mips.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/bitops.h>
  12. #include <linux/errno.h>
  13. #include <linux/err.h>
  14. #include <linux/kdebug.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/fs.h>
  18. #include <linux/bootmem.h>
  19. #include <asm/fpu.h>
  20. #include <asm/page.h>
  21. #include <asm/cacheflush.h>
  22. #include <asm/mmu_context.h>
  23. #include <asm/pgtable.h>
  24. #include <linux/kvm_host.h>
  25. #include "interrupt.h"
  26. #include "commpage.h"
  27. #define CREATE_TRACE_POINTS
  28. #include "trace.h"
  29. #ifndef VECTORSPACING
  30. #define VECTORSPACING 0x100 /* for EI/VI mode */
  31. #endif
  32. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  33. struct kvm_stats_debugfs_item debugfs_entries[] = {
  34. { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
  35. { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
  36. { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
  37. { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
  38. { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  39. { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
  40. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
  41. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
  42. { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
  43. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
  44. { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
  45. { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
  46. { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
  47. { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
  48. { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
  49. { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
  50. { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  51. { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  52. { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  53. { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  54. { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
  55. { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
  56. {NULL}
  57. };
  58. static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  59. {
  60. int i;
  61. for_each_possible_cpu(i) {
  62. vcpu->arch.guest_kernel_asid[i] = 0;
  63. vcpu->arch.guest_user_asid[i] = 0;
  64. }
  65. return 0;
  66. }
  67. /*
  68. * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  69. * Config7, so we are "runnable" if interrupts are pending
  70. */
  71. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  72. {
  73. return !!(vcpu->arch.pending_exceptions);
  74. }
  75. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  76. {
  77. return 1;
  78. }
  79. int kvm_arch_hardware_enable(void)
  80. {
  81. return 0;
  82. }
  83. int kvm_arch_hardware_setup(void)
  84. {
  85. return 0;
  86. }
  87. void kvm_arch_check_processor_compat(void *rtn)
  88. {
  89. *(int *)rtn = 0;
  90. }
  91. static void kvm_mips_init_tlbs(struct kvm *kvm)
  92. {
  93. unsigned long wired;
  94. /*
  95. * Add a wired entry to the TLB, it is used to map the commpage to
  96. * the Guest kernel
  97. */
  98. wired = read_c0_wired();
  99. write_c0_wired(wired + 1);
  100. mtc0_tlbw_hazard();
  101. kvm->arch.commpage_tlb = wired;
  102. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  103. kvm->arch.commpage_tlb);
  104. }
  105. static void kvm_mips_init_vm_percpu(void *arg)
  106. {
  107. struct kvm *kvm = (struct kvm *)arg;
  108. kvm_mips_init_tlbs(kvm);
  109. kvm_mips_callbacks->vm_init(kvm);
  110. }
  111. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  112. {
  113. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  114. kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
  115. __func__);
  116. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  117. }
  118. return 0;
  119. }
  120. void kvm_mips_free_vcpus(struct kvm *kvm)
  121. {
  122. unsigned int i;
  123. struct kvm_vcpu *vcpu;
  124. /* Put the pages we reserved for the guest pmap */
  125. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  126. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  127. kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
  128. }
  129. kfree(kvm->arch.guest_pmap);
  130. kvm_for_each_vcpu(i, vcpu, kvm) {
  131. kvm_arch_vcpu_free(vcpu);
  132. }
  133. mutex_lock(&kvm->lock);
  134. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  135. kvm->vcpus[i] = NULL;
  136. atomic_set(&kvm->online_vcpus, 0);
  137. mutex_unlock(&kvm->lock);
  138. }
  139. static void kvm_mips_uninit_tlbs(void *arg)
  140. {
  141. /* Restore wired count */
  142. write_c0_wired(0);
  143. mtc0_tlbw_hazard();
  144. /* Clear out all the TLBs */
  145. kvm_local_flush_tlb_all();
  146. }
  147. void kvm_arch_destroy_vm(struct kvm *kvm)
  148. {
  149. kvm_mips_free_vcpus(kvm);
  150. /* If this is the last instance, restore wired count */
  151. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  152. kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
  153. __func__);
  154. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  155. }
  156. }
  157. long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
  158. unsigned long arg)
  159. {
  160. return -ENOIOCTLCMD;
  161. }
  162. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  163. unsigned long npages)
  164. {
  165. return 0;
  166. }
  167. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  168. struct kvm_memory_slot *memslot,
  169. const struct kvm_userspace_memory_region *mem,
  170. enum kvm_mr_change change)
  171. {
  172. return 0;
  173. }
  174. void kvm_arch_commit_memory_region(struct kvm *kvm,
  175. const struct kvm_userspace_memory_region *mem,
  176. const struct kvm_memory_slot *old,
  177. const struct kvm_memory_slot *new,
  178. enum kvm_mr_change change)
  179. {
  180. unsigned long npages = 0;
  181. int i;
  182. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  183. __func__, kvm, mem->slot, mem->guest_phys_addr,
  184. mem->memory_size, mem->userspace_addr);
  185. /* Setup Guest PMAP table */
  186. if (!kvm->arch.guest_pmap) {
  187. if (mem->slot == 0)
  188. npages = mem->memory_size >> PAGE_SHIFT;
  189. if (npages) {
  190. kvm->arch.guest_pmap_npages = npages;
  191. kvm->arch.guest_pmap =
  192. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  193. if (!kvm->arch.guest_pmap) {
  194. kvm_err("Failed to allocate guest PMAP\n");
  195. return;
  196. }
  197. kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  198. npages, kvm->arch.guest_pmap);
  199. /* Now setup the page table */
  200. for (i = 0; i < npages; i++)
  201. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  202. }
  203. }
  204. }
  205. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  206. {
  207. int err, size, offset;
  208. void *gebase;
  209. int i;
  210. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  211. if (!vcpu) {
  212. err = -ENOMEM;
  213. goto out;
  214. }
  215. err = kvm_vcpu_init(vcpu, kvm, id);
  216. if (err)
  217. goto out_free_cpu;
  218. kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  219. /*
  220. * Allocate space for host mode exception handlers that handle
  221. * guest mode exits
  222. */
  223. if (cpu_has_veic || cpu_has_vint)
  224. size = 0x200 + VECTORSPACING * 64;
  225. else
  226. size = 0x4000;
  227. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  228. if (!gebase) {
  229. err = -ENOMEM;
  230. goto out_uninit_cpu;
  231. }
  232. kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  233. ALIGN(size, PAGE_SIZE), gebase);
  234. /* Save new ebase */
  235. vcpu->arch.guest_ebase = gebase;
  236. /* Copy L1 Guest Exception handler to correct offset */
  237. /* TLB Refill, EXL = 0 */
  238. memcpy(gebase, mips32_exception,
  239. mips32_exceptionEnd - mips32_exception);
  240. /* General Exception Entry point */
  241. memcpy(gebase + 0x180, mips32_exception,
  242. mips32_exceptionEnd - mips32_exception);
  243. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  244. for (i = 0; i < 8; i++) {
  245. kvm_debug("L1 Vectored handler @ %p\n",
  246. gebase + 0x200 + (i * VECTORSPACING));
  247. memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
  248. mips32_exceptionEnd - mips32_exception);
  249. }
  250. /* General handler, relocate to unmapped space for sanity's sake */
  251. offset = 0x2000;
  252. kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
  253. gebase + offset,
  254. mips32_GuestExceptionEnd - mips32_GuestException);
  255. memcpy(gebase + offset, mips32_GuestException,
  256. mips32_GuestExceptionEnd - mips32_GuestException);
  257. #ifdef MODULE
  258. offset += mips32_GuestExceptionEnd - mips32_GuestException;
  259. memcpy(gebase + offset, (char *)__kvm_mips_vcpu_run,
  260. __kvm_mips_vcpu_run_end - (char *)__kvm_mips_vcpu_run);
  261. vcpu->arch.vcpu_run = gebase + offset;
  262. #else
  263. vcpu->arch.vcpu_run = __kvm_mips_vcpu_run;
  264. #endif
  265. /* Invalidate the icache for these ranges */
  266. local_flush_icache_range((unsigned long)gebase,
  267. (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
  268. /*
  269. * Allocate comm page for guest kernel, a TLB will be reserved for
  270. * mapping GVA @ 0xFFFF8000 to this page
  271. */
  272. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  273. if (!vcpu->arch.kseg0_commpage) {
  274. err = -ENOMEM;
  275. goto out_free_gebase;
  276. }
  277. kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  278. kvm_mips_commpage_init(vcpu);
  279. /* Init */
  280. vcpu->arch.last_sched_cpu = -1;
  281. /* Start off the timer */
  282. kvm_mips_init_count(vcpu);
  283. return vcpu;
  284. out_free_gebase:
  285. kfree(gebase);
  286. out_uninit_cpu:
  287. kvm_vcpu_uninit(vcpu);
  288. out_free_cpu:
  289. kfree(vcpu);
  290. out:
  291. return ERR_PTR(err);
  292. }
  293. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  294. {
  295. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  296. kvm_vcpu_uninit(vcpu);
  297. kvm_mips_dump_stats(vcpu);
  298. kfree(vcpu->arch.guest_ebase);
  299. kfree(vcpu->arch.kseg0_commpage);
  300. kfree(vcpu);
  301. }
  302. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  303. {
  304. kvm_arch_vcpu_free(vcpu);
  305. }
  306. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  307. struct kvm_guest_debug *dbg)
  308. {
  309. return -ENOIOCTLCMD;
  310. }
  311. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  312. {
  313. int r = 0;
  314. sigset_t sigsaved;
  315. if (vcpu->sigset_active)
  316. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  317. if (vcpu->mmio_needed) {
  318. if (!vcpu->mmio_is_write)
  319. kvm_mips_complete_mmio_load(vcpu, run);
  320. vcpu->mmio_needed = 0;
  321. }
  322. lose_fpu(1);
  323. local_irq_disable();
  324. /* Check if we have any exceptions/interrupts pending */
  325. kvm_mips_deliver_interrupts(vcpu,
  326. kvm_read_c0_guest_cause(vcpu->arch.cop0));
  327. guest_enter_irqoff();
  328. /* Disable hardware page table walking while in guest */
  329. htw_stop();
  330. trace_kvm_enter(vcpu);
  331. r = vcpu->arch.vcpu_run(run, vcpu);
  332. trace_kvm_out(vcpu);
  333. /* Re-enable HTW before enabling interrupts */
  334. htw_start();
  335. guest_exit_irqoff();
  336. local_irq_enable();
  337. if (vcpu->sigset_active)
  338. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  339. return r;
  340. }
  341. int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  342. struct kvm_mips_interrupt *irq)
  343. {
  344. int intr = (int)irq->irq;
  345. struct kvm_vcpu *dvcpu = NULL;
  346. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  347. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  348. (int)intr);
  349. if (irq->cpu == -1)
  350. dvcpu = vcpu;
  351. else
  352. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  353. if (intr == 2 || intr == 3 || intr == 4) {
  354. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  355. } else if (intr == -2 || intr == -3 || intr == -4) {
  356. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  357. } else {
  358. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  359. irq->cpu, irq->irq);
  360. return -EINVAL;
  361. }
  362. dvcpu->arch.wait = 0;
  363. if (swait_active(&dvcpu->wq))
  364. swake_up(&dvcpu->wq);
  365. return 0;
  366. }
  367. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  368. struct kvm_mp_state *mp_state)
  369. {
  370. return -ENOIOCTLCMD;
  371. }
  372. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  373. struct kvm_mp_state *mp_state)
  374. {
  375. return -ENOIOCTLCMD;
  376. }
  377. static u64 kvm_mips_get_one_regs[] = {
  378. KVM_REG_MIPS_R0,
  379. KVM_REG_MIPS_R1,
  380. KVM_REG_MIPS_R2,
  381. KVM_REG_MIPS_R3,
  382. KVM_REG_MIPS_R4,
  383. KVM_REG_MIPS_R5,
  384. KVM_REG_MIPS_R6,
  385. KVM_REG_MIPS_R7,
  386. KVM_REG_MIPS_R8,
  387. KVM_REG_MIPS_R9,
  388. KVM_REG_MIPS_R10,
  389. KVM_REG_MIPS_R11,
  390. KVM_REG_MIPS_R12,
  391. KVM_REG_MIPS_R13,
  392. KVM_REG_MIPS_R14,
  393. KVM_REG_MIPS_R15,
  394. KVM_REG_MIPS_R16,
  395. KVM_REG_MIPS_R17,
  396. KVM_REG_MIPS_R18,
  397. KVM_REG_MIPS_R19,
  398. KVM_REG_MIPS_R20,
  399. KVM_REG_MIPS_R21,
  400. KVM_REG_MIPS_R22,
  401. KVM_REG_MIPS_R23,
  402. KVM_REG_MIPS_R24,
  403. KVM_REG_MIPS_R25,
  404. KVM_REG_MIPS_R26,
  405. KVM_REG_MIPS_R27,
  406. KVM_REG_MIPS_R28,
  407. KVM_REG_MIPS_R29,
  408. KVM_REG_MIPS_R30,
  409. KVM_REG_MIPS_R31,
  410. KVM_REG_MIPS_HI,
  411. KVM_REG_MIPS_LO,
  412. KVM_REG_MIPS_PC,
  413. KVM_REG_MIPS_CP0_INDEX,
  414. KVM_REG_MIPS_CP0_CONTEXT,
  415. KVM_REG_MIPS_CP0_USERLOCAL,
  416. KVM_REG_MIPS_CP0_PAGEMASK,
  417. KVM_REG_MIPS_CP0_WIRED,
  418. KVM_REG_MIPS_CP0_HWRENA,
  419. KVM_REG_MIPS_CP0_BADVADDR,
  420. KVM_REG_MIPS_CP0_COUNT,
  421. KVM_REG_MIPS_CP0_ENTRYHI,
  422. KVM_REG_MIPS_CP0_COMPARE,
  423. KVM_REG_MIPS_CP0_STATUS,
  424. KVM_REG_MIPS_CP0_CAUSE,
  425. KVM_REG_MIPS_CP0_EPC,
  426. KVM_REG_MIPS_CP0_PRID,
  427. KVM_REG_MIPS_CP0_CONFIG,
  428. KVM_REG_MIPS_CP0_CONFIG1,
  429. KVM_REG_MIPS_CP0_CONFIG2,
  430. KVM_REG_MIPS_CP0_CONFIG3,
  431. KVM_REG_MIPS_CP0_CONFIG4,
  432. KVM_REG_MIPS_CP0_CONFIG5,
  433. KVM_REG_MIPS_CP0_CONFIG7,
  434. KVM_REG_MIPS_CP0_ERROREPC,
  435. KVM_REG_MIPS_COUNT_CTL,
  436. KVM_REG_MIPS_COUNT_RESUME,
  437. KVM_REG_MIPS_COUNT_HZ,
  438. };
  439. static u64 kvm_mips_get_one_regs_fpu[] = {
  440. KVM_REG_MIPS_FCR_IR,
  441. KVM_REG_MIPS_FCR_CSR,
  442. };
  443. static u64 kvm_mips_get_one_regs_msa[] = {
  444. KVM_REG_MIPS_MSA_IR,
  445. KVM_REG_MIPS_MSA_CSR,
  446. };
  447. static u64 kvm_mips_get_one_regs_kscratch[] = {
  448. KVM_REG_MIPS_CP0_KSCRATCH1,
  449. KVM_REG_MIPS_CP0_KSCRATCH2,
  450. KVM_REG_MIPS_CP0_KSCRATCH3,
  451. KVM_REG_MIPS_CP0_KSCRATCH4,
  452. KVM_REG_MIPS_CP0_KSCRATCH5,
  453. KVM_REG_MIPS_CP0_KSCRATCH6,
  454. };
  455. static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
  456. {
  457. unsigned long ret;
  458. ret = ARRAY_SIZE(kvm_mips_get_one_regs);
  459. if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
  460. ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
  461. /* odd doubles */
  462. if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
  463. ret += 16;
  464. }
  465. if (kvm_mips_guest_can_have_msa(&vcpu->arch))
  466. ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
  467. ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
  468. ret += kvm_mips_callbacks->num_regs(vcpu);
  469. return ret;
  470. }
  471. static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
  472. {
  473. u64 index;
  474. unsigned int i;
  475. if (copy_to_user(indices, kvm_mips_get_one_regs,
  476. sizeof(kvm_mips_get_one_regs)))
  477. return -EFAULT;
  478. indices += ARRAY_SIZE(kvm_mips_get_one_regs);
  479. if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
  480. if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
  481. sizeof(kvm_mips_get_one_regs_fpu)))
  482. return -EFAULT;
  483. indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
  484. for (i = 0; i < 32; ++i) {
  485. index = KVM_REG_MIPS_FPR_32(i);
  486. if (copy_to_user(indices, &index, sizeof(index)))
  487. return -EFAULT;
  488. ++indices;
  489. /* skip odd doubles if no F64 */
  490. if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
  491. continue;
  492. index = KVM_REG_MIPS_FPR_64(i);
  493. if (copy_to_user(indices, &index, sizeof(index)))
  494. return -EFAULT;
  495. ++indices;
  496. }
  497. }
  498. if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
  499. if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
  500. sizeof(kvm_mips_get_one_regs_msa)))
  501. return -EFAULT;
  502. indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
  503. for (i = 0; i < 32; ++i) {
  504. index = KVM_REG_MIPS_VEC_128(i);
  505. if (copy_to_user(indices, &index, sizeof(index)))
  506. return -EFAULT;
  507. ++indices;
  508. }
  509. }
  510. for (i = 0; i < 6; ++i) {
  511. if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
  512. continue;
  513. if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
  514. sizeof(kvm_mips_get_one_regs_kscratch[i])))
  515. return -EFAULT;
  516. ++indices;
  517. }
  518. return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
  519. }
  520. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  521. const struct kvm_one_reg *reg)
  522. {
  523. struct mips_coproc *cop0 = vcpu->arch.cop0;
  524. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  525. int ret;
  526. s64 v;
  527. s64 vs[2];
  528. unsigned int idx;
  529. switch (reg->id) {
  530. /* General purpose registers */
  531. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  532. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  533. break;
  534. case KVM_REG_MIPS_HI:
  535. v = (long)vcpu->arch.hi;
  536. break;
  537. case KVM_REG_MIPS_LO:
  538. v = (long)vcpu->arch.lo;
  539. break;
  540. case KVM_REG_MIPS_PC:
  541. v = (long)vcpu->arch.pc;
  542. break;
  543. /* Floating point registers */
  544. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  545. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  546. return -EINVAL;
  547. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  548. /* Odd singles in top of even double when FR=0 */
  549. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  550. v = get_fpr32(&fpu->fpr[idx], 0);
  551. else
  552. v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
  553. break;
  554. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  555. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  556. return -EINVAL;
  557. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  558. /* Can't access odd doubles in FR=0 mode */
  559. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  560. return -EINVAL;
  561. v = get_fpr64(&fpu->fpr[idx], 0);
  562. break;
  563. case KVM_REG_MIPS_FCR_IR:
  564. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  565. return -EINVAL;
  566. v = boot_cpu_data.fpu_id;
  567. break;
  568. case KVM_REG_MIPS_FCR_CSR:
  569. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  570. return -EINVAL;
  571. v = fpu->fcr31;
  572. break;
  573. /* MIPS SIMD Architecture (MSA) registers */
  574. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  575. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  576. return -EINVAL;
  577. /* Can't access MSA registers in FR=0 mode */
  578. if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
  579. return -EINVAL;
  580. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  581. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  582. /* least significant byte first */
  583. vs[0] = get_fpr64(&fpu->fpr[idx], 0);
  584. vs[1] = get_fpr64(&fpu->fpr[idx], 1);
  585. #else
  586. /* most significant byte first */
  587. vs[0] = get_fpr64(&fpu->fpr[idx], 1);
  588. vs[1] = get_fpr64(&fpu->fpr[idx], 0);
  589. #endif
  590. break;
  591. case KVM_REG_MIPS_MSA_IR:
  592. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  593. return -EINVAL;
  594. v = boot_cpu_data.msa_id;
  595. break;
  596. case KVM_REG_MIPS_MSA_CSR:
  597. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  598. return -EINVAL;
  599. v = fpu->msacsr;
  600. break;
  601. /* Co-processor 0 registers */
  602. case KVM_REG_MIPS_CP0_INDEX:
  603. v = (long)kvm_read_c0_guest_index(cop0);
  604. break;
  605. case KVM_REG_MIPS_CP0_CONTEXT:
  606. v = (long)kvm_read_c0_guest_context(cop0);
  607. break;
  608. case KVM_REG_MIPS_CP0_USERLOCAL:
  609. v = (long)kvm_read_c0_guest_userlocal(cop0);
  610. break;
  611. case KVM_REG_MIPS_CP0_PAGEMASK:
  612. v = (long)kvm_read_c0_guest_pagemask(cop0);
  613. break;
  614. case KVM_REG_MIPS_CP0_WIRED:
  615. v = (long)kvm_read_c0_guest_wired(cop0);
  616. break;
  617. case KVM_REG_MIPS_CP0_HWRENA:
  618. v = (long)kvm_read_c0_guest_hwrena(cop0);
  619. break;
  620. case KVM_REG_MIPS_CP0_BADVADDR:
  621. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  622. break;
  623. case KVM_REG_MIPS_CP0_ENTRYHI:
  624. v = (long)kvm_read_c0_guest_entryhi(cop0);
  625. break;
  626. case KVM_REG_MIPS_CP0_COMPARE:
  627. v = (long)kvm_read_c0_guest_compare(cop0);
  628. break;
  629. case KVM_REG_MIPS_CP0_STATUS:
  630. v = (long)kvm_read_c0_guest_status(cop0);
  631. break;
  632. case KVM_REG_MIPS_CP0_CAUSE:
  633. v = (long)kvm_read_c0_guest_cause(cop0);
  634. break;
  635. case KVM_REG_MIPS_CP0_EPC:
  636. v = (long)kvm_read_c0_guest_epc(cop0);
  637. break;
  638. case KVM_REG_MIPS_CP0_PRID:
  639. v = (long)kvm_read_c0_guest_prid(cop0);
  640. break;
  641. case KVM_REG_MIPS_CP0_CONFIG:
  642. v = (long)kvm_read_c0_guest_config(cop0);
  643. break;
  644. case KVM_REG_MIPS_CP0_CONFIG1:
  645. v = (long)kvm_read_c0_guest_config1(cop0);
  646. break;
  647. case KVM_REG_MIPS_CP0_CONFIG2:
  648. v = (long)kvm_read_c0_guest_config2(cop0);
  649. break;
  650. case KVM_REG_MIPS_CP0_CONFIG3:
  651. v = (long)kvm_read_c0_guest_config3(cop0);
  652. break;
  653. case KVM_REG_MIPS_CP0_CONFIG4:
  654. v = (long)kvm_read_c0_guest_config4(cop0);
  655. break;
  656. case KVM_REG_MIPS_CP0_CONFIG5:
  657. v = (long)kvm_read_c0_guest_config5(cop0);
  658. break;
  659. case KVM_REG_MIPS_CP0_CONFIG7:
  660. v = (long)kvm_read_c0_guest_config7(cop0);
  661. break;
  662. case KVM_REG_MIPS_CP0_ERROREPC:
  663. v = (long)kvm_read_c0_guest_errorepc(cop0);
  664. break;
  665. case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
  666. idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
  667. if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
  668. return -EINVAL;
  669. switch (idx) {
  670. case 2:
  671. v = (long)kvm_read_c0_guest_kscratch1(cop0);
  672. break;
  673. case 3:
  674. v = (long)kvm_read_c0_guest_kscratch2(cop0);
  675. break;
  676. case 4:
  677. v = (long)kvm_read_c0_guest_kscratch3(cop0);
  678. break;
  679. case 5:
  680. v = (long)kvm_read_c0_guest_kscratch4(cop0);
  681. break;
  682. case 6:
  683. v = (long)kvm_read_c0_guest_kscratch5(cop0);
  684. break;
  685. case 7:
  686. v = (long)kvm_read_c0_guest_kscratch6(cop0);
  687. break;
  688. }
  689. break;
  690. /* registers to be handled specially */
  691. default:
  692. ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
  693. if (ret)
  694. return ret;
  695. break;
  696. }
  697. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  698. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  699. return put_user(v, uaddr64);
  700. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  701. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  702. u32 v32 = (u32)v;
  703. return put_user(v32, uaddr32);
  704. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  705. void __user *uaddr = (void __user *)(long)reg->addr;
  706. return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
  707. } else {
  708. return -EINVAL;
  709. }
  710. }
  711. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  712. const struct kvm_one_reg *reg)
  713. {
  714. struct mips_coproc *cop0 = vcpu->arch.cop0;
  715. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  716. s64 v;
  717. s64 vs[2];
  718. unsigned int idx;
  719. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  720. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  721. if (get_user(v, uaddr64) != 0)
  722. return -EFAULT;
  723. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  724. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  725. s32 v32;
  726. if (get_user(v32, uaddr32) != 0)
  727. return -EFAULT;
  728. v = (s64)v32;
  729. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  730. void __user *uaddr = (void __user *)(long)reg->addr;
  731. return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
  732. } else {
  733. return -EINVAL;
  734. }
  735. switch (reg->id) {
  736. /* General purpose registers */
  737. case KVM_REG_MIPS_R0:
  738. /* Silently ignore requests to set $0 */
  739. break;
  740. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  741. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  742. break;
  743. case KVM_REG_MIPS_HI:
  744. vcpu->arch.hi = v;
  745. break;
  746. case KVM_REG_MIPS_LO:
  747. vcpu->arch.lo = v;
  748. break;
  749. case KVM_REG_MIPS_PC:
  750. vcpu->arch.pc = v;
  751. break;
  752. /* Floating point registers */
  753. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  754. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  755. return -EINVAL;
  756. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  757. /* Odd singles in top of even double when FR=0 */
  758. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  759. set_fpr32(&fpu->fpr[idx], 0, v);
  760. else
  761. set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
  762. break;
  763. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  764. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  765. return -EINVAL;
  766. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  767. /* Can't access odd doubles in FR=0 mode */
  768. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  769. return -EINVAL;
  770. set_fpr64(&fpu->fpr[idx], 0, v);
  771. break;
  772. case KVM_REG_MIPS_FCR_IR:
  773. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  774. return -EINVAL;
  775. /* Read-only */
  776. break;
  777. case KVM_REG_MIPS_FCR_CSR:
  778. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  779. return -EINVAL;
  780. fpu->fcr31 = v;
  781. break;
  782. /* MIPS SIMD Architecture (MSA) registers */
  783. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  784. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  785. return -EINVAL;
  786. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  787. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  788. /* least significant byte first */
  789. set_fpr64(&fpu->fpr[idx], 0, vs[0]);
  790. set_fpr64(&fpu->fpr[idx], 1, vs[1]);
  791. #else
  792. /* most significant byte first */
  793. set_fpr64(&fpu->fpr[idx], 1, vs[0]);
  794. set_fpr64(&fpu->fpr[idx], 0, vs[1]);
  795. #endif
  796. break;
  797. case KVM_REG_MIPS_MSA_IR:
  798. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  799. return -EINVAL;
  800. /* Read-only */
  801. break;
  802. case KVM_REG_MIPS_MSA_CSR:
  803. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  804. return -EINVAL;
  805. fpu->msacsr = v;
  806. break;
  807. /* Co-processor 0 registers */
  808. case KVM_REG_MIPS_CP0_INDEX:
  809. kvm_write_c0_guest_index(cop0, v);
  810. break;
  811. case KVM_REG_MIPS_CP0_CONTEXT:
  812. kvm_write_c0_guest_context(cop0, v);
  813. break;
  814. case KVM_REG_MIPS_CP0_USERLOCAL:
  815. kvm_write_c0_guest_userlocal(cop0, v);
  816. break;
  817. case KVM_REG_MIPS_CP0_PAGEMASK:
  818. kvm_write_c0_guest_pagemask(cop0, v);
  819. break;
  820. case KVM_REG_MIPS_CP0_WIRED:
  821. kvm_write_c0_guest_wired(cop0, v);
  822. break;
  823. case KVM_REG_MIPS_CP0_HWRENA:
  824. kvm_write_c0_guest_hwrena(cop0, v);
  825. break;
  826. case KVM_REG_MIPS_CP0_BADVADDR:
  827. kvm_write_c0_guest_badvaddr(cop0, v);
  828. break;
  829. case KVM_REG_MIPS_CP0_ENTRYHI:
  830. kvm_write_c0_guest_entryhi(cop0, v);
  831. break;
  832. case KVM_REG_MIPS_CP0_STATUS:
  833. kvm_write_c0_guest_status(cop0, v);
  834. break;
  835. case KVM_REG_MIPS_CP0_EPC:
  836. kvm_write_c0_guest_epc(cop0, v);
  837. break;
  838. case KVM_REG_MIPS_CP0_PRID:
  839. kvm_write_c0_guest_prid(cop0, v);
  840. break;
  841. case KVM_REG_MIPS_CP0_ERROREPC:
  842. kvm_write_c0_guest_errorepc(cop0, v);
  843. break;
  844. case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
  845. idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
  846. if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
  847. return -EINVAL;
  848. switch (idx) {
  849. case 2:
  850. kvm_write_c0_guest_kscratch1(cop0, v);
  851. break;
  852. case 3:
  853. kvm_write_c0_guest_kscratch2(cop0, v);
  854. break;
  855. case 4:
  856. kvm_write_c0_guest_kscratch3(cop0, v);
  857. break;
  858. case 5:
  859. kvm_write_c0_guest_kscratch4(cop0, v);
  860. break;
  861. case 6:
  862. kvm_write_c0_guest_kscratch5(cop0, v);
  863. break;
  864. case 7:
  865. kvm_write_c0_guest_kscratch6(cop0, v);
  866. break;
  867. }
  868. break;
  869. /* registers to be handled specially */
  870. default:
  871. return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
  872. }
  873. return 0;
  874. }
  875. static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
  876. struct kvm_enable_cap *cap)
  877. {
  878. int r = 0;
  879. if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
  880. return -EINVAL;
  881. if (cap->flags)
  882. return -EINVAL;
  883. if (cap->args[0])
  884. return -EINVAL;
  885. switch (cap->cap) {
  886. case KVM_CAP_MIPS_FPU:
  887. vcpu->arch.fpu_enabled = true;
  888. break;
  889. case KVM_CAP_MIPS_MSA:
  890. vcpu->arch.msa_enabled = true;
  891. break;
  892. default:
  893. r = -EINVAL;
  894. break;
  895. }
  896. return r;
  897. }
  898. long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
  899. unsigned long arg)
  900. {
  901. struct kvm_vcpu *vcpu = filp->private_data;
  902. void __user *argp = (void __user *)arg;
  903. long r;
  904. switch (ioctl) {
  905. case KVM_SET_ONE_REG:
  906. case KVM_GET_ONE_REG: {
  907. struct kvm_one_reg reg;
  908. if (copy_from_user(&reg, argp, sizeof(reg)))
  909. return -EFAULT;
  910. if (ioctl == KVM_SET_ONE_REG)
  911. return kvm_mips_set_reg(vcpu, &reg);
  912. else
  913. return kvm_mips_get_reg(vcpu, &reg);
  914. }
  915. case KVM_GET_REG_LIST: {
  916. struct kvm_reg_list __user *user_list = argp;
  917. struct kvm_reg_list reg_list;
  918. unsigned n;
  919. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  920. return -EFAULT;
  921. n = reg_list.n;
  922. reg_list.n = kvm_mips_num_regs(vcpu);
  923. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  924. return -EFAULT;
  925. if (n < reg_list.n)
  926. return -E2BIG;
  927. return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
  928. }
  929. case KVM_NMI:
  930. /* Treat the NMI as a CPU reset */
  931. r = kvm_mips_reset_vcpu(vcpu);
  932. break;
  933. case KVM_INTERRUPT:
  934. {
  935. struct kvm_mips_interrupt irq;
  936. r = -EFAULT;
  937. if (copy_from_user(&irq, argp, sizeof(irq)))
  938. goto out;
  939. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  940. irq.irq);
  941. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  942. break;
  943. }
  944. case KVM_ENABLE_CAP: {
  945. struct kvm_enable_cap cap;
  946. r = -EFAULT;
  947. if (copy_from_user(&cap, argp, sizeof(cap)))
  948. goto out;
  949. r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
  950. break;
  951. }
  952. default:
  953. r = -ENOIOCTLCMD;
  954. }
  955. out:
  956. return r;
  957. }
  958. /* Get (and clear) the dirty memory log for a memory slot. */
  959. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  960. {
  961. struct kvm_memslots *slots;
  962. struct kvm_memory_slot *memslot;
  963. unsigned long ga, ga_end;
  964. int is_dirty = 0;
  965. int r;
  966. unsigned long n;
  967. mutex_lock(&kvm->slots_lock);
  968. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  969. if (r)
  970. goto out;
  971. /* If nothing is dirty, don't bother messing with page tables. */
  972. if (is_dirty) {
  973. slots = kvm_memslots(kvm);
  974. memslot = id_to_memslot(slots, log->slot);
  975. ga = memslot->base_gfn << PAGE_SHIFT;
  976. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  977. kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  978. ga_end);
  979. n = kvm_dirty_bitmap_bytes(memslot);
  980. memset(memslot->dirty_bitmap, 0, n);
  981. }
  982. r = 0;
  983. out:
  984. mutex_unlock(&kvm->slots_lock);
  985. return r;
  986. }
  987. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  988. {
  989. long r;
  990. switch (ioctl) {
  991. default:
  992. r = -ENOIOCTLCMD;
  993. }
  994. return r;
  995. }
  996. int kvm_arch_init(void *opaque)
  997. {
  998. if (kvm_mips_callbacks) {
  999. kvm_err("kvm: module already exists\n");
  1000. return -EEXIST;
  1001. }
  1002. return kvm_mips_emulation_init(&kvm_mips_callbacks);
  1003. }
  1004. void kvm_arch_exit(void)
  1005. {
  1006. kvm_mips_callbacks = NULL;
  1007. }
  1008. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1009. struct kvm_sregs *sregs)
  1010. {
  1011. return -ENOIOCTLCMD;
  1012. }
  1013. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1014. struct kvm_sregs *sregs)
  1015. {
  1016. return -ENOIOCTLCMD;
  1017. }
  1018. void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  1019. {
  1020. }
  1021. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1022. {
  1023. return -ENOIOCTLCMD;
  1024. }
  1025. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1026. {
  1027. return -ENOIOCTLCMD;
  1028. }
  1029. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  1030. {
  1031. return VM_FAULT_SIGBUS;
  1032. }
  1033. int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
  1034. {
  1035. int r;
  1036. switch (ext) {
  1037. case KVM_CAP_ONE_REG:
  1038. case KVM_CAP_ENABLE_CAP:
  1039. r = 1;
  1040. break;
  1041. case KVM_CAP_COALESCED_MMIO:
  1042. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1043. break;
  1044. case KVM_CAP_MIPS_FPU:
  1045. /* We don't handle systems with inconsistent cpu_has_fpu */
  1046. r = !!raw_cpu_has_fpu;
  1047. break;
  1048. case KVM_CAP_MIPS_MSA:
  1049. /*
  1050. * We don't support MSA vector partitioning yet:
  1051. * 1) It would require explicit support which can't be tested
  1052. * yet due to lack of support in current hardware.
  1053. * 2) It extends the state that would need to be saved/restored
  1054. * by e.g. QEMU for migration.
  1055. *
  1056. * When vector partitioning hardware becomes available, support
  1057. * could be added by requiring a flag when enabling
  1058. * KVM_CAP_MIPS_MSA capability to indicate that userland knows
  1059. * to save/restore the appropriate extra state.
  1060. */
  1061. r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
  1062. break;
  1063. default:
  1064. r = 0;
  1065. break;
  1066. }
  1067. return r;
  1068. }
  1069. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1070. {
  1071. return kvm_mips_pending_timer(vcpu);
  1072. }
  1073. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  1074. {
  1075. int i;
  1076. struct mips_coproc *cop0;
  1077. if (!vcpu)
  1078. return -1;
  1079. kvm_debug("VCPU Register Dump:\n");
  1080. kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
  1081. kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  1082. for (i = 0; i < 32; i += 4) {
  1083. kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  1084. vcpu->arch.gprs[i],
  1085. vcpu->arch.gprs[i + 1],
  1086. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  1087. }
  1088. kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
  1089. kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
  1090. cop0 = vcpu->arch.cop0;
  1091. kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  1092. kvm_read_c0_guest_status(cop0),
  1093. kvm_read_c0_guest_cause(cop0));
  1094. kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  1095. return 0;
  1096. }
  1097. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1098. {
  1099. int i;
  1100. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  1101. vcpu->arch.gprs[i] = regs->gpr[i];
  1102. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  1103. vcpu->arch.hi = regs->hi;
  1104. vcpu->arch.lo = regs->lo;
  1105. vcpu->arch.pc = regs->pc;
  1106. return 0;
  1107. }
  1108. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1109. {
  1110. int i;
  1111. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  1112. regs->gpr[i] = vcpu->arch.gprs[i];
  1113. regs->hi = vcpu->arch.hi;
  1114. regs->lo = vcpu->arch.lo;
  1115. regs->pc = vcpu->arch.pc;
  1116. return 0;
  1117. }
  1118. static void kvm_mips_comparecount_func(unsigned long data)
  1119. {
  1120. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  1121. kvm_mips_callbacks->queue_timer_int(vcpu);
  1122. vcpu->arch.wait = 0;
  1123. if (swait_active(&vcpu->wq))
  1124. swake_up(&vcpu->wq);
  1125. }
  1126. /* low level hrtimer wake routine */
  1127. static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  1128. {
  1129. struct kvm_vcpu *vcpu;
  1130. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  1131. kvm_mips_comparecount_func((unsigned long) vcpu);
  1132. return kvm_mips_count_timeout(vcpu);
  1133. }
  1134. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  1135. {
  1136. kvm_mips_callbacks->vcpu_init(vcpu);
  1137. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  1138. HRTIMER_MODE_REL);
  1139. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  1140. return 0;
  1141. }
  1142. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1143. struct kvm_translation *tr)
  1144. {
  1145. return 0;
  1146. }
  1147. /* Initial guest state */
  1148. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1149. {
  1150. return kvm_mips_callbacks->vcpu_setup(vcpu);
  1151. }
  1152. static void kvm_mips_set_c0_status(void)
  1153. {
  1154. u32 status = read_c0_status();
  1155. if (cpu_has_dsp)
  1156. status |= (ST0_MX);
  1157. write_c0_status(status);
  1158. ehb();
  1159. }
  1160. /*
  1161. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  1162. */
  1163. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  1164. {
  1165. u32 cause = vcpu->arch.host_cp0_cause;
  1166. u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  1167. u32 __user *opc = (u32 __user *) vcpu->arch.pc;
  1168. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  1169. enum emulation_result er = EMULATE_DONE;
  1170. int ret = RESUME_GUEST;
  1171. /* re-enable HTW before enabling interrupts */
  1172. htw_start();
  1173. /* Set a default exit reason */
  1174. run->exit_reason = KVM_EXIT_UNKNOWN;
  1175. run->ready_for_interrupt_injection = 1;
  1176. /*
  1177. * Set the appropriate status bits based on host CPU features,
  1178. * before we hit the scheduler
  1179. */
  1180. kvm_mips_set_c0_status();
  1181. local_irq_enable();
  1182. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  1183. cause, opc, run, vcpu);
  1184. trace_kvm_exit(vcpu, exccode);
  1185. /*
  1186. * Do a privilege check, if in UM most of these exit conditions end up
  1187. * causing an exception to be delivered to the Guest Kernel
  1188. */
  1189. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  1190. if (er == EMULATE_PRIV_FAIL) {
  1191. goto skip_emul;
  1192. } else if (er == EMULATE_FAIL) {
  1193. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1194. ret = RESUME_HOST;
  1195. goto skip_emul;
  1196. }
  1197. switch (exccode) {
  1198. case EXCCODE_INT:
  1199. kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
  1200. ++vcpu->stat.int_exits;
  1201. if (need_resched())
  1202. cond_resched();
  1203. ret = RESUME_GUEST;
  1204. break;
  1205. case EXCCODE_CPU:
  1206. kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
  1207. ++vcpu->stat.cop_unusable_exits;
  1208. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  1209. /* XXXKYMA: Might need to return to user space */
  1210. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
  1211. ret = RESUME_HOST;
  1212. break;
  1213. case EXCCODE_MOD:
  1214. ++vcpu->stat.tlbmod_exits;
  1215. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  1216. break;
  1217. case EXCCODE_TLBS:
  1218. kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  1219. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  1220. badvaddr);
  1221. ++vcpu->stat.tlbmiss_st_exits;
  1222. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  1223. break;
  1224. case EXCCODE_TLBL:
  1225. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  1226. cause, opc, badvaddr);
  1227. ++vcpu->stat.tlbmiss_ld_exits;
  1228. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  1229. break;
  1230. case EXCCODE_ADES:
  1231. ++vcpu->stat.addrerr_st_exits;
  1232. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  1233. break;
  1234. case EXCCODE_ADEL:
  1235. ++vcpu->stat.addrerr_ld_exits;
  1236. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  1237. break;
  1238. case EXCCODE_SYS:
  1239. ++vcpu->stat.syscall_exits;
  1240. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  1241. break;
  1242. case EXCCODE_RI:
  1243. ++vcpu->stat.resvd_inst_exits;
  1244. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  1245. break;
  1246. case EXCCODE_BP:
  1247. ++vcpu->stat.break_inst_exits;
  1248. ret = kvm_mips_callbacks->handle_break(vcpu);
  1249. break;
  1250. case EXCCODE_TR:
  1251. ++vcpu->stat.trap_inst_exits;
  1252. ret = kvm_mips_callbacks->handle_trap(vcpu);
  1253. break;
  1254. case EXCCODE_MSAFPE:
  1255. ++vcpu->stat.msa_fpe_exits;
  1256. ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
  1257. break;
  1258. case EXCCODE_FPE:
  1259. ++vcpu->stat.fpe_exits;
  1260. ret = kvm_mips_callbacks->handle_fpe(vcpu);
  1261. break;
  1262. case EXCCODE_MSADIS:
  1263. ++vcpu->stat.msa_disabled_exits;
  1264. ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
  1265. break;
  1266. default:
  1267. kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  1268. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  1269. kvm_read_c0_guest_status(vcpu->arch.cop0));
  1270. kvm_arch_vcpu_dump_regs(vcpu);
  1271. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1272. ret = RESUME_HOST;
  1273. break;
  1274. }
  1275. skip_emul:
  1276. local_irq_disable();
  1277. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  1278. kvm_mips_deliver_interrupts(vcpu, cause);
  1279. if (!(ret & RESUME_HOST)) {
  1280. /* Only check for signals if not already exiting to userspace */
  1281. if (signal_pending(current)) {
  1282. run->exit_reason = KVM_EXIT_INTR;
  1283. ret = (-EINTR << 2) | RESUME_HOST;
  1284. ++vcpu->stat.signal_exits;
  1285. trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
  1286. }
  1287. }
  1288. if (ret == RESUME_GUEST) {
  1289. trace_kvm_reenter(vcpu);
  1290. /*
  1291. * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
  1292. * is live), restore FCR31 / MSACSR.
  1293. *
  1294. * This should be before returning to the guest exception
  1295. * vector, as it may well cause an [MSA] FP exception if there
  1296. * are pending exception bits unmasked. (see
  1297. * kvm_mips_csr_die_notifier() for how that is handled).
  1298. */
  1299. if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
  1300. read_c0_status() & ST0_CU1)
  1301. __kvm_restore_fcsr(&vcpu->arch);
  1302. if (kvm_mips_guest_has_msa(&vcpu->arch) &&
  1303. read_c0_config5() & MIPS_CONF5_MSAEN)
  1304. __kvm_restore_msacsr(&vcpu->arch);
  1305. }
  1306. /* Disable HTW before returning to guest or host */
  1307. htw_stop();
  1308. return ret;
  1309. }
  1310. /* Enable FPU for guest and restore context */
  1311. void kvm_own_fpu(struct kvm_vcpu *vcpu)
  1312. {
  1313. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1314. unsigned int sr, cfg5;
  1315. preempt_disable();
  1316. sr = kvm_read_c0_guest_status(cop0);
  1317. /*
  1318. * If MSA state is already live, it is undefined how it interacts with
  1319. * FR=0 FPU state, and we don't want to hit reserved instruction
  1320. * exceptions trying to save the MSA state later when CU=1 && FR=1, so
  1321. * play it safe and save it first.
  1322. *
  1323. * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
  1324. * get called when guest CU1 is set, however we can't trust the guest
  1325. * not to clobber the status register directly via the commpage.
  1326. */
  1327. if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
  1328. vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
  1329. kvm_lose_fpu(vcpu);
  1330. /*
  1331. * Enable FPU for guest
  1332. * We set FR and FRE according to guest context
  1333. */
  1334. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1335. if (cpu_has_fre) {
  1336. cfg5 = kvm_read_c0_guest_config5(cop0);
  1337. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1338. }
  1339. enable_fpu_hazard();
  1340. /* If guest FPU state not active, restore it now */
  1341. if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
  1342. __kvm_restore_fpu(&vcpu->arch);
  1343. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
  1344. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
  1345. } else {
  1346. trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
  1347. }
  1348. preempt_enable();
  1349. }
  1350. #ifdef CONFIG_CPU_HAS_MSA
  1351. /* Enable MSA for guest and restore context */
  1352. void kvm_own_msa(struct kvm_vcpu *vcpu)
  1353. {
  1354. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1355. unsigned int sr, cfg5;
  1356. preempt_disable();
  1357. /*
  1358. * Enable FPU if enabled in guest, since we're restoring FPU context
  1359. * anyway. We set FR and FRE according to guest context.
  1360. */
  1361. if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
  1362. sr = kvm_read_c0_guest_status(cop0);
  1363. /*
  1364. * If FR=0 FPU state is already live, it is undefined how it
  1365. * interacts with MSA state, so play it safe and save it first.
  1366. */
  1367. if (!(sr & ST0_FR) &&
  1368. (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
  1369. KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
  1370. kvm_lose_fpu(vcpu);
  1371. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1372. if (sr & ST0_CU1 && cpu_has_fre) {
  1373. cfg5 = kvm_read_c0_guest_config5(cop0);
  1374. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1375. }
  1376. }
  1377. /* Enable MSA for guest */
  1378. set_c0_config5(MIPS_CONF5_MSAEN);
  1379. enable_fpu_hazard();
  1380. switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
  1381. case KVM_MIPS_AUX_FPU:
  1382. /*
  1383. * Guest FPU state already loaded, only restore upper MSA state
  1384. */
  1385. __kvm_restore_msa_upper(&vcpu->arch);
  1386. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
  1387. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
  1388. break;
  1389. case 0:
  1390. /* Neither FPU or MSA already active, restore full MSA state */
  1391. __kvm_restore_msa(&vcpu->arch);
  1392. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
  1393. if (kvm_mips_guest_has_fpu(&vcpu->arch))
  1394. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
  1395. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
  1396. KVM_TRACE_AUX_FPU_MSA);
  1397. break;
  1398. default:
  1399. trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
  1400. break;
  1401. }
  1402. preempt_enable();
  1403. }
  1404. #endif
  1405. /* Drop FPU & MSA without saving it */
  1406. void kvm_drop_fpu(struct kvm_vcpu *vcpu)
  1407. {
  1408. preempt_disable();
  1409. if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
  1410. disable_msa();
  1411. trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
  1412. vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
  1413. }
  1414. if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
  1415. clear_c0_status(ST0_CU1 | ST0_FR);
  1416. trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
  1417. vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
  1418. }
  1419. preempt_enable();
  1420. }
  1421. /* Save and disable FPU & MSA */
  1422. void kvm_lose_fpu(struct kvm_vcpu *vcpu)
  1423. {
  1424. /*
  1425. * FPU & MSA get disabled in root context (hardware) when it is disabled
  1426. * in guest context (software), but the register state in the hardware
  1427. * may still be in use. This is why we explicitly re-enable the hardware
  1428. * before saving.
  1429. */
  1430. preempt_disable();
  1431. if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
  1432. set_c0_config5(MIPS_CONF5_MSAEN);
  1433. enable_fpu_hazard();
  1434. __kvm_save_msa(&vcpu->arch);
  1435. trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
  1436. /* Disable MSA & FPU */
  1437. disable_msa();
  1438. if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
  1439. clear_c0_status(ST0_CU1 | ST0_FR);
  1440. disable_fpu_hazard();
  1441. }
  1442. vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
  1443. } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
  1444. set_c0_status(ST0_CU1);
  1445. enable_fpu_hazard();
  1446. __kvm_save_fpu(&vcpu->arch);
  1447. vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
  1448. trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
  1449. /* Disable FPU */
  1450. clear_c0_status(ST0_CU1 | ST0_FR);
  1451. disable_fpu_hazard();
  1452. }
  1453. preempt_enable();
  1454. }
  1455. /*
  1456. * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
  1457. * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
  1458. * exception if cause bits are set in the value being written.
  1459. */
  1460. static int kvm_mips_csr_die_notify(struct notifier_block *self,
  1461. unsigned long cmd, void *ptr)
  1462. {
  1463. struct die_args *args = (struct die_args *)ptr;
  1464. struct pt_regs *regs = args->regs;
  1465. unsigned long pc;
  1466. /* Only interested in FPE and MSAFPE */
  1467. if (cmd != DIE_FP && cmd != DIE_MSAFP)
  1468. return NOTIFY_DONE;
  1469. /* Return immediately if guest context isn't active */
  1470. if (!(current->flags & PF_VCPU))
  1471. return NOTIFY_DONE;
  1472. /* Should never get here from user mode */
  1473. BUG_ON(user_mode(regs));
  1474. pc = instruction_pointer(regs);
  1475. switch (cmd) {
  1476. case DIE_FP:
  1477. /* match 2nd instruction in __kvm_restore_fcsr */
  1478. if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
  1479. return NOTIFY_DONE;
  1480. break;
  1481. case DIE_MSAFP:
  1482. /* match 2nd/3rd instruction in __kvm_restore_msacsr */
  1483. if (!cpu_has_msa ||
  1484. pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
  1485. pc > (unsigned long)&__kvm_restore_msacsr + 8)
  1486. return NOTIFY_DONE;
  1487. break;
  1488. }
  1489. /* Move PC forward a little and continue executing */
  1490. instruction_pointer(regs) += 4;
  1491. return NOTIFY_STOP;
  1492. }
  1493. static struct notifier_block kvm_mips_csr_die_notifier = {
  1494. .notifier_call = kvm_mips_csr_die_notify,
  1495. };
  1496. static int __init kvm_mips_init(void)
  1497. {
  1498. int ret;
  1499. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  1500. if (ret)
  1501. return ret;
  1502. register_die_notifier(&kvm_mips_csr_die_notifier);
  1503. return 0;
  1504. }
  1505. static void __exit kvm_mips_exit(void)
  1506. {
  1507. kvm_exit();
  1508. unregister_die_notifier(&kvm_mips_csr_die_notifier);
  1509. }
  1510. module_init(kvm_mips_init);
  1511. module_exit(kvm_mips_exit);
  1512. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);