irttp.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889
  1. /*********************************************************************
  2. *
  3. * Filename: irttp.c
  4. * Version: 1.2
  5. * Description: Tiny Transport Protocol (TTP) implementation
  6. * Status: Stable
  7. * Author: Dag Brattli <dagb@cs.uit.no>
  8. * Created at: Sun Aug 31 20:14:31 1997
  9. * Modified at: Wed Jan 5 11:31:27 2000
  10. * Modified by: Dag Brattli <dagb@cs.uit.no>
  11. *
  12. * Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
  13. * All Rights Reserved.
  14. * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
  15. *
  16. * This program is free software; you can redistribute it and/or
  17. * modify it under the terms of the GNU General Public License as
  18. * published by the Free Software Foundation; either version 2 of
  19. * the License, or (at your option) any later version.
  20. *
  21. * Neither Dag Brattli nor University of Tromsø admit liability nor
  22. * provide warranty for any of this software. This material is
  23. * provided "AS-IS" and at no charge.
  24. *
  25. ********************************************************************/
  26. #include <linux/skbuff.h>
  27. #include <linux/init.h>
  28. #include <linux/fs.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/slab.h>
  31. #include <linux/export.h>
  32. #include <asm/byteorder.h>
  33. #include <asm/unaligned.h>
  34. #include <net/irda/irda.h>
  35. #include <net/irda/irlap.h>
  36. #include <net/irda/irlmp.h>
  37. #include <net/irda/parameters.h>
  38. #include <net/irda/irttp.h>
  39. static struct irttp_cb *irttp;
  40. static void __irttp_close_tsap(struct tsap_cb *self);
  41. static int irttp_data_indication(void *instance, void *sap,
  42. struct sk_buff *skb);
  43. static int irttp_udata_indication(void *instance, void *sap,
  44. struct sk_buff *skb);
  45. static void irttp_disconnect_indication(void *instance, void *sap,
  46. LM_REASON reason, struct sk_buff *);
  47. static void irttp_connect_indication(void *instance, void *sap,
  48. struct qos_info *qos, __u32 max_sdu_size,
  49. __u8 header_size, struct sk_buff *skb);
  50. static void irttp_connect_confirm(void *instance, void *sap,
  51. struct qos_info *qos, __u32 max_sdu_size,
  52. __u8 header_size, struct sk_buff *skb);
  53. static void irttp_run_tx_queue(struct tsap_cb *self);
  54. static void irttp_run_rx_queue(struct tsap_cb *self);
  55. static void irttp_flush_queues(struct tsap_cb *self);
  56. static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
  57. static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
  58. static void irttp_todo_expired(unsigned long data);
  59. static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
  60. int get);
  61. static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
  62. static void irttp_status_indication(void *instance,
  63. LINK_STATUS link, LOCK_STATUS lock);
  64. /* Information for parsing parameters in IrTTP */
  65. static pi_minor_info_t pi_minor_call_table[] = {
  66. { NULL, 0 }, /* 0x00 */
  67. { irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
  68. };
  69. static pi_major_info_t pi_major_call_table[] = { { pi_minor_call_table, 2 } };
  70. static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
  71. /************************ GLOBAL PROCEDURES ************************/
  72. /*
  73. * Function irttp_init (void)
  74. *
  75. * Initialize the IrTTP layer. Called by module initialization code
  76. *
  77. */
  78. int __init irttp_init(void)
  79. {
  80. irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
  81. if (irttp == NULL)
  82. return -ENOMEM;
  83. irttp->magic = TTP_MAGIC;
  84. irttp->tsaps = hashbin_new(HB_LOCK);
  85. if (!irttp->tsaps) {
  86. net_err_ratelimited("%s: can't allocate IrTTP hashbin!\n",
  87. __func__);
  88. kfree(irttp);
  89. return -ENOMEM;
  90. }
  91. return 0;
  92. }
  93. /*
  94. * Function irttp_cleanup (void)
  95. *
  96. * Called by module destruction/cleanup code
  97. *
  98. */
  99. void irttp_cleanup(void)
  100. {
  101. /* Check for main structure */
  102. IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
  103. /*
  104. * Delete hashbin and close all TSAP instances in it
  105. */
  106. hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
  107. irttp->magic = 0;
  108. /* De-allocate main structure */
  109. kfree(irttp);
  110. irttp = NULL;
  111. }
  112. /*************************** SUBROUTINES ***************************/
  113. /*
  114. * Function irttp_start_todo_timer (self, timeout)
  115. *
  116. * Start todo timer.
  117. *
  118. * Made it more effient and unsensitive to race conditions - Jean II
  119. */
  120. static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
  121. {
  122. /* Set new value for timer */
  123. mod_timer(&self->todo_timer, jiffies + timeout);
  124. }
  125. /*
  126. * Function irttp_todo_expired (data)
  127. *
  128. * Todo timer has expired!
  129. *
  130. * One of the restriction of the timer is that it is run only on the timer
  131. * interrupt which run every 10ms. This mean that even if you set the timer
  132. * with a delay of 0, it may take up to 10ms before it's run.
  133. * So, to minimise latency and keep cache fresh, we try to avoid using
  134. * it as much as possible.
  135. * Note : we can't use tasklets, because they can't be asynchronously
  136. * killed (need user context), and we can't guarantee that here...
  137. * Jean II
  138. */
  139. static void irttp_todo_expired(unsigned long data)
  140. {
  141. struct tsap_cb *self = (struct tsap_cb *) data;
  142. /* Check that we still exist */
  143. if (!self || self->magic != TTP_TSAP_MAGIC)
  144. return;
  145. pr_debug("%s(instance=%p)\n", __func__, self);
  146. /* Try to make some progress, especially on Tx side - Jean II */
  147. irttp_run_rx_queue(self);
  148. irttp_run_tx_queue(self);
  149. /* Check if time for disconnect */
  150. if (test_bit(0, &self->disconnect_pend)) {
  151. /* Check if it's possible to disconnect yet */
  152. if (skb_queue_empty(&self->tx_queue)) {
  153. /* Make sure disconnect is not pending anymore */
  154. clear_bit(0, &self->disconnect_pend); /* FALSE */
  155. /* Note : self->disconnect_skb may be NULL */
  156. irttp_disconnect_request(self, self->disconnect_skb,
  157. P_NORMAL);
  158. self->disconnect_skb = NULL;
  159. } else {
  160. /* Try again later */
  161. irttp_start_todo_timer(self, HZ/10);
  162. /* No reason to try and close now */
  163. return;
  164. }
  165. }
  166. /* Check if it's closing time */
  167. if (self->close_pend)
  168. /* Finish cleanup */
  169. irttp_close_tsap(self);
  170. }
  171. /*
  172. * Function irttp_flush_queues (self)
  173. *
  174. * Flushes (removes all frames) in transitt-buffer (tx_list)
  175. */
  176. static void irttp_flush_queues(struct tsap_cb *self)
  177. {
  178. struct sk_buff *skb;
  179. IRDA_ASSERT(self != NULL, return;);
  180. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  181. /* Deallocate frames waiting to be sent */
  182. while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
  183. dev_kfree_skb(skb);
  184. /* Deallocate received frames */
  185. while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
  186. dev_kfree_skb(skb);
  187. /* Deallocate received fragments */
  188. while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
  189. dev_kfree_skb(skb);
  190. }
  191. /*
  192. * Function irttp_reassemble (self)
  193. *
  194. * Makes a new (continuous) skb of all the fragments in the fragment
  195. * queue
  196. *
  197. */
  198. static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
  199. {
  200. struct sk_buff *skb, *frag;
  201. int n = 0; /* Fragment index */
  202. IRDA_ASSERT(self != NULL, return NULL;);
  203. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
  204. pr_debug("%s(), self->rx_sdu_size=%d\n", __func__,
  205. self->rx_sdu_size);
  206. skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
  207. if (!skb)
  208. return NULL;
  209. /*
  210. * Need to reserve space for TTP header in case this skb needs to
  211. * be requeued in case delivery failes
  212. */
  213. skb_reserve(skb, TTP_HEADER);
  214. skb_put(skb, self->rx_sdu_size);
  215. /*
  216. * Copy all fragments to a new buffer
  217. */
  218. while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
  219. skb_copy_to_linear_data_offset(skb, n, frag->data, frag->len);
  220. n += frag->len;
  221. dev_kfree_skb(frag);
  222. }
  223. pr_debug("%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
  224. __func__, n, self->rx_sdu_size, self->rx_max_sdu_size);
  225. /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
  226. * by summing the size of all fragments, so we should always
  227. * have n == self->rx_sdu_size, except in cases where we
  228. * droped the last fragment (when self->rx_sdu_size exceed
  229. * self->rx_max_sdu_size), where n < self->rx_sdu_size.
  230. * Jean II */
  231. IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
  232. /* Set the new length */
  233. skb_trim(skb, n);
  234. self->rx_sdu_size = 0;
  235. return skb;
  236. }
  237. /*
  238. * Function irttp_fragment_skb (skb)
  239. *
  240. * Fragments a frame and queues all the fragments for transmission
  241. *
  242. */
  243. static inline void irttp_fragment_skb(struct tsap_cb *self,
  244. struct sk_buff *skb)
  245. {
  246. struct sk_buff *frag;
  247. __u8 *frame;
  248. IRDA_ASSERT(self != NULL, return;);
  249. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  250. IRDA_ASSERT(skb != NULL, return;);
  251. /*
  252. * Split frame into a number of segments
  253. */
  254. while (skb->len > self->max_seg_size) {
  255. pr_debug("%s(), fragmenting ...\n", __func__);
  256. /* Make new segment */
  257. frag = alloc_skb(self->max_seg_size+self->max_header_size,
  258. GFP_ATOMIC);
  259. if (!frag)
  260. return;
  261. skb_reserve(frag, self->max_header_size);
  262. /* Copy data from the original skb into this fragment. */
  263. skb_copy_from_linear_data(skb, skb_put(frag, self->max_seg_size),
  264. self->max_seg_size);
  265. /* Insert TTP header, with the more bit set */
  266. frame = skb_push(frag, TTP_HEADER);
  267. frame[0] = TTP_MORE;
  268. /* Hide the copied data from the original skb */
  269. skb_pull(skb, self->max_seg_size);
  270. /* Queue fragment */
  271. skb_queue_tail(&self->tx_queue, frag);
  272. }
  273. /* Queue what is left of the original skb */
  274. pr_debug("%s(), queuing last segment\n", __func__);
  275. frame = skb_push(skb, TTP_HEADER);
  276. frame[0] = 0x00; /* Clear more bit */
  277. /* Queue fragment */
  278. skb_queue_tail(&self->tx_queue, skb);
  279. }
  280. /*
  281. * Function irttp_param_max_sdu_size (self, param)
  282. *
  283. * Handle the MaxSduSize parameter in the connect frames, this function
  284. * will be called both when this parameter needs to be inserted into, and
  285. * extracted from the connect frames
  286. */
  287. static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
  288. int get)
  289. {
  290. struct tsap_cb *self;
  291. self = instance;
  292. IRDA_ASSERT(self != NULL, return -1;);
  293. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  294. if (get)
  295. param->pv.i = self->tx_max_sdu_size;
  296. else
  297. self->tx_max_sdu_size = param->pv.i;
  298. pr_debug("%s(), MaxSduSize=%d\n", __func__, param->pv.i);
  299. return 0;
  300. }
  301. /*************************** CLIENT CALLS ***************************/
  302. /************************** LMP CALLBACKS **************************/
  303. /* Everything is happily mixed up. Waiting for next clean up - Jean II */
  304. /*
  305. * Initialization, that has to be done on new tsap
  306. * instance allocation and on duplication
  307. */
  308. static void irttp_init_tsap(struct tsap_cb *tsap)
  309. {
  310. spin_lock_init(&tsap->lock);
  311. init_timer(&tsap->todo_timer);
  312. skb_queue_head_init(&tsap->rx_queue);
  313. skb_queue_head_init(&tsap->tx_queue);
  314. skb_queue_head_init(&tsap->rx_fragments);
  315. }
  316. /*
  317. * Function irttp_open_tsap (stsap, notify)
  318. *
  319. * Create TSAP connection endpoint,
  320. */
  321. struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
  322. {
  323. struct tsap_cb *self;
  324. struct lsap_cb *lsap;
  325. notify_t ttp_notify;
  326. IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
  327. /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
  328. * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
  329. * JeanII */
  330. if ((stsap_sel != LSAP_ANY) &&
  331. ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
  332. pr_debug("%s(), invalid tsap!\n", __func__);
  333. return NULL;
  334. }
  335. self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
  336. if (self == NULL)
  337. return NULL;
  338. /* Initialize internal objects */
  339. irttp_init_tsap(self);
  340. /* Initialise todo timer */
  341. self->todo_timer.data = (unsigned long) self;
  342. self->todo_timer.function = &irttp_todo_expired;
  343. /* Initialize callbacks for IrLMP to use */
  344. irda_notify_init(&ttp_notify);
  345. ttp_notify.connect_confirm = irttp_connect_confirm;
  346. ttp_notify.connect_indication = irttp_connect_indication;
  347. ttp_notify.disconnect_indication = irttp_disconnect_indication;
  348. ttp_notify.data_indication = irttp_data_indication;
  349. ttp_notify.udata_indication = irttp_udata_indication;
  350. ttp_notify.flow_indication = irttp_flow_indication;
  351. if (notify->status_indication != NULL)
  352. ttp_notify.status_indication = irttp_status_indication;
  353. ttp_notify.instance = self;
  354. strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
  355. self->magic = TTP_TSAP_MAGIC;
  356. self->connected = FALSE;
  357. /*
  358. * Create LSAP at IrLMP layer
  359. */
  360. lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
  361. if (lsap == NULL) {
  362. pr_debug("%s: unable to allocate LSAP!!\n", __func__);
  363. __irttp_close_tsap(self);
  364. return NULL;
  365. }
  366. /*
  367. * If user specified LSAP_ANY as source TSAP selector, then IrLMP
  368. * will replace it with whatever source selector which is free, so
  369. * the stsap_sel we have might not be valid anymore
  370. */
  371. self->stsap_sel = lsap->slsap_sel;
  372. pr_debug("%s(), stsap_sel=%02x\n", __func__, self->stsap_sel);
  373. self->notify = *notify;
  374. self->lsap = lsap;
  375. hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
  376. if (credit > TTP_RX_MAX_CREDIT)
  377. self->initial_credit = TTP_RX_MAX_CREDIT;
  378. else
  379. self->initial_credit = credit;
  380. return self;
  381. }
  382. EXPORT_SYMBOL(irttp_open_tsap);
  383. /*
  384. * Function irttp_close (handle)
  385. *
  386. * Remove an instance of a TSAP. This function should only deal with the
  387. * deallocation of the TSAP, and resetting of the TSAPs values;
  388. *
  389. */
  390. static void __irttp_close_tsap(struct tsap_cb *self)
  391. {
  392. /* First make sure we're connected. */
  393. IRDA_ASSERT(self != NULL, return;);
  394. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  395. irttp_flush_queues(self);
  396. del_timer(&self->todo_timer);
  397. /* This one won't be cleaned up if we are disconnect_pend + close_pend
  398. * and we receive a disconnect_indication */
  399. if (self->disconnect_skb)
  400. dev_kfree_skb(self->disconnect_skb);
  401. self->connected = FALSE;
  402. self->magic = ~TTP_TSAP_MAGIC;
  403. kfree(self);
  404. }
  405. /*
  406. * Function irttp_close (self)
  407. *
  408. * Remove TSAP from list of all TSAPs and then deallocate all resources
  409. * associated with this TSAP
  410. *
  411. * Note : because we *free* the tsap structure, it is the responsibility
  412. * of the caller to make sure we are called only once and to deal with
  413. * possible race conditions. - Jean II
  414. */
  415. int irttp_close_tsap(struct tsap_cb *self)
  416. {
  417. struct tsap_cb *tsap;
  418. IRDA_ASSERT(self != NULL, return -1;);
  419. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  420. /* Make sure tsap has been disconnected */
  421. if (self->connected) {
  422. /* Check if disconnect is not pending */
  423. if (!test_bit(0, &self->disconnect_pend)) {
  424. net_warn_ratelimited("%s: TSAP still connected!\n",
  425. __func__);
  426. irttp_disconnect_request(self, NULL, P_NORMAL);
  427. }
  428. self->close_pend = TRUE;
  429. irttp_start_todo_timer(self, HZ/10);
  430. return 0; /* Will be back! */
  431. }
  432. tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
  433. IRDA_ASSERT(tsap == self, return -1;);
  434. /* Close corresponding LSAP */
  435. if (self->lsap) {
  436. irlmp_close_lsap(self->lsap);
  437. self->lsap = NULL;
  438. }
  439. __irttp_close_tsap(self);
  440. return 0;
  441. }
  442. EXPORT_SYMBOL(irttp_close_tsap);
  443. /*
  444. * Function irttp_udata_request (self, skb)
  445. *
  446. * Send unreliable data on this TSAP
  447. *
  448. */
  449. int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
  450. {
  451. int ret;
  452. IRDA_ASSERT(self != NULL, return -1;);
  453. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  454. IRDA_ASSERT(skb != NULL, return -1;);
  455. /* Take shortcut on zero byte packets */
  456. if (skb->len == 0) {
  457. ret = 0;
  458. goto err;
  459. }
  460. /* Check that nothing bad happens */
  461. if (!self->connected) {
  462. net_warn_ratelimited("%s(), Not connected\n", __func__);
  463. ret = -ENOTCONN;
  464. goto err;
  465. }
  466. if (skb->len > self->max_seg_size) {
  467. net_err_ratelimited("%s(), UData is too large for IrLAP!\n",
  468. __func__);
  469. ret = -EMSGSIZE;
  470. goto err;
  471. }
  472. irlmp_udata_request(self->lsap, skb);
  473. self->stats.tx_packets++;
  474. return 0;
  475. err:
  476. dev_kfree_skb(skb);
  477. return ret;
  478. }
  479. EXPORT_SYMBOL(irttp_udata_request);
  480. /*
  481. * Function irttp_data_request (handle, skb)
  482. *
  483. * Queue frame for transmission. If SAR is enabled, fragement the frame
  484. * and queue the fragments for transmission
  485. */
  486. int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
  487. {
  488. __u8 *frame;
  489. int ret;
  490. IRDA_ASSERT(self != NULL, return -1;);
  491. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  492. IRDA_ASSERT(skb != NULL, return -1;);
  493. pr_debug("%s() : queue len = %d\n", __func__,
  494. skb_queue_len(&self->tx_queue));
  495. /* Take shortcut on zero byte packets */
  496. if (skb->len == 0) {
  497. ret = 0;
  498. goto err;
  499. }
  500. /* Check that nothing bad happens */
  501. if (!self->connected) {
  502. net_warn_ratelimited("%s: Not connected\n", __func__);
  503. ret = -ENOTCONN;
  504. goto err;
  505. }
  506. /*
  507. * Check if SAR is disabled, and the frame is larger than what fits
  508. * inside an IrLAP frame
  509. */
  510. if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
  511. net_err_ratelimited("%s: SAR disabled, and data is too large for IrLAP!\n",
  512. __func__);
  513. ret = -EMSGSIZE;
  514. goto err;
  515. }
  516. /*
  517. * Check if SAR is enabled, and the frame is larger than the
  518. * TxMaxSduSize
  519. */
  520. if ((self->tx_max_sdu_size != 0) &&
  521. (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
  522. (skb->len > self->tx_max_sdu_size)) {
  523. net_err_ratelimited("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
  524. __func__);
  525. ret = -EMSGSIZE;
  526. goto err;
  527. }
  528. /*
  529. * Check if transmit queue is full
  530. */
  531. if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
  532. /*
  533. * Give it a chance to empty itself
  534. */
  535. irttp_run_tx_queue(self);
  536. /* Drop packet. This error code should trigger the caller
  537. * to resend the data in the client code - Jean II */
  538. ret = -ENOBUFS;
  539. goto err;
  540. }
  541. /* Queue frame, or queue frame segments */
  542. if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
  543. /* Queue frame */
  544. IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
  545. frame = skb_push(skb, TTP_HEADER);
  546. frame[0] = 0x00; /* Clear more bit */
  547. skb_queue_tail(&self->tx_queue, skb);
  548. } else {
  549. /*
  550. * Fragment the frame, this function will also queue the
  551. * fragments, we don't care about the fact the transmit
  552. * queue may be overfilled by all the segments for a little
  553. * while
  554. */
  555. irttp_fragment_skb(self, skb);
  556. }
  557. /* Check if we can accept more data from client */
  558. if ((!self->tx_sdu_busy) &&
  559. (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
  560. /* Tx queue filling up, so stop client. */
  561. if (self->notify.flow_indication) {
  562. self->notify.flow_indication(self->notify.instance,
  563. self, FLOW_STOP);
  564. }
  565. /* self->tx_sdu_busy is the state of the client.
  566. * Update state after notifying client to avoid
  567. * race condition with irttp_flow_indication().
  568. * If the queue empty itself after our test but before
  569. * we set the flag, we will fix ourselves below in
  570. * irttp_run_tx_queue().
  571. * Jean II */
  572. self->tx_sdu_busy = TRUE;
  573. }
  574. /* Try to make some progress */
  575. irttp_run_tx_queue(self);
  576. return 0;
  577. err:
  578. dev_kfree_skb(skb);
  579. return ret;
  580. }
  581. EXPORT_SYMBOL(irttp_data_request);
  582. /*
  583. * Function irttp_run_tx_queue (self)
  584. *
  585. * Transmit packets queued for transmission (if possible)
  586. *
  587. */
  588. static void irttp_run_tx_queue(struct tsap_cb *self)
  589. {
  590. struct sk_buff *skb;
  591. unsigned long flags;
  592. int n;
  593. pr_debug("%s() : send_credit = %d, queue_len = %d\n",
  594. __func__,
  595. self->send_credit, skb_queue_len(&self->tx_queue));
  596. /* Get exclusive access to the tx queue, otherwise don't touch it */
  597. if (irda_lock(&self->tx_queue_lock) == FALSE)
  598. return;
  599. /* Try to send out frames as long as we have credits
  600. * and as long as LAP is not full. If LAP is full, it will
  601. * poll us through irttp_flow_indication() - Jean II */
  602. while ((self->send_credit > 0) &&
  603. (!irlmp_lap_tx_queue_full(self->lsap)) &&
  604. (skb = skb_dequeue(&self->tx_queue))) {
  605. /*
  606. * Since we can transmit and receive frames concurrently,
  607. * the code below is a critical region and we must assure that
  608. * nobody messes with the credits while we update them.
  609. */
  610. spin_lock_irqsave(&self->lock, flags);
  611. n = self->avail_credit;
  612. self->avail_credit = 0;
  613. /* Only room for 127 credits in frame */
  614. if (n > 127) {
  615. self->avail_credit = n-127;
  616. n = 127;
  617. }
  618. self->remote_credit += n;
  619. self->send_credit--;
  620. spin_unlock_irqrestore(&self->lock, flags);
  621. /*
  622. * More bit must be set by the data_request() or fragment()
  623. * functions
  624. */
  625. skb->data[0] |= (n & 0x7f);
  626. /* Detach from socket.
  627. * The current skb has a reference to the socket that sent
  628. * it (skb->sk). When we pass it to IrLMP, the skb will be
  629. * stored in in IrLAP (self->wx_list). When we are within
  630. * IrLAP, we lose the notion of socket, so we should not
  631. * have a reference to a socket. So, we drop it here.
  632. *
  633. * Why does it matter ?
  634. * When the skb is freed (kfree_skb), if it is associated
  635. * with a socket, it release buffer space on the socket
  636. * (through sock_wfree() and sock_def_write_space()).
  637. * If the socket no longer exist, we may crash. Hard.
  638. * When we close a socket, we make sure that associated packets
  639. * in IrTTP are freed. However, we have no way to cancel
  640. * the packet that we have passed to IrLAP. So, if a packet
  641. * remains in IrLAP (retry on the link or else) after we
  642. * close the socket, we are dead !
  643. * Jean II */
  644. if (skb->sk != NULL) {
  645. /* IrSOCK application, IrOBEX, ... */
  646. skb_orphan(skb);
  647. }
  648. /* IrCOMM over IrTTP, IrLAN, ... */
  649. /* Pass the skb to IrLMP - done */
  650. irlmp_data_request(self->lsap, skb);
  651. self->stats.tx_packets++;
  652. }
  653. /* Check if we can accept more frames from client.
  654. * We don't want to wait until the todo timer to do that, and we
  655. * can't use tasklets (grr...), so we are obliged to give control
  656. * to client. That's ok, this test will be true not too often
  657. * (max once per LAP window) and we are called from places
  658. * where we can spend a bit of time doing stuff. - Jean II */
  659. if ((self->tx_sdu_busy) &&
  660. (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
  661. (!self->close_pend)) {
  662. if (self->notify.flow_indication)
  663. self->notify.flow_indication(self->notify.instance,
  664. self, FLOW_START);
  665. /* self->tx_sdu_busy is the state of the client.
  666. * We don't really have a race here, but it's always safer
  667. * to update our state after the client - Jean II */
  668. self->tx_sdu_busy = FALSE;
  669. }
  670. /* Reset lock */
  671. self->tx_queue_lock = 0;
  672. }
  673. /*
  674. * Function irttp_give_credit (self)
  675. *
  676. * Send a dataless flowdata TTP-PDU and give available credit to peer
  677. * TSAP
  678. */
  679. static inline void irttp_give_credit(struct tsap_cb *self)
  680. {
  681. struct sk_buff *tx_skb = NULL;
  682. unsigned long flags;
  683. int n;
  684. IRDA_ASSERT(self != NULL, return;);
  685. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  686. pr_debug("%s() send=%d,avail=%d,remote=%d\n",
  687. __func__,
  688. self->send_credit, self->avail_credit, self->remote_credit);
  689. /* Give credit to peer */
  690. tx_skb = alloc_skb(TTP_MAX_HEADER, GFP_ATOMIC);
  691. if (!tx_skb)
  692. return;
  693. /* Reserve space for LMP, and LAP header */
  694. skb_reserve(tx_skb, LMP_MAX_HEADER);
  695. /*
  696. * Since we can transmit and receive frames concurrently,
  697. * the code below is a critical region and we must assure that
  698. * nobody messes with the credits while we update them.
  699. */
  700. spin_lock_irqsave(&self->lock, flags);
  701. n = self->avail_credit;
  702. self->avail_credit = 0;
  703. /* Only space for 127 credits in frame */
  704. if (n > 127) {
  705. self->avail_credit = n - 127;
  706. n = 127;
  707. }
  708. self->remote_credit += n;
  709. spin_unlock_irqrestore(&self->lock, flags);
  710. skb_put(tx_skb, 1);
  711. tx_skb->data[0] = (__u8) (n & 0x7f);
  712. irlmp_data_request(self->lsap, tx_skb);
  713. self->stats.tx_packets++;
  714. }
  715. /*
  716. * Function irttp_udata_indication (instance, sap, skb)
  717. *
  718. * Received some unit-data (unreliable)
  719. *
  720. */
  721. static int irttp_udata_indication(void *instance, void *sap,
  722. struct sk_buff *skb)
  723. {
  724. struct tsap_cb *self;
  725. int err;
  726. self = instance;
  727. IRDA_ASSERT(self != NULL, return -1;);
  728. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  729. IRDA_ASSERT(skb != NULL, return -1;);
  730. self->stats.rx_packets++;
  731. /* Just pass data to layer above */
  732. if (self->notify.udata_indication) {
  733. err = self->notify.udata_indication(self->notify.instance,
  734. self, skb);
  735. /* Same comment as in irttp_do_data_indication() */
  736. if (!err)
  737. return 0;
  738. }
  739. /* Either no handler, or handler returns an error */
  740. dev_kfree_skb(skb);
  741. return 0;
  742. }
  743. /*
  744. * Function irttp_data_indication (instance, sap, skb)
  745. *
  746. * Receive segment from IrLMP.
  747. *
  748. */
  749. static int irttp_data_indication(void *instance, void *sap,
  750. struct sk_buff *skb)
  751. {
  752. struct tsap_cb *self;
  753. unsigned long flags;
  754. int n;
  755. self = instance;
  756. n = skb->data[0] & 0x7f; /* Extract the credits */
  757. self->stats.rx_packets++;
  758. /* Deal with inbound credit
  759. * Since we can transmit and receive frames concurrently,
  760. * the code below is a critical region and we must assure that
  761. * nobody messes with the credits while we update them.
  762. */
  763. spin_lock_irqsave(&self->lock, flags);
  764. self->send_credit += n;
  765. if (skb->len > 1)
  766. self->remote_credit--;
  767. spin_unlock_irqrestore(&self->lock, flags);
  768. /*
  769. * Data or dataless packet? Dataless frames contains only the
  770. * TTP_HEADER.
  771. */
  772. if (skb->len > 1) {
  773. /*
  774. * We don't remove the TTP header, since we must preserve the
  775. * more bit, so the defragment routing knows what to do
  776. */
  777. skb_queue_tail(&self->rx_queue, skb);
  778. } else {
  779. /* Dataless flowdata TTP-PDU */
  780. dev_kfree_skb(skb);
  781. }
  782. /* Push data to the higher layer.
  783. * We do it synchronously because running the todo timer for each
  784. * receive packet would be too much overhead and latency.
  785. * By passing control to the higher layer, we run the risk that
  786. * it may take time or grab a lock. Most often, the higher layer
  787. * will only put packet in a queue.
  788. * Anyway, packets are only dripping through the IrDA, so we can
  789. * have time before the next packet.
  790. * Further, we are run from NET_BH, so the worse that can happen is
  791. * us missing the optimal time to send back the PF bit in LAP.
  792. * Jean II */
  793. irttp_run_rx_queue(self);
  794. /* We now give credits to peer in irttp_run_rx_queue().
  795. * We need to send credit *NOW*, otherwise we are going
  796. * to miss the next Tx window. The todo timer may take
  797. * a while before it's run... - Jean II */
  798. /*
  799. * If the peer device has given us some credits and we didn't have
  800. * anyone from before, then we need to shedule the tx queue.
  801. * We need to do that because our Tx have stopped (so we may not
  802. * get any LAP flow indication) and the user may be stopped as
  803. * well. - Jean II
  804. */
  805. if (self->send_credit == n) {
  806. /* Restart pushing stuff to LAP */
  807. irttp_run_tx_queue(self);
  808. /* Note : we don't want to schedule the todo timer
  809. * because it has horrible latency. No tasklets
  810. * because the tasklet API is broken. - Jean II */
  811. }
  812. return 0;
  813. }
  814. /*
  815. * Function irttp_status_indication (self, reason)
  816. *
  817. * Status_indication, just pass to the higher layer...
  818. *
  819. */
  820. static void irttp_status_indication(void *instance,
  821. LINK_STATUS link, LOCK_STATUS lock)
  822. {
  823. struct tsap_cb *self;
  824. self = instance;
  825. IRDA_ASSERT(self != NULL, return;);
  826. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  827. /* Check if client has already closed the TSAP and gone away */
  828. if (self->close_pend)
  829. return;
  830. /*
  831. * Inform service user if he has requested it
  832. */
  833. if (self->notify.status_indication != NULL)
  834. self->notify.status_indication(self->notify.instance,
  835. link, lock);
  836. else
  837. pr_debug("%s(), no handler\n", __func__);
  838. }
  839. /*
  840. * Function irttp_flow_indication (self, reason)
  841. *
  842. * Flow_indication : IrLAP tells us to send more data.
  843. *
  844. */
  845. static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
  846. {
  847. struct tsap_cb *self;
  848. self = instance;
  849. IRDA_ASSERT(self != NULL, return;);
  850. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  851. pr_debug("%s(instance=%p)\n", __func__, self);
  852. /* We are "polled" directly from LAP, and the LAP want to fill
  853. * its Tx window. We want to do our best to send it data, so that
  854. * we maximise the window. On the other hand, we want to limit the
  855. * amount of work here so that LAP doesn't hang forever waiting
  856. * for packets. - Jean II */
  857. /* Try to send some packets. Currently, LAP calls us every time
  858. * there is one free slot, so we will send only one packet.
  859. * This allow the scheduler to do its round robin - Jean II */
  860. irttp_run_tx_queue(self);
  861. /* Note regarding the interraction with higher layer.
  862. * irttp_run_tx_queue() may call the client when its queue
  863. * start to empty, via notify.flow_indication(). Initially.
  864. * I wanted this to happen in a tasklet, to avoid client
  865. * grabbing the CPU, but we can't use tasklets safely. And timer
  866. * is definitely too slow.
  867. * This will happen only once per LAP window, and usually at
  868. * the third packet (unless window is smaller). LAP is still
  869. * doing mtt and sending first packet so it's sort of OK
  870. * to do that. Jean II */
  871. /* If we need to send disconnect. try to do it now */
  872. if (self->disconnect_pend)
  873. irttp_start_todo_timer(self, 0);
  874. }
  875. /*
  876. * Function irttp_flow_request (self, command)
  877. *
  878. * This function could be used by the upper layers to tell IrTTP to stop
  879. * delivering frames if the receive queues are starting to get full, or
  880. * to tell IrTTP to start delivering frames again.
  881. */
  882. void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
  883. {
  884. IRDA_ASSERT(self != NULL, return;);
  885. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  886. switch (flow) {
  887. case FLOW_STOP:
  888. pr_debug("%s(), flow stop\n", __func__);
  889. self->rx_sdu_busy = TRUE;
  890. break;
  891. case FLOW_START:
  892. pr_debug("%s(), flow start\n", __func__);
  893. self->rx_sdu_busy = FALSE;
  894. /* Client say he can accept more data, try to free our
  895. * queues ASAP - Jean II */
  896. irttp_run_rx_queue(self);
  897. break;
  898. default:
  899. pr_debug("%s(), Unknown flow command!\n", __func__);
  900. }
  901. }
  902. EXPORT_SYMBOL(irttp_flow_request);
  903. /*
  904. * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
  905. *
  906. * Try to connect to remote destination TSAP selector
  907. *
  908. */
  909. int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
  910. __u32 saddr, __u32 daddr,
  911. struct qos_info *qos, __u32 max_sdu_size,
  912. struct sk_buff *userdata)
  913. {
  914. struct sk_buff *tx_skb;
  915. __u8 *frame;
  916. __u8 n;
  917. pr_debug("%s(), max_sdu_size=%d\n", __func__, max_sdu_size);
  918. IRDA_ASSERT(self != NULL, return -EBADR;);
  919. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
  920. if (self->connected) {
  921. if (userdata)
  922. dev_kfree_skb(userdata);
  923. return -EISCONN;
  924. }
  925. /* Any userdata supplied? */
  926. if (userdata == NULL) {
  927. tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
  928. GFP_ATOMIC);
  929. if (!tx_skb)
  930. return -ENOMEM;
  931. /* Reserve space for MUX_CONTROL and LAP header */
  932. skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
  933. } else {
  934. tx_skb = userdata;
  935. /*
  936. * Check that the client has reserved enough space for
  937. * headers
  938. */
  939. IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
  940. { dev_kfree_skb(userdata); return -1; });
  941. }
  942. /* Initialize connection parameters */
  943. self->connected = FALSE;
  944. self->avail_credit = 0;
  945. self->rx_max_sdu_size = max_sdu_size;
  946. self->rx_sdu_size = 0;
  947. self->rx_sdu_busy = FALSE;
  948. self->dtsap_sel = dtsap_sel;
  949. n = self->initial_credit;
  950. self->remote_credit = 0;
  951. self->send_credit = 0;
  952. /*
  953. * Give away max 127 credits for now
  954. */
  955. if (n > 127) {
  956. self->avail_credit = n - 127;
  957. n = 127;
  958. }
  959. self->remote_credit = n;
  960. /* SAR enabled? */
  961. if (max_sdu_size > 0) {
  962. IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
  963. { dev_kfree_skb(tx_skb); return -1; });
  964. /* Insert SAR parameters */
  965. frame = skb_push(tx_skb, TTP_HEADER + TTP_SAR_HEADER);
  966. frame[0] = TTP_PARAMETERS | n;
  967. frame[1] = 0x04; /* Length */
  968. frame[2] = 0x01; /* MaxSduSize */
  969. frame[3] = 0x02; /* Value length */
  970. put_unaligned(cpu_to_be16((__u16) max_sdu_size),
  971. (__be16 *)(frame+4));
  972. } else {
  973. /* Insert plain TTP header */
  974. frame = skb_push(tx_skb, TTP_HEADER);
  975. /* Insert initial credit in frame */
  976. frame[0] = n & 0x7f;
  977. }
  978. /* Connect with IrLMP. No QoS parameters for now */
  979. return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
  980. tx_skb);
  981. }
  982. EXPORT_SYMBOL(irttp_connect_request);
  983. /*
  984. * Function irttp_connect_confirm (handle, qos, skb)
  985. *
  986. * Service user confirms TSAP connection with peer.
  987. *
  988. */
  989. static void irttp_connect_confirm(void *instance, void *sap,
  990. struct qos_info *qos, __u32 max_seg_size,
  991. __u8 max_header_size, struct sk_buff *skb)
  992. {
  993. struct tsap_cb *self;
  994. int parameters;
  995. int ret;
  996. __u8 plen;
  997. __u8 n;
  998. self = instance;
  999. IRDA_ASSERT(self != NULL, return;);
  1000. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  1001. IRDA_ASSERT(skb != NULL, return;);
  1002. self->max_seg_size = max_seg_size - TTP_HEADER;
  1003. self->max_header_size = max_header_size + TTP_HEADER;
  1004. /*
  1005. * Check if we have got some QoS parameters back! This should be the
  1006. * negotiated QoS for the link.
  1007. */
  1008. if (qos) {
  1009. pr_debug("IrTTP, Negotiated BAUD_RATE: %02x\n",
  1010. qos->baud_rate.bits);
  1011. pr_debug("IrTTP, Negotiated BAUD_RATE: %d bps.\n",
  1012. qos->baud_rate.value);
  1013. }
  1014. n = skb->data[0] & 0x7f;
  1015. pr_debug("%s(), Initial send_credit=%d\n", __func__, n);
  1016. self->send_credit = n;
  1017. self->tx_max_sdu_size = 0;
  1018. self->connected = TRUE;
  1019. parameters = skb->data[0] & 0x80;
  1020. IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
  1021. skb_pull(skb, TTP_HEADER);
  1022. if (parameters) {
  1023. plen = skb->data[0];
  1024. ret = irda_param_extract_all(self, skb->data+1,
  1025. IRDA_MIN(skb->len-1, plen),
  1026. &param_info);
  1027. /* Any errors in the parameter list? */
  1028. if (ret < 0) {
  1029. net_warn_ratelimited("%s: error extracting parameters\n",
  1030. __func__);
  1031. dev_kfree_skb(skb);
  1032. /* Do not accept this connection attempt */
  1033. return;
  1034. }
  1035. /* Remove parameters */
  1036. skb_pull(skb, IRDA_MIN(skb->len, plen+1));
  1037. }
  1038. pr_debug("%s() send=%d,avail=%d,remote=%d\n", __func__,
  1039. self->send_credit, self->avail_credit, self->remote_credit);
  1040. pr_debug("%s(), MaxSduSize=%d\n", __func__,
  1041. self->tx_max_sdu_size);
  1042. if (self->notify.connect_confirm) {
  1043. self->notify.connect_confirm(self->notify.instance, self, qos,
  1044. self->tx_max_sdu_size,
  1045. self->max_header_size, skb);
  1046. } else
  1047. dev_kfree_skb(skb);
  1048. }
  1049. /*
  1050. * Function irttp_connect_indication (handle, skb)
  1051. *
  1052. * Some other device is connecting to this TSAP
  1053. *
  1054. */
  1055. static void irttp_connect_indication(void *instance, void *sap,
  1056. struct qos_info *qos, __u32 max_seg_size, __u8 max_header_size,
  1057. struct sk_buff *skb)
  1058. {
  1059. struct tsap_cb *self;
  1060. struct lsap_cb *lsap;
  1061. int parameters;
  1062. int ret;
  1063. __u8 plen;
  1064. __u8 n;
  1065. self = instance;
  1066. IRDA_ASSERT(self != NULL, return;);
  1067. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  1068. IRDA_ASSERT(skb != NULL, return;);
  1069. lsap = sap;
  1070. self->max_seg_size = max_seg_size - TTP_HEADER;
  1071. self->max_header_size = max_header_size+TTP_HEADER;
  1072. pr_debug("%s(), TSAP sel=%02x\n", __func__, self->stsap_sel);
  1073. /* Need to update dtsap_sel if its equal to LSAP_ANY */
  1074. self->dtsap_sel = lsap->dlsap_sel;
  1075. n = skb->data[0] & 0x7f;
  1076. self->send_credit = n;
  1077. self->tx_max_sdu_size = 0;
  1078. parameters = skb->data[0] & 0x80;
  1079. IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
  1080. skb_pull(skb, TTP_HEADER);
  1081. if (parameters) {
  1082. plen = skb->data[0];
  1083. ret = irda_param_extract_all(self, skb->data+1,
  1084. IRDA_MIN(skb->len-1, plen),
  1085. &param_info);
  1086. /* Any errors in the parameter list? */
  1087. if (ret < 0) {
  1088. net_warn_ratelimited("%s: error extracting parameters\n",
  1089. __func__);
  1090. dev_kfree_skb(skb);
  1091. /* Do not accept this connection attempt */
  1092. return;
  1093. }
  1094. /* Remove parameters */
  1095. skb_pull(skb, IRDA_MIN(skb->len, plen+1));
  1096. }
  1097. if (self->notify.connect_indication) {
  1098. self->notify.connect_indication(self->notify.instance, self,
  1099. qos, self->tx_max_sdu_size,
  1100. self->max_header_size, skb);
  1101. } else
  1102. dev_kfree_skb(skb);
  1103. }
  1104. /*
  1105. * Function irttp_connect_response (handle, userdata)
  1106. *
  1107. * Service user is accepting the connection, just pass it down to
  1108. * IrLMP!
  1109. *
  1110. */
  1111. int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
  1112. struct sk_buff *userdata)
  1113. {
  1114. struct sk_buff *tx_skb;
  1115. __u8 *frame;
  1116. int ret;
  1117. __u8 n;
  1118. IRDA_ASSERT(self != NULL, return -1;);
  1119. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  1120. pr_debug("%s(), Source TSAP selector=%02x\n", __func__,
  1121. self->stsap_sel);
  1122. /* Any userdata supplied? */
  1123. if (userdata == NULL) {
  1124. tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
  1125. GFP_ATOMIC);
  1126. if (!tx_skb)
  1127. return -ENOMEM;
  1128. /* Reserve space for MUX_CONTROL and LAP header */
  1129. skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
  1130. } else {
  1131. tx_skb = userdata;
  1132. /*
  1133. * Check that the client has reserved enough space for
  1134. * headers
  1135. */
  1136. IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
  1137. { dev_kfree_skb(userdata); return -1; });
  1138. }
  1139. self->avail_credit = 0;
  1140. self->remote_credit = 0;
  1141. self->rx_max_sdu_size = max_sdu_size;
  1142. self->rx_sdu_size = 0;
  1143. self->rx_sdu_busy = FALSE;
  1144. n = self->initial_credit;
  1145. /* Frame has only space for max 127 credits (7 bits) */
  1146. if (n > 127) {
  1147. self->avail_credit = n - 127;
  1148. n = 127;
  1149. }
  1150. self->remote_credit = n;
  1151. self->connected = TRUE;
  1152. /* SAR enabled? */
  1153. if (max_sdu_size > 0) {
  1154. IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
  1155. { dev_kfree_skb(tx_skb); return -1; });
  1156. /* Insert TTP header with SAR parameters */
  1157. frame = skb_push(tx_skb, TTP_HEADER + TTP_SAR_HEADER);
  1158. frame[0] = TTP_PARAMETERS | n;
  1159. frame[1] = 0x04; /* Length */
  1160. /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
  1161. /* TTP_SAR_HEADER, &param_info) */
  1162. frame[2] = 0x01; /* MaxSduSize */
  1163. frame[3] = 0x02; /* Value length */
  1164. put_unaligned(cpu_to_be16((__u16) max_sdu_size),
  1165. (__be16 *)(frame+4));
  1166. } else {
  1167. /* Insert TTP header */
  1168. frame = skb_push(tx_skb, TTP_HEADER);
  1169. frame[0] = n & 0x7f;
  1170. }
  1171. ret = irlmp_connect_response(self->lsap, tx_skb);
  1172. return ret;
  1173. }
  1174. EXPORT_SYMBOL(irttp_connect_response);
  1175. /*
  1176. * Function irttp_dup (self, instance)
  1177. *
  1178. * Duplicate TSAP, can be used by servers to confirm a connection on a
  1179. * new TSAP so it can keep listening on the old one.
  1180. */
  1181. struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
  1182. {
  1183. struct tsap_cb *new;
  1184. unsigned long flags;
  1185. /* Protect our access to the old tsap instance */
  1186. spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
  1187. /* Find the old instance */
  1188. if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
  1189. pr_debug("%s(), unable to find TSAP\n", __func__);
  1190. spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
  1191. return NULL;
  1192. }
  1193. /* Allocate a new instance */
  1194. new = kmemdup(orig, sizeof(struct tsap_cb), GFP_ATOMIC);
  1195. if (!new) {
  1196. pr_debug("%s(), unable to kmalloc\n", __func__);
  1197. spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
  1198. return NULL;
  1199. }
  1200. spin_lock_init(&new->lock);
  1201. /* We don't need the old instance any more */
  1202. spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
  1203. /* Try to dup the LSAP (may fail if we were too slow) */
  1204. new->lsap = irlmp_dup(orig->lsap, new);
  1205. if (!new->lsap) {
  1206. pr_debug("%s(), dup failed!\n", __func__);
  1207. kfree(new);
  1208. return NULL;
  1209. }
  1210. /* Not everything should be copied */
  1211. new->notify.instance = instance;
  1212. /* Initialize internal objects */
  1213. irttp_init_tsap(new);
  1214. /* This is locked */
  1215. hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
  1216. return new;
  1217. }
  1218. EXPORT_SYMBOL(irttp_dup);
  1219. /*
  1220. * Function irttp_disconnect_request (self)
  1221. *
  1222. * Close this connection please! If priority is high, the queued data
  1223. * segments, if any, will be deallocated first
  1224. *
  1225. */
  1226. int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
  1227. int priority)
  1228. {
  1229. int ret;
  1230. IRDA_ASSERT(self != NULL, return -1;);
  1231. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  1232. /* Already disconnected? */
  1233. if (!self->connected) {
  1234. pr_debug("%s(), already disconnected!\n", __func__);
  1235. if (userdata)
  1236. dev_kfree_skb(userdata);
  1237. return -1;
  1238. }
  1239. /* Disconnect already pending ?
  1240. * We need to use an atomic operation to prevent reentry. This
  1241. * function may be called from various context, like user, timer
  1242. * for following a disconnect_indication() (i.e. net_bh).
  1243. * Jean II */
  1244. if (test_and_set_bit(0, &self->disconnect_pend)) {
  1245. pr_debug("%s(), disconnect already pending\n",
  1246. __func__);
  1247. if (userdata)
  1248. dev_kfree_skb(userdata);
  1249. /* Try to make some progress */
  1250. irttp_run_tx_queue(self);
  1251. return -1;
  1252. }
  1253. /*
  1254. * Check if there is still data segments in the transmit queue
  1255. */
  1256. if (!skb_queue_empty(&self->tx_queue)) {
  1257. if (priority == P_HIGH) {
  1258. /*
  1259. * No need to send the queued data, if we are
  1260. * disconnecting right now since the data will
  1261. * not have any usable connection to be sent on
  1262. */
  1263. pr_debug("%s(): High priority!!()\n", __func__);
  1264. irttp_flush_queues(self);
  1265. } else if (priority == P_NORMAL) {
  1266. /*
  1267. * Must delay disconnect until after all data segments
  1268. * have been sent and the tx_queue is empty
  1269. */
  1270. /* We'll reuse this one later for the disconnect */
  1271. self->disconnect_skb = userdata; /* May be NULL */
  1272. irttp_run_tx_queue(self);
  1273. irttp_start_todo_timer(self, HZ/10);
  1274. return -1;
  1275. }
  1276. }
  1277. /* Note : we don't need to check if self->rx_queue is full and the
  1278. * state of self->rx_sdu_busy because the disconnect response will
  1279. * be sent at the LMP level (so even if the peer has its Tx queue
  1280. * full of data). - Jean II */
  1281. pr_debug("%s(), Disconnecting ...\n", __func__);
  1282. self->connected = FALSE;
  1283. if (!userdata) {
  1284. struct sk_buff *tx_skb;
  1285. tx_skb = alloc_skb(LMP_MAX_HEADER, GFP_ATOMIC);
  1286. if (!tx_skb)
  1287. return -ENOMEM;
  1288. /*
  1289. * Reserve space for MUX and LAP header
  1290. */
  1291. skb_reserve(tx_skb, LMP_MAX_HEADER);
  1292. userdata = tx_skb;
  1293. }
  1294. ret = irlmp_disconnect_request(self->lsap, userdata);
  1295. /* The disconnect is no longer pending */
  1296. clear_bit(0, &self->disconnect_pend); /* FALSE */
  1297. return ret;
  1298. }
  1299. EXPORT_SYMBOL(irttp_disconnect_request);
  1300. /*
  1301. * Function irttp_disconnect_indication (self, reason)
  1302. *
  1303. * Disconnect indication, TSAP disconnected by peer?
  1304. *
  1305. */
  1306. static void irttp_disconnect_indication(void *instance, void *sap,
  1307. LM_REASON reason, struct sk_buff *skb)
  1308. {
  1309. struct tsap_cb *self;
  1310. self = instance;
  1311. IRDA_ASSERT(self != NULL, return;);
  1312. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  1313. /* Prevent higher layer to send more data */
  1314. self->connected = FALSE;
  1315. /* Check if client has already tried to close the TSAP */
  1316. if (self->close_pend) {
  1317. /* In this case, the higher layer is probably gone. Don't
  1318. * bother it and clean up the remains - Jean II */
  1319. if (skb)
  1320. dev_kfree_skb(skb);
  1321. irttp_close_tsap(self);
  1322. return;
  1323. }
  1324. /* If we are here, we assume that is the higher layer is still
  1325. * waiting for the disconnect notification and able to process it,
  1326. * even if he tried to disconnect. Otherwise, it would have already
  1327. * attempted to close the tsap and self->close_pend would be TRUE.
  1328. * Jean II */
  1329. /* No need to notify the client if has already tried to disconnect */
  1330. if (self->notify.disconnect_indication)
  1331. self->notify.disconnect_indication(self->notify.instance, self,
  1332. reason, skb);
  1333. else
  1334. if (skb)
  1335. dev_kfree_skb(skb);
  1336. }
  1337. /*
  1338. * Function irttp_do_data_indication (self, skb)
  1339. *
  1340. * Try to deliver reassembled skb to layer above, and requeue it if that
  1341. * for some reason should fail. We mark rx sdu as busy to apply back
  1342. * pressure is necessary.
  1343. */
  1344. static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
  1345. {
  1346. int err;
  1347. /* Check if client has already closed the TSAP and gone away */
  1348. if (self->close_pend) {
  1349. dev_kfree_skb(skb);
  1350. return;
  1351. }
  1352. err = self->notify.data_indication(self->notify.instance, self, skb);
  1353. /* Usually the layer above will notify that it's input queue is
  1354. * starting to get filled by using the flow request, but this may
  1355. * be difficult, so it can instead just refuse to eat it and just
  1356. * give an error back
  1357. */
  1358. if (err) {
  1359. pr_debug("%s() requeueing skb!\n", __func__);
  1360. /* Make sure we take a break */
  1361. self->rx_sdu_busy = TRUE;
  1362. /* Need to push the header in again */
  1363. skb_push(skb, TTP_HEADER);
  1364. skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
  1365. /* Put skb back on queue */
  1366. skb_queue_head(&self->rx_queue, skb);
  1367. }
  1368. }
  1369. /*
  1370. * Function irttp_run_rx_queue (self)
  1371. *
  1372. * Check if we have any frames to be transmitted, or if we have any
  1373. * available credit to give away.
  1374. */
  1375. static void irttp_run_rx_queue(struct tsap_cb *self)
  1376. {
  1377. struct sk_buff *skb;
  1378. int more = 0;
  1379. pr_debug("%s() send=%d,avail=%d,remote=%d\n", __func__,
  1380. self->send_credit, self->avail_credit, self->remote_credit);
  1381. /* Get exclusive access to the rx queue, otherwise don't touch it */
  1382. if (irda_lock(&self->rx_queue_lock) == FALSE)
  1383. return;
  1384. /*
  1385. * Reassemble all frames in receive queue and deliver them
  1386. */
  1387. while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
  1388. /* This bit will tell us if it's the last fragment or not */
  1389. more = skb->data[0] & 0x80;
  1390. /* Remove TTP header */
  1391. skb_pull(skb, TTP_HEADER);
  1392. /* Add the length of the remaining data */
  1393. self->rx_sdu_size += skb->len;
  1394. /*
  1395. * If SAR is disabled, or user has requested no reassembly
  1396. * of received fragments then we just deliver them
  1397. * immediately. This can be requested by clients that
  1398. * implements byte streams without any message boundaries
  1399. */
  1400. if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
  1401. irttp_do_data_indication(self, skb);
  1402. self->rx_sdu_size = 0;
  1403. continue;
  1404. }
  1405. /* Check if this is a fragment, and not the last fragment */
  1406. if (more) {
  1407. /*
  1408. * Queue the fragment if we still are within the
  1409. * limits of the maximum size of the rx_sdu
  1410. */
  1411. if (self->rx_sdu_size <= self->rx_max_sdu_size) {
  1412. pr_debug("%s(), queueing frag\n",
  1413. __func__);
  1414. skb_queue_tail(&self->rx_fragments, skb);
  1415. } else {
  1416. /* Free the part of the SDU that is too big */
  1417. dev_kfree_skb(skb);
  1418. }
  1419. continue;
  1420. }
  1421. /*
  1422. * This is the last fragment, so time to reassemble!
  1423. */
  1424. if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
  1425. (self->rx_max_sdu_size == TTP_SAR_UNBOUND)) {
  1426. /*
  1427. * A little optimizing. Only queue the fragment if
  1428. * there are other fragments. Since if this is the
  1429. * last and only fragment, there is no need to
  1430. * reassemble :-)
  1431. */
  1432. if (!skb_queue_empty(&self->rx_fragments)) {
  1433. skb_queue_tail(&self->rx_fragments,
  1434. skb);
  1435. skb = irttp_reassemble_skb(self);
  1436. }
  1437. /* Now we can deliver the reassembled skb */
  1438. irttp_do_data_indication(self, skb);
  1439. } else {
  1440. pr_debug("%s(), Truncated frame\n", __func__);
  1441. /* Free the part of the SDU that is too big */
  1442. dev_kfree_skb(skb);
  1443. /* Deliver only the valid but truncated part of SDU */
  1444. skb = irttp_reassemble_skb(self);
  1445. irttp_do_data_indication(self, skb);
  1446. }
  1447. self->rx_sdu_size = 0;
  1448. }
  1449. /*
  1450. * It's not trivial to keep track of how many credits are available
  1451. * by incrementing at each packet, because delivery may fail
  1452. * (irttp_do_data_indication() may requeue the frame) and because
  1453. * we need to take care of fragmentation.
  1454. * We want the other side to send up to initial_credit packets.
  1455. * We have some frames in our queues, and we have already allowed it
  1456. * to send remote_credit.
  1457. * No need to spinlock, write is atomic and self correcting...
  1458. * Jean II
  1459. */
  1460. self->avail_credit = (self->initial_credit -
  1461. (self->remote_credit +
  1462. skb_queue_len(&self->rx_queue) +
  1463. skb_queue_len(&self->rx_fragments)));
  1464. /* Do we have too much credits to send to peer ? */
  1465. if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
  1466. (self->avail_credit > 0)) {
  1467. /* Send explicit credit frame */
  1468. irttp_give_credit(self);
  1469. /* Note : do *NOT* check if tx_queue is non-empty, that
  1470. * will produce deadlocks. I repeat : send a credit frame
  1471. * even if we have something to send in our Tx queue.
  1472. * If we have credits, it means that our Tx queue is blocked.
  1473. *
  1474. * Let's suppose the peer can't keep up with our Tx. He will
  1475. * flow control us by not sending us any credits, and we
  1476. * will stop Tx and start accumulating credits here.
  1477. * Up to the point where the peer will stop its Tx queue,
  1478. * for lack of credits.
  1479. * Let's assume the peer application is single threaded.
  1480. * It will block on Tx and never consume any Rx buffer.
  1481. * Deadlock. Guaranteed. - Jean II
  1482. */
  1483. }
  1484. /* Reset lock */
  1485. self->rx_queue_lock = 0;
  1486. }
  1487. #ifdef CONFIG_PROC_FS
  1488. struct irttp_iter_state {
  1489. int id;
  1490. };
  1491. static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
  1492. {
  1493. struct irttp_iter_state *iter = seq->private;
  1494. struct tsap_cb *self;
  1495. /* Protect our access to the tsap list */
  1496. spin_lock_irq(&irttp->tsaps->hb_spinlock);
  1497. iter->id = 0;
  1498. for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
  1499. self != NULL;
  1500. self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
  1501. if (iter->id == *pos)
  1502. break;
  1503. ++iter->id;
  1504. }
  1505. return self;
  1506. }
  1507. static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1508. {
  1509. struct irttp_iter_state *iter = seq->private;
  1510. ++*pos;
  1511. ++iter->id;
  1512. return (void *) hashbin_get_next(irttp->tsaps);
  1513. }
  1514. static void irttp_seq_stop(struct seq_file *seq, void *v)
  1515. {
  1516. spin_unlock_irq(&irttp->tsaps->hb_spinlock);
  1517. }
  1518. static int irttp_seq_show(struct seq_file *seq, void *v)
  1519. {
  1520. const struct irttp_iter_state *iter = seq->private;
  1521. const struct tsap_cb *self = v;
  1522. seq_printf(seq, "TSAP %d, ", iter->id);
  1523. seq_printf(seq, "stsap_sel: %02x, ",
  1524. self->stsap_sel);
  1525. seq_printf(seq, "dtsap_sel: %02x\n",
  1526. self->dtsap_sel);
  1527. seq_printf(seq, " connected: %s, ",
  1528. self->connected ? "TRUE" : "FALSE");
  1529. seq_printf(seq, "avail credit: %d, ",
  1530. self->avail_credit);
  1531. seq_printf(seq, "remote credit: %d, ",
  1532. self->remote_credit);
  1533. seq_printf(seq, "send credit: %d\n",
  1534. self->send_credit);
  1535. seq_printf(seq, " tx packets: %lu, ",
  1536. self->stats.tx_packets);
  1537. seq_printf(seq, "rx packets: %lu, ",
  1538. self->stats.rx_packets);
  1539. seq_printf(seq, "tx_queue len: %u ",
  1540. skb_queue_len(&self->tx_queue));
  1541. seq_printf(seq, "rx_queue len: %u\n",
  1542. skb_queue_len(&self->rx_queue));
  1543. seq_printf(seq, " tx_sdu_busy: %s, ",
  1544. self->tx_sdu_busy ? "TRUE" : "FALSE");
  1545. seq_printf(seq, "rx_sdu_busy: %s\n",
  1546. self->rx_sdu_busy ? "TRUE" : "FALSE");
  1547. seq_printf(seq, " max_seg_size: %u, ",
  1548. self->max_seg_size);
  1549. seq_printf(seq, "tx_max_sdu_size: %u, ",
  1550. self->tx_max_sdu_size);
  1551. seq_printf(seq, "rx_max_sdu_size: %u\n",
  1552. self->rx_max_sdu_size);
  1553. seq_printf(seq, " Used by (%s)\n\n",
  1554. self->notify.name);
  1555. return 0;
  1556. }
  1557. static const struct seq_operations irttp_seq_ops = {
  1558. .start = irttp_seq_start,
  1559. .next = irttp_seq_next,
  1560. .stop = irttp_seq_stop,
  1561. .show = irttp_seq_show,
  1562. };
  1563. static int irttp_seq_open(struct inode *inode, struct file *file)
  1564. {
  1565. return seq_open_private(file, &irttp_seq_ops,
  1566. sizeof(struct irttp_iter_state));
  1567. }
  1568. const struct file_operations irttp_seq_fops = {
  1569. .owner = THIS_MODULE,
  1570. .open = irttp_seq_open,
  1571. .read = seq_read,
  1572. .llseek = seq_lseek,
  1573. .release = seq_release_private,
  1574. };
  1575. #endif /* PROC_FS */