mounts = 0, old, pending, sum;
  1673. struct mount *p;
  1674. for (p = mnt; p; p = next_mnt(p, mnt))
  1675. mounts++;
  1676. old = ns->mounts;
  1677. pending = ns->pending_mounts;
  1678. sum = old + pending;
  1679. if ((old > sum) ||
  1680. (pending > sum) ||
  1681. (max < sum) ||
  1682. (mounts > (max - sum)))
  1683. return -ENOSPC;
  1684. ns->pending_mounts = pending + mounts;
  1685. return 0;
  1686. }
  1687. /*
  1688. * @source_mnt : mount tree to be attached
  1689. * @nd : place the mount tree @source_mnt is attached
  1690. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1691. * store the parent mount and mountpoint dentry.
  1692. * (done when source_mnt is moved)
  1693. *
  1694. * NOTE: in the table below explains the semantics when a source mount
  1695. * of a given type is attached to a destination mount of a given type.
  1696. * ---------------------------------------------------------------------------
  1697. * | BIND MOUNT OPERATION |
  1698. * |**************************************************************************
  1699. * | source-->| shared | private | slave | unbindable |
  1700. * | dest | | | | |
  1701. * | | | | | | |
  1702. * | v | | | | |
  1703. * |**************************************************************************
  1704. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1705. * | | | | | |
  1706. * |non-shared| shared (+) | private | slave (*) | invalid |
  1707. * ***************************************************************************
  1708. * A bind operation clones the source mount and mounts the clone on the
  1709. * destination mount.
  1710. *
  1711. * (++) the cloned mount is propagated to all the mounts in the propagation
  1712. * tree of the destination mount and the cloned mount is added to
  1713. * the peer group of the source mount.
  1714. * (+) the cloned mount is created under the destination mount and is marked
  1715. * as shared. The cloned mount is added to the peer group of the source
  1716. * mount.
  1717. * (+++) the mount is propagated to all the mounts in the propagation tree
  1718. * of the destination mount and the cloned mount is made slave
  1719. * of the same master as that of the source mount. The cloned mount
  1720. * is marked as 'shared and slave'.
  1721. * (*) the cloned mount is made a slave of the same master as that of the
  1722. * source mount.
  1723. *
  1724. * ---------------------------------------------------------------------------
  1725. * | MOVE MOUNT OPERATION |
  1726. * |**************************************************************************
  1727. * | source-->| shared | private | slave | unbindable |
  1728. * | dest | | | | |
  1729. * | | | | | | |
  1730. * | v | | | | |
  1731. * |**************************************************************************
  1732. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1733. * | | | | | |
  1734. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1735. * ***************************************************************************
  1736. *
  1737. * (+) the mount is moved to the destination. And is then propagated to
  1738. * all the mounts in the propagation tree of the destination mount.
  1739. * (+*) the mount is moved to the destination.
  1740. * (+++) the mount is moved to the destination and is then propagated to
  1741. * all the mounts belonging to the destination mount's propagation tree.
  1742. * the mount is marked as 'shared and slave'.
  1743. * (*) the mount continues to be a slave at the new location.
  1744. *
  1745. * if the source mount is a tree, the operations explained above is
  1746. * applied to each mount in the tree.
  1747. * Must be called without spinlocks held, since this function can sleep
  1748. * in allocations.
  1749. */
  1750. static int attach_recursive_mnt(struct mount *source_mnt,
  1751. struct mount *dest_mnt,
  1752. struct mountpoint *dest_mp,
  1753. struct path *parent_path)
  1754. {
  1755. HLIST_HEAD(tree_list);
  1756. struct mnt_namespace *ns = dest_mnt->mnt_ns;
  1757. struct mount *child, *p;
  1758. struct hlist_node *n;
  1759. int err;
  1760. /* Is there space to add these mounts to the mount namespace? */
  1761. if (!parent_path) {
  1762. err = count_mounts(ns, source_mnt);
  1763. if (err)
  1764. goto out;
  1765. }
  1766. if (IS_MNT_SHARED(dest_mnt)) {
  1767. err = invent_group_ids(source_mnt, true);
  1768. if (err)
  1769. goto out;
  1770. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1771. lock_mount_hash();
  1772. if (err)
  1773. goto out_cleanup_ids;
  1774. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1775. set_mnt_shared(p);
  1776. } else {
  1777. lock_mount_hash();
  1778. }
  1779. if (parent_path) {
  1780. detach_mnt(source_mnt, parent_path);
  1781. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1782. touch_mnt_namespace(source_mnt->mnt_ns);
  1783. } else {
  1784. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1785. commit_tree(source_mnt, NULL);
  1786. }
  1787. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1788. struct mount *q;
  1789. hlist_del_init(&child->mnt_hash);
  1790. q = __lookup_mnt_last(&child->mnt_parent->mnt,
  1791. child->mnt_mountpoint);
  1792. commit_tree(child, q);
  1793. }
  1794. unlock_mount_hash();
  1795. return 0;
  1796. out_cleanup_ids:
  1797. while (!hlist_empty(&tree_list)) {
  1798. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1799. child->mnt_parent->mnt_ns->pending_mounts = 0;
  1800. umount_tree(child, UMOUNT_SYNC);
  1801. }
  1802. unlock_mount_hash();
  1803. cleanup_group_ids(source_mnt, NULL);
  1804. out:
  1805. ns->pending_mounts = 0;
  1806. return err;
  1807. }
  1808. static struct mountpoint *lock_mount(struct path *path)
  1809. {
  1810. struct vfsmount *mnt;
  1811. struct dentry *dentry = path->dentry;
  1812. retry:
  1813. inode_lock(dentry->d_inode);
  1814. if (unlikely(cant_mount(dentry))) {
  1815. inode_unlock(dentry->d_inode);
  1816. return ERR_PTR(-ENOENT);
  1817. }
  1818. namespace_lock();
  1819. mnt = lookup_mnt(path);
  1820. if (likely(!mnt)) {
  1821. struct mountpoint *mp = get_mountpoint(dentry);
  1822. if (IS_ERR(mp)) {
  1823. namespace_unlock();
  1824. inode_unlock(dentry->d_inode);
  1825. return mp;
  1826. }
  1827. return mp;
  1828. }
  1829. namespace_unlock();
  1830. inode_unlock(path->dentry->d_inode);
  1831. path_put(path);
  1832. path->mnt = mnt;
  1833. dentry = path->dentry = dget(mnt->mnt_root);
  1834. goto retry;
  1835. }
  1836. static void unlock_mount(struct mountpoint *where)
  1837. {
  1838. struct dentry *dentry = where->m_dentry;
  1839. read_seqlock_excl(&mount_lock);
  1840. put_mountpoint(where);
  1841. read_sequnlock_excl(&mount_lock);
  1842. namespace_unlock();
  1843. inode_unlock(dentry->d_inode);
  1844. }
  1845. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1846. {
  1847. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1848. return -EINVAL;
  1849. if (d_is_dir(mp->m_dentry) !=
  1850. d_is_dir(mnt->mnt.mnt_root))
  1851. return -ENOTDIR;
  1852. return attach_recursive_mnt(mnt, p, mp, NULL);
  1853. }
  1854. /*
  1855. * Sanity check the flags to change_mnt_propagation.
  1856. */
  1857. static int flags_to_propagation_type(int flags)
  1858. {
  1859. int type = flags & ~(MS_REC | MS_SILENT);
  1860. /* Fail if any non-propagation flags are set */
  1861. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1862. return 0;
  1863. /* Only one propagation flag should be set */
  1864. if (!is_power_of_2(type))
  1865. return 0;
  1866. return type;
  1867. }
  1868. /*
  1869. * recursively change the type of the mountpoint.
  1870. */
  1871. static int do_change_type(struct path *path, int flag)
  1872. {
  1873. struct mount *m;
  1874. struct mount *mnt = real_mount(path->mnt);
  1875. int recurse = flag & MS_REC;
  1876. int type;
  1877. int err = 0;
  1878. if (path->dentry != path->mnt->mnt_root)
  1879. return -EINVAL;
  1880. type = flags_to_propagation_type(flag);
  1881. if (!type)
  1882. return -EINVAL;
  1883. namespace_lock();
  1884. if (type == MS_SHARED) {
  1885. err = invent_group_ids(mnt, recurse);
  1886. if (err)
  1887. goto out_unlock;
  1888. }
  1889. lock_mount_hash();
  1890. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1891. change_mnt_propagation(m, type);
  1892. unlock_mount_hash();
  1893. out_unlock:
  1894. namespace_unlock();
  1895. return err;
  1896. }
  1897. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1898. {
  1899. struct mount *child;
  1900. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1901. if (!is_subdir(child->mnt_mountpoint, dentry))
  1902. continue;
  1903. if (child->mnt.mnt_flags & MNT_LOCKED)
  1904. return true;
  1905. }
  1906. return false;
  1907. }
  1908. /*
  1909. * do loopback mount.
  1910. */
  1911. static int do_loopback(struct path *path, const char *old_name,
  1912. int recurse)
  1913. {
  1914. struct path old_path;
  1915. struct mount *mnt = NULL, *old, *parent;
  1916. struct mountpoint *mp;
  1917. int err;
  1918. if (!old_name || !*old_name)
  1919. return -EINVAL;
  1920. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1921. if (err)
  1922. return err;
  1923. err = -EINVAL;
  1924. if (mnt_ns_loop(old_path.dentry))
  1925. goto out;
  1926. mp = lock_mount(path);
  1927. err = PTR_ERR(mp);
  1928. if (IS_ERR(mp))
  1929. goto out;
  1930. old = real_mount(old_path.mnt);
  1931. parent = real_mount(path->mnt);
  1932. err = -EINVAL;
  1933. if (IS_MNT_UNBINDABLE(old))
  1934. goto out2;
  1935. if (!check_mnt(parent))
  1936. goto out2;
  1937. if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
  1938. goto out2;
  1939. if (!recurse && has_locked_children(old, old_path.dentry))
  1940. goto out2;
  1941. if (recurse)
  1942. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1943. else
  1944. mnt = clone_mnt(old, old_path.dentry, 0);
  1945. if (IS_ERR(mnt)) {
  1946. err = PTR_ERR(mnt);
  1947. goto out2;
  1948. }
  1949. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1950. err = graft_tree(mnt, parent, mp);
  1951. if (err) {
  1952. lock_mount_hash();
  1953. umount_tree(mnt, UMOUNT_SYNC);
  1954. unlock_mount_hash();
  1955. }
  1956. out2:
  1957. unlock_mount(mp);
  1958. out:
  1959. path_put(&old_path);
  1960. return err;
  1961. }
  1962. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1963. {
  1964. int error = 0;
  1965. int readonly_request = 0;
  1966. if (ms_flags & MS_RDONLY)
  1967. readonly_request = 1;
  1968. if (readonly_request == __mnt_is_readonly(mnt))
  1969. return 0;
  1970. if (readonly_request)
  1971. error = mnt_make_readonly(real_mount(mnt));
  1972. else
  1973. __mnt_unmake_readonly(real_mount(mnt));
  1974. return error;
  1975. }
  1976. /*
  1977. * change filesystem flags. dir should be a physical root of filesystem.
  1978. * If you've mounted a non-root directory somewhere and want to do remount
  1979. * on it - tough luck.
  1980. */
  1981. static int do_remount(struct path *path, int flags, int mnt_flags,
  1982. void *data)
  1983. {
  1984. int err;
  1985. struct super_block *sb = path->mnt->mnt_sb;
  1986. struct mount *mnt = real_mount(path->mnt);
  1987. if (!check_mnt(mnt))
  1988. return -EINVAL;
  1989. if (path->dentry != path->mnt->mnt_root)
  1990. return -EINVAL;
  1991. /* Don't allow changing of locked mnt flags.
  1992. *
  1993. * No locks need to be held here while testing the various
  1994. * MNT_LOCK flags because those flags can never be cleared
  1995. * once they are set.
  1996. */
  1997. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  1998. !(mnt_flags & MNT_READONLY)) {
  1999. return -EPERM;
  2000. }
  2001. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  2002. !(mnt_flags & MNT_NODEV)) {
  2003. return -EPERM;
  2004. }
  2005. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  2006. !(mnt_flags & MNT_NOSUID)) {
  2007. return -EPERM;
  2008. }
  2009. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  2010. !(mnt_flags & MNT_NOEXEC)) {
  2011. return -EPERM;
  2012. }
  2013. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  2014. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  2015. return -EPERM;
  2016. }
  2017. err = security_sb_remount(sb, data);
  2018. if (err)
  2019. return err;
  2020. down_write(&sb->s_umount);
  2021. if (flags & MS_BIND)
  2022. err = change_mount_flags(path->mnt, flags);
  2023. else if (!capable(CAP_SYS_ADMIN))
  2024. err = -EPERM;
  2025. else
  2026. err = do_remount_sb(sb, flags, data, 0);
  2027. if (!err) {
  2028. lock_mount_hash();
  2029. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  2030. mnt->mnt.mnt_flags = mnt_flags;
  2031. touch_mnt_namespace(mnt->mnt_ns);
  2032. unlock_mount_hash();
  2033. }
  2034. up_write(&sb->s_umount);
  2035. return err;
  2036. }
  2037. static inline int tree_contains_unbindable(struct mount *mnt)
  2038. {
  2039. struct mount *p;
  2040. for (p = mnt; p; p = next_mnt(p, mnt)) {
  2041. if (IS_MNT_UNBINDABLE(p))
  2042. return 1;
  2043. }
  2044. return 0;
  2045. }
  2046. static int do_move_mount(struct path *path, const char *old_name)
  2047. {
  2048. struct path old_path, parent_path;
  2049. struct mount *p;
  2050. struct mount *old;
  2051. struct mountpoint *mp;
  2052. int err;
  2053. if (!old_name || !*old_name)
  2054. return -EINVAL;
  2055. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  2056. if (err)
  2057. return err;
  2058. mp = lock_mount(path);
  2059. err = PTR_ERR(mp);
  2060. if (IS_ERR(mp))
  2061. goto out;
  2062. old = real_mount(old_path.mnt);
  2063. p = real_mount(path->mnt);
  2064. err = -EINVAL;
  2065. if (!check_mnt(p) || !check_mnt(old))
  2066. goto out1;
  2067. if (old->mnt.mnt_flags & MNT_LOCKED)
  2068. goto out1;
  2069. err = -EINVAL;
  2070. if (old_path.dentry != old_path.mnt->mnt_root)
  2071. goto out1;
  2072. if (!mnt_has_parent(old))
  2073. goto out1;
  2074. if (d_is_dir(path->dentry) !=
  2075. d_is_dir(old_path.dentry))
  2076. goto out1;
  2077. /*
  2078. * Don't move a mount residing in a shared parent.
  2079. */
  2080. if (IS_MNT_SHARED(old->mnt_parent))
  2081. goto out1;
  2082. /*
  2083. * Don't move a mount tree containing unbindable mounts to a destination
  2084. * mount which is shared.
  2085. */
  2086. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  2087. goto out1;
  2088. err = -ELOOP;
  2089. for (; mnt_has_parent(p); p = p->mnt_parent)
  2090. if (p == old)
  2091. goto out1;
  2092. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  2093. if (err)
  2094. goto out1;
  2095. /* if the mount is moved, it should no longer be expire
  2096. * automatically */
  2097. list_del_init(&old->mnt_expire);
  2098. out1:
  2099. unlock_mount(mp);
  2100. out:
  2101. if (!err)
  2102. path_put(&parent_path);
  2103. path_put(&old_path);
  2104. return err;
  2105. }
  2106. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  2107. {
  2108. int err;
  2109. const char *subtype = strchr(fstype, '.');
  2110. if (subtype) {
  2111. subtype++;
  2112. err = -EINVAL;
  2113. if (!subtype[0])
  2114. goto err;
  2115. } else
  2116. subtype = "";
  2117. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  2118. err = -ENOMEM;
  2119. if (!mnt->mnt_sb->s_subtype)
  2120. goto err;
  2121. return mnt;
  2122. err:
  2123. mntput(mnt);
  2124. return ERR_PTR(err);
  2125. }
  2126. /*
  2127. * add a mount into a namespace's mount tree
  2128. */
  2129. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  2130. {
  2131. struct mountpoint *mp;
  2132. struct mount *parent;
  2133. int err;
  2134. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  2135. mp = lock_mount(path);
  2136. if (IS_ERR(mp))
  2137. return PTR_ERR(mp);
  2138. parent = real_mount(path->mnt);
  2139. err = -EINVAL;
  2140. if (unlikely(!check_mnt(parent))) {
  2141. /* that's acceptable only for automounts done in private ns */
  2142. if (!(mnt_flags & MNT_SHRINKABLE))
  2143. goto unlock;
  2144. /* ... and for those we'd better have mountpoint still alive */
  2145. if (!parent->mnt_ns)
  2146. goto unlock;
  2147. }
  2148. /* Refuse the same filesystem on the same mount point */
  2149. err = -EBUSY;
  2150. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  2151. path->mnt->mnt_root == path->dentry)
  2152. goto unlock;
  2153. err = -EINVAL;
  2154. if (d_is_symlink(newmnt->mnt.mnt_root))
  2155. goto unlock;
  2156. newmnt->mnt.mnt_flags = mnt_flags;
  2157. err = graft_tree(newmnt, parent, mp);
  2158. unlock:
  2159. unlock_mount(mp);
  2160. return err;
  2161. }
  2162. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
  2163. /*
  2164. * create a new mount for userspace and request it to be added into the
  2165. * namespace's tree
  2166. */
  2167. static int do_new_mount(struct path *path, const char *fstype, int flags,
  2168. int mnt_flags, const char *name, void *data)
  2169. {
  2170. struct file_system_type *type;
  2171. struct vfsmount *mnt;
  2172. int err;
  2173. if (!fstype)
  2174. return -EINVAL;
  2175. type = get_fs_type(fstype);
  2176. if (!type)
  2177. return -ENODEV;
  2178. mnt = vfs_kern_mount(type, flags, name, data);
  2179. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2180. !mnt->mnt_sb->s_subtype)
  2181. mnt = fs_set_subtype(mnt, fstype);
  2182. put_filesystem(type);
  2183. if (IS_ERR(mnt))
  2184. return PTR_ERR(mnt);
  2185. if (mount_too_revealing(mnt, &mnt_flags)) {
  2186. mntput(mnt);
  2187. return -EPERM;
  2188. }
  2189. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2190. if (err)
  2191. mntput(mnt);
  2192. return err;
  2193. }
  2194. int finish_automount(struct vfsmount *m, struct path *path)
  2195. {
  2196. struct mount *mnt = real_mount(m);
  2197. int err;
  2198. /* The new mount record should have at least 2 refs to prevent it being
  2199. * expired before we get a chance to add it
  2200. */
  2201. BUG_ON(mnt_get_count(mnt) < 2);
  2202. if (m->mnt_sb == path->mnt->mnt_sb &&
  2203. m->mnt_root == path->dentry) {
  2204. err = -ELOOP;
  2205. goto fail;
  2206. }
  2207. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2208. if (!err)
  2209. return 0;
  2210. fail:
  2211. /* remove m from any expiration list it may be on */
  2212. if (!list_empty(&mnt->mnt_expire)) {
  2213. namespace_lock();
  2214. list_del_init(&mnt->mnt_expire);
  2215. namespace_unlock();
  2216. }
  2217. mntput(m);
  2218. mntput(m);
  2219. return err;
  2220. }
  2221. /**
  2222. * mnt_set_expiry - Put a mount on an expiration list
  2223. * @mnt: The mount to list.
  2224. * @expiry_list: The list to add the mount to.
  2225. */
  2226. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2227. {
  2228. namespace_lock();
  2229. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2230. namespace_unlock();
  2231. }
  2232. EXPORT_SYMBOL(mnt_set_expiry);
  2233. /*
  2234. * process a list of expirable mountpoints with the intent of discarding any
  2235. * mountpoints that aren't in use and haven't been touched since last we came
  2236. * here
  2237. */
  2238. void mark_mounts_for_expiry(struct list_head *mounts)
  2239. {
  2240. struct mount *mnt, *next;
  2241. LIST_HEAD(graveyard);
  2242. if (list_empty(mounts))
  2243. return;
  2244. namespace_lock();
  2245. lock_mount_hash();
  2246. /* extract from the expiration list every vfsmount that matches the
  2247. * following criteria:
  2248. * - only referenced by its parent vfsmount
  2249. * - still marked for expiry (marked on the last call here; marks are
  2250. * cleared by mntput())
  2251. */
  2252. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2253. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2254. propagate_mount_busy(mnt, 1))
  2255. continue;
  2256. list_move(&mnt->mnt_expire, &graveyard);
  2257. }
  2258. while (!list_empty(&graveyard)) {
  2259. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2260. touch_mnt_namespace(mnt->mnt_ns);
  2261. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2262. }
  2263. unlock_mount_hash();
  2264. namespace_unlock();
  2265. }
  2266. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2267. /*
  2268. * Ripoff of 'select_parent()'
  2269. *
  2270. * search the list of submounts for a given mountpoint, and move any
  2271. * shrinkable submounts to the 'graveyard' list.
  2272. */
  2273. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2274. {
  2275. struct mount *this_parent = parent;
  2276. struct list_head *next;
  2277. int found = 0;
  2278. repeat:
  2279. next = this_parent->mnt_mounts.next;
  2280. resume:
  2281. while (next != &this_parent->mnt_mounts) {
  2282. struct list_head *tmp = next;
  2283. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2284. next = tmp->next;
  2285. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2286. continue;
  2287. /*
  2288. * Descend a level if the d_mounts list is non-empty.
  2289. */
  2290. if (!list_empty(&mnt->mnt_mounts)) {
  2291. this_parent = mnt;
  2292. goto repeat;
  2293. }
  2294. if (!propagate_mount_busy(mnt, 1)) {
  2295. list_move_tail(&mnt->mnt_expire, graveyard);
  2296. found++;
  2297. }
  2298. }
  2299. /*
  2300. * All done at this level ... ascend and resume the search
  2301. */
  2302. if (this_parent != parent) {
  2303. next = this_parent->mnt_child.next;
  2304. this_parent = this_parent->mnt_parent;
  2305. goto resume;
  2306. }
  2307. return found;
  2308. }
  2309. /*
  2310. * process a list of expirable mountpoints with the intent of discarding any
  2311. * submounts of a specific parent mountpoint
  2312. *
  2313. * mount_lock must be held for write
  2314. */
  2315. static void shrink_submounts(struct mount *mnt)
  2316. {
  2317. LIST_HEAD(graveyard);
  2318. struct mount *m;
  2319. /* extract submounts of 'mountpoint' from the expiration list */
  2320. while (select_submounts(mnt, &graveyard)) {
  2321. while (!list_empty(&graveyard)) {
  2322. m = list_first_entry(&graveyard, struct mount,
  2323. mnt_expire);
  2324. touch_mnt_namespace(m->mnt_ns);
  2325. umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2326. }
  2327. }
  2328. }
  2329. /*
  2330. * Some copy_from_user() implementations do not return the exact number of
  2331. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2332. * Note that this function differs from copy_from_user() in that it will oops
  2333. * on bad values of `to', rather than returning a short copy.
  2334. */
  2335. static long exact_copy_from_user(void *to, const void __user * from,
  2336. unsigned long n)
  2337. {
  2338. char *t = to;
  2339. const char __user *f = from;
  2340. char c;
  2341. if (!access_ok(VERIFY_READ, from, n))
  2342. return n;
  2343. while (n) {
  2344. if (__get_user(c, f)) {
  2345. memset(t, 0, n);
  2346. break;
  2347. }
  2348. *t++ = c;
  2349. f++;
  2350. n--;
  2351. }
  2352. return n;
  2353. }
  2354. void *copy_mount_options(const void __user * data)
  2355. {
  2356. int i;
  2357. unsigned long size;
  2358. char *copy;
  2359. if (!data)
  2360. return NULL;
  2361. copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2362. if (!copy)
  2363. return ERR_PTR(-ENOMEM);
  2364. /* We only care that *some* data at the address the user
  2365. * gave us is valid. Just in case, we'll zero
  2366. * the remainder of the page.
  2367. */
  2368. /* copy_from_user cannot cross TASK_SIZE ! */
  2369. size = TASK_SIZE - (unsigned long)data;
  2370. if (size > PAGE_SIZE)
  2371. size = PAGE_SIZE;
  2372. i = size - exact_copy_from_user(copy, data, size);
  2373. if (!i) {
  2374. kfree(copy);
  2375. return ERR_PTR(-EFAULT);
  2376. }
  2377. if (i != PAGE_SIZE)
  2378. memset(copy + i, 0, PAGE_SIZE - i);
  2379. return copy;
  2380. }
  2381. char *copy_mount_string(const void __user *data)
  2382. {
  2383. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2384. }
  2385. /*
  2386. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2387. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2388. *
  2389. * data is a (void *) that can point to any structure up to
  2390. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2391. * information (or be NULL).
  2392. *
  2393. * Pre-0.97 versions of mount() didn't have a flags word.
  2394. * When the flags word was introduced its top half was required
  2395. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2396. * Therefore, if this magic number is present, it carries no information
  2397. * and must be discarded.
  2398. */
  2399. long do_mount(const char *dev_name, const char __user *dir_name,
  2400. const char *type_page, unsigned long flags, void *data_page)
  2401. {
  2402. struct path path;
  2403. int retval = 0;
  2404. int mnt_flags = 0;
  2405. /* Discard magic */
  2406. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2407. flags &= ~MS_MGC_MSK;
  2408. /* Basic sanity checks */
  2409. if (data_page)
  2410. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2411. /* ... and get the mountpoint */
  2412. retval = user_path(dir_name, &path);
  2413. if (retval)
  2414. return retval;
  2415. retval = security_sb_mount(dev_name, &path,
  2416. type_page, flags, data_page);
  2417. if (!retval && !may_mount())
  2418. retval = -EPERM;
  2419. if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
  2420. retval = -EPERM;
  2421. if (retval)
  2422. goto dput_out;
  2423. /* Default to relatime unless overriden */
  2424. if (!(flags & MS_NOATIME))
  2425. mnt_flags |= MNT_RELATIME;
  2426. /* Separate the per-mountpoint flags */
  2427. if (flags & MS_NOSUID)
  2428. mnt_flags |= MNT_NOSUID;
  2429. if (flags & MS_NODEV)
  2430. mnt_flags |= MNT_NODEV;
  2431. if (flags & MS_NOEXEC)
  2432. mnt_flags |= MNT_NOEXEC;
  2433. if (flags & MS_NOATIME)
  2434. mnt_flags |= MNT_NOATIME;
  2435. if (flags & MS_NODIRATIME)
  2436. mnt_flags |= MNT_NODIRATIME;
  2437. if (flags & MS_STRICTATIME)
  2438. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2439. if (flags & MS_RDONLY)
  2440. mnt_flags |= MNT_READONLY;
  2441. /* The default atime for remount is preservation */
  2442. if ((flags & MS_REMOUNT) &&
  2443. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2444. MS_STRICTATIME)) == 0)) {
  2445. mnt_flags &= ~MNT_ATIME_MASK;
  2446. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2447. }
  2448. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2449. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2450. MS_STRICTATIME | MS_NOREMOTELOCK);
  2451. if (flags & MS_REMOUNT)
  2452. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2453. data_page);
  2454. else if (flags & MS_BIND)
  2455. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2456. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2457. retval = do_change_type(&path, flags);
  2458. else if (flags & MS_MOVE)
  2459. retval = do_move_mount(&path, dev_name);
  2460. else
  2461. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2462. dev_name, data_page);
  2463. dput_out:
  2464. path_put(&path);
  2465. return retval;
  2466. }
  2467. static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
  2468. {
  2469. return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
  2470. }
  2471. static void dec_mnt_namespaces(struct ucounts *ucounts)
  2472. {
  2473. dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
  2474. }
  2475. static void free_mnt_ns(struct mnt_namespace *ns)
  2476. {
  2477. ns_free_inum(&ns->ns);
  2478. dec_mnt_namespaces(ns->ucounts);
  2479. put_user_ns(ns->user_ns);
  2480. kfree(ns);
  2481. }
  2482. /*
  2483. * Assign a sequence number so we can detect when we attempt to bind
  2484. * mount a reference to an older mount namespace into the current
  2485. * mount namespace, preventing reference counting loops. A 64bit
  2486. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2487. * is effectively never, so we can ignore the possibility.
  2488. */
  2489. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2490. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2491. {
  2492. struct mnt_namespace *new_ns;
  2493. struct ucounts *ucounts;
  2494. int ret;
  2495. ucounts = inc_mnt_namespaces(user_ns);
  2496. if (!ucounts)
  2497. return ERR_PTR(-ENOSPC);
  2498. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2499. if (!new_ns) {
  2500. dec_mnt_namespaces(ucounts);
  2501. return ERR_PTR(-ENOMEM);
  2502. }
  2503. ret = ns_alloc_inum(&new_ns->ns);
  2504. if (ret) {
  2505. kfree(new_ns);
  2506. dec_mnt_namespaces(ucounts);
  2507. return ERR_PTR(ret);
  2508. }
  2509. new_ns->ns.ops = &mntns_operations;
  2510. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2511. atomic_set(&new_ns->count, 1);
  2512. new_ns->root = NULL;
  2513. INIT_LIST_HEAD(&new_ns->list);
  2514. init_waitqueue_head(&new_ns->poll);
  2515. new_ns->event = 0;
  2516. new_ns->user_ns = get_user_ns(user_ns);
  2517. new_ns->ucounts = ucounts;
  2518. new_ns->mounts = 0;
  2519. new_ns->pending_mounts = 0;
  2520. return new_ns;
  2521. }
  2522. __latent_entropy
  2523. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2524. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2525. {
  2526. struct mnt_namespace *new_ns;
  2527. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2528. struct mount *p, *q;
  2529. struct mount *old;
  2530. struct mount *new;
  2531. int copy_flags;
  2532. BUG_ON(!ns);
  2533. if (likely(!(flags & CLONE_NEWNS))) {
  2534. get_mnt_ns(ns);
  2535. return ns;
  2536. }
  2537. old = ns->root;
  2538. new_ns = alloc_mnt_ns(user_ns);
  2539. if (IS_ERR(new_ns))
  2540. return new_ns;
  2541. namespace_lock();
  2542. /* First pass: copy the tree topology */
  2543. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2544. if (user_ns != ns->user_ns)
  2545. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2546. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2547. if (IS_ERR(new)) {
  2548. namespace_unlock();
  2549. free_mnt_ns(new_ns);
  2550. return ERR_CAST(new);
  2551. }
  2552. new_ns->root = new;
  2553. list_add_tail(&new_ns->list, &new->mnt_list);
  2554. /*
  2555. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2556. * as belonging to new namespace. We have already acquired a private
  2557. * fs_struct, so tsk->fs->lock is not needed.
  2558. */
  2559. p = old;
  2560. q = new;
  2561. while (p) {
  2562. q->mnt_ns = new_ns;
  2563. new_ns->mounts++;
  2564. if (new_fs) {
  2565. if (&p->mnt == new_fs->root.mnt) {
  2566. new_fs->root.mnt = mntget(&q->mnt);
  2567. rootmnt = &p->mnt;
  2568. }
  2569. if (&p->mnt == new_fs->pwd.mnt) {
  2570. new_fs->pwd.mnt = mntget(&q->mnt);
  2571. pwdmnt = &p->mnt;
  2572. }
  2573. }
  2574. p = next_mnt(p, old);
  2575. q = next_mnt(q, new);
  2576. if (!q)
  2577. break;
  2578. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2579. p = next_mnt(p, old);
  2580. }
  2581. namespace_unlock();
  2582. if (rootmnt)
  2583. mntput(rootmnt);
  2584. if (pwdmnt)
  2585. mntput(pwdmnt);
  2586. return new_ns;
  2587. }
  2588. /**
  2589. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2590. * @mnt: pointer to the new root filesystem mountpoint
  2591. */
  2592. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2593. {
  2594. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2595. if (!IS_ERR(new_ns)) {
  2596. struct mount *mnt = real_mount(m);
  2597. mnt->mnt_ns = new_ns;
  2598. new_ns->root = mnt;
  2599. new_ns->mounts++;
  2600. list_add(&mnt->mnt_list, &new_ns->list);
  2601. } else {
  2602. mntput(m);
  2603. }
  2604. return new_ns;
  2605. }
  2606. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2607. {
  2608. struct mnt_namespace *ns;
  2609. struct super_block *s;
  2610. struct path path;
  2611. int err;
  2612. ns = create_mnt_ns(mnt);
  2613. if (IS_ERR(ns))
  2614. return ERR_CAST(ns);
  2615. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2616. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2617. put_mnt_ns(ns);
  2618. if (err)
  2619. return ERR_PTR(err);
  2620. /* trade a vfsmount reference for active sb one */
  2621. s = path.mnt->mnt_sb;
  2622. atomic_inc(&s->s_active);
  2623. mntput(path.mnt);
  2624. /* lock the sucker */
  2625. down_write(&s->s_umount);
  2626. /* ... and return the root of (sub)tree on it */
  2627. return path.dentry;
  2628. }
  2629. EXPORT_SYMBOL(mount_subtree);
  2630. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2631. char __user *, type, unsigned long, flags, void __user *, data)
  2632. {
  2633. int ret;
  2634. char *kernel_type;
  2635. char *kernel_dev;
  2636. void *options;
  2637. kernel_type = copy_mount_string(type);
  2638. ret = PTR_ERR(kernel_type);
  2639. if (IS_ERR(kernel_type))
  2640. goto out_type;
  2641. kernel_dev = copy_mount_string(dev_name);
  2642. ret = PTR_ERR(kernel_dev);
  2643. if (IS_ERR(kernel_dev))
  2644. goto out_dev;
  2645. options = copy_mount_options(data);
  2646. ret = PTR_ERR(options);
  2647. if (IS_ERR(options))
  2648. goto out_data;
  2649. ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
  2650. kfree(options);
  2651. out_data:
  2652. kfree(kernel_dev);
  2653. out_dev:
  2654. kfree(kernel_type);
  2655. out_type:
  2656. return ret;
  2657. }
  2658. /*
  2659. * Return true if path is reachable from root
  2660. *
  2661. * namespace_sem or mount_lock is held
  2662. */
  2663. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2664. const struct path *root)
  2665. {
  2666. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2667. dentry = mnt->mnt_mountpoint;
  2668. mnt = mnt->mnt_parent;
  2669. }
  2670. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2671. }
  2672. bool path_is_under(const struct path *path1, const struct path *path2)
  2673. {
  2674. bool res;
  2675. read_seqlock_excl(&mount_lock);
  2676. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2677. read_sequnlock_excl(&mount_lock);
  2678. return res;
  2679. }
  2680. EXPORT_SYMBOL(path_is_under);
  2681. /*
  2682. * pivot_root Semantics:
  2683. * Moves the root file system of the current process to the directory put_old,
  2684. * makes new_root as the new root file system of the current process, and sets
  2685. * root/cwd of all processes which had them on the current root to new_root.
  2686. *
  2687. * Restrictions:
  2688. * The new_root and put_old must be directories, and must not be on the
  2689. * same file system as the current process root. The put_old must be
  2690. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2691. * pointed to by put_old must yield the same directory as new_root. No other
  2692. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2693. *
  2694. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2695. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2696. * in this situation.
  2697. *
  2698. * Notes:
  2699. * - we don't move root/cwd if they are not at the root (reason: if something
  2700. * cared enough to change them, it's probably wrong to force them elsewhere)
  2701. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2702. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2703. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2704. * first.
  2705. */
  2706. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2707. const char __user *, put_old)
  2708. {
  2709. struct path new, old, parent_path, root_parent, root;
  2710. struct mount *new_mnt, *root_mnt, *old_mnt;
  2711. struct mountpoint *old_mp, *root_mp;
  2712. int error;
  2713. if (!may_mount())
  2714. return -EPERM;
  2715. error = user_path_dir(new_root, &new);
  2716. if (error)
  2717. goto out0;
  2718. error = user_path_dir(put_old, &old);
  2719. if (error)
  2720. goto out1;
  2721. error = security_sb_pivotroot(&old, &new);
  2722. if (error)
  2723. goto out2;
  2724. get_fs_root(current->fs, &root);
  2725. old_mp = lock_mount(&old);
  2726. error = PTR_ERR(old_mp);
  2727. if (IS_ERR(old_mp))
  2728. goto out3;
  2729. error = -EINVAL;
  2730. new_mnt = real_mount(new.mnt);
  2731. root_mnt = real_mount(root.mnt);
  2732. old_mnt = real_mount(old.mnt);
  2733. if (IS_MNT_SHARED(old_mnt) ||
  2734. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2735. IS_MNT_SHARED(root_mnt->mnt_parent))
  2736. goto out4;
  2737. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2738. goto out4;
  2739. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2740. goto out4;
  2741. error = -ENOENT;
  2742. if (d_unlinked(new.dentry))
  2743. goto out4;
  2744. error = -EBUSY;
  2745. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2746. goto out4; /* loop, on the same file system */
  2747. error = -EINVAL;
  2748. if (root.mnt->mnt_root != root.dentry)
  2749. goto out4; /* not a mountpoint */
  2750. if (!mnt_has_parent(root_mnt))
  2751. goto out4; /* not attached */
  2752. root_mp = root_mnt->mnt_mp;
  2753. if (new.mnt->mnt_root != new.dentry)
  2754. goto out4; /* not a mountpoint */
  2755. if (!mnt_has_parent(new_mnt))
  2756. goto out4; /* not attached */
  2757. /* make sure we can reach put_old from new_root */
  2758. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2759. goto out4;
  2760. /* make certain new is below the root */
  2761. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2762. goto out4;
  2763. root_mp->m_count++; /* pin it so it won't go away */
  2764. lock_mount_hash();
  2765. detach_mnt(new_mnt, &parent_path);
  2766. detach_mnt(root_mnt, &root_parent);
  2767. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2768. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2769. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2770. }
  2771. /* mount old root on put_old */
  2772. attach_mnt(root_mnt, old_mnt, old_mp);
  2773. /* mount new_root on / */
  2774. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2775. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2776. /* A moved mount should not expire automatically */
  2777. list_del_init(&new_mnt->mnt_expire);
  2778. put_mountpoint(root_mp);
  2779. unlock_mount_hash();
  2780. chroot_fs_refs(&root, &new);
  2781. error = 0;
  2782. out4:
  2783. unlock_mount(old_mp);
  2784. if (!error) {
  2785. path_put(&root_parent);
  2786. path_put(&parent_path);
  2787. }
  2788. out3:
  2789. path_put(&root);
  2790. out2:
  2791. path_put(&old);
  2792. out1:
  2793. path_put(&new);
  2794. out0:
  2795. return error;
  2796. }
  2797. static void __init init_mount_tree(void)
  2798. {
  2799. struct vfsmount *mnt;
  2800. struct mnt_namespace *ns;
  2801. struct path root;
  2802. struct file_system_type *type;
  2803. type = get_fs_type("rootfs");
  2804. if (!type)
  2805. panic("Can't find rootfs type");
  2806. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2807. put_filesystem(type);
  2808. if (IS_ERR(mnt))
  2809. panic("Can't create rootfs");
  2810. ns = create_mnt_ns(mnt);
  2811. if (IS_ERR(ns))
  2812. panic("Can't allocate initial namespace");
  2813. init_task.nsproxy->mnt_ns = ns;
  2814. get_mnt_ns(ns);
  2815. root.mnt = mnt;
  2816. root.dentry = mnt->mnt_root;
  2817. mnt->mnt_flags |= MNT_LOCKED;
  2818. set_fs_pwd(current->fs, &root);
  2819. set_fs_root(current->fs, &root);
  2820. }
  2821. void __init mnt_init(void)
  2822. {
  2823. unsigned u;
  2824. int err;
  2825. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2826. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2827. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2828. sizeof(struct hlist_head),
  2829. mhash_entries, 19,
  2830. 0,
  2831. &m_hash_shift, &m_hash_mask, 0, 0);
  2832. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2833. sizeof(struct hlist_head),
  2834. mphash_entries, 19,
  2835. 0,
  2836. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2837. if (!mount_hashtable || !mountpoint_hashtable)
  2838. panic("Failed to allocate mount hash table\n");
  2839. for (u = 0; u <= m_hash_mask; u++)
  2840. INIT_HLIST_HEAD(&mount_hashtable[u]);
  2841. for (u = 0; u <= mp_hash_mask; u++)
  2842. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2843. kernfs_init();
  2844. err = sysfs_init();
  2845. if (err)
  2846. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2847. __func__, err);
  2848. fs_kobj = kobject_create_and_add("fs", NULL);
  2849. if (!fs_kobj)
  2850. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2851. init_rootfs();
  2852. init_mount_tree();
  2853. }
  2854. void put_mnt_ns(struct mnt_namespace *ns)
  2855. {
  2856. if (!atomic_dec_and_test(&ns->count))
  2857. return;
  2858. drop_collected_mounts(&ns->root->mnt);
  2859. free_mnt_ns(ns);
  2860. }
  2861. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2862. {
  2863. struct vfsmount *mnt;
  2864. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2865. if (!IS_ERR(mnt)) {
  2866. /*
  2867. * it is a longterm mount, don't release mnt until
  2868. * we unmount before file sys is unregistered
  2869. */
  2870. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2871. }
  2872. return mnt;
  2873. }
  2874. EXPORT_SYMBOL_GPL(kern_mount_data);
  2875. void kern_unmount(struct vfsmount *mnt)
  2876. {
  2877. /* release long term mount so mount point can be released */
  2878. if (!IS_ERR_OR_NULL(mnt)) {
  2879. real_mount(mnt)->mnt_ns = NULL;
  2880. synchronize_rcu(); /* yecchhh... */
  2881. mntput(mnt);
  2882. }
  2883. }
  2884. EXPORT_SYMBOL(kern_unmount);
  2885. bool our_mnt(struct vfsmount *mnt)
  2886. {
  2887. return check_mnt(real_mount(mnt));
  2888. }
  2889. bool current_chrooted(void)
  2890. {
  2891. /* Does the current process have a non-standard root */
  2892. struct path ns_root;
  2893. struct path fs_root;
  2894. bool chrooted;
  2895. /* Find the namespace root */
  2896. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2897. ns_root.dentry = ns_root.mnt->mnt_root;
  2898. path_get(&ns_root);
  2899. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2900. ;
  2901. get_fs_root(current->fs, &fs_root);
  2902. chrooted = !path_equal(&fs_root, &ns_root);
  2903. path_put(&fs_root);
  2904. path_put(&ns_root);
  2905. return chrooted;
  2906. }
  2907. static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
  2908. int *new_mnt_flags)
  2909. {
  2910. int new_flags = *new_mnt_flags;
  2911. struct mount *mnt;
  2912. bool visible = false;
  2913. down_read(&namespace_sem);
  2914. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2915. struct mount *child;
  2916. int mnt_flags;
  2917. if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
  2918. continue;
  2919. /* This mount is not fully visible if it's root directory
  2920. * is not the root directory of the filesystem.
  2921. */
  2922. if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
  2923. continue;
  2924. /* A local view of the mount flags */
  2925. mnt_flags = mnt->mnt.mnt_flags;
  2926. /* Don't miss readonly hidden in the superblock flags */
  2927. if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
  2928. mnt_flags |= MNT_LOCK_READONLY;
  2929. /* Verify the mount flags are equal to or more permissive
  2930. * than the proposed new mount.
  2931. */
  2932. if ((mnt_flags & MNT_LOCK_READONLY) &&
  2933. !(new_flags & MNT_READONLY))
  2934. continue;
  2935. if ((mnt_flags & MNT_LOCK_ATIME) &&
  2936. ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
  2937. continue;
  2938. /* This mount is not fully visible if there are any
  2939. * locked child mounts that cover anything except for
  2940. * empty directories.
  2941. */
  2942. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2943. struct inode *inode = child->mnt_mountpoint->d_inode;
  2944. /* Only worry about locked mounts */
  2945. if (!(child->mnt.mnt_flags & MNT_LOCKED))
  2946. continue;
  2947. /* Is the directory permanetly empty? */
  2948. if (!is_empty_dir_inode(inode))
  2949. goto next;
  2950. }
  2951. /* Preserve the locked attributes */
  2952. *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
  2953. MNT_LOCK_ATIME);
  2954. visible = true;
  2955. goto found;
  2956. next: ;
  2957. }
  2958. found:
  2959. up_read(&namespace_sem);
  2960. return visible;
  2961. }
  2962. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
  2963. {
  2964. const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
  2965. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2966. unsigned long s_iflags;
  2967. if (ns->user_ns == &init_user_ns)
  2968. return false;
  2969. /* Can this filesystem be too revealing? */
  2970. s_iflags = mnt->mnt_sb->s_iflags;
  2971. if (!(s_iflags & SB_I_USERNS_VISIBLE))
  2972. return false;
  2973. if ((s_iflags & required_iflags) != required_iflags) {
  2974. WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
  2975. required_iflags);
  2976. return true;
  2977. }
  2978. return !mnt_already_visible(ns, mnt, new_mnt_flags);
  2979. }
  2980. bool mnt_may_suid(struct vfsmount *mnt)
  2981. {
  2982. /*
  2983. * Foreign mounts (accessed via fchdir or through /proc
  2984. * symlinks) are always treated as if they are nosuid. This
  2985. * prevents namespaces from trusting potentially unsafe
  2986. * suid/sgid bits, file caps, or security labels that originate
  2987. * in other namespaces.
  2988. */
  2989. return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
  2990. current_in_userns(mnt->mnt_sb->s_user_ns);
  2991. }
  2992. static struct ns_common *mntns_get(struct task_struct *task)
  2993. {
  2994. struct ns_common *ns = NULL;
  2995. struct nsproxy *nsproxy;
  2996. task_lock(task);
  2997. nsproxy = task->nsproxy;
  2998. if (nsproxy) {
  2999. ns = &nsproxy->mnt_ns->ns;
  3000. get_mnt_ns(to_mnt_ns(ns));
  3001. }
  3002. task_unlock(task);
  3003. return ns;
  3004. }
  3005. static void mntns_put(struct ns_common *ns)
  3006. {
  3007. put_mnt_ns(to_mnt_ns(ns));
  3008. }
  3009. static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  3010. {
  3011. struct fs_struct *fs = current->fs;
  3012. struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
  3013. struct path root;
  3014. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  3015. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  3016. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  3017. return -EPERM;
  3018. if (fs->users != 1)
  3019. return -EINVAL;
  3020. get_mnt_ns(mnt_ns);
  3021. put_mnt_ns(nsproxy->mnt_ns);
  3022. nsproxy->mnt_ns = mnt_ns;
  3023. /* Find the root */
  3024. root.mnt = &mnt_ns->root->mnt;
  3025. root.dentry = mnt_ns->root->mnt.mnt_root;
  3026. path_get(&root);
  3027. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  3028. ;
  3029. /* Update the pwd and root */
  3030. set_fs_pwd(fs, &root);
  3031. set_fs_root(fs, &root);
  3032. path_put(&root);
  3033. return 0;
  3034. }
  3035. static struct user_namespace *mntns_owner(struct ns_common *ns)
  3036. {
  3037. return to_mnt_ns(ns)->user_ns;
  3038. }
  3039. const struct proc_ns_operations mntns_operations = {
  3040. .name = "mnt",
  3041. .type = CLONE_NEWNS,
  3042. .get = mntns_get,
  3043. .put = mntns_put,
  3044. .install = mntns_install,
  3045. .owner = mntns_owner,
  3046. };