task_mmu.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764
  1. #include <linux/mm.h>
  2. #include <linux/vmacache.h>
  3. #include <linux/hugetlb.h>
  4. #include <linux/huge_mm.h>
  5. #include <linux/mount.h>
  6. #include <linux/seq_file.h>
  7. #include <linux/highmem.h>
  8. #include <linux/ptrace.h>
  9. #include <linux/slab.h>
  10. #include <linux/pagemap.h>
  11. #include <linux/mempolicy.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/sched/mm.h>
  15. #include <linux/swapops.h>
  16. #include <linux/mmu_notifier.h>
  17. #include <linux/page_idle.h>
  18. #include <linux/shmem_fs.h>
  19. #include <asm/elf.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/tlbflush.h>
  22. #include "internal.h"
  23. void task_mem(struct seq_file *m, struct mm_struct *mm)
  24. {
  25. unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
  26. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  27. anon = get_mm_counter(mm, MM_ANONPAGES);
  28. file = get_mm_counter(mm, MM_FILEPAGES);
  29. shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  30. /*
  31. * Note: to minimize their overhead, mm maintains hiwater_vm and
  32. * hiwater_rss only when about to *lower* total_vm or rss. Any
  33. * collector of these hiwater stats must therefore get total_vm
  34. * and rss too, which will usually be the higher. Barriers? not
  35. * worth the effort, such snapshots can always be inconsistent.
  36. */
  37. hiwater_vm = total_vm = mm->total_vm;
  38. if (hiwater_vm < mm->hiwater_vm)
  39. hiwater_vm = mm->hiwater_vm;
  40. hiwater_rss = total_rss = anon + file + shmem;
  41. if (hiwater_rss < mm->hiwater_rss)
  42. hiwater_rss = mm->hiwater_rss;
  43. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  44. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  45. swap = get_mm_counter(mm, MM_SWAPENTS);
  46. ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
  47. pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
  48. seq_printf(m,
  49. "VmPeak:\t%8lu kB\n"
  50. "VmSize:\t%8lu kB\n"
  51. "VmLck:\t%8lu kB\n"
  52. "VmPin:\t%8lu kB\n"
  53. "VmHWM:\t%8lu kB\n"
  54. "VmRSS:\t%8lu kB\n"
  55. "RssAnon:\t%8lu kB\n"
  56. "RssFile:\t%8lu kB\n"
  57. "RssShmem:\t%8lu kB\n"
  58. "VmData:\t%8lu kB\n"
  59. "VmStk:\t%8lu kB\n"
  60. "VmExe:\t%8lu kB\n"
  61. "VmLib:\t%8lu kB\n"
  62. "VmPTE:\t%8lu kB\n"
  63. "VmPMD:\t%8lu kB\n"
  64. "VmSwap:\t%8lu kB\n",
  65. hiwater_vm << (PAGE_SHIFT-10),
  66. total_vm << (PAGE_SHIFT-10),
  67. mm->locked_vm << (PAGE_SHIFT-10),
  68. mm->pinned_vm << (PAGE_SHIFT-10),
  69. hiwater_rss << (PAGE_SHIFT-10),
  70. total_rss << (PAGE_SHIFT-10),
  71. anon << (PAGE_SHIFT-10),
  72. file << (PAGE_SHIFT-10),
  73. shmem << (PAGE_SHIFT-10),
  74. mm->data_vm << (PAGE_SHIFT-10),
  75. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  76. ptes >> 10,
  77. pmds >> 10,
  78. swap << (PAGE_SHIFT-10));
  79. hugetlb_report_usage(m, mm);
  80. }
  81. unsigned long task_vsize(struct mm_struct *mm)
  82. {
  83. return PAGE_SIZE * mm->total_vm;
  84. }
  85. unsigned long task_statm(struct mm_struct *mm,
  86. unsigned long *shared, unsigned long *text,
  87. unsigned long *data, unsigned long *resident)
  88. {
  89. *shared = get_mm_counter(mm, MM_FILEPAGES) +
  90. get_mm_counter(mm, MM_SHMEMPAGES);
  91. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  92. >> PAGE_SHIFT;
  93. *data = mm->data_vm + mm->stack_vm;
  94. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  95. return mm->total_vm;
  96. }
  97. #ifdef CONFIG_NUMA
  98. /*
  99. * Save get_task_policy() for show_numa_map().
  100. */
  101. static void hold_task_mempolicy(struct proc_maps_private *priv)
  102. {
  103. struct task_struct *task = priv->task;
  104. task_lock(task);
  105. priv->task_mempolicy = get_task_policy(task);
  106. mpol_get(priv->task_mempolicy);
  107. task_unlock(task);
  108. }
  109. static void release_task_mempolicy(struct proc_maps_private *priv)
  110. {
  111. mpol_put(priv->task_mempolicy);
  112. }
  113. #else
  114. static void hold_task_mempolicy(struct proc_maps_private *priv)
  115. {
  116. }
  117. static void release_task_mempolicy(struct proc_maps_private *priv)
  118. {
  119. }
  120. #endif
  121. static void vma_stop(struct proc_maps_private *priv)
  122. {
  123. struct mm_struct *mm = priv->mm;
  124. release_task_mempolicy(priv);
  125. up_read(&mm->mmap_sem);
  126. mmput(mm);
  127. }
  128. static struct vm_area_struct *
  129. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  130. {
  131. if (vma == priv->tail_vma)
  132. return NULL;
  133. return vma->vm_next ?: priv->tail_vma;
  134. }
  135. static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
  136. {
  137. if (m->count < m->size) /* vma is copied successfully */
  138. m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
  139. }
  140. static void *m_start(struct seq_file *m, loff_t *ppos)
  141. {
  142. struct proc_maps_private *priv = m->private;
  143. unsigned long last_addr = m->version;
  144. struct mm_struct *mm;
  145. struct vm_area_struct *vma;
  146. unsigned int pos = *ppos;
  147. /* See m_cache_vma(). Zero at the start or after lseek. */
  148. if (last_addr == -1UL)
  149. return NULL;
  150. priv->task = get_proc_task(priv->inode);
  151. if (!priv->task)
  152. return ERR_PTR(-ESRCH);
  153. mm = priv->mm;
  154. if (!mm || !mmget_not_zero(mm))
  155. return NULL;
  156. down_read(&mm->mmap_sem);
  157. hold_task_mempolicy(priv);
  158. priv->tail_vma = get_gate_vma(mm);
  159. if (last_addr) {
  160. vma = find_vma(mm, last_addr - 1);
  161. if (vma && vma->vm_start <= last_addr)
  162. vma = m_next_vma(priv, vma);
  163. if (vma)
  164. return vma;
  165. }
  166. m->version = 0;
  167. if (pos < mm->map_count) {
  168. for (vma = mm->mmap; pos; pos--) {
  169. m->version = vma->vm_start;
  170. vma = vma->vm_next;
  171. }
  172. return vma;
  173. }
  174. /* we do not bother to update m->version in this case */
  175. if (pos == mm->map_count && priv->tail_vma)
  176. return priv->tail_vma;
  177. vma_stop(priv);
  178. return NULL;
  179. }
  180. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  181. {
  182. struct proc_maps_private *priv = m->private;
  183. struct vm_area_struct *next;
  184. (*pos)++;
  185. next = m_next_vma(priv, v);
  186. if (!next)
  187. vma_stop(priv);
  188. return next;
  189. }
  190. static void m_stop(struct seq_file *m, void *v)
  191. {
  192. struct proc_maps_private *priv = m->private;
  193. if (!IS_ERR_OR_NULL(v))
  194. vma_stop(priv);
  195. if (priv->task) {
  196. put_task_struct(priv->task);
  197. priv->task = NULL;
  198. }
  199. }
  200. static int proc_maps_open(struct inode *inode, struct file *file,
  201. const struct seq_operations *ops, int psize)
  202. {
  203. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  204. if (!priv)
  205. return -ENOMEM;
  206. priv->inode = inode;
  207. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  208. if (IS_ERR(priv->mm)) {
  209. int err = PTR_ERR(priv->mm);
  210. seq_release_private(inode, file);
  211. return err;
  212. }
  213. return 0;
  214. }
  215. static int proc_map_release(struct inode *inode, struct file *file)
  216. {
  217. struct seq_file *seq = file->private_data;
  218. struct proc_maps_private *priv = seq->private;
  219. if (priv->mm)
  220. mmdrop(priv->mm);
  221. return seq_release_private(inode, file);
  222. }
  223. static int do_maps_open(struct inode *inode, struct file *file,
  224. const struct seq_operations *ops)
  225. {
  226. return proc_maps_open(inode, file, ops,
  227. sizeof(struct proc_maps_private));
  228. }
  229. /*
  230. * Indicate if the VMA is a stack for the given task; for
  231. * /proc/PID/maps that is the stack of the main task.
  232. */
  233. static int is_stack(struct proc_maps_private *priv,
  234. struct vm_area_struct *vma)
  235. {
  236. /*
  237. * We make no effort to guess what a given thread considers to be
  238. * its "stack". It's not even well-defined for programs written
  239. * languages like Go.
  240. */
  241. return vma->vm_start <= vma->vm_mm->start_stack &&
  242. vma->vm_end >= vma->vm_mm->start_stack;
  243. }
  244. static void
  245. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  246. {
  247. struct mm_struct *mm = vma->vm_mm;
  248. struct file *file = vma->vm_file;
  249. struct proc_maps_private *priv = m->private;
  250. vm_flags_t flags = vma->vm_flags;
  251. unsigned long ino = 0;
  252. unsigned long long pgoff = 0;
  253. unsigned long start, end;
  254. dev_t dev = 0;
  255. const char *name = NULL;
  256. if (file) {
  257. struct inode *inode = file_inode(vma->vm_file);
  258. dev = inode->i_sb->s_dev;
  259. ino = inode->i_ino;
  260. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  261. }
  262. /* We don't show the stack guard page in /proc/maps */
  263. start = vma->vm_start;
  264. if (stack_guard_page_start(vma, start))
  265. start += PAGE_SIZE;
  266. end = vma->vm_end;
  267. if (stack_guard_page_end(vma, end))
  268. end -= PAGE_SIZE;
  269. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  270. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
  271. start,
  272. end,
  273. flags & VM_READ ? 'r' : '-',
  274. flags & VM_WRITE ? 'w' : '-',
  275. flags & VM_EXEC ? 'x' : '-',
  276. flags & VM_MAYSHARE ? 's' : 'p',
  277. pgoff,
  278. MAJOR(dev), MINOR(dev), ino);
  279. /*
  280. * Print the dentry name for named mappings, and a
  281. * special [heap] marker for the heap:
  282. */
  283. if (file) {
  284. seq_pad(m, ' ');
  285. seq_file_path(m, file, "\n");
  286. goto done;
  287. }
  288. if (vma->vm_ops && vma->vm_ops->name) {
  289. name = vma->vm_ops->name(vma);
  290. if (name)
  291. goto done;
  292. }
  293. name = arch_vma_name(vma);
  294. if (!name) {
  295. if (!mm) {
  296. name = "[vdso]";
  297. goto done;
  298. }
  299. if (vma->vm_start <= mm->brk &&
  300. vma->vm_end >= mm->start_brk) {
  301. name = "[heap]";
  302. goto done;
  303. }
  304. if (is_stack(priv, vma))
  305. name = "[stack]";
  306. }
  307. done:
  308. if (name) {
  309. seq_pad(m, ' ');
  310. seq_puts(m, name);
  311. }
  312. seq_putc(m, '\n');
  313. }
  314. static int show_map(struct seq_file *m, void *v, int is_pid)
  315. {
  316. show_map_vma(m, v, is_pid);
  317. m_cache_vma(m, v);
  318. return 0;
  319. }
  320. static int show_pid_map(struct seq_file *m, void *v)
  321. {
  322. return show_map(m, v, 1);
  323. }
  324. static int show_tid_map(struct seq_file *m, void *v)
  325. {
  326. return show_map(m, v, 0);
  327. }
  328. static const struct seq_operations proc_pid_maps_op = {
  329. .start = m_start,
  330. .next = m_next,
  331. .stop = m_stop,
  332. .show = show_pid_map
  333. };
  334. static const struct seq_operations proc_tid_maps_op = {
  335. .start = m_start,
  336. .next = m_next,
  337. .stop = m_stop,
  338. .show = show_tid_map
  339. };
  340. static int pid_maps_open(struct inode *inode, struct file *file)
  341. {
  342. return do_maps_open(inode, file, &proc_pid_maps_op);
  343. }
  344. static int tid_maps_open(struct inode *inode, struct file *file)
  345. {
  346. return do_maps_open(inode, file, &proc_tid_maps_op);
  347. }
  348. const struct file_operations proc_pid_maps_operations = {
  349. .open = pid_maps_open,
  350. .read = seq_read,
  351. .llseek = seq_lseek,
  352. .release = proc_map_release,
  353. };
  354. const struct file_operations proc_tid_maps_operations = {
  355. .open = tid_maps_open,
  356. .read = seq_read,
  357. .llseek = seq_lseek,
  358. .release = proc_map_release,
  359. };
  360. /*
  361. * Proportional Set Size(PSS): my share of RSS.
  362. *
  363. * PSS of a process is the count of pages it has in memory, where each
  364. * page is divided by the number of processes sharing it. So if a
  365. * process has 1000 pages all to itself, and 1000 shared with one other
  366. * process, its PSS will be 1500.
  367. *
  368. * To keep (accumulated) division errors low, we adopt a 64bit
  369. * fixed-point pss counter to minimize division errors. So (pss >>
  370. * PSS_SHIFT) would be the real byte count.
  371. *
  372. * A shift of 12 before division means (assuming 4K page size):
  373. * - 1M 3-user-pages add up to 8KB errors;
  374. * - supports mapcount up to 2^24, or 16M;
  375. * - supports PSS up to 2^52 bytes, or 4PB.
  376. */
  377. #define PSS_SHIFT 12
  378. #ifdef CONFIG_PROC_PAGE_MONITOR
  379. struct mem_size_stats {
  380. unsigned long resident;
  381. unsigned long shared_clean;
  382. unsigned long shared_dirty;
  383. unsigned long private_clean;
  384. unsigned long private_dirty;
  385. unsigned long referenced;
  386. unsigned long anonymous;
  387. unsigned long anonymous_thp;
  388. unsigned long shmem_thp;
  389. unsigned long swap;
  390. unsigned long shared_hugetlb;
  391. unsigned long private_hugetlb;
  392. u64 pss;
  393. u64 swap_pss;
  394. bool check_shmem_swap;
  395. };
  396. static void smaps_account(struct mem_size_stats *mss, struct page *page,
  397. bool compound, bool young, bool dirty)
  398. {
  399. int i, nr = compound ? 1 << compound_order(page) : 1;
  400. unsigned long size = nr * PAGE_SIZE;
  401. if (PageAnon(page))
  402. mss->anonymous += size;
  403. mss->resident += size;
  404. /* Accumulate the size in pages that have been accessed. */
  405. if (young || page_is_young(page) || PageReferenced(page))
  406. mss->referenced += size;
  407. /*
  408. * page_count(page) == 1 guarantees the page is mapped exactly once.
  409. * If any subpage of the compound page mapped with PTE it would elevate
  410. * page_count().
  411. */
  412. if (page_count(page) == 1) {
  413. if (dirty || PageDirty(page))
  414. mss->private_dirty += size;
  415. else
  416. mss->private_clean += size;
  417. mss->pss += (u64)size << PSS_SHIFT;
  418. return;
  419. }
  420. for (i = 0; i < nr; i++, page++) {
  421. int mapcount = page_mapcount(page);
  422. if (mapcount >= 2) {
  423. if (dirty || PageDirty(page))
  424. mss->shared_dirty += PAGE_SIZE;
  425. else
  426. mss->shared_clean += PAGE_SIZE;
  427. mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
  428. } else {
  429. if (dirty || PageDirty(page))
  430. mss->private_dirty += PAGE_SIZE;
  431. else
  432. mss->private_clean += PAGE_SIZE;
  433. mss->pss += PAGE_SIZE << PSS_SHIFT;
  434. }
  435. }
  436. }
  437. #ifdef CONFIG_SHMEM
  438. static int smaps_pte_hole(unsigned long addr, unsigned long end,
  439. struct mm_walk *walk)
  440. {
  441. struct mem_size_stats *mss = walk->private;
  442. mss->swap += shmem_partial_swap_usage(
  443. walk->vma->vm_file->f_mapping, addr, end);
  444. return 0;
  445. }
  446. #endif
  447. static void smaps_pte_entry(pte_t *pte, unsigned long addr,
  448. struct mm_walk *walk)
  449. {
  450. struct mem_size_stats *mss = walk->private;
  451. struct vm_area_struct *vma = walk->vma;
  452. struct page *page = NULL;
  453. if (pte_present(*pte)) {
  454. page = vm_normal_page(vma, addr, *pte);
  455. } else if (is_swap_pte(*pte)) {
  456. swp_entry_t swpent = pte_to_swp_entry(*pte);
  457. if (!non_swap_entry(swpent)) {
  458. int mapcount;
  459. mss->swap += PAGE_SIZE;
  460. mapcount = swp_swapcount(swpent);
  461. if (mapcount >= 2) {
  462. u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
  463. do_div(pss_delta, mapcount);
  464. mss->swap_pss += pss_delta;
  465. } else {
  466. mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
  467. }
  468. } else if (is_migration_entry(swpent))
  469. page = migration_entry_to_page(swpent);
  470. } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
  471. && pte_none(*pte))) {
  472. page = find_get_entry(vma->vm_file->f_mapping,
  473. linear_page_index(vma, addr));
  474. if (!page)
  475. return;
  476. if (radix_tree_exceptional_entry(page))
  477. mss->swap += PAGE_SIZE;
  478. else
  479. put_page(page);
  480. return;
  481. }
  482. if (!page)
  483. return;
  484. smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
  485. }
  486. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  487. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  488. struct mm_walk *walk)
  489. {
  490. struct mem_size_stats *mss = walk->private;
  491. struct vm_area_struct *vma = walk->vma;
  492. struct page *page;
  493. /* FOLL_DUMP will return -EFAULT on huge zero page */
  494. page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
  495. if (IS_ERR_OR_NULL(page))
  496. return;
  497. if (PageAnon(page))
  498. mss->anonymous_thp += HPAGE_PMD_SIZE;
  499. else if (PageSwapBacked(page))
  500. mss->shmem_thp += HPAGE_PMD_SIZE;
  501. else if (is_zone_device_page(page))
  502. /* pass */;
  503. else
  504. VM_BUG_ON_PAGE(1, page);
  505. smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
  506. }
  507. #else
  508. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  509. struct mm_walk *walk)
  510. {
  511. }
  512. #endif
  513. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  514. struct mm_walk *walk)
  515. {
  516. struct vm_area_struct *vma = walk->vma;
  517. pte_t *pte;
  518. spinlock_t *ptl;
  519. ptl = pmd_trans_huge_lock(pmd, vma);
  520. if (ptl) {
  521. smaps_pmd_entry(pmd, addr, walk);
  522. spin_unlock(ptl);
  523. return 0;
  524. }
  525. if (pmd_trans_unstable(pmd))
  526. return 0;
  527. /*
  528. * The mmap_sem held all the way back in m_start() is what
  529. * keeps khugepaged out of here and from collapsing things
  530. * in here.
  531. */
  532. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  533. for (; addr != end; pte++, addr += PAGE_SIZE)
  534. smaps_pte_entry(pte, addr, walk);
  535. pte_unmap_unlock(pte - 1, ptl);
  536. cond_resched();
  537. return 0;
  538. }
  539. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  540. {
  541. /*
  542. * Don't forget to update Documentation/ on changes.
  543. */
  544. static const char mnemonics[BITS_PER_LONG][2] = {
  545. /*
  546. * In case if we meet a flag we don't know about.
  547. */
  548. [0 ... (BITS_PER_LONG-1)] = "??",
  549. [ilog2(VM_READ)] = "rd",
  550. [ilog2(VM_WRITE)] = "wr",
  551. [ilog2(VM_EXEC)] = "ex",
  552. [ilog2(VM_SHARED)] = "sh",
  553. [ilog2(VM_MAYREAD)] = "mr",
  554. [ilog2(VM_MAYWRITE)] = "mw",
  555. [ilog2(VM_MAYEXEC)] = "me",
  556. [ilog2(VM_MAYSHARE)] = "ms",
  557. [ilog2(VM_GROWSDOWN)] = "gd",
  558. [ilog2(VM_PFNMAP)] = "pf",
  559. [ilog2(VM_DENYWRITE)] = "dw",
  560. #ifdef CONFIG_X86_INTEL_MPX
  561. [ilog2(VM_MPX)] = "mp",
  562. #endif
  563. [ilog2(VM_LOCKED)] = "lo",
  564. [ilog2(VM_IO)] = "io",
  565. [ilog2(VM_SEQ_READ)] = "sr",
  566. [ilog2(VM_RAND_READ)] = "rr",
  567. [ilog2(VM_DONTCOPY)] = "dc",
  568. [ilog2(VM_DONTEXPAND)] = "de",
  569. [ilog2(VM_ACCOUNT)] = "ac",
  570. [ilog2(VM_NORESERVE)] = "nr",
  571. [ilog2(VM_HUGETLB)] = "ht",
  572. [ilog2(VM_ARCH_1)] = "ar",
  573. [ilog2(VM_DONTDUMP)] = "dd",
  574. #ifdef CONFIG_MEM_SOFT_DIRTY
  575. [ilog2(VM_SOFTDIRTY)] = "sd",
  576. #endif
  577. [ilog2(VM_MIXEDMAP)] = "mm",
  578. [ilog2(VM_HUGEPAGE)] = "hg",
  579. [ilog2(VM_NOHUGEPAGE)] = "nh",
  580. [ilog2(VM_MERGEABLE)] = "mg",
  581. [ilog2(VM_UFFD_MISSING)]= "um",
  582. [ilog2(VM_UFFD_WP)] = "uw",
  583. #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
  584. /* These come out via ProtectionKey: */
  585. [ilog2(VM_PKEY_BIT0)] = "",
  586. [ilog2(VM_PKEY_BIT1)] = "",
  587. [ilog2(VM_PKEY_BIT2)] = "",
  588. [ilog2(VM_PKEY_BIT3)] = "",
  589. #endif
  590. };
  591. size_t i;
  592. seq_puts(m, "VmFlags: ");
  593. for (i = 0; i < BITS_PER_LONG; i++) {
  594. if (!mnemonics[i][0])
  595. continue;
  596. if (vma->vm_flags & (1UL << i)) {
  597. seq_printf(m, "%c%c ",
  598. mnemonics[i][0], mnemonics[i][1]);
  599. }
  600. }
  601. seq_putc(m, '\n');
  602. }
  603. #ifdef CONFIG_HUGETLB_PAGE
  604. static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
  605. unsigned long addr, unsigned long end,
  606. struct mm_walk *walk)
  607. {
  608. struct mem_size_stats *mss = walk->private;
  609. struct vm_area_struct *vma = walk->vma;
  610. struct page *page = NULL;
  611. if (pte_present(*pte)) {
  612. page = vm_normal_page(vma, addr, *pte);
  613. } else if (is_swap_pte(*pte)) {
  614. swp_entry_t swpent = pte_to_swp_entry(*pte);
  615. if (is_migration_entry(swpent))
  616. page = migration_entry_to_page(swpent);
  617. }
  618. if (page) {
  619. int mapcount = page_mapcount(page);
  620. if (mapcount >= 2)
  621. mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
  622. else
  623. mss->private_hugetlb += huge_page_size(hstate_vma(vma));
  624. }
  625. return 0;
  626. }
  627. #endif /* HUGETLB_PAGE */
  628. void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
  629. {
  630. }
  631. static int show_smap(struct seq_file *m, void *v, int is_pid)
  632. {
  633. struct vm_area_struct *vma = v;
  634. struct mem_size_stats mss;
  635. struct mm_walk smaps_walk = {
  636. .pmd_entry = smaps_pte_range,
  637. #ifdef CONFIG_HUGETLB_PAGE
  638. .hugetlb_entry = smaps_hugetlb_range,
  639. #endif
  640. .mm = vma->vm_mm,
  641. .private = &mss,
  642. };
  643. memset(&mss, 0, sizeof mss);
  644. #ifdef CONFIG_SHMEM
  645. if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
  646. /*
  647. * For shared or readonly shmem mappings we know that all
  648. * swapped out pages belong to the shmem object, and we can
  649. * obtain the swap value much more efficiently. For private
  650. * writable mappings, we might have COW pages that are
  651. * not affected by the parent swapped out pages of the shmem
  652. * object, so we have to distinguish them during the page walk.
  653. * Unless we know that the shmem object (or the part mapped by
  654. * our VMA) has no swapped out pages at all.
  655. */
  656. unsigned long shmem_swapped = shmem_swap_usage(vma);
  657. if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
  658. !(vma->vm_flags & VM_WRITE)) {
  659. mss.swap = shmem_swapped;
  660. } else {
  661. mss.check_shmem_swap = true;
  662. smaps_walk.pte_hole = smaps_pte_hole;
  663. }
  664. }
  665. #endif
  666. /* mmap_sem is held in m_start */
  667. walk_page_vma(vma, &smaps_walk);
  668. show_map_vma(m, vma, is_pid);
  669. seq_printf(m,
  670. "Size: %8lu kB\n"
  671. "Rss: %8lu kB\n"
  672. "Pss: %8lu kB\n"
  673. "Shared_Clean: %8lu kB\n"
  674. "Shared_Dirty: %8lu kB\n"
  675. "Private_Clean: %8lu kB\n"
  676. "Private_Dirty: %8lu kB\n"
  677. "Referenced: %8lu kB\n"
  678. "Anonymous: %8lu kB\n"
  679. "AnonHugePages: %8lu kB\n"
  680. "ShmemPmdMapped: %8lu kB\n"
  681. "Shared_Hugetlb: %8lu kB\n"
  682. "Private_Hugetlb: %7lu kB\n"
  683. "Swap: %8lu kB\n"
  684. "SwapPss: %8lu kB\n"
  685. "KernelPageSize: %8lu kB\n"
  686. "MMUPageSize: %8lu kB\n"
  687. "Locked: %8lu kB\n",
  688. (vma->vm_end - vma->vm_start) >> 10,
  689. mss.resident >> 10,
  690. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  691. mss.shared_clean >> 10,
  692. mss.shared_dirty >> 10,
  693. mss.private_clean >> 10,
  694. mss.private_dirty >> 10,
  695. mss.referenced >> 10,
  696. mss.anonymous >> 10,
  697. mss.anonymous_thp >> 10,
  698. mss.shmem_thp >> 10,
  699. mss.shared_hugetlb >> 10,
  700. mss.private_hugetlb >> 10,
  701. mss.swap >> 10,
  702. (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
  703. vma_kernel_pagesize(vma) >> 10,
  704. vma_mmu_pagesize(vma) >> 10,
  705. (vma->vm_flags & VM_LOCKED) ?
  706. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  707. arch_show_smap(m, vma);
  708. show_smap_vma_flags(m, vma);
  709. m_cache_vma(m, vma);
  710. return 0;
  711. }
  712. static int show_pid_smap(struct seq_file *m, void *v)
  713. {
  714. return show_smap(m, v, 1);
  715. }
  716. static int show_tid_smap(struct seq_file *m, void *v)
  717. {
  718. return show_smap(m, v, 0);
  719. }
  720. static const struct seq_operations proc_pid_smaps_op = {
  721. .start = m_start,
  722. .next = m_next,
  723. .stop = m_stop,
  724. .show = show_pid_smap
  725. };
  726. static const struct seq_operations proc_tid_smaps_op = {
  727. .start = m_start,
  728. .next = m_next,
  729. .stop = m_stop,
  730. .show = show_tid_smap
  731. };
  732. static int pid_smaps_open(struct inode *inode, struct file *file)
  733. {
  734. return do_maps_open(inode, file, &proc_pid_smaps_op);
  735. }
  736. static int tid_smaps_open(struct inode *inode, struct file *file)
  737. {
  738. return do_maps_open(inode, file, &proc_tid_smaps_op);
  739. }
  740. const struct file_operations proc_pid_smaps_operations = {
  741. .open = pid_smaps_open,
  742. .read = seq_read,
  743. .llseek = seq_lseek,
  744. .release = proc_map_release,
  745. };
  746. const struct file_operations proc_tid_smaps_operations = {
  747. .open = tid_smaps_open,
  748. .read = seq_read,
  749. .llseek = seq_lseek,
  750. .release = proc_map_release,
  751. };
  752. enum clear_refs_types {
  753. CLEAR_REFS_ALL = 1,
  754. CLEAR_REFS_ANON,
  755. CLEAR_REFS_MAPPED,
  756. CLEAR_REFS_SOFT_DIRTY,
  757. CLEAR_REFS_MM_HIWATER_RSS,
  758. CLEAR_REFS_LAST,
  759. };
  760. struct clear_refs_private {
  761. enum clear_refs_types type;
  762. };
  763. #ifdef CONFIG_MEM_SOFT_DIRTY
  764. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  765. unsigned long addr, pte_t *pte)
  766. {
  767. /*
  768. * The soft-dirty tracker uses #PF-s to catch writes
  769. * to pages, so write-protect the pte as well. See the
  770. * Documentation/vm/soft-dirty.txt for full description
  771. * of how soft-dirty works.
  772. */
  773. pte_t ptent = *pte;
  774. if (pte_present(ptent)) {
  775. ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
  776. ptent = pte_wrprotect(ptent);
  777. ptent = pte_clear_soft_dirty(ptent);
  778. ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
  779. } else if (is_swap_pte(ptent)) {
  780. ptent = pte_swp_clear_soft_dirty(ptent);
  781. set_pte_at(vma->vm_mm, addr, pte, ptent);
  782. }
  783. }
  784. #else
  785. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  786. unsigned long addr, pte_t *pte)
  787. {
  788. }
  789. #endif
  790. #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
  791. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  792. unsigned long addr, pmd_t *pmdp)
  793. {
  794. pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
  795. pmd = pmd_wrprotect(pmd);
  796. pmd = pmd_clear_soft_dirty(pmd);
  797. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  798. }
  799. #else
  800. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  801. unsigned long addr, pmd_t *pmdp)
  802. {
  803. }
  804. #endif
  805. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  806. unsigned long end, struct mm_walk *walk)
  807. {
  808. struct clear_refs_private *cp = walk->private;
  809. struct vm_area_struct *vma = walk->vma;
  810. pte_t *pte, ptent;
  811. spinlock_t *ptl;
  812. struct page *page;
  813. ptl = pmd_trans_huge_lock(pmd, vma);
  814. if (ptl) {
  815. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  816. clear_soft_dirty_pmd(vma, addr, pmd);
  817. goto out;
  818. }
  819. page = pmd_page(*pmd);
  820. /* Clear accessed and referenced bits. */
  821. pmdp_test_and_clear_young(vma, addr, pmd);
  822. test_and_clear_page_young(page);
  823. ClearPageReferenced(page);
  824. out:
  825. spin_unlock(ptl);
  826. return 0;
  827. }
  828. if (pmd_trans_unstable(pmd))
  829. return 0;
  830. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  831. for (; addr != end; pte++, addr += PAGE_SIZE) {
  832. ptent = *pte;
  833. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  834. clear_soft_dirty(vma, addr, pte);
  835. continue;
  836. }
  837. if (!pte_present(ptent))
  838. continue;
  839. page = vm_normal_page(vma, addr, ptent);
  840. if (!page)
  841. continue;
  842. /* Clear accessed and referenced bits. */
  843. ptep_test_and_clear_young(vma, addr, pte);
  844. test_and_clear_page_young(page);
  845. ClearPageReferenced(page);
  846. }
  847. pte_unmap_unlock(pte - 1, ptl);
  848. cond_resched();
  849. return 0;
  850. }
  851. static int clear_refs_test_walk(unsigned long start, unsigned long end,
  852. struct mm_walk *walk)
  853. {
  854. struct clear_refs_private *cp = walk->private;
  855. struct vm_area_struct *vma = walk->vma;
  856. if (vma->vm_flags & VM_PFNMAP)
  857. return 1;
  858. /*
  859. * Writing 1 to /proc/pid/clear_refs affects all pages.
  860. * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
  861. * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
  862. * Writing 4 to /proc/pid/clear_refs affects all pages.
  863. */
  864. if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
  865. return 1;
  866. if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
  867. return 1;
  868. return 0;
  869. }
  870. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  871. size_t count, loff_t *ppos)
  872. {
  873. struct task_struct *task;
  874. char buffer[PROC_NUMBUF];
  875. struct mm_struct *mm;
  876. struct vm_area_struct *vma;
  877. enum clear_refs_types type;
  878. int itype;
  879. int rv;
  880. memset(buffer, 0, sizeof(buffer));
  881. if (count > sizeof(buffer) - 1)
  882. count = sizeof(buffer) - 1;
  883. if (copy_from_user(buffer, buf, count))
  884. return -EFAULT;
  885. rv = kstrtoint(strstrip(buffer), 10, &itype);
  886. if (rv < 0)
  887. return rv;
  888. type = (enum clear_refs_types)itype;
  889. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  890. return -EINVAL;
  891. task = get_proc_task(file_inode(file));
  892. if (!task)
  893. return -ESRCH;
  894. mm = get_task_mm(task);
  895. if (mm) {
  896. struct clear_refs_private cp = {
  897. .type = type,
  898. };
  899. struct mm_walk clear_refs_walk = {
  900. .pmd_entry = clear_refs_pte_range,
  901. .test_walk = clear_refs_test_walk,
  902. .mm = mm,
  903. .private = &cp,
  904. };
  905. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  906. if (down_write_killable(&mm->mmap_sem)) {
  907. count = -EINTR;
  908. goto out_mm;
  909. }
  910. /*
  911. * Writing 5 to /proc/pid/clear_refs resets the peak
  912. * resident set size to this mm's current rss value.
  913. */
  914. reset_mm_hiwater_rss(mm);
  915. up_write(&mm->mmap_sem);
  916. goto out_mm;
  917. }
  918. down_read(&mm->mmap_sem);
  919. if (type == CLEAR_REFS_SOFT_DIRTY) {
  920. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  921. if (!(vma->vm_flags & VM_SOFTDIRTY))
  922. continue;
  923. up_read(&mm->mmap_sem);
  924. if (down_write_killable(&mm->mmap_sem)) {
  925. count = -EINTR;
  926. goto out_mm;
  927. }
  928. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  929. vma->vm_flags &= ~VM_SOFTDIRTY;
  930. vma_set_page_prot(vma);
  931. }
  932. downgrade_write(&mm->mmap_sem);
  933. break;
  934. }
  935. mmu_notifier_invalidate_range_start(mm, 0, -1);
  936. }
  937. walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
  938. if (type == CLEAR_REFS_SOFT_DIRTY)
  939. mmu_notifier_invalidate_range_end(mm, 0, -1);
  940. flush_tlb_mm(mm);
  941. up_read(&mm->mmap_sem);
  942. out_mm:
  943. mmput(mm);
  944. }
  945. put_task_struct(task);
  946. return count;
  947. }
  948. const struct file_operations proc_clear_refs_operations = {
  949. .write = clear_refs_write,
  950. .llseek = noop_llseek,
  951. };
  952. typedef struct {
  953. u64 pme;
  954. } pagemap_entry_t;
  955. struct pagemapread {
  956. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  957. pagemap_entry_t *buffer;
  958. bool show_pfn;
  959. };
  960. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  961. #define PAGEMAP_WALK_MASK (PMD_MASK)
  962. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  963. #define PM_PFRAME_BITS 55
  964. #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
  965. #define PM_SOFT_DIRTY BIT_ULL(55)
  966. #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
  967. #define PM_FILE BIT_ULL(61)
  968. #define PM_SWAP BIT_ULL(62)
  969. #define PM_PRESENT BIT_ULL(63)
  970. #define PM_END_OF_BUFFER 1
  971. static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
  972. {
  973. return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
  974. }
  975. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  976. struct pagemapread *pm)
  977. {
  978. pm->buffer[pm->pos++] = *pme;
  979. if (pm->pos >= pm->len)
  980. return PM_END_OF_BUFFER;
  981. return 0;
  982. }
  983. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  984. struct mm_walk *walk)
  985. {
  986. struct pagemapread *pm = walk->private;
  987. unsigned long addr = start;
  988. int err = 0;
  989. while (addr < end) {
  990. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  991. pagemap_entry_t pme = make_pme(0, 0);
  992. /* End of address space hole, which we mark as non-present. */
  993. unsigned long hole_end;
  994. if (vma)
  995. hole_end = min(end, vma->vm_start);
  996. else
  997. hole_end = end;
  998. for (; addr < hole_end; addr += PAGE_SIZE) {
  999. err = add_to_pagemap(addr, &pme, pm);
  1000. if (err)
  1001. goto out;
  1002. }
  1003. if (!vma)
  1004. break;
  1005. /* Addresses in the VMA. */
  1006. if (vma->vm_flags & VM_SOFTDIRTY)
  1007. pme = make_pme(0, PM_SOFT_DIRTY);
  1008. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  1009. err = add_to_pagemap(addr, &pme, pm);
  1010. if (err)
  1011. goto out;
  1012. }
  1013. }
  1014. out:
  1015. return err;
  1016. }
  1017. static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
  1018. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  1019. {
  1020. u64 frame = 0, flags = 0;
  1021. struct page *page = NULL;
  1022. if (pte_present(pte)) {
  1023. if (pm->show_pfn)
  1024. frame = pte_pfn(pte);
  1025. flags |= PM_PRESENT;
  1026. page = vm_normal_page(vma, addr, pte);
  1027. if (pte_soft_dirty(pte))
  1028. flags |= PM_SOFT_DIRTY;
  1029. } else if (is_swap_pte(pte)) {
  1030. swp_entry_t entry;
  1031. if (pte_swp_soft_dirty(pte))
  1032. flags |= PM_SOFT_DIRTY;
  1033. entry = pte_to_swp_entry(pte);
  1034. frame = swp_type(entry) |
  1035. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  1036. flags |= PM_SWAP;
  1037. if (is_migration_entry(entry))
  1038. page = migration_entry_to_page(entry);
  1039. }
  1040. if (page && !PageAnon(page))
  1041. flags |= PM_FILE;
  1042. if (page && page_mapcount(page) == 1)
  1043. flags |= PM_MMAP_EXCLUSIVE;
  1044. if (vma->vm_flags & VM_SOFTDIRTY)
  1045. flags |= PM_SOFT_DIRTY;
  1046. return make_pme(frame, flags);
  1047. }
  1048. static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
  1049. struct mm_walk *walk)
  1050. {
  1051. struct vm_area_struct *vma = walk->vma;
  1052. struct pagemapread *pm = walk->private;
  1053. spinlock_t *ptl;
  1054. pte_t *pte, *orig_pte;
  1055. int err = 0;
  1056. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1057. ptl = pmd_trans_huge_lock(pmdp, vma);
  1058. if (ptl) {
  1059. u64 flags = 0, frame = 0;
  1060. pmd_t pmd = *pmdp;
  1061. if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
  1062. flags |= PM_SOFT_DIRTY;
  1063. /*
  1064. * Currently pmd for thp is always present because thp
  1065. * can not be swapped-out, migrated, or HWPOISONed
  1066. * (split in such cases instead.)
  1067. * This if-check is just to prepare for future implementation.
  1068. */
  1069. if (pmd_present(pmd)) {
  1070. struct page *page = pmd_page(pmd);
  1071. if (page_mapcount(page) == 1)
  1072. flags |= PM_MMAP_EXCLUSIVE;
  1073. flags |= PM_PRESENT;
  1074. if (pm->show_pfn)
  1075. frame = pmd_pfn(pmd) +
  1076. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1077. }
  1078. for (; addr != end; addr += PAGE_SIZE) {
  1079. pagemap_entry_t pme = make_pme(frame, flags);
  1080. err = add_to_pagemap(addr, &pme, pm);
  1081. if (err)
  1082. break;
  1083. if (pm->show_pfn && (flags & PM_PRESENT))
  1084. frame++;
  1085. }
  1086. spin_unlock(ptl);
  1087. return err;
  1088. }
  1089. if (pmd_trans_unstable(pmdp))
  1090. return 0;
  1091. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1092. /*
  1093. * We can assume that @vma always points to a valid one and @end never
  1094. * goes beyond vma->vm_end.
  1095. */
  1096. orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
  1097. for (; addr < end; pte++, addr += PAGE_SIZE) {
  1098. pagemap_entry_t pme;
  1099. pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
  1100. err = add_to_pagemap(addr, &pme, pm);
  1101. if (err)
  1102. break;
  1103. }
  1104. pte_unmap_unlock(orig_pte, ptl);
  1105. cond_resched();
  1106. return err;
  1107. }
  1108. #ifdef CONFIG_HUGETLB_PAGE
  1109. /* This function walks within one hugetlb entry in the single call */
  1110. static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
  1111. unsigned long addr, unsigned long end,
  1112. struct mm_walk *walk)
  1113. {
  1114. struct pagemapread *pm = walk->private;
  1115. struct vm_area_struct *vma = walk->vma;
  1116. u64 flags = 0, frame = 0;
  1117. int err = 0;
  1118. pte_t pte;
  1119. if (vma->vm_flags & VM_SOFTDIRTY)
  1120. flags |= PM_SOFT_DIRTY;
  1121. pte = huge_ptep_get(ptep);
  1122. if (pte_present(pte)) {
  1123. struct page *page = pte_page(pte);
  1124. if (!PageAnon(page))
  1125. flags |= PM_FILE;
  1126. if (page_mapcount(page) == 1)
  1127. flags |= PM_MMAP_EXCLUSIVE;
  1128. flags |= PM_PRESENT;
  1129. if (pm->show_pfn)
  1130. frame = pte_pfn(pte) +
  1131. ((addr & ~hmask) >> PAGE_SHIFT);
  1132. }
  1133. for (; addr != end; addr += PAGE_SIZE) {
  1134. pagemap_entry_t pme = make_pme(frame, flags);
  1135. err = add_to_pagemap(addr, &pme, pm);
  1136. if (err)
  1137. return err;
  1138. if (pm->show_pfn && (flags & PM_PRESENT))
  1139. frame++;
  1140. }
  1141. cond_resched();
  1142. return err;
  1143. }
  1144. #endif /* HUGETLB_PAGE */
  1145. /*
  1146. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1147. *
  1148. * For each page in the address space, this file contains one 64-bit entry
  1149. * consisting of the following:
  1150. *
  1151. * Bits 0-54 page frame number (PFN) if present
  1152. * Bits 0-4 swap type if swapped
  1153. * Bits 5-54 swap offset if swapped
  1154. * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
  1155. * Bit 56 page exclusively mapped
  1156. * Bits 57-60 zero
  1157. * Bit 61 page is file-page or shared-anon
  1158. * Bit 62 page swapped
  1159. * Bit 63 page present
  1160. *
  1161. * If the page is not present but in swap, then the PFN contains an
  1162. * encoding of the swap file number and the page's offset into the
  1163. * swap. Unmapped pages return a null PFN. This allows determining
  1164. * precisely which pages are mapped (or in swap) and comparing mapped
  1165. * pages between processes.
  1166. *
  1167. * Efficient users of this interface will use /proc/pid/maps to
  1168. * determine which areas of memory are actually mapped and llseek to
  1169. * skip over unmapped regions.
  1170. */
  1171. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1172. size_t count, loff_t *ppos)
  1173. {
  1174. struct mm_struct *mm = file->private_data;
  1175. struct pagemapread pm;
  1176. struct mm_walk pagemap_walk = {};
  1177. unsigned long src;
  1178. unsigned long svpfn;
  1179. unsigned long start_vaddr;
  1180. unsigned long end_vaddr;
  1181. int ret = 0, copied = 0;
  1182. if (!mm || !mmget_not_zero(mm))
  1183. goto out;
  1184. ret = -EINVAL;
  1185. /* file position must be aligned */
  1186. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1187. goto out_mm;
  1188. ret = 0;
  1189. if (!count)
  1190. goto out_mm;
  1191. /* do not disclose physical addresses: attack vector */
  1192. pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
  1193. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1194. pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
  1195. ret = -ENOMEM;
  1196. if (!pm.buffer)
  1197. goto out_mm;
  1198. pagemap_walk.pmd_entry = pagemap_pmd_range;
  1199. pagemap_walk.pte_hole = pagemap_pte_hole;
  1200. #ifdef CONFIG_HUGETLB_PAGE
  1201. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1202. #endif
  1203. pagemap_walk.mm = mm;
  1204. pagemap_walk.private = &pm;
  1205. src = *ppos;
  1206. svpfn = src / PM_ENTRY_BYTES;
  1207. start_vaddr = svpfn << PAGE_SHIFT;
  1208. end_vaddr = mm->task_size;
  1209. /* watch out for wraparound */
  1210. if (svpfn > mm->task_size >> PAGE_SHIFT)
  1211. start_vaddr = end_vaddr;
  1212. /*
  1213. * The odds are that this will stop walking way
  1214. * before end_vaddr, because the length of the
  1215. * user buffer is tracked in "pm", and the walk
  1216. * will stop when we hit the end of the buffer.
  1217. */
  1218. ret = 0;
  1219. while (count && (start_vaddr < end_vaddr)) {
  1220. int len;
  1221. unsigned long end;
  1222. pm.pos = 0;
  1223. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1224. /* overflow ? */
  1225. if (end < start_vaddr || end > end_vaddr)
  1226. end = end_vaddr;
  1227. down_read(&mm->mmap_sem);
  1228. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1229. up_read(&mm->mmap_sem);
  1230. start_vaddr = end;
  1231. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1232. if (copy_to_user(buf, pm.buffer, len)) {
  1233. ret = -EFAULT;
  1234. goto out_free;
  1235. }
  1236. copied += len;
  1237. buf += len;
  1238. count -= len;
  1239. }
  1240. *ppos += copied;
  1241. if (!ret || ret == PM_END_OF_BUFFER)
  1242. ret = copied;
  1243. out_free:
  1244. kfree(pm.buffer);
  1245. out_mm:
  1246. mmput(mm);
  1247. out:
  1248. return ret;
  1249. }
  1250. static int pagemap_open(struct inode *inode, struct file *file)
  1251. {
  1252. struct mm_struct *mm;
  1253. mm = proc_mem_open(inode, PTRACE_MODE_READ);
  1254. if (IS_ERR(mm))
  1255. return PTR_ERR(mm);
  1256. file->private_data = mm;
  1257. return 0;
  1258. }
  1259. static int pagemap_release(struct inode *inode, struct file *file)
  1260. {
  1261. struct mm_struct *mm = file->private_data;
  1262. if (mm)
  1263. mmdrop(mm);
  1264. return 0;
  1265. }
  1266. const struct file_operations proc_pagemap_operations = {
  1267. .llseek = mem_lseek, /* borrow this */
  1268. .read = pagemap_read,
  1269. .open = pagemap_open,
  1270. .release = pagemap_release,
  1271. };
  1272. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1273. #ifdef CONFIG_NUMA
  1274. struct numa_maps {
  1275. unsigned long pages;
  1276. unsigned long anon;
  1277. unsigned long active;
  1278. unsigned long writeback;
  1279. unsigned long mapcount_max;
  1280. unsigned long dirty;
  1281. unsigned long swapcache;
  1282. unsigned long node[MAX_NUMNODES];
  1283. };
  1284. struct numa_maps_private {
  1285. struct proc_maps_private proc_maps;
  1286. struct numa_maps md;
  1287. };
  1288. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1289. unsigned long nr_pages)
  1290. {
  1291. int count = page_mapcount(page);
  1292. md->pages += nr_pages;
  1293. if (pte_dirty || PageDirty(page))
  1294. md->dirty += nr_pages;
  1295. if (PageSwapCache(page))
  1296. md->swapcache += nr_pages;
  1297. if (PageActive(page) || PageUnevictable(page))
  1298. md->active += nr_pages;
  1299. if (PageWriteback(page))
  1300. md->writeback += nr_pages;
  1301. if (PageAnon(page))
  1302. md->anon += nr_pages;
  1303. if (count > md->mapcount_max)
  1304. md->mapcount_max = count;
  1305. md->node[page_to_nid(page)] += nr_pages;
  1306. }
  1307. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1308. unsigned long addr)
  1309. {
  1310. struct page *page;
  1311. int nid;
  1312. if (!pte_present(pte))
  1313. return NULL;
  1314. page = vm_normal_page(vma, addr, pte);
  1315. if (!page)
  1316. return NULL;
  1317. if (PageReserved(page))
  1318. return NULL;
  1319. nid = page_to_nid(page);
  1320. if (!node_isset(nid, node_states[N_MEMORY]))
  1321. return NULL;
  1322. return page;
  1323. }
  1324. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1325. static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
  1326. struct vm_area_struct *vma,
  1327. unsigned long addr)
  1328. {
  1329. struct page *page;
  1330. int nid;
  1331. if (!pmd_present(pmd))
  1332. return NULL;
  1333. page = vm_normal_page_pmd(vma, addr, pmd);
  1334. if (!page)
  1335. return NULL;
  1336. if (PageReserved(page))
  1337. return NULL;
  1338. nid = page_to_nid(page);
  1339. if (!node_isset(nid, node_states[N_MEMORY]))
  1340. return NULL;
  1341. return page;
  1342. }
  1343. #endif
  1344. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1345. unsigned long end, struct mm_walk *walk)
  1346. {
  1347. struct numa_maps *md = walk->private;
  1348. struct vm_area_struct *vma = walk->vma;
  1349. spinlock_t *ptl;
  1350. pte_t *orig_pte;
  1351. pte_t *pte;
  1352. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1353. ptl = pmd_trans_huge_lock(pmd, vma);
  1354. if (ptl) {
  1355. struct page *page;
  1356. page = can_gather_numa_stats_pmd(*pmd, vma, addr);
  1357. if (page)
  1358. gather_stats(page, md, pmd_dirty(*pmd),
  1359. HPAGE_PMD_SIZE/PAGE_SIZE);
  1360. spin_unlock(ptl);
  1361. return 0;
  1362. }
  1363. if (pmd_trans_unstable(pmd))
  1364. return 0;
  1365. #endif
  1366. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1367. do {
  1368. struct page *page = can_gather_numa_stats(*pte, vma, addr);
  1369. if (!page)
  1370. continue;
  1371. gather_stats(page, md, pte_dirty(*pte), 1);
  1372. } while (pte++, addr += PAGE_SIZE, addr != end);
  1373. pte_unmap_unlock(orig_pte, ptl);
  1374. cond_resched();
  1375. return 0;
  1376. }
  1377. #ifdef CONFIG_HUGETLB_PAGE
  1378. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1379. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1380. {
  1381. pte_t huge_pte = huge_ptep_get(pte);
  1382. struct numa_maps *md;
  1383. struct page *page;
  1384. if (!pte_present(huge_pte))
  1385. return 0;
  1386. page = pte_page(huge_pte);
  1387. if (!page)
  1388. return 0;
  1389. md = walk->private;
  1390. gather_stats(page, md, pte_dirty(huge_pte), 1);
  1391. return 0;
  1392. }
  1393. #else
  1394. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1395. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1396. {
  1397. return 0;
  1398. }
  1399. #endif
  1400. /*
  1401. * Display pages allocated per node and memory policy via /proc.
  1402. */
  1403. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1404. {
  1405. struct numa_maps_private *numa_priv = m->private;
  1406. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1407. struct vm_area_struct *vma = v;
  1408. struct numa_maps *md = &numa_priv->md;
  1409. struct file *file = vma->vm_file;
  1410. struct mm_struct *mm = vma->vm_mm;
  1411. struct mm_walk walk = {
  1412. .hugetlb_entry = gather_hugetlb_stats,
  1413. .pmd_entry = gather_pte_stats,
  1414. .private = md,
  1415. .mm = mm,
  1416. };
  1417. struct mempolicy *pol;
  1418. char buffer[64];
  1419. int nid;
  1420. if (!mm)
  1421. return 0;
  1422. /* Ensure we start with an empty set of numa_maps statistics. */
  1423. memset(md, 0, sizeof(*md));
  1424. pol = __get_vma_policy(vma, vma->vm_start);
  1425. if (pol) {
  1426. mpol_to_str(buffer, sizeof(buffer), pol);
  1427. mpol_cond_put(pol);
  1428. } else {
  1429. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1430. }
  1431. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1432. if (file) {
  1433. seq_puts(m, " file=");
  1434. seq_file_path(m, file, "\n\t= ");
  1435. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1436. seq_puts(m, " heap");
  1437. } else if (is_stack(proc_priv, vma)) {
  1438. seq_puts(m, " stack");
  1439. }
  1440. if (is_vm_hugetlb_page(vma))
  1441. seq_puts(m, " huge");
  1442. /* mmap_sem is held by m_start */
  1443. walk_page_vma(vma, &walk);
  1444. if (!md->pages)
  1445. goto out;
  1446. if (md->anon)
  1447. seq_printf(m, " anon=%lu", md->anon);
  1448. if (md->dirty)
  1449. seq_printf(m, " dirty=%lu", md->dirty);
  1450. if (md->pages != md->anon && md->pages != md->dirty)
  1451. seq_printf(m, " mapped=%lu", md->pages);
  1452. if (md->mapcount_max > 1)
  1453. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1454. if (md->swapcache)
  1455. seq_printf(m, " swapcache=%lu", md->swapcache);
  1456. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1457. seq_printf(m, " active=%lu", md->active);
  1458. if (md->writeback)
  1459. seq_printf(m, " writeback=%lu", md->writeback);
  1460. for_each_node_state(nid, N_MEMORY)
  1461. if (md->node[nid])
  1462. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1463. seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
  1464. out:
  1465. seq_putc(m, '\n');
  1466. m_cache_vma(m, vma);
  1467. return 0;
  1468. }
  1469. static int show_pid_numa_map(struct seq_file *m, void *v)
  1470. {
  1471. return show_numa_map(m, v, 1);
  1472. }
  1473. static int show_tid_numa_map(struct seq_file *m, void *v)
  1474. {
  1475. return show_numa_map(m, v, 0);
  1476. }
  1477. static const struct seq_operations proc_pid_numa_maps_op = {
  1478. .start = m_start,
  1479. .next = m_next,
  1480. .stop = m_stop,
  1481. .show = show_pid_numa_map,
  1482. };
  1483. static const struct seq_operations proc_tid_numa_maps_op = {
  1484. .start = m_start,
  1485. .next = m_next,
  1486. .stop = m_stop,
  1487. .show = show_tid_numa_map,
  1488. };
  1489. static int numa_maps_open(struct inode *inode, struct file *file,
  1490. const struct seq_operations *ops)
  1491. {
  1492. return proc_maps_open(inode, file, ops,
  1493. sizeof(struct numa_maps_private));
  1494. }
  1495. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1496. {
  1497. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1498. }
  1499. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1500. {
  1501. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1502. }
  1503. const struct file_operations proc_pid_numa_maps_operations = {
  1504. .open = pid_numa_maps_open,
  1505. .read = seq_read,
  1506. .llseek = seq_lseek,
  1507. .release = proc_map_release,
  1508. };
  1509. const struct file_operations proc_tid_numa_maps_operations = {
  1510. .open = tid_numa_maps_open,
  1511. .read = seq_read,
  1512. .llseek = seq_lseek,
  1513. .release = proc_map_release,
  1514. };
  1515. #endif /* CONFIG_NUMA */