actions.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897
  1. /*
  2. * Copyright (c) 2007-2014 Nicira, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of version 2 of the GNU General Public
  6. * License as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16. * 02110-1301, USA
  17. */
  18. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19. #include <linux/skbuff.h>
  20. #include <linux/in.h>
  21. #include <linux/ip.h>
  22. #include <linux/openvswitch.h>
  23. #include <linux/sctp.h>
  24. #include <linux/tcp.h>
  25. #include <linux/udp.h>
  26. #include <linux/in6.h>
  27. #include <linux/if_arp.h>
  28. #include <linux/if_vlan.h>
  29. #include <net/ip.h>
  30. #include <net/ipv6.h>
  31. #include <net/checksum.h>
  32. #include <net/dsfield.h>
  33. #include <net/mpls.h>
  34. #include <net/sctp/checksum.h>
  35. #include "datapath.h"
  36. #include "flow.h"
  37. #include "vport.h"
  38. static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
  39. struct sw_flow_key *key,
  40. const struct nlattr *attr, int len);
  41. struct deferred_action {
  42. struct sk_buff *skb;
  43. const struct nlattr *actions;
  44. /* Store pkt_key clone when creating deferred action. */
  45. struct sw_flow_key pkt_key;
  46. };
  47. #define DEFERRED_ACTION_FIFO_SIZE 10
  48. struct action_fifo {
  49. int head;
  50. int tail;
  51. /* Deferred action fifo queue storage. */
  52. struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  53. };
  54. static struct action_fifo __percpu *action_fifos;
  55. static DEFINE_PER_CPU(int, exec_actions_level);
  56. static void action_fifo_init(struct action_fifo *fifo)
  57. {
  58. fifo->head = 0;
  59. fifo->tail = 0;
  60. }
  61. static bool action_fifo_is_empty(const struct action_fifo *fifo)
  62. {
  63. return (fifo->head == fifo->tail);
  64. }
  65. static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
  66. {
  67. if (action_fifo_is_empty(fifo))
  68. return NULL;
  69. return &fifo->fifo[fifo->tail++];
  70. }
  71. static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
  72. {
  73. if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
  74. return NULL;
  75. return &fifo->fifo[fifo->head++];
  76. }
  77. /* Return true if fifo is not full */
  78. static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
  79. const struct sw_flow_key *key,
  80. const struct nlattr *attr)
  81. {
  82. struct action_fifo *fifo;
  83. struct deferred_action *da;
  84. fifo = this_cpu_ptr(action_fifos);
  85. da = action_fifo_put(fifo);
  86. if (da) {
  87. da->skb = skb;
  88. da->actions = attr;
  89. da->pkt_key = *key;
  90. }
  91. return da;
  92. }
  93. static void invalidate_flow_key(struct sw_flow_key *key)
  94. {
  95. key->eth.type = htons(0);
  96. }
  97. static bool is_flow_key_valid(const struct sw_flow_key *key)
  98. {
  99. return !!key->eth.type;
  100. }
  101. static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
  102. const struct ovs_action_push_mpls *mpls)
  103. {
  104. __be32 *new_mpls_lse;
  105. struct ethhdr *hdr;
  106. /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
  107. if (skb->encapsulation)
  108. return -ENOTSUPP;
  109. if (skb_cow_head(skb, MPLS_HLEN) < 0)
  110. return -ENOMEM;
  111. skb_push(skb, MPLS_HLEN);
  112. memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
  113. skb->mac_len);
  114. skb_reset_mac_header(skb);
  115. new_mpls_lse = (__be32 *)skb_mpls_header(skb);
  116. *new_mpls_lse = mpls->mpls_lse;
  117. if (skb->ip_summed == CHECKSUM_COMPLETE)
  118. skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
  119. MPLS_HLEN, 0));
  120. hdr = eth_hdr(skb);
  121. hdr->h_proto = mpls->mpls_ethertype;
  122. skb_set_inner_protocol(skb, skb->protocol);
  123. skb->protocol = mpls->mpls_ethertype;
  124. invalidate_flow_key(key);
  125. return 0;
  126. }
  127. static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
  128. const __be16 ethertype)
  129. {
  130. struct ethhdr *hdr;
  131. int err;
  132. err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
  133. if (unlikely(err))
  134. return err;
  135. skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
  136. memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
  137. skb->mac_len);
  138. __skb_pull(skb, MPLS_HLEN);
  139. skb_reset_mac_header(skb);
  140. /* skb_mpls_header() is used to locate the ethertype
  141. * field correctly in the presence of VLAN tags.
  142. */
  143. hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
  144. hdr->h_proto = ethertype;
  145. if (eth_p_mpls(skb->protocol))
  146. skb->protocol = ethertype;
  147. invalidate_flow_key(key);
  148. return 0;
  149. }
  150. static int set_mpls(struct sk_buff *skb, struct sw_flow_key *key,
  151. const __be32 *mpls_lse)
  152. {
  153. __be32 *stack;
  154. int err;
  155. err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
  156. if (unlikely(err))
  157. return err;
  158. stack = (__be32 *)skb_mpls_header(skb);
  159. if (skb->ip_summed == CHECKSUM_COMPLETE) {
  160. __be32 diff[] = { ~(*stack), *mpls_lse };
  161. skb->csum = ~csum_partial((char *)diff, sizeof(diff),
  162. ~skb->csum);
  163. }
  164. *stack = *mpls_lse;
  165. key->mpls.top_lse = *mpls_lse;
  166. return 0;
  167. }
  168. static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
  169. {
  170. int err;
  171. err = skb_vlan_pop(skb);
  172. if (vlan_tx_tag_present(skb))
  173. invalidate_flow_key(key);
  174. else
  175. key->eth.tci = 0;
  176. return err;
  177. }
  178. static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
  179. const struct ovs_action_push_vlan *vlan)
  180. {
  181. if (vlan_tx_tag_present(skb))
  182. invalidate_flow_key(key);
  183. else
  184. key->eth.tci = vlan->vlan_tci;
  185. return skb_vlan_push(skb, vlan->vlan_tpid,
  186. ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
  187. }
  188. static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *key,
  189. const struct ovs_key_ethernet *eth_key)
  190. {
  191. int err;
  192. err = skb_ensure_writable(skb, ETH_HLEN);
  193. if (unlikely(err))
  194. return err;
  195. skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
  196. ether_addr_copy(eth_hdr(skb)->h_source, eth_key->eth_src);
  197. ether_addr_copy(eth_hdr(skb)->h_dest, eth_key->eth_dst);
  198. ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
  199. ether_addr_copy(key->eth.src, eth_key->eth_src);
  200. ether_addr_copy(key->eth.dst, eth_key->eth_dst);
  201. return 0;
  202. }
  203. static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
  204. __be32 *addr, __be32 new_addr)
  205. {
  206. int transport_len = skb->len - skb_transport_offset(skb);
  207. if (nh->protocol == IPPROTO_TCP) {
  208. if (likely(transport_len >= sizeof(struct tcphdr)))
  209. inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
  210. *addr, new_addr, 1);
  211. } else if (nh->protocol == IPPROTO_UDP) {
  212. if (likely(transport_len >= sizeof(struct udphdr))) {
  213. struct udphdr *uh = udp_hdr(skb);
  214. if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
  215. inet_proto_csum_replace4(&uh->check, skb,
  216. *addr, new_addr, 1);
  217. if (!uh->check)
  218. uh->check = CSUM_MANGLED_0;
  219. }
  220. }
  221. }
  222. csum_replace4(&nh->check, *addr, new_addr);
  223. skb_clear_hash(skb);
  224. *addr = new_addr;
  225. }
  226. static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
  227. __be32 addr[4], const __be32 new_addr[4])
  228. {
  229. int transport_len = skb->len - skb_transport_offset(skb);
  230. if (l4_proto == NEXTHDR_TCP) {
  231. if (likely(transport_len >= sizeof(struct tcphdr)))
  232. inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
  233. addr, new_addr, 1);
  234. } else if (l4_proto == NEXTHDR_UDP) {
  235. if (likely(transport_len >= sizeof(struct udphdr))) {
  236. struct udphdr *uh = udp_hdr(skb);
  237. if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
  238. inet_proto_csum_replace16(&uh->check, skb,
  239. addr, new_addr, 1);
  240. if (!uh->check)
  241. uh->check = CSUM_MANGLED_0;
  242. }
  243. }
  244. } else if (l4_proto == NEXTHDR_ICMP) {
  245. if (likely(transport_len >= sizeof(struct icmp6hdr)))
  246. inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
  247. skb, addr, new_addr, 1);
  248. }
  249. }
  250. static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
  251. __be32 addr[4], const __be32 new_addr[4],
  252. bool recalculate_csum)
  253. {
  254. if (recalculate_csum)
  255. update_ipv6_checksum(skb, l4_proto, addr, new_addr);
  256. skb_clear_hash(skb);
  257. memcpy(addr, new_addr, sizeof(__be32[4]));
  258. }
  259. static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc)
  260. {
  261. nh->priority = tc >> 4;
  262. nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4);
  263. }
  264. static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl)
  265. {
  266. nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16;
  267. nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8;
  268. nh->flow_lbl[2] = fl & 0x000000FF;
  269. }
  270. static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl)
  271. {
  272. csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
  273. nh->ttl = new_ttl;
  274. }
  275. static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *key,
  276. const struct ovs_key_ipv4 *ipv4_key)
  277. {
  278. struct iphdr *nh;
  279. int err;
  280. err = skb_ensure_writable(skb, skb_network_offset(skb) +
  281. sizeof(struct iphdr));
  282. if (unlikely(err))
  283. return err;
  284. nh = ip_hdr(skb);
  285. if (ipv4_key->ipv4_src != nh->saddr) {
  286. set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src);
  287. key->ipv4.addr.src = ipv4_key->ipv4_src;
  288. }
  289. if (ipv4_key->ipv4_dst != nh->daddr) {
  290. set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst);
  291. key->ipv4.addr.dst = ipv4_key->ipv4_dst;
  292. }
  293. if (ipv4_key->ipv4_tos != nh->tos) {
  294. ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos);
  295. key->ip.tos = nh->tos;
  296. }
  297. if (ipv4_key->ipv4_ttl != nh->ttl) {
  298. set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl);
  299. key->ip.ttl = ipv4_key->ipv4_ttl;
  300. }
  301. return 0;
  302. }
  303. static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *key,
  304. const struct ovs_key_ipv6 *ipv6_key)
  305. {
  306. struct ipv6hdr *nh;
  307. int err;
  308. __be32 *saddr;
  309. __be32 *daddr;
  310. err = skb_ensure_writable(skb, skb_network_offset(skb) +
  311. sizeof(struct ipv6hdr));
  312. if (unlikely(err))
  313. return err;
  314. nh = ipv6_hdr(skb);
  315. saddr = (__be32 *)&nh->saddr;
  316. daddr = (__be32 *)&nh->daddr;
  317. if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src))) {
  318. set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr,
  319. ipv6_key->ipv6_src, true);
  320. memcpy(&key->ipv6.addr.src, ipv6_key->ipv6_src,
  321. sizeof(ipv6_key->ipv6_src));
  322. }
  323. if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) {
  324. unsigned int offset = 0;
  325. int flags = IP6_FH_F_SKIP_RH;
  326. bool recalc_csum = true;
  327. if (ipv6_ext_hdr(nh->nexthdr))
  328. recalc_csum = ipv6_find_hdr(skb, &offset,
  329. NEXTHDR_ROUTING, NULL,
  330. &flags) != NEXTHDR_ROUTING;
  331. set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr,
  332. ipv6_key->ipv6_dst, recalc_csum);
  333. memcpy(&key->ipv6.addr.dst, ipv6_key->ipv6_dst,
  334. sizeof(ipv6_key->ipv6_dst));
  335. }
  336. set_ipv6_tc(nh, ipv6_key->ipv6_tclass);
  337. key->ip.tos = ipv6_get_dsfield(nh);
  338. set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label));
  339. key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
  340. nh->hop_limit = ipv6_key->ipv6_hlimit;
  341. key->ip.ttl = ipv6_key->ipv6_hlimit;
  342. return 0;
  343. }
  344. /* Must follow skb_ensure_writable() since that can move the skb data. */
  345. static void set_tp_port(struct sk_buff *skb, __be16 *port,
  346. __be16 new_port, __sum16 *check)
  347. {
  348. inet_proto_csum_replace2(check, skb, *port, new_port, 0);
  349. *port = new_port;
  350. skb_clear_hash(skb);
  351. }
  352. static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port)
  353. {
  354. struct udphdr *uh = udp_hdr(skb);
  355. if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
  356. set_tp_port(skb, port, new_port, &uh->check);
  357. if (!uh->check)
  358. uh->check = CSUM_MANGLED_0;
  359. } else {
  360. *port = new_port;
  361. skb_clear_hash(skb);
  362. }
  363. }
  364. static int set_udp(struct sk_buff *skb, struct sw_flow_key *key,
  365. const struct ovs_key_udp *udp_port_key)
  366. {
  367. struct udphdr *uh;
  368. int err;
  369. err = skb_ensure_writable(skb, skb_transport_offset(skb) +
  370. sizeof(struct udphdr));
  371. if (unlikely(err))
  372. return err;
  373. uh = udp_hdr(skb);
  374. if (udp_port_key->udp_src != uh->source) {
  375. set_udp_port(skb, &uh->source, udp_port_key->udp_src);
  376. key->tp.src = udp_port_key->udp_src;
  377. }
  378. if (udp_port_key->udp_dst != uh->dest) {
  379. set_udp_port(skb, &uh->dest, udp_port_key->udp_dst);
  380. key->tp.dst = udp_port_key->udp_dst;
  381. }
  382. return 0;
  383. }
  384. static int set_tcp(struct sk_buff *skb, struct sw_flow_key *key,
  385. const struct ovs_key_tcp *tcp_port_key)
  386. {
  387. struct tcphdr *th;
  388. int err;
  389. err = skb_ensure_writable(skb, skb_transport_offset(skb) +
  390. sizeof(struct tcphdr));
  391. if (unlikely(err))
  392. return err;
  393. th = tcp_hdr(skb);
  394. if (tcp_port_key->tcp_src != th->source) {
  395. set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check);
  396. key->tp.src = tcp_port_key->tcp_src;
  397. }
  398. if (tcp_port_key->tcp_dst != th->dest) {
  399. set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check);
  400. key->tp.dst = tcp_port_key->tcp_dst;
  401. }
  402. return 0;
  403. }
  404. static int set_sctp(struct sk_buff *skb, struct sw_flow_key *key,
  405. const struct ovs_key_sctp *sctp_port_key)
  406. {
  407. struct sctphdr *sh;
  408. int err;
  409. unsigned int sctphoff = skb_transport_offset(skb);
  410. err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
  411. if (unlikely(err))
  412. return err;
  413. sh = sctp_hdr(skb);
  414. if (sctp_port_key->sctp_src != sh->source ||
  415. sctp_port_key->sctp_dst != sh->dest) {
  416. __le32 old_correct_csum, new_csum, old_csum;
  417. old_csum = sh->checksum;
  418. old_correct_csum = sctp_compute_cksum(skb, sctphoff);
  419. sh->source = sctp_port_key->sctp_src;
  420. sh->dest = sctp_port_key->sctp_dst;
  421. new_csum = sctp_compute_cksum(skb, sctphoff);
  422. /* Carry any checksum errors through. */
  423. sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
  424. skb_clear_hash(skb);
  425. key->tp.src = sctp_port_key->sctp_src;
  426. key->tp.dst = sctp_port_key->sctp_dst;
  427. }
  428. return 0;
  429. }
  430. static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
  431. {
  432. struct vport *vport = ovs_vport_rcu(dp, out_port);
  433. if (likely(vport))
  434. ovs_vport_send(vport, skb);
  435. else
  436. kfree_skb(skb);
  437. }
  438. static int output_userspace(struct datapath *dp, struct sk_buff *skb,
  439. struct sw_flow_key *key, const struct nlattr *attr)
  440. {
  441. struct ovs_tunnel_info info;
  442. struct dp_upcall_info upcall;
  443. const struct nlattr *a;
  444. int rem;
  445. upcall.cmd = OVS_PACKET_CMD_ACTION;
  446. upcall.userdata = NULL;
  447. upcall.portid = 0;
  448. upcall.egress_tun_info = NULL;
  449. for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
  450. a = nla_next(a, &rem)) {
  451. switch (nla_type(a)) {
  452. case OVS_USERSPACE_ATTR_USERDATA:
  453. upcall.userdata = a;
  454. break;
  455. case OVS_USERSPACE_ATTR_PID:
  456. upcall.portid = nla_get_u32(a);
  457. break;
  458. case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
  459. /* Get out tunnel info. */
  460. struct vport *vport;
  461. vport = ovs_vport_rcu(dp, nla_get_u32(a));
  462. if (vport) {
  463. int err;
  464. err = ovs_vport_get_egress_tun_info(vport, skb,
  465. &info);
  466. if (!err)
  467. upcall.egress_tun_info = &info;
  468. }
  469. break;
  470. }
  471. } /* End of switch. */
  472. }
  473. return ovs_dp_upcall(dp, skb, key, &upcall);
  474. }
  475. static int sample(struct datapath *dp, struct sk_buff *skb,
  476. struct sw_flow_key *key, const struct nlattr *attr)
  477. {
  478. const struct nlattr *acts_list = NULL;
  479. const struct nlattr *a;
  480. int rem;
  481. for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
  482. a = nla_next(a, &rem)) {
  483. switch (nla_type(a)) {
  484. case OVS_SAMPLE_ATTR_PROBABILITY:
  485. if (prandom_u32() >= nla_get_u32(a))
  486. return 0;
  487. break;
  488. case OVS_SAMPLE_ATTR_ACTIONS:
  489. acts_list = a;
  490. break;
  491. }
  492. }
  493. rem = nla_len(acts_list);
  494. a = nla_data(acts_list);
  495. /* Actions list is empty, do nothing */
  496. if (unlikely(!rem))
  497. return 0;
  498. /* The only known usage of sample action is having a single user-space
  499. * action. Treat this usage as a special case.
  500. * The output_userspace() should clone the skb to be sent to the
  501. * user space. This skb will be consumed by its caller.
  502. */
  503. if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
  504. nla_is_last(a, rem)))
  505. return output_userspace(dp, skb, key, a);
  506. skb = skb_clone(skb, GFP_ATOMIC);
  507. if (!skb)
  508. /* Skip the sample action when out of memory. */
  509. return 0;
  510. if (!add_deferred_actions(skb, key, a)) {
  511. if (net_ratelimit())
  512. pr_warn("%s: deferred actions limit reached, dropping sample action\n",
  513. ovs_dp_name(dp));
  514. kfree_skb(skb);
  515. }
  516. return 0;
  517. }
  518. static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
  519. const struct nlattr *attr)
  520. {
  521. struct ovs_action_hash *hash_act = nla_data(attr);
  522. u32 hash = 0;
  523. /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
  524. hash = skb_get_hash(skb);
  525. hash = jhash_1word(hash, hash_act->hash_basis);
  526. if (!hash)
  527. hash = 0x1;
  528. key->ovs_flow_hash = hash;
  529. }
  530. static int execute_set_action(struct sk_buff *skb, struct sw_flow_key *key,
  531. const struct nlattr *nested_attr)
  532. {
  533. int err = 0;
  534. switch (nla_type(nested_attr)) {
  535. case OVS_KEY_ATTR_PRIORITY:
  536. skb->priority = nla_get_u32(nested_attr);
  537. key->phy.priority = skb->priority;
  538. break;
  539. case OVS_KEY_ATTR_SKB_MARK:
  540. skb->mark = nla_get_u32(nested_attr);
  541. key->phy.skb_mark = skb->mark;
  542. break;
  543. case OVS_KEY_ATTR_TUNNEL_INFO:
  544. OVS_CB(skb)->egress_tun_info = nla_data(nested_attr);
  545. break;
  546. case OVS_KEY_ATTR_ETHERNET:
  547. err = set_eth_addr(skb, key, nla_data(nested_attr));
  548. break;
  549. case OVS_KEY_ATTR_IPV4:
  550. err = set_ipv4(skb, key, nla_data(nested_attr));
  551. break;
  552. case OVS_KEY_ATTR_IPV6:
  553. err = set_ipv6(skb, key, nla_data(nested_attr));
  554. break;
  555. case OVS_KEY_ATTR_TCP:
  556. err = set_tcp(skb, key, nla_data(nested_attr));
  557. break;
  558. case OVS_KEY_ATTR_UDP:
  559. err = set_udp(skb, key, nla_data(nested_attr));
  560. break;
  561. case OVS_KEY_ATTR_SCTP:
  562. err = set_sctp(skb, key, nla_data(nested_attr));
  563. break;
  564. case OVS_KEY_ATTR_MPLS:
  565. err = set_mpls(skb, key, nla_data(nested_attr));
  566. break;
  567. }
  568. return err;
  569. }
  570. static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
  571. struct sw_flow_key *key,
  572. const struct nlattr *a, int rem)
  573. {
  574. struct deferred_action *da;
  575. if (!is_flow_key_valid(key)) {
  576. int err;
  577. err = ovs_flow_key_update(skb, key);
  578. if (err)
  579. return err;
  580. }
  581. BUG_ON(!is_flow_key_valid(key));
  582. if (!nla_is_last(a, rem)) {
  583. /* Recirc action is the not the last action
  584. * of the action list, need to clone the skb.
  585. */
  586. skb = skb_clone(skb, GFP_ATOMIC);
  587. /* Skip the recirc action when out of memory, but
  588. * continue on with the rest of the action list.
  589. */
  590. if (!skb)
  591. return 0;
  592. }
  593. da = add_deferred_actions(skb, key, NULL);
  594. if (da) {
  595. da->pkt_key.recirc_id = nla_get_u32(a);
  596. } else {
  597. kfree_skb(skb);
  598. if (net_ratelimit())
  599. pr_warn("%s: deferred action limit reached, drop recirc action\n",
  600. ovs_dp_name(dp));
  601. }
  602. return 0;
  603. }
  604. /* Execute a list of actions against 'skb'. */
  605. static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
  606. struct sw_flow_key *key,
  607. const struct nlattr *attr, int len)
  608. {
  609. /* Every output action needs a separate clone of 'skb', but the common
  610. * case is just a single output action, so that doing a clone and
  611. * then freeing the original skbuff is wasteful. So the following code
  612. * is slightly obscure just to avoid that.
  613. */
  614. int prev_port = -1;
  615. const struct nlattr *a;
  616. int rem;
  617. for (a = attr, rem = len; rem > 0;
  618. a = nla_next(a, &rem)) {
  619. int err = 0;
  620. if (unlikely(prev_port != -1)) {
  621. struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
  622. if (out_skb)
  623. do_output(dp, out_skb, prev_port);
  624. prev_port = -1;
  625. }
  626. switch (nla_type(a)) {
  627. case OVS_ACTION_ATTR_OUTPUT:
  628. prev_port = nla_get_u32(a);
  629. break;
  630. case OVS_ACTION_ATTR_USERSPACE:
  631. output_userspace(dp, skb, key, a);
  632. break;
  633. case OVS_ACTION_ATTR_HASH:
  634. execute_hash(skb, key, a);
  635. break;
  636. case OVS_ACTION_ATTR_PUSH_MPLS:
  637. err = push_mpls(skb, key, nla_data(a));
  638. break;
  639. case OVS_ACTION_ATTR_POP_MPLS:
  640. err = pop_mpls(skb, key, nla_get_be16(a));
  641. break;
  642. case OVS_ACTION_ATTR_PUSH_VLAN:
  643. err = push_vlan(skb, key, nla_data(a));
  644. break;
  645. case OVS_ACTION_ATTR_POP_VLAN:
  646. err = pop_vlan(skb, key);
  647. break;
  648. case OVS_ACTION_ATTR_RECIRC:
  649. err = execute_recirc(dp, skb, key, a, rem);
  650. if (nla_is_last(a, rem)) {
  651. /* If this is the last action, the skb has
  652. * been consumed or freed.
  653. * Return immediately.
  654. */
  655. return err;
  656. }
  657. break;
  658. case OVS_ACTION_ATTR_SET:
  659. err = execute_set_action(skb, key, nla_data(a));
  660. break;
  661. case OVS_ACTION_ATTR_SAMPLE:
  662. err = sample(dp, skb, key, a);
  663. break;
  664. }
  665. if (unlikely(err)) {
  666. kfree_skb(skb);
  667. return err;
  668. }
  669. }
  670. if (prev_port != -1)
  671. do_output(dp, skb, prev_port);
  672. else
  673. consume_skb(skb);
  674. return 0;
  675. }
  676. static void process_deferred_actions(struct datapath *dp)
  677. {
  678. struct action_fifo *fifo = this_cpu_ptr(action_fifos);
  679. /* Do not touch the FIFO in case there is no deferred actions. */
  680. if (action_fifo_is_empty(fifo))
  681. return;
  682. /* Finishing executing all deferred actions. */
  683. do {
  684. struct deferred_action *da = action_fifo_get(fifo);
  685. struct sk_buff *skb = da->skb;
  686. struct sw_flow_key *key = &da->pkt_key;
  687. const struct nlattr *actions = da->actions;
  688. if (actions)
  689. do_execute_actions(dp, skb, key, actions,
  690. nla_len(actions));
  691. else
  692. ovs_dp_process_packet(skb, key);
  693. } while (!action_fifo_is_empty(fifo));
  694. /* Reset FIFO for the next packet. */
  695. action_fifo_init(fifo);
  696. }
  697. /* Execute a list of actions against 'skb'. */
  698. int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
  699. const struct sw_flow_actions *acts,
  700. struct sw_flow_key *key)
  701. {
  702. int level = this_cpu_read(exec_actions_level);
  703. int err;
  704. this_cpu_inc(exec_actions_level);
  705. OVS_CB(skb)->egress_tun_info = NULL;
  706. err = do_execute_actions(dp, skb, key,
  707. acts->actions, acts->actions_len);
  708. if (!level)
  709. process_deferred_actions(dp);
  710. this_cpu_dec(exec_actions_level);
  711. return err;
  712. }
  713. int action_fifos_init(void)
  714. {
  715. action_fifos = alloc_percpu(struct action_fifo);
  716. if (!action_fifos)
  717. return -ENOMEM;
  718. return 0;
  719. }
  720. void action_fifos_exit(void)
  721. {
  722. free_percpu(action_fifos);
  723. }