simd.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226
  1. /*
  2. * Shared crypto simd helpers
  3. *
  4. * Copyright (c) 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
  5. * Copyright (c) 2016 Herbert Xu <herbert@gondor.apana.org.au>
  6. *
  7. * Based on aesni-intel_glue.c by:
  8. * Copyright (C) 2008, Intel Corp.
  9. * Author: Huang Ying <ying.huang@intel.com>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
  24. * USA
  25. *
  26. */
  27. #include <crypto/cryptd.h>
  28. #include <crypto/internal/simd.h>
  29. #include <crypto/internal/skcipher.h>
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/preempt.h>
  33. #include <asm/simd.h>
  34. struct simd_skcipher_alg {
  35. const char *ialg_name;
  36. struct skcipher_alg alg;
  37. };
  38. struct simd_skcipher_ctx {
  39. struct cryptd_skcipher *cryptd_tfm;
  40. };
  41. static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
  42. unsigned int key_len)
  43. {
  44. struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
  45. struct crypto_skcipher *child = &ctx->cryptd_tfm->base;
  46. int err;
  47. crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
  48. crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
  49. CRYPTO_TFM_REQ_MASK);
  50. err = crypto_skcipher_setkey(child, key, key_len);
  51. crypto_skcipher_set_flags(tfm, crypto_skcipher_get_flags(child) &
  52. CRYPTO_TFM_RES_MASK);
  53. return err;
  54. }
  55. static int simd_skcipher_encrypt(struct skcipher_request *req)
  56. {
  57. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  58. struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
  59. struct skcipher_request *subreq;
  60. struct crypto_skcipher *child;
  61. subreq = skcipher_request_ctx(req);
  62. *subreq = *req;
  63. if (!may_use_simd() ||
  64. (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
  65. child = &ctx->cryptd_tfm->base;
  66. else
  67. child = cryptd_skcipher_child(ctx->cryptd_tfm);
  68. skcipher_request_set_tfm(subreq, child);
  69. return crypto_skcipher_encrypt(subreq);
  70. }
  71. static int simd_skcipher_decrypt(struct skcipher_request *req)
  72. {
  73. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  74. struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
  75. struct skcipher_request *subreq;
  76. struct crypto_skcipher *child;
  77. subreq = skcipher_request_ctx(req);
  78. *subreq = *req;
  79. if (!may_use_simd() ||
  80. (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
  81. child = &ctx->cryptd_tfm->base;
  82. else
  83. child = cryptd_skcipher_child(ctx->cryptd_tfm);
  84. skcipher_request_set_tfm(subreq, child);
  85. return crypto_skcipher_decrypt(subreq);
  86. }
  87. static void simd_skcipher_exit(struct crypto_skcipher *tfm)
  88. {
  89. struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
  90. cryptd_free_skcipher(ctx->cryptd_tfm);
  91. }
  92. static int simd_skcipher_init(struct crypto_skcipher *tfm)
  93. {
  94. struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
  95. struct cryptd_skcipher *cryptd_tfm;
  96. struct simd_skcipher_alg *salg;
  97. struct skcipher_alg *alg;
  98. unsigned reqsize;
  99. alg = crypto_skcipher_alg(tfm);
  100. salg = container_of(alg, struct simd_skcipher_alg, alg);
  101. cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
  102. CRYPTO_ALG_INTERNAL,
  103. CRYPTO_ALG_INTERNAL);
  104. if (IS_ERR(cryptd_tfm))
  105. return PTR_ERR(cryptd_tfm);
  106. ctx->cryptd_tfm = cryptd_tfm;
  107. reqsize = sizeof(struct skcipher_request);
  108. reqsize += crypto_skcipher_reqsize(&cryptd_tfm->base);
  109. crypto_skcipher_set_reqsize(tfm, reqsize);
  110. return 0;
  111. }
  112. struct simd_skcipher_alg *simd_skcipher_create_compat(const char *algname,
  113. const char *drvname,
  114. const char *basename)
  115. {
  116. struct simd_skcipher_alg *salg;
  117. struct crypto_skcipher *tfm;
  118. struct skcipher_alg *ialg;
  119. struct skcipher_alg *alg;
  120. int err;
  121. tfm = crypto_alloc_skcipher(basename, CRYPTO_ALG_INTERNAL,
  122. CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
  123. if (IS_ERR(tfm))
  124. return ERR_CAST(tfm);
  125. ialg = crypto_skcipher_alg(tfm);
  126. salg = kzalloc(sizeof(*salg), GFP_KERNEL);
  127. if (!salg) {
  128. salg = ERR_PTR(-ENOMEM);
  129. goto out_put_tfm;
  130. }
  131. salg->ialg_name = basename;
  132. alg = &salg->alg;
  133. err = -ENAMETOOLONG;
  134. if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
  135. CRYPTO_MAX_ALG_NAME)
  136. goto out_free_salg;
  137. if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  138. drvname) >= CRYPTO_MAX_ALG_NAME)
  139. goto out_free_salg;
  140. alg->base.cra_flags = CRYPTO_ALG_ASYNC;
  141. alg->base.cra_priority = ialg->base.cra_priority;
  142. alg->base.cra_blocksize = ialg->base.cra_blocksize;
  143. alg->base.cra_alignmask = ialg->base.cra_alignmask;
  144. alg->base.cra_module = ialg->base.cra_module;
  145. alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);
  146. alg->ivsize = ialg->ivsize;
  147. alg->chunksize = ialg->chunksize;
  148. alg->min_keysize = ialg->min_keysize;
  149. alg->max_keysize = ialg->max_keysize;
  150. alg->init = simd_skcipher_init;
  151. alg->exit = simd_skcipher_exit;
  152. alg->setkey = simd_skcipher_setkey;
  153. alg->encrypt = simd_skcipher_encrypt;
  154. alg->decrypt = simd_skcipher_decrypt;
  155. err = crypto_register_skcipher(alg);
  156. if (err)
  157. goto out_free_salg;
  158. out_put_tfm:
  159. crypto_free_skcipher(tfm);
  160. return salg;
  161. out_free_salg:
  162. kfree(salg);
  163. salg = ERR_PTR(err);
  164. goto out_put_tfm;
  165. }
  166. EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);
  167. struct simd_skcipher_alg *simd_skcipher_create(const char *algname,
  168. const char *basename)
  169. {
  170. char drvname[CRYPTO_MAX_ALG_NAME];
  171. if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
  172. CRYPTO_MAX_ALG_NAME)
  173. return ERR_PTR(-ENAMETOOLONG);
  174. return simd_skcipher_create_compat(algname, drvname, basename);
  175. }
  176. EXPORT_SYMBOL_GPL(simd_skcipher_create);
  177. void simd_skcipher_free(struct simd_skcipher_alg *salg)
  178. {
  179. crypto_unregister_skcipher(&salg->alg);
  180. kfree(salg);
  181. }
  182. EXPORT_SYMBOL_GPL(simd_skcipher_free);
  183. MODULE_LICENSE("GPL");