task_nommu.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. #include <linux/mm.h>
  2. #include <linux/file.h>
  3. #include <linux/fdtable.h>
  4. #include <linux/fs_struct.h>
  5. #include <linux/mount.h>
  6. #include <linux/ptrace.h>
  7. #include <linux/slab.h>
  8. #include <linux/seq_file.h>
  9. #include <linux/sched/mm.h>
  10. #include "internal.h"
  11. /*
  12. * Logic: we've got two memory sums for each process, "shared", and
  13. * "non-shared". Shared memory may get counted more than once, for
  14. * each process that owns it. Non-shared memory is counted
  15. * accurately.
  16. */
  17. void task_mem(struct seq_file *m, struct mm_struct *mm)
  18. {
  19. struct vm_area_struct *vma;
  20. struct vm_region *region;
  21. struct rb_node *p;
  22. unsigned long bytes = 0, sbytes = 0, slack = 0, size;
  23. down_read(&mm->mmap_sem);
  24. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p)) {
  25. vma = rb_entry(p, struct vm_area_struct, vm_rb);
  26. bytes += kobjsize(vma);
  27. region = vma->vm_region;
  28. if (region) {
  29. size = kobjsize(region);
  30. size += region->vm_end - region->vm_start;
  31. } else {
  32. size = vma->vm_end - vma->vm_start;
  33. }
  34. if (atomic_read(&mm->mm_count) > 1 ||
  35. vma->vm_flags & VM_MAYSHARE) {
  36. sbytes += size;
  37. } else {
  38. bytes += size;
  39. if (region)
  40. slack = region->vm_end - vma->vm_end;
  41. }
  42. }
  43. if (atomic_read(&mm->mm_count) > 1)
  44. sbytes += kobjsize(mm);
  45. else
  46. bytes += kobjsize(mm);
  47. if (current->fs && current->fs->users > 1)
  48. sbytes += kobjsize(current->fs);
  49. else
  50. bytes += kobjsize(current->fs);
  51. if (current->files && atomic_read(&current->files->count) > 1)
  52. sbytes += kobjsize(current->files);
  53. else
  54. bytes += kobjsize(current->files);
  55. if (current->sighand && atomic_read(&current->sighand->count) > 1)
  56. sbytes += kobjsize(current->sighand);
  57. else
  58. bytes += kobjsize(current->sighand);
  59. bytes += kobjsize(current); /* includes kernel stack */
  60. seq_printf(m,
  61. "Mem:\t%8lu bytes\n"
  62. "Slack:\t%8lu bytes\n"
  63. "Shared:\t%8lu bytes\n",
  64. bytes, slack, sbytes);
  65. up_read(&mm->mmap_sem);
  66. }
  67. unsigned long task_vsize(struct mm_struct *mm)
  68. {
  69. struct vm_area_struct *vma;
  70. struct rb_node *p;
  71. unsigned long vsize = 0;
  72. down_read(&mm->mmap_sem);
  73. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p)) {
  74. vma = rb_entry(p, struct vm_area_struct, vm_rb);
  75. vsize += vma->vm_end - vma->vm_start;
  76. }
  77. up_read(&mm->mmap_sem);
  78. return vsize;
  79. }
  80. unsigned long task_statm(struct mm_struct *mm,
  81. unsigned long *shared, unsigned long *text,
  82. unsigned long *data, unsigned long *resident)
  83. {
  84. struct vm_area_struct *vma;
  85. struct vm_region *region;
  86. struct rb_node *p;
  87. unsigned long size = kobjsize(mm);
  88. down_read(&mm->mmap_sem);
  89. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p)) {
  90. vma = rb_entry(p, struct vm_area_struct, vm_rb);
  91. size += kobjsize(vma);
  92. region = vma->vm_region;
  93. if (region) {
  94. size += kobjsize(region);
  95. size += region->vm_end - region->vm_start;
  96. }
  97. }
  98. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  99. >> PAGE_SHIFT;
  100. *data = (PAGE_ALIGN(mm->start_stack) - (mm->start_data & PAGE_MASK))
  101. >> PAGE_SHIFT;
  102. up_read(&mm->mmap_sem);
  103. size >>= PAGE_SHIFT;
  104. size += *text + *data;
  105. *resident = size;
  106. return size;
  107. }
  108. static int is_stack(struct proc_maps_private *priv,
  109. struct vm_area_struct *vma)
  110. {
  111. struct mm_struct *mm = vma->vm_mm;
  112. /*
  113. * We make no effort to guess what a given thread considers to be
  114. * its "stack". It's not even well-defined for programs written
  115. * languages like Go.
  116. */
  117. return vma->vm_start <= mm->start_stack &&
  118. vma->vm_end >= mm->start_stack;
  119. }
  120. /*
  121. * display a single VMA to a sequenced file
  122. */
  123. static int nommu_vma_show(struct seq_file *m, struct vm_area_struct *vma,
  124. int is_pid)
  125. {
  126. struct mm_struct *mm = vma->vm_mm;
  127. struct proc_maps_private *priv = m->private;
  128. unsigned long ino = 0;
  129. struct file *file;
  130. dev_t dev = 0;
  131. int flags;
  132. unsigned long long pgoff = 0;
  133. flags = vma->vm_flags;
  134. file = vma->vm_file;
  135. if (file) {
  136. struct inode *inode = file_inode(vma->vm_file);
  137. dev = inode->i_sb->s_dev;
  138. ino = inode->i_ino;
  139. pgoff = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
  140. }
  141. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  142. seq_printf(m,
  143. "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
  144. vma->vm_start,
  145. vma->vm_end,
  146. flags & VM_READ ? 'r' : '-',
  147. flags & VM_WRITE ? 'w' : '-',
  148. flags & VM_EXEC ? 'x' : '-',
  149. flags & VM_MAYSHARE ? flags & VM_SHARED ? 'S' : 's' : 'p',
  150. pgoff,
  151. MAJOR(dev), MINOR(dev), ino);
  152. if (file) {
  153. seq_pad(m, ' ');
  154. seq_file_path(m, file, "");
  155. } else if (mm && is_stack(priv, vma)) {
  156. seq_pad(m, ' ');
  157. seq_printf(m, "[stack]");
  158. }
  159. seq_putc(m, '\n');
  160. return 0;
  161. }
  162. /*
  163. * display mapping lines for a particular process's /proc/pid/maps
  164. */
  165. static int show_map(struct seq_file *m, void *_p, int is_pid)
  166. {
  167. struct rb_node *p = _p;
  168. return nommu_vma_show(m, rb_entry(p, struct vm_area_struct, vm_rb),
  169. is_pid);
  170. }
  171. static int show_pid_map(struct seq_file *m, void *_p)
  172. {
  173. return show_map(m, _p, 1);
  174. }
  175. static int show_tid_map(struct seq_file *m, void *_p)
  176. {
  177. return show_map(m, _p, 0);
  178. }
  179. static void *m_start(struct seq_file *m, loff_t *pos)
  180. {
  181. struct proc_maps_private *priv = m->private;
  182. struct mm_struct *mm;
  183. struct rb_node *p;
  184. loff_t n = *pos;
  185. /* pin the task and mm whilst we play with them */
  186. priv->task = get_proc_task(priv->inode);
  187. if (!priv->task)
  188. return ERR_PTR(-ESRCH);
  189. mm = priv->mm;
  190. if (!mm || !mmget_not_zero(mm))
  191. return NULL;
  192. down_read(&mm->mmap_sem);
  193. /* start from the Nth VMA */
  194. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p))
  195. if (n-- == 0)
  196. return p;
  197. up_read(&mm->mmap_sem);
  198. mmput(mm);
  199. return NULL;
  200. }
  201. static void m_stop(struct seq_file *m, void *_vml)
  202. {
  203. struct proc_maps_private *priv = m->private;
  204. if (!IS_ERR_OR_NULL(_vml)) {
  205. up_read(&priv->mm->mmap_sem);
  206. mmput(priv->mm);
  207. }
  208. if (priv->task) {
  209. put_task_struct(priv->task);
  210. priv->task = NULL;
  211. }
  212. }
  213. static void *m_next(struct seq_file *m, void *_p, loff_t *pos)
  214. {
  215. struct rb_node *p = _p;
  216. (*pos)++;
  217. return p ? rb_next(p) : NULL;
  218. }
  219. static const struct seq_operations proc_pid_maps_ops = {
  220. .start = m_start,
  221. .next = m_next,
  222. .stop = m_stop,
  223. .show = show_pid_map
  224. };
  225. static const struct seq_operations proc_tid_maps_ops = {
  226. .start = m_start,
  227. .next = m_next,
  228. .stop = m_stop,
  229. .show = show_tid_map
  230. };
  231. static int maps_open(struct inode *inode, struct file *file,
  232. const struct seq_operations *ops)
  233. {
  234. struct proc_maps_private *priv;
  235. priv = __seq_open_private(file, ops, sizeof(*priv));
  236. if (!priv)
  237. return -ENOMEM;
  238. priv->inode = inode;
  239. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  240. if (IS_ERR(priv->mm)) {
  241. int err = PTR_ERR(priv->mm);
  242. seq_release_private(inode, file);
  243. return err;
  244. }
  245. return 0;
  246. }
  247. static int map_release(struct inode *inode, struct file *file)
  248. {
  249. struct seq_file *seq = file->private_data;
  250. struct proc_maps_private *priv = seq->private;
  251. if (priv->mm)
  252. mmdrop(priv->mm);
  253. return seq_release_private(inode, file);
  254. }
  255. static int pid_maps_open(struct inode *inode, struct file *file)
  256. {
  257. return maps_open(inode, file, &proc_pid_maps_ops);
  258. }
  259. static int tid_maps_open(struct inode *inode, struct file *file)
  260. {
  261. return maps_open(inode, file, &proc_tid_maps_ops);
  262. }
  263. const struct file_operations proc_pid_maps_operations = {
  264. .open = pid_maps_open,
  265. .read = seq_read,
  266. .llseek = seq_lseek,
  267. .release = map_release,
  268. };
  269. const struct file_operations proc_tid_maps_operations = {
  270. .open = tid_maps_open,
  271. .read = seq_read,
  272. .llseek = seq_lseek,
  273. .release = map_release,
  274. };