core.c 195 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  89. {
  90. unsigned long delta;
  91. ktime_t soft, hard, now;
  92. for (;;) {
  93. if (hrtimer_active(period_timer))
  94. break;
  95. now = hrtimer_cb_get_time(period_timer);
  96. hrtimer_forward(period_timer, now, period);
  97. soft = hrtimer_get_softexpires(period_timer);
  98. hard = hrtimer_get_expires(period_timer);
  99. delta = ktime_to_ns(ktime_sub(hard, soft));
  100. __hrtimer_start_range_ns(period_timer, soft, delta,
  101. HRTIMER_MODE_ABS_PINNED, 0);
  102. }
  103. }
  104. DEFINE_MUTEX(sched_domains_mutex);
  105. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  106. static void update_rq_clock_task(struct rq *rq, s64 delta);
  107. void update_rq_clock(struct rq *rq)
  108. {
  109. s64 delta;
  110. if (rq->skip_clock_update > 0)
  111. return;
  112. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  113. if (delta < 0)
  114. return;
  115. rq->clock += delta;
  116. update_rq_clock_task(rq, delta);
  117. }
  118. /*
  119. * Debugging: various feature bits
  120. */
  121. #define SCHED_FEAT(name, enabled) \
  122. (1UL << __SCHED_FEAT_##name) * enabled |
  123. const_debug unsigned int sysctl_sched_features =
  124. #include "features.h"
  125. 0;
  126. #undef SCHED_FEAT
  127. #ifdef CONFIG_SCHED_DEBUG
  128. #define SCHED_FEAT(name, enabled) \
  129. #name ,
  130. static const char * const sched_feat_names[] = {
  131. #include "features.h"
  132. };
  133. #undef SCHED_FEAT
  134. static int sched_feat_show(struct seq_file *m, void *v)
  135. {
  136. int i;
  137. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  138. if (!(sysctl_sched_features & (1UL << i)))
  139. seq_puts(m, "NO_");
  140. seq_printf(m, "%s ", sched_feat_names[i]);
  141. }
  142. seq_puts(m, "\n");
  143. return 0;
  144. }
  145. #ifdef HAVE_JUMP_LABEL
  146. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  147. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  148. #define SCHED_FEAT(name, enabled) \
  149. jump_label_key__##enabled ,
  150. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  151. #include "features.h"
  152. };
  153. #undef SCHED_FEAT
  154. static void sched_feat_disable(int i)
  155. {
  156. if (static_key_enabled(&sched_feat_keys[i]))
  157. static_key_slow_dec(&sched_feat_keys[i]);
  158. }
  159. static void sched_feat_enable(int i)
  160. {
  161. if (!static_key_enabled(&sched_feat_keys[i]))
  162. static_key_slow_inc(&sched_feat_keys[i]);
  163. }
  164. #else
  165. static void sched_feat_disable(int i) { };
  166. static void sched_feat_enable(int i) { };
  167. #endif /* HAVE_JUMP_LABEL */
  168. static int sched_feat_set(char *cmp)
  169. {
  170. int i;
  171. int neg = 0;
  172. if (strncmp(cmp, "NO_", 3) == 0) {
  173. neg = 1;
  174. cmp += 3;
  175. }
  176. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  177. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  178. if (neg) {
  179. sysctl_sched_features &= ~(1UL << i);
  180. sched_feat_disable(i);
  181. } else {
  182. sysctl_sched_features |= (1UL << i);
  183. sched_feat_enable(i);
  184. }
  185. break;
  186. }
  187. }
  188. return i;
  189. }
  190. static ssize_t
  191. sched_feat_write(struct file *filp, const char __user *ubuf,
  192. size_t cnt, loff_t *ppos)
  193. {
  194. char buf[64];
  195. char *cmp;
  196. int i;
  197. struct inode *inode;
  198. if (cnt > 63)
  199. cnt = 63;
  200. if (copy_from_user(&buf, ubuf, cnt))
  201. return -EFAULT;
  202. buf[cnt] = 0;
  203. cmp = strstrip(buf);
  204. /* Ensure the static_key remains in a consistent state */
  205. inode = file_inode(filp);
  206. mutex_lock(&inode->i_mutex);
  207. i = sched_feat_set(cmp);
  208. mutex_unlock(&inode->i_mutex);
  209. if (i == __SCHED_FEAT_NR)
  210. return -EINVAL;
  211. *ppos += cnt;
  212. return cnt;
  213. }
  214. static int sched_feat_open(struct inode *inode, struct file *filp)
  215. {
  216. return single_open(filp, sched_feat_show, NULL);
  217. }
  218. static const struct file_operations sched_feat_fops = {
  219. .open = sched_feat_open,
  220. .write = sched_feat_write,
  221. .read = seq_read,
  222. .llseek = seq_lseek,
  223. .release = single_release,
  224. };
  225. static __init int sched_init_debug(void)
  226. {
  227. debugfs_create_file("sched_features", 0644, NULL, NULL,
  228. &sched_feat_fops);
  229. return 0;
  230. }
  231. late_initcall(sched_init_debug);
  232. #endif /* CONFIG_SCHED_DEBUG */
  233. /*
  234. * Number of tasks to iterate in a single balance run.
  235. * Limited because this is done with IRQs disabled.
  236. */
  237. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  238. /*
  239. * period over which we average the RT time consumption, measured
  240. * in ms.
  241. *
  242. * default: 1s
  243. */
  244. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  245. /*
  246. * period over which we measure -rt task cpu usage in us.
  247. * default: 1s
  248. */
  249. unsigned int sysctl_sched_rt_period = 1000000;
  250. __read_mostly int scheduler_running;
  251. /*
  252. * part of the period that we allow rt tasks to run in us.
  253. * default: 0.95s
  254. */
  255. int sysctl_sched_rt_runtime = 950000;
  256. /*
  257. * __task_rq_lock - lock the rq @p resides on.
  258. */
  259. static inline struct rq *__task_rq_lock(struct task_struct *p)
  260. __acquires(rq->lock)
  261. {
  262. struct rq *rq;
  263. lockdep_assert_held(&p->pi_lock);
  264. for (;;) {
  265. rq = task_rq(p);
  266. raw_spin_lock(&rq->lock);
  267. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
  268. return rq;
  269. raw_spin_unlock(&rq->lock);
  270. while (unlikely(task_on_rq_migrating(p)))
  271. cpu_relax();
  272. }
  273. }
  274. /*
  275. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  276. */
  277. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  278. __acquires(p->pi_lock)
  279. __acquires(rq->lock)
  280. {
  281. struct rq *rq;
  282. for (;;) {
  283. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  284. rq = task_rq(p);
  285. raw_spin_lock(&rq->lock);
  286. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
  287. return rq;
  288. raw_spin_unlock(&rq->lock);
  289. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  290. while (unlikely(task_on_rq_migrating(p)))
  291. cpu_relax();
  292. }
  293. }
  294. static void __task_rq_unlock(struct rq *rq)
  295. __releases(rq->lock)
  296. {
  297. raw_spin_unlock(&rq->lock);
  298. }
  299. static inline void
  300. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  301. __releases(rq->lock)
  302. __releases(p->pi_lock)
  303. {
  304. raw_spin_unlock(&rq->lock);
  305. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  306. }
  307. /*
  308. * this_rq_lock - lock this runqueue and disable interrupts.
  309. */
  310. static struct rq *this_rq_lock(void)
  311. __acquires(rq->lock)
  312. {
  313. struct rq *rq;
  314. local_irq_disable();
  315. rq = this_rq();
  316. raw_spin_lock(&rq->lock);
  317. return rq;
  318. }
  319. #ifdef CONFIG_SCHED_HRTICK
  320. /*
  321. * Use HR-timers to deliver accurate preemption points.
  322. */
  323. static void hrtick_clear(struct rq *rq)
  324. {
  325. if (hrtimer_active(&rq->hrtick_timer))
  326. hrtimer_cancel(&rq->hrtick_timer);
  327. }
  328. /*
  329. * High-resolution timer tick.
  330. * Runs from hardirq context with interrupts disabled.
  331. */
  332. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  333. {
  334. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  335. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  336. raw_spin_lock(&rq->lock);
  337. update_rq_clock(rq);
  338. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  339. raw_spin_unlock(&rq->lock);
  340. return HRTIMER_NORESTART;
  341. }
  342. #ifdef CONFIG_SMP
  343. static int __hrtick_restart(struct rq *rq)
  344. {
  345. struct hrtimer *timer = &rq->hrtick_timer;
  346. ktime_t time = hrtimer_get_softexpires(timer);
  347. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  348. }
  349. /*
  350. * called from hardirq (IPI) context
  351. */
  352. static void __hrtick_start(void *arg)
  353. {
  354. struct rq *rq = arg;
  355. raw_spin_lock(&rq->lock);
  356. __hrtick_restart(rq);
  357. rq->hrtick_csd_pending = 0;
  358. raw_spin_unlock(&rq->lock);
  359. }
  360. /*
  361. * Called to set the hrtick timer state.
  362. *
  363. * called with rq->lock held and irqs disabled
  364. */
  365. void hrtick_start(struct rq *rq, u64 delay)
  366. {
  367. struct hrtimer *timer = &rq->hrtick_timer;
  368. ktime_t time;
  369. s64 delta;
  370. /*
  371. * Don't schedule slices shorter than 10000ns, that just
  372. * doesn't make sense and can cause timer DoS.
  373. */
  374. delta = max_t(s64, delay, 10000LL);
  375. time = ktime_add_ns(timer->base->get_time(), delta);
  376. hrtimer_set_expires(timer, time);
  377. if (rq == this_rq()) {
  378. __hrtick_restart(rq);
  379. } else if (!rq->hrtick_csd_pending) {
  380. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  381. rq->hrtick_csd_pending = 1;
  382. }
  383. }
  384. static int
  385. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  386. {
  387. int cpu = (int)(long)hcpu;
  388. switch (action) {
  389. case CPU_UP_CANCELED:
  390. case CPU_UP_CANCELED_FROZEN:
  391. case CPU_DOWN_PREPARE:
  392. case CPU_DOWN_PREPARE_FROZEN:
  393. case CPU_DEAD:
  394. case CPU_DEAD_FROZEN:
  395. hrtick_clear(cpu_rq(cpu));
  396. return NOTIFY_OK;
  397. }
  398. return NOTIFY_DONE;
  399. }
  400. static __init void init_hrtick(void)
  401. {
  402. hotcpu_notifier(hotplug_hrtick, 0);
  403. }
  404. #else
  405. /*
  406. * Called to set the hrtick timer state.
  407. *
  408. * called with rq->lock held and irqs disabled
  409. */
  410. void hrtick_start(struct rq *rq, u64 delay)
  411. {
  412. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  413. HRTIMER_MODE_REL_PINNED, 0);
  414. }
  415. static inline void init_hrtick(void)
  416. {
  417. }
  418. #endif /* CONFIG_SMP */
  419. static void init_rq_hrtick(struct rq *rq)
  420. {
  421. #ifdef CONFIG_SMP
  422. rq->hrtick_csd_pending = 0;
  423. rq->hrtick_csd.flags = 0;
  424. rq->hrtick_csd.func = __hrtick_start;
  425. rq->hrtick_csd.info = rq;
  426. #endif
  427. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  428. rq->hrtick_timer.function = hrtick;
  429. }
  430. #else /* CONFIG_SCHED_HRTICK */
  431. static inline void hrtick_clear(struct rq *rq)
  432. {
  433. }
  434. static inline void init_rq_hrtick(struct rq *rq)
  435. {
  436. }
  437. static inline void init_hrtick(void)
  438. {
  439. }
  440. #endif /* CONFIG_SCHED_HRTICK */
  441. /*
  442. * cmpxchg based fetch_or, macro so it works for different integer types
  443. */
  444. #define fetch_or(ptr, val) \
  445. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  446. for (;;) { \
  447. __old = cmpxchg((ptr), __val, __val | (val)); \
  448. if (__old == __val) \
  449. break; \
  450. __val = __old; \
  451. } \
  452. __old; \
  453. })
  454. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  455. /*
  456. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  457. * this avoids any races wrt polling state changes and thereby avoids
  458. * spurious IPIs.
  459. */
  460. static bool set_nr_and_not_polling(struct task_struct *p)
  461. {
  462. struct thread_info *ti = task_thread_info(p);
  463. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  464. }
  465. /*
  466. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  467. *
  468. * If this returns true, then the idle task promises to call
  469. * sched_ttwu_pending() and reschedule soon.
  470. */
  471. static bool set_nr_if_polling(struct task_struct *p)
  472. {
  473. struct thread_info *ti = task_thread_info(p);
  474. typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
  475. for (;;) {
  476. if (!(val & _TIF_POLLING_NRFLAG))
  477. return false;
  478. if (val & _TIF_NEED_RESCHED)
  479. return true;
  480. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  481. if (old == val)
  482. break;
  483. val = old;
  484. }
  485. return true;
  486. }
  487. #else
  488. static bool set_nr_and_not_polling(struct task_struct *p)
  489. {
  490. set_tsk_need_resched(p);
  491. return true;
  492. }
  493. #ifdef CONFIG_SMP
  494. static bool set_nr_if_polling(struct task_struct *p)
  495. {
  496. return false;
  497. }
  498. #endif
  499. #endif
  500. /*
  501. * resched_curr - mark rq's current task 'to be rescheduled now'.
  502. *
  503. * On UP this means the setting of the need_resched flag, on SMP it
  504. * might also involve a cross-CPU call to trigger the scheduler on
  505. * the target CPU.
  506. */
  507. void resched_curr(struct rq *rq)
  508. {
  509. struct task_struct *curr = rq->curr;
  510. int cpu;
  511. lockdep_assert_held(&rq->lock);
  512. if (test_tsk_need_resched(curr))
  513. return;
  514. cpu = cpu_of(rq);
  515. if (cpu == smp_processor_id()) {
  516. set_tsk_need_resched(curr);
  517. set_preempt_need_resched();
  518. return;
  519. }
  520. if (set_nr_and_not_polling(curr))
  521. smp_send_reschedule(cpu);
  522. else
  523. trace_sched_wake_idle_without_ipi(cpu);
  524. }
  525. void resched_cpu(int cpu)
  526. {
  527. struct rq *rq = cpu_rq(cpu);
  528. unsigned long flags;
  529. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  530. return;
  531. resched_curr(rq);
  532. raw_spin_unlock_irqrestore(&rq->lock, flags);
  533. }
  534. #ifdef CONFIG_SMP
  535. #ifdef CONFIG_NO_HZ_COMMON
  536. /*
  537. * In the semi idle case, use the nearest busy cpu for migrating timers
  538. * from an idle cpu. This is good for power-savings.
  539. *
  540. * We don't do similar optimization for completely idle system, as
  541. * selecting an idle cpu will add more delays to the timers than intended
  542. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  543. */
  544. int get_nohz_timer_target(int pinned)
  545. {
  546. int cpu = smp_processor_id();
  547. int i;
  548. struct sched_domain *sd;
  549. if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
  550. return cpu;
  551. rcu_read_lock();
  552. for_each_domain(cpu, sd) {
  553. for_each_cpu(i, sched_domain_span(sd)) {
  554. if (!idle_cpu(i)) {
  555. cpu = i;
  556. goto unlock;
  557. }
  558. }
  559. }
  560. unlock:
  561. rcu_read_unlock();
  562. return cpu;
  563. }
  564. /*
  565. * When add_timer_on() enqueues a timer into the timer wheel of an
  566. * idle CPU then this timer might expire before the next timer event
  567. * which is scheduled to wake up that CPU. In case of a completely
  568. * idle system the next event might even be infinite time into the
  569. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  570. * leaves the inner idle loop so the newly added timer is taken into
  571. * account when the CPU goes back to idle and evaluates the timer
  572. * wheel for the next timer event.
  573. */
  574. static void wake_up_idle_cpu(int cpu)
  575. {
  576. struct rq *rq = cpu_rq(cpu);
  577. if (cpu == smp_processor_id())
  578. return;
  579. if (set_nr_and_not_polling(rq->idle))
  580. smp_send_reschedule(cpu);
  581. else
  582. trace_sched_wake_idle_without_ipi(cpu);
  583. }
  584. static bool wake_up_full_nohz_cpu(int cpu)
  585. {
  586. /*
  587. * We just need the target to call irq_exit() and re-evaluate
  588. * the next tick. The nohz full kick at least implies that.
  589. * If needed we can still optimize that later with an
  590. * empty IRQ.
  591. */
  592. if (tick_nohz_full_cpu(cpu)) {
  593. if (cpu != smp_processor_id() ||
  594. tick_nohz_tick_stopped())
  595. tick_nohz_full_kick_cpu(cpu);
  596. return true;
  597. }
  598. return false;
  599. }
  600. void wake_up_nohz_cpu(int cpu)
  601. {
  602. if (!wake_up_full_nohz_cpu(cpu))
  603. wake_up_idle_cpu(cpu);
  604. }
  605. static inline bool got_nohz_idle_kick(void)
  606. {
  607. int cpu = smp_processor_id();
  608. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  609. return false;
  610. if (idle_cpu(cpu) && !need_resched())
  611. return true;
  612. /*
  613. * We can't run Idle Load Balance on this CPU for this time so we
  614. * cancel it and clear NOHZ_BALANCE_KICK
  615. */
  616. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  617. return false;
  618. }
  619. #else /* CONFIG_NO_HZ_COMMON */
  620. static inline bool got_nohz_idle_kick(void)
  621. {
  622. return false;
  623. }
  624. #endif /* CONFIG_NO_HZ_COMMON */
  625. #ifdef CONFIG_NO_HZ_FULL
  626. bool sched_can_stop_tick(void)
  627. {
  628. /*
  629. * More than one running task need preemption.
  630. * nr_running update is assumed to be visible
  631. * after IPI is sent from wakers.
  632. */
  633. if (this_rq()->nr_running > 1)
  634. return false;
  635. return true;
  636. }
  637. #endif /* CONFIG_NO_HZ_FULL */
  638. void sched_avg_update(struct rq *rq)
  639. {
  640. s64 period = sched_avg_period();
  641. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  642. /*
  643. * Inline assembly required to prevent the compiler
  644. * optimising this loop into a divmod call.
  645. * See __iter_div_u64_rem() for another example of this.
  646. */
  647. asm("" : "+rm" (rq->age_stamp));
  648. rq->age_stamp += period;
  649. rq->rt_avg /= 2;
  650. }
  651. }
  652. #endif /* CONFIG_SMP */
  653. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  654. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  655. /*
  656. * Iterate task_group tree rooted at *from, calling @down when first entering a
  657. * node and @up when leaving it for the final time.
  658. *
  659. * Caller must hold rcu_lock or sufficient equivalent.
  660. */
  661. int walk_tg_tree_from(struct task_group *from,
  662. tg_visitor down, tg_visitor up, void *data)
  663. {
  664. struct task_group *parent, *child;
  665. int ret;
  666. parent = from;
  667. down:
  668. ret = (*down)(parent, data);
  669. if (ret)
  670. goto out;
  671. list_for_each_entry_rcu(child, &parent->children, siblings) {
  672. parent = child;
  673. goto down;
  674. up:
  675. continue;
  676. }
  677. ret = (*up)(parent, data);
  678. if (ret || parent == from)
  679. goto out;
  680. child = parent;
  681. parent = parent->parent;
  682. if (parent)
  683. goto up;
  684. out:
  685. return ret;
  686. }
  687. int tg_nop(struct task_group *tg, void *data)
  688. {
  689. return 0;
  690. }
  691. #endif
  692. static void set_load_weight(struct task_struct *p)
  693. {
  694. int prio = p->static_prio - MAX_RT_PRIO;
  695. struct load_weight *load = &p->se.load;
  696. /*
  697. * SCHED_IDLE tasks get minimal weight:
  698. */
  699. if (p->policy == SCHED_IDLE) {
  700. load->weight = scale_load(WEIGHT_IDLEPRIO);
  701. load->inv_weight = WMULT_IDLEPRIO;
  702. return;
  703. }
  704. load->weight = scale_load(prio_to_weight[prio]);
  705. load->inv_weight = prio_to_wmult[prio];
  706. }
  707. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  708. {
  709. update_rq_clock(rq);
  710. sched_info_queued(rq, p);
  711. p->sched_class->enqueue_task(rq, p, flags);
  712. }
  713. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  714. {
  715. update_rq_clock(rq);
  716. sched_info_dequeued(rq, p);
  717. p->sched_class->dequeue_task(rq, p, flags);
  718. }
  719. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  720. {
  721. if (task_contributes_to_load(p))
  722. rq->nr_uninterruptible--;
  723. enqueue_task(rq, p, flags);
  724. }
  725. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  726. {
  727. if (task_contributes_to_load(p))
  728. rq->nr_uninterruptible++;
  729. dequeue_task(rq, p, flags);
  730. }
  731. static void update_rq_clock_task(struct rq *rq, s64 delta)
  732. {
  733. /*
  734. * In theory, the compile should just see 0 here, and optimize out the call
  735. * to sched_rt_avg_update. But I don't trust it...
  736. */
  737. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  738. s64 steal = 0, irq_delta = 0;
  739. #endif
  740. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  741. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  742. /*
  743. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  744. * this case when a previous update_rq_clock() happened inside a
  745. * {soft,}irq region.
  746. *
  747. * When this happens, we stop ->clock_task and only update the
  748. * prev_irq_time stamp to account for the part that fit, so that a next
  749. * update will consume the rest. This ensures ->clock_task is
  750. * monotonic.
  751. *
  752. * It does however cause some slight miss-attribution of {soft,}irq
  753. * time, a more accurate solution would be to update the irq_time using
  754. * the current rq->clock timestamp, except that would require using
  755. * atomic ops.
  756. */
  757. if (irq_delta > delta)
  758. irq_delta = delta;
  759. rq->prev_irq_time += irq_delta;
  760. delta -= irq_delta;
  761. #endif
  762. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  763. if (static_key_false((&paravirt_steal_rq_enabled))) {
  764. steal = paravirt_steal_clock(cpu_of(rq));
  765. steal -= rq->prev_steal_time_rq;
  766. if (unlikely(steal > delta))
  767. steal = delta;
  768. rq->prev_steal_time_rq += steal;
  769. delta -= steal;
  770. }
  771. #endif
  772. rq->clock_task += delta;
  773. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  774. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  775. sched_rt_avg_update(rq, irq_delta + steal);
  776. #endif
  777. }
  778. void sched_set_stop_task(int cpu, struct task_struct *stop)
  779. {
  780. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  781. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  782. if (stop) {
  783. /*
  784. * Make it appear like a SCHED_FIFO task, its something
  785. * userspace knows about and won't get confused about.
  786. *
  787. * Also, it will make PI more or less work without too
  788. * much confusion -- but then, stop work should not
  789. * rely on PI working anyway.
  790. */
  791. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  792. stop->sched_class = &stop_sched_class;
  793. }
  794. cpu_rq(cpu)->stop = stop;
  795. if (old_stop) {
  796. /*
  797. * Reset it back to a normal scheduling class so that
  798. * it can die in pieces.
  799. */
  800. old_stop->sched_class = &rt_sched_class;
  801. }
  802. }
  803. /*
  804. * __normal_prio - return the priority that is based on the static prio
  805. */
  806. static inline int __normal_prio(struct task_struct *p)
  807. {
  808. return p->static_prio;
  809. }
  810. /*
  811. * Calculate the expected normal priority: i.e. priority
  812. * without taking RT-inheritance into account. Might be
  813. * boosted by interactivity modifiers. Changes upon fork,
  814. * setprio syscalls, and whenever the interactivity
  815. * estimator recalculates.
  816. */
  817. static inline int normal_prio(struct task_struct *p)
  818. {
  819. int prio;
  820. if (task_has_dl_policy(p))
  821. prio = MAX_DL_PRIO-1;
  822. else if (task_has_rt_policy(p))
  823. prio = MAX_RT_PRIO-1 - p->rt_priority;
  824. else
  825. prio = __normal_prio(p);
  826. return prio;
  827. }
  828. /*
  829. * Calculate the current priority, i.e. the priority
  830. * taken into account by the scheduler. This value might
  831. * be boosted by RT tasks, or might be boosted by
  832. * interactivity modifiers. Will be RT if the task got
  833. * RT-boosted. If not then it returns p->normal_prio.
  834. */
  835. static int effective_prio(struct task_struct *p)
  836. {
  837. p->normal_prio = normal_prio(p);
  838. /*
  839. * If we are RT tasks or we were boosted to RT priority,
  840. * keep the priority unchanged. Otherwise, update priority
  841. * to the normal priority:
  842. */
  843. if (!rt_prio(p->prio))
  844. return p->normal_prio;
  845. return p->prio;
  846. }
  847. /**
  848. * task_curr - is this task currently executing on a CPU?
  849. * @p: the task in question.
  850. *
  851. * Return: 1 if the task is currently executing. 0 otherwise.
  852. */
  853. inline int task_curr(const struct task_struct *p)
  854. {
  855. return cpu_curr(task_cpu(p)) == p;
  856. }
  857. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  858. const struct sched_class *prev_class,
  859. int oldprio)
  860. {
  861. if (prev_class != p->sched_class) {
  862. if (prev_class->switched_from)
  863. prev_class->switched_from(rq, p);
  864. p->sched_class->switched_to(rq, p);
  865. } else if (oldprio != p->prio || dl_task(p))
  866. p->sched_class->prio_changed(rq, p, oldprio);
  867. }
  868. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  869. {
  870. const struct sched_class *class;
  871. if (p->sched_class == rq->curr->sched_class) {
  872. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  873. } else {
  874. for_each_class(class) {
  875. if (class == rq->curr->sched_class)
  876. break;
  877. if (class == p->sched_class) {
  878. resched_curr(rq);
  879. break;
  880. }
  881. }
  882. }
  883. /*
  884. * A queue event has occurred, and we're going to schedule. In
  885. * this case, we can save a useless back to back clock update.
  886. */
  887. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  888. rq->skip_clock_update = 1;
  889. }
  890. #ifdef CONFIG_SMP
  891. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  892. {
  893. #ifdef CONFIG_SCHED_DEBUG
  894. /*
  895. * We should never call set_task_cpu() on a blocked task,
  896. * ttwu() will sort out the placement.
  897. */
  898. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  899. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  900. #ifdef CONFIG_LOCKDEP
  901. /*
  902. * The caller should hold either p->pi_lock or rq->lock, when changing
  903. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  904. *
  905. * sched_move_task() holds both and thus holding either pins the cgroup,
  906. * see task_group().
  907. *
  908. * Furthermore, all task_rq users should acquire both locks, see
  909. * task_rq_lock().
  910. */
  911. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  912. lockdep_is_held(&task_rq(p)->lock)));
  913. #endif
  914. #endif
  915. trace_sched_migrate_task(p, new_cpu);
  916. if (task_cpu(p) != new_cpu) {
  917. if (p->sched_class->migrate_task_rq)
  918. p->sched_class->migrate_task_rq(p, new_cpu);
  919. p->se.nr_migrations++;
  920. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  921. }
  922. __set_task_cpu(p, new_cpu);
  923. }
  924. static void __migrate_swap_task(struct task_struct *p, int cpu)
  925. {
  926. if (task_on_rq_queued(p)) {
  927. struct rq *src_rq, *dst_rq;
  928. src_rq = task_rq(p);
  929. dst_rq = cpu_rq(cpu);
  930. deactivate_task(src_rq, p, 0);
  931. set_task_cpu(p, cpu);
  932. activate_task(dst_rq, p, 0);
  933. check_preempt_curr(dst_rq, p, 0);
  934. } else {
  935. /*
  936. * Task isn't running anymore; make it appear like we migrated
  937. * it before it went to sleep. This means on wakeup we make the
  938. * previous cpu our targer instead of where it really is.
  939. */
  940. p->wake_cpu = cpu;
  941. }
  942. }
  943. struct migration_swap_arg {
  944. struct task_struct *src_task, *dst_task;
  945. int src_cpu, dst_cpu;
  946. };
  947. static int migrate_swap_stop(void *data)
  948. {
  949. struct migration_swap_arg *arg = data;
  950. struct rq *src_rq, *dst_rq;
  951. int ret = -EAGAIN;
  952. src_rq = cpu_rq(arg->src_cpu);
  953. dst_rq = cpu_rq(arg->dst_cpu);
  954. double_raw_lock(&arg->src_task->pi_lock,
  955. &arg->dst_task->pi_lock);
  956. double_rq_lock(src_rq, dst_rq);
  957. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  958. goto unlock;
  959. if (task_cpu(arg->src_task) != arg->src_cpu)
  960. goto unlock;
  961. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  962. goto unlock;
  963. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  964. goto unlock;
  965. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  966. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  967. ret = 0;
  968. unlock:
  969. double_rq_unlock(src_rq, dst_rq);
  970. raw_spin_unlock(&arg->dst_task->pi_lock);
  971. raw_spin_unlock(&arg->src_task->pi_lock);
  972. return ret;
  973. }
  974. /*
  975. * Cross migrate two tasks
  976. */
  977. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  978. {
  979. struct migration_swap_arg arg;
  980. int ret = -EINVAL;
  981. arg = (struct migration_swap_arg){
  982. .src_task = cur,
  983. .src_cpu = task_cpu(cur),
  984. .dst_task = p,
  985. .dst_cpu = task_cpu(p),
  986. };
  987. if (arg.src_cpu == arg.dst_cpu)
  988. goto out;
  989. /*
  990. * These three tests are all lockless; this is OK since all of them
  991. * will be re-checked with proper locks held further down the line.
  992. */
  993. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  994. goto out;
  995. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  996. goto out;
  997. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  998. goto out;
  999. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  1000. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  1001. out:
  1002. return ret;
  1003. }
  1004. struct migration_arg {
  1005. struct task_struct *task;
  1006. int dest_cpu;
  1007. };
  1008. static int migration_cpu_stop(void *data);
  1009. /*
  1010. * wait_task_inactive - wait for a thread to unschedule.
  1011. *
  1012. * If @match_state is nonzero, it's the @p->state value just checked and
  1013. * not expected to change. If it changes, i.e. @p might have woken up,
  1014. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1015. * we return a positive number (its total switch count). If a second call
  1016. * a short while later returns the same number, the caller can be sure that
  1017. * @p has remained unscheduled the whole time.
  1018. *
  1019. * The caller must ensure that the task *will* unschedule sometime soon,
  1020. * else this function might spin for a *long* time. This function can't
  1021. * be called with interrupts off, or it may introduce deadlock with
  1022. * smp_call_function() if an IPI is sent by the same process we are
  1023. * waiting to become inactive.
  1024. */
  1025. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1026. {
  1027. unsigned long flags;
  1028. int running, queued;
  1029. unsigned long ncsw;
  1030. struct rq *rq;
  1031. for (;;) {
  1032. /*
  1033. * We do the initial early heuristics without holding
  1034. * any task-queue locks at all. We'll only try to get
  1035. * the runqueue lock when things look like they will
  1036. * work out!
  1037. */
  1038. rq = task_rq(p);
  1039. /*
  1040. * If the task is actively running on another CPU
  1041. * still, just relax and busy-wait without holding
  1042. * any locks.
  1043. *
  1044. * NOTE! Since we don't hold any locks, it's not
  1045. * even sure that "rq" stays as the right runqueue!
  1046. * But we don't care, since "task_running()" will
  1047. * return false if the runqueue has changed and p
  1048. * is actually now running somewhere else!
  1049. */
  1050. while (task_running(rq, p)) {
  1051. if (match_state && unlikely(p->state != match_state))
  1052. return 0;
  1053. cpu_relax();
  1054. }
  1055. /*
  1056. * Ok, time to look more closely! We need the rq
  1057. * lock now, to be *sure*. If we're wrong, we'll
  1058. * just go back and repeat.
  1059. */
  1060. rq = task_rq_lock(p, &flags);
  1061. trace_sched_wait_task(p);
  1062. running = task_running(rq, p);
  1063. queued = task_on_rq_queued(p);
  1064. ncsw = 0;
  1065. if (!match_state || p->state == match_state)
  1066. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1067. task_rq_unlock(rq, p, &flags);
  1068. /*
  1069. * If it changed from the expected state, bail out now.
  1070. */
  1071. if (unlikely(!ncsw))
  1072. break;
  1073. /*
  1074. * Was it really running after all now that we
  1075. * checked with the proper locks actually held?
  1076. *
  1077. * Oops. Go back and try again..
  1078. */
  1079. if (unlikely(running)) {
  1080. cpu_relax();
  1081. continue;
  1082. }
  1083. /*
  1084. * It's not enough that it's not actively running,
  1085. * it must be off the runqueue _entirely_, and not
  1086. * preempted!
  1087. *
  1088. * So if it was still runnable (but just not actively
  1089. * running right now), it's preempted, and we should
  1090. * yield - it could be a while.
  1091. */
  1092. if (unlikely(queued)) {
  1093. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1094. set_current_state(TASK_UNINTERRUPTIBLE);
  1095. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1096. continue;
  1097. }
  1098. /*
  1099. * Ahh, all good. It wasn't running, and it wasn't
  1100. * runnable, which means that it will never become
  1101. * running in the future either. We're all done!
  1102. */
  1103. break;
  1104. }
  1105. return ncsw;
  1106. }
  1107. /***
  1108. * kick_process - kick a running thread to enter/exit the kernel
  1109. * @p: the to-be-kicked thread
  1110. *
  1111. * Cause a process which is running on another CPU to enter
  1112. * kernel-mode, without any delay. (to get signals handled.)
  1113. *
  1114. * NOTE: this function doesn't have to take the runqueue lock,
  1115. * because all it wants to ensure is that the remote task enters
  1116. * the kernel. If the IPI races and the task has been migrated
  1117. * to another CPU then no harm is done and the purpose has been
  1118. * achieved as well.
  1119. */
  1120. void kick_process(struct task_struct *p)
  1121. {
  1122. int cpu;
  1123. preempt_disable();
  1124. cpu = task_cpu(p);
  1125. if ((cpu != smp_processor_id()) && task_curr(p))
  1126. smp_send_reschedule(cpu);
  1127. preempt_enable();
  1128. }
  1129. EXPORT_SYMBOL_GPL(kick_process);
  1130. #endif /* CONFIG_SMP */
  1131. #ifdef CONFIG_SMP
  1132. /*
  1133. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1134. */
  1135. static int select_fallback_rq(int cpu, struct task_struct *p)
  1136. {
  1137. int nid = cpu_to_node(cpu);
  1138. const struct cpumask *nodemask = NULL;
  1139. enum { cpuset, possible, fail } state = cpuset;
  1140. int dest_cpu;
  1141. /*
  1142. * If the node that the cpu is on has been offlined, cpu_to_node()
  1143. * will return -1. There is no cpu on the node, and we should
  1144. * select the cpu on the other node.
  1145. */
  1146. if (nid != -1) {
  1147. nodemask = cpumask_of_node(nid);
  1148. /* Look for allowed, online CPU in same node. */
  1149. for_each_cpu(dest_cpu, nodemask) {
  1150. if (!cpu_online(dest_cpu))
  1151. continue;
  1152. if (!cpu_active(dest_cpu))
  1153. continue;
  1154. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1155. return dest_cpu;
  1156. }
  1157. }
  1158. for (;;) {
  1159. /* Any allowed, online CPU? */
  1160. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1161. if (!cpu_online(dest_cpu))
  1162. continue;
  1163. if (!cpu_active(dest_cpu))
  1164. continue;
  1165. goto out;
  1166. }
  1167. switch (state) {
  1168. case cpuset:
  1169. /* No more Mr. Nice Guy. */
  1170. cpuset_cpus_allowed_fallback(p);
  1171. state = possible;
  1172. break;
  1173. case possible:
  1174. do_set_cpus_allowed(p, cpu_possible_mask);
  1175. state = fail;
  1176. break;
  1177. case fail:
  1178. BUG();
  1179. break;
  1180. }
  1181. }
  1182. out:
  1183. if (state != cpuset) {
  1184. /*
  1185. * Don't tell them about moving exiting tasks or
  1186. * kernel threads (both mm NULL), since they never
  1187. * leave kernel.
  1188. */
  1189. if (p->mm && printk_ratelimit()) {
  1190. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1191. task_pid_nr(p), p->comm, cpu);
  1192. }
  1193. }
  1194. return dest_cpu;
  1195. }
  1196. /*
  1197. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1198. */
  1199. static inline
  1200. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1201. {
  1202. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1203. /*
  1204. * In order not to call set_task_cpu() on a blocking task we need
  1205. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1206. * cpu.
  1207. *
  1208. * Since this is common to all placement strategies, this lives here.
  1209. *
  1210. * [ this allows ->select_task() to simply return task_cpu(p) and
  1211. * not worry about this generic constraint ]
  1212. */
  1213. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1214. !cpu_online(cpu)))
  1215. cpu = select_fallback_rq(task_cpu(p), p);
  1216. return cpu;
  1217. }
  1218. static void update_avg(u64 *avg, u64 sample)
  1219. {
  1220. s64 diff = sample - *avg;
  1221. *avg += diff >> 3;
  1222. }
  1223. #endif
  1224. static void
  1225. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1226. {
  1227. #ifdef CONFIG_SCHEDSTATS
  1228. struct rq *rq = this_rq();
  1229. #ifdef CONFIG_SMP
  1230. int this_cpu = smp_processor_id();
  1231. if (cpu == this_cpu) {
  1232. schedstat_inc(rq, ttwu_local);
  1233. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1234. } else {
  1235. struct sched_domain *sd;
  1236. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1237. rcu_read_lock();
  1238. for_each_domain(this_cpu, sd) {
  1239. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1240. schedstat_inc(sd, ttwu_wake_remote);
  1241. break;
  1242. }
  1243. }
  1244. rcu_read_unlock();
  1245. }
  1246. if (wake_flags & WF_MIGRATED)
  1247. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1248. #endif /* CONFIG_SMP */
  1249. schedstat_inc(rq, ttwu_count);
  1250. schedstat_inc(p, se.statistics.nr_wakeups);
  1251. if (wake_flags & WF_SYNC)
  1252. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1253. #endif /* CONFIG_SCHEDSTATS */
  1254. }
  1255. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1256. {
  1257. activate_task(rq, p, en_flags);
  1258. p->on_rq = TASK_ON_RQ_QUEUED;
  1259. /* if a worker is waking up, notify workqueue */
  1260. if (p->flags & PF_WQ_WORKER)
  1261. wq_worker_waking_up(p, cpu_of(rq));
  1262. }
  1263. /*
  1264. * Mark the task runnable and perform wakeup-preemption.
  1265. */
  1266. static void
  1267. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1268. {
  1269. check_preempt_curr(rq, p, wake_flags);
  1270. trace_sched_wakeup(p, true);
  1271. p->state = TASK_RUNNING;
  1272. #ifdef CONFIG_SMP
  1273. if (p->sched_class->task_woken)
  1274. p->sched_class->task_woken(rq, p);
  1275. if (rq->idle_stamp) {
  1276. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1277. u64 max = 2*rq->max_idle_balance_cost;
  1278. update_avg(&rq->avg_idle, delta);
  1279. if (rq->avg_idle > max)
  1280. rq->avg_idle = max;
  1281. rq->idle_stamp = 0;
  1282. }
  1283. #endif
  1284. }
  1285. static void
  1286. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1287. {
  1288. #ifdef CONFIG_SMP
  1289. if (p->sched_contributes_to_load)
  1290. rq->nr_uninterruptible--;
  1291. #endif
  1292. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1293. ttwu_do_wakeup(rq, p, wake_flags);
  1294. }
  1295. /*
  1296. * Called in case the task @p isn't fully descheduled from its runqueue,
  1297. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1298. * since all we need to do is flip p->state to TASK_RUNNING, since
  1299. * the task is still ->on_rq.
  1300. */
  1301. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1302. {
  1303. struct rq *rq;
  1304. int ret = 0;
  1305. rq = __task_rq_lock(p);
  1306. if (task_on_rq_queued(p)) {
  1307. /* check_preempt_curr() may use rq clock */
  1308. update_rq_clock(rq);
  1309. ttwu_do_wakeup(rq, p, wake_flags);
  1310. ret = 1;
  1311. }
  1312. __task_rq_unlock(rq);
  1313. return ret;
  1314. }
  1315. #ifdef CONFIG_SMP
  1316. void sched_ttwu_pending(void)
  1317. {
  1318. struct rq *rq = this_rq();
  1319. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1320. struct task_struct *p;
  1321. unsigned long flags;
  1322. if (!llist)
  1323. return;
  1324. raw_spin_lock_irqsave(&rq->lock, flags);
  1325. while (llist) {
  1326. p = llist_entry(llist, struct task_struct, wake_entry);
  1327. llist = llist_next(llist);
  1328. ttwu_do_activate(rq, p, 0);
  1329. }
  1330. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1331. }
  1332. void scheduler_ipi(void)
  1333. {
  1334. /*
  1335. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1336. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1337. * this IPI.
  1338. */
  1339. preempt_fold_need_resched();
  1340. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1341. return;
  1342. /*
  1343. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1344. * traditionally all their work was done from the interrupt return
  1345. * path. Now that we actually do some work, we need to make sure
  1346. * we do call them.
  1347. *
  1348. * Some archs already do call them, luckily irq_enter/exit nest
  1349. * properly.
  1350. *
  1351. * Arguably we should visit all archs and update all handlers,
  1352. * however a fair share of IPIs are still resched only so this would
  1353. * somewhat pessimize the simple resched case.
  1354. */
  1355. irq_enter();
  1356. sched_ttwu_pending();
  1357. /*
  1358. * Check if someone kicked us for doing the nohz idle load balance.
  1359. */
  1360. if (unlikely(got_nohz_idle_kick())) {
  1361. this_rq()->idle_balance = 1;
  1362. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1363. }
  1364. irq_exit();
  1365. }
  1366. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1367. {
  1368. struct rq *rq = cpu_rq(cpu);
  1369. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1370. if (!set_nr_if_polling(rq->idle))
  1371. smp_send_reschedule(cpu);
  1372. else
  1373. trace_sched_wake_idle_without_ipi(cpu);
  1374. }
  1375. }
  1376. void wake_up_if_idle(int cpu)
  1377. {
  1378. struct rq *rq = cpu_rq(cpu);
  1379. unsigned long flags;
  1380. if (!is_idle_task(rq->curr))
  1381. return;
  1382. if (set_nr_if_polling(rq->idle)) {
  1383. trace_sched_wake_idle_without_ipi(cpu);
  1384. } else {
  1385. raw_spin_lock_irqsave(&rq->lock, flags);
  1386. if (is_idle_task(rq->curr))
  1387. smp_send_reschedule(cpu);
  1388. /* Else cpu is not in idle, do nothing here */
  1389. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1390. }
  1391. }
  1392. bool cpus_share_cache(int this_cpu, int that_cpu)
  1393. {
  1394. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1395. }
  1396. #endif /* CONFIG_SMP */
  1397. static void ttwu_queue(struct task_struct *p, int cpu)
  1398. {
  1399. struct rq *rq = cpu_rq(cpu);
  1400. #if defined(CONFIG_SMP)
  1401. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1402. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1403. ttwu_queue_remote(p, cpu);
  1404. return;
  1405. }
  1406. #endif
  1407. raw_spin_lock(&rq->lock);
  1408. ttwu_do_activate(rq, p, 0);
  1409. raw_spin_unlock(&rq->lock);
  1410. }
  1411. /**
  1412. * try_to_wake_up - wake up a thread
  1413. * @p: the thread to be awakened
  1414. * @state: the mask of task states that can be woken
  1415. * @wake_flags: wake modifier flags (WF_*)
  1416. *
  1417. * Put it on the run-queue if it's not already there. The "current"
  1418. * thread is always on the run-queue (except when the actual
  1419. * re-schedule is in progress), and as such you're allowed to do
  1420. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1421. * runnable without the overhead of this.
  1422. *
  1423. * Return: %true if @p was woken up, %false if it was already running.
  1424. * or @state didn't match @p's state.
  1425. */
  1426. static int
  1427. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1428. {
  1429. unsigned long flags;
  1430. int cpu, success = 0;
  1431. /*
  1432. * If we are going to wake up a thread waiting for CONDITION we
  1433. * need to ensure that CONDITION=1 done by the caller can not be
  1434. * reordered with p->state check below. This pairs with mb() in
  1435. * set_current_state() the waiting thread does.
  1436. */
  1437. smp_mb__before_spinlock();
  1438. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1439. if (!(p->state & state))
  1440. goto out;
  1441. success = 1; /* we're going to change ->state */
  1442. cpu = task_cpu(p);
  1443. if (p->on_rq && ttwu_remote(p, wake_flags))
  1444. goto stat;
  1445. #ifdef CONFIG_SMP
  1446. /*
  1447. * If the owning (remote) cpu is still in the middle of schedule() with
  1448. * this task as prev, wait until its done referencing the task.
  1449. */
  1450. while (p->on_cpu)
  1451. cpu_relax();
  1452. /*
  1453. * Pairs with the smp_wmb() in finish_lock_switch().
  1454. */
  1455. smp_rmb();
  1456. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1457. p->state = TASK_WAKING;
  1458. if (p->sched_class->task_waking)
  1459. p->sched_class->task_waking(p);
  1460. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1461. if (task_cpu(p) != cpu) {
  1462. wake_flags |= WF_MIGRATED;
  1463. set_task_cpu(p, cpu);
  1464. }
  1465. #endif /* CONFIG_SMP */
  1466. ttwu_queue(p, cpu);
  1467. stat:
  1468. ttwu_stat(p, cpu, wake_flags);
  1469. out:
  1470. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1471. return success;
  1472. }
  1473. /**
  1474. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1475. * @p: the thread to be awakened
  1476. *
  1477. * Put @p on the run-queue if it's not already there. The caller must
  1478. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1479. * the current task.
  1480. */
  1481. static void try_to_wake_up_local(struct task_struct *p)
  1482. {
  1483. struct rq *rq = task_rq(p);
  1484. if (WARN_ON_ONCE(rq != this_rq()) ||
  1485. WARN_ON_ONCE(p == current))
  1486. return;
  1487. lockdep_assert_held(&rq->lock);
  1488. if (!raw_spin_trylock(&p->pi_lock)) {
  1489. raw_spin_unlock(&rq->lock);
  1490. raw_spin_lock(&p->pi_lock);
  1491. raw_spin_lock(&rq->lock);
  1492. }
  1493. if (!(p->state & TASK_NORMAL))
  1494. goto out;
  1495. if (!task_on_rq_queued(p))
  1496. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1497. ttwu_do_wakeup(rq, p, 0);
  1498. ttwu_stat(p, smp_processor_id(), 0);
  1499. out:
  1500. raw_spin_unlock(&p->pi_lock);
  1501. }
  1502. /**
  1503. * wake_up_process - Wake up a specific process
  1504. * @p: The process to be woken up.
  1505. *
  1506. * Attempt to wake up the nominated process and move it to the set of runnable
  1507. * processes.
  1508. *
  1509. * Return: 1 if the process was woken up, 0 if it was already running.
  1510. *
  1511. * It may be assumed that this function implies a write memory barrier before
  1512. * changing the task state if and only if any tasks are woken up.
  1513. */
  1514. int wake_up_process(struct task_struct *p)
  1515. {
  1516. WARN_ON(task_is_stopped_or_traced(p));
  1517. return try_to_wake_up(p, TASK_NORMAL, 0);
  1518. }
  1519. EXPORT_SYMBOL(wake_up_process);
  1520. int wake_up_state(struct task_struct *p, unsigned int state)
  1521. {
  1522. return try_to_wake_up(p, state, 0);
  1523. }
  1524. /*
  1525. * This function clears the sched_dl_entity static params.
  1526. */
  1527. void __dl_clear_params(struct task_struct *p)
  1528. {
  1529. struct sched_dl_entity *dl_se = &p->dl;
  1530. dl_se->dl_runtime = 0;
  1531. dl_se->dl_deadline = 0;
  1532. dl_se->dl_period = 0;
  1533. dl_se->flags = 0;
  1534. dl_se->dl_bw = 0;
  1535. }
  1536. /*
  1537. * Perform scheduler related setup for a newly forked process p.
  1538. * p is forked by current.
  1539. *
  1540. * __sched_fork() is basic setup used by init_idle() too:
  1541. */
  1542. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1543. {
  1544. p->on_rq = 0;
  1545. p->se.on_rq = 0;
  1546. p->se.exec_start = 0;
  1547. p->se.sum_exec_runtime = 0;
  1548. p->se.prev_sum_exec_runtime = 0;
  1549. p->se.nr_migrations = 0;
  1550. p->se.vruntime = 0;
  1551. INIT_LIST_HEAD(&p->se.group_node);
  1552. #ifdef CONFIG_SCHEDSTATS
  1553. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1554. #endif
  1555. RB_CLEAR_NODE(&p->dl.rb_node);
  1556. hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1557. __dl_clear_params(p);
  1558. INIT_LIST_HEAD(&p->rt.run_list);
  1559. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1560. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1561. #endif
  1562. #ifdef CONFIG_NUMA_BALANCING
  1563. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1564. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1565. p->mm->numa_scan_seq = 0;
  1566. }
  1567. if (clone_flags & CLONE_VM)
  1568. p->numa_preferred_nid = current->numa_preferred_nid;
  1569. else
  1570. p->numa_preferred_nid = -1;
  1571. p->node_stamp = 0ULL;
  1572. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1573. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1574. p->numa_work.next = &p->numa_work;
  1575. p->numa_faults_memory = NULL;
  1576. p->numa_faults_buffer_memory = NULL;
  1577. p->last_task_numa_placement = 0;
  1578. p->last_sum_exec_runtime = 0;
  1579. INIT_LIST_HEAD(&p->numa_entry);
  1580. p->numa_group = NULL;
  1581. #endif /* CONFIG_NUMA_BALANCING */
  1582. }
  1583. #ifdef CONFIG_NUMA_BALANCING
  1584. #ifdef CONFIG_SCHED_DEBUG
  1585. void set_numabalancing_state(bool enabled)
  1586. {
  1587. if (enabled)
  1588. sched_feat_set("NUMA");
  1589. else
  1590. sched_feat_set("NO_NUMA");
  1591. }
  1592. #else
  1593. __read_mostly bool numabalancing_enabled;
  1594. void set_numabalancing_state(bool enabled)
  1595. {
  1596. numabalancing_enabled = enabled;
  1597. }
  1598. #endif /* CONFIG_SCHED_DEBUG */
  1599. #ifdef CONFIG_PROC_SYSCTL
  1600. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1601. void __user *buffer, size_t *lenp, loff_t *ppos)
  1602. {
  1603. struct ctl_table t;
  1604. int err;
  1605. int state = numabalancing_enabled;
  1606. if (write && !capable(CAP_SYS_ADMIN))
  1607. return -EPERM;
  1608. t = *table;
  1609. t.data = &state;
  1610. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1611. if (err < 0)
  1612. return err;
  1613. if (write)
  1614. set_numabalancing_state(state);
  1615. return err;
  1616. }
  1617. #endif
  1618. #endif
  1619. /*
  1620. * fork()/clone()-time setup:
  1621. */
  1622. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1623. {
  1624. unsigned long flags;
  1625. int cpu = get_cpu();
  1626. __sched_fork(clone_flags, p);
  1627. /*
  1628. * We mark the process as running here. This guarantees that
  1629. * nobody will actually run it, and a signal or other external
  1630. * event cannot wake it up and insert it on the runqueue either.
  1631. */
  1632. p->state = TASK_RUNNING;
  1633. /*
  1634. * Make sure we do not leak PI boosting priority to the child.
  1635. */
  1636. p->prio = current->normal_prio;
  1637. /*
  1638. * Revert to default priority/policy on fork if requested.
  1639. */
  1640. if (unlikely(p->sched_reset_on_fork)) {
  1641. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1642. p->policy = SCHED_NORMAL;
  1643. p->static_prio = NICE_TO_PRIO(0);
  1644. p->rt_priority = 0;
  1645. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1646. p->static_prio = NICE_TO_PRIO(0);
  1647. p->prio = p->normal_prio = __normal_prio(p);
  1648. set_load_weight(p);
  1649. /*
  1650. * We don't need the reset flag anymore after the fork. It has
  1651. * fulfilled its duty:
  1652. */
  1653. p->sched_reset_on_fork = 0;
  1654. }
  1655. if (dl_prio(p->prio)) {
  1656. put_cpu();
  1657. return -EAGAIN;
  1658. } else if (rt_prio(p->prio)) {
  1659. p->sched_class = &rt_sched_class;
  1660. } else {
  1661. p->sched_class = &fair_sched_class;
  1662. }
  1663. if (p->sched_class->task_fork)
  1664. p->sched_class->task_fork(p);
  1665. /*
  1666. * The child is not yet in the pid-hash so no cgroup attach races,
  1667. * and the cgroup is pinned to this child due to cgroup_fork()
  1668. * is ran before sched_fork().
  1669. *
  1670. * Silence PROVE_RCU.
  1671. */
  1672. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1673. set_task_cpu(p, cpu);
  1674. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1675. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1676. if (likely(sched_info_on()))
  1677. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1678. #endif
  1679. #if defined(CONFIG_SMP)
  1680. p->on_cpu = 0;
  1681. #endif
  1682. init_task_preempt_count(p);
  1683. #ifdef CONFIG_SMP
  1684. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1685. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1686. #endif
  1687. put_cpu();
  1688. return 0;
  1689. }
  1690. unsigned long to_ratio(u64 period, u64 runtime)
  1691. {
  1692. if (runtime == RUNTIME_INF)
  1693. return 1ULL << 20;
  1694. /*
  1695. * Doing this here saves a lot of checks in all
  1696. * the calling paths, and returning zero seems
  1697. * safe for them anyway.
  1698. */
  1699. if (period == 0)
  1700. return 0;
  1701. return div64_u64(runtime << 20, period);
  1702. }
  1703. #ifdef CONFIG_SMP
  1704. inline struct dl_bw *dl_bw_of(int i)
  1705. {
  1706. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1707. "sched RCU must be held");
  1708. return &cpu_rq(i)->rd->dl_bw;
  1709. }
  1710. static inline int dl_bw_cpus(int i)
  1711. {
  1712. struct root_domain *rd = cpu_rq(i)->rd;
  1713. int cpus = 0;
  1714. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1715. "sched RCU must be held");
  1716. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1717. cpus++;
  1718. return cpus;
  1719. }
  1720. #else
  1721. inline struct dl_bw *dl_bw_of(int i)
  1722. {
  1723. return &cpu_rq(i)->dl.dl_bw;
  1724. }
  1725. static inline int dl_bw_cpus(int i)
  1726. {
  1727. return 1;
  1728. }
  1729. #endif
  1730. static inline
  1731. void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
  1732. {
  1733. dl_b->total_bw -= tsk_bw;
  1734. }
  1735. static inline
  1736. void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
  1737. {
  1738. dl_b->total_bw += tsk_bw;
  1739. }
  1740. static inline
  1741. bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
  1742. {
  1743. return dl_b->bw != -1 &&
  1744. dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
  1745. }
  1746. /*
  1747. * We must be sure that accepting a new task (or allowing changing the
  1748. * parameters of an existing one) is consistent with the bandwidth
  1749. * constraints. If yes, this function also accordingly updates the currently
  1750. * allocated bandwidth to reflect the new situation.
  1751. *
  1752. * This function is called while holding p's rq->lock.
  1753. */
  1754. static int dl_overflow(struct task_struct *p, int policy,
  1755. const struct sched_attr *attr)
  1756. {
  1757. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1758. u64 period = attr->sched_period ?: attr->sched_deadline;
  1759. u64 runtime = attr->sched_runtime;
  1760. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1761. int cpus, err = -1;
  1762. if (new_bw == p->dl.dl_bw)
  1763. return 0;
  1764. /*
  1765. * Either if a task, enters, leave, or stays -deadline but changes
  1766. * its parameters, we may need to update accordingly the total
  1767. * allocated bandwidth of the container.
  1768. */
  1769. raw_spin_lock(&dl_b->lock);
  1770. cpus = dl_bw_cpus(task_cpu(p));
  1771. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1772. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1773. __dl_add(dl_b, new_bw);
  1774. err = 0;
  1775. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1776. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1777. __dl_clear(dl_b, p->dl.dl_bw);
  1778. __dl_add(dl_b, new_bw);
  1779. err = 0;
  1780. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1781. __dl_clear(dl_b, p->dl.dl_bw);
  1782. err = 0;
  1783. }
  1784. raw_spin_unlock(&dl_b->lock);
  1785. return err;
  1786. }
  1787. extern void init_dl_bw(struct dl_bw *dl_b);
  1788. /*
  1789. * wake_up_new_task - wake up a newly created task for the first time.
  1790. *
  1791. * This function will do some initial scheduler statistics housekeeping
  1792. * that must be done for every newly created context, then puts the task
  1793. * on the runqueue and wakes it.
  1794. */
  1795. void wake_up_new_task(struct task_struct *p)
  1796. {
  1797. unsigned long flags;
  1798. struct rq *rq;
  1799. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1800. #ifdef CONFIG_SMP
  1801. /*
  1802. * Fork balancing, do it here and not earlier because:
  1803. * - cpus_allowed can change in the fork path
  1804. * - any previously selected cpu might disappear through hotplug
  1805. */
  1806. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1807. #endif
  1808. /* Initialize new task's runnable average */
  1809. init_task_runnable_average(p);
  1810. rq = __task_rq_lock(p);
  1811. activate_task(rq, p, 0);
  1812. p->on_rq = TASK_ON_RQ_QUEUED;
  1813. trace_sched_wakeup_new(p, true);
  1814. check_preempt_curr(rq, p, WF_FORK);
  1815. #ifdef CONFIG_SMP
  1816. if (p->sched_class->task_woken)
  1817. p->sched_class->task_woken(rq, p);
  1818. #endif
  1819. task_rq_unlock(rq, p, &flags);
  1820. }
  1821. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1822. /**
  1823. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1824. * @notifier: notifier struct to register
  1825. */
  1826. void preempt_notifier_register(struct preempt_notifier *notifier)
  1827. {
  1828. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1829. }
  1830. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1831. /**
  1832. * preempt_notifier_unregister - no longer interested in preemption notifications
  1833. * @notifier: notifier struct to unregister
  1834. *
  1835. * This is safe to call from within a preemption notifier.
  1836. */
  1837. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1838. {
  1839. hlist_del(&notifier->link);
  1840. }
  1841. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1842. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1843. {
  1844. struct preempt_notifier *notifier;
  1845. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1846. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1847. }
  1848. static void
  1849. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1850. struct task_struct *next)
  1851. {
  1852. struct preempt_notifier *notifier;
  1853. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1854. notifier->ops->sched_out(notifier, next);
  1855. }
  1856. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1857. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1858. {
  1859. }
  1860. static void
  1861. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1862. struct task_struct *next)
  1863. {
  1864. }
  1865. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1866. /**
  1867. * prepare_task_switch - prepare to switch tasks
  1868. * @rq: the runqueue preparing to switch
  1869. * @prev: the current task that is being switched out
  1870. * @next: the task we are going to switch to.
  1871. *
  1872. * This is called with the rq lock held and interrupts off. It must
  1873. * be paired with a subsequent finish_task_switch after the context
  1874. * switch.
  1875. *
  1876. * prepare_task_switch sets up locking and calls architecture specific
  1877. * hooks.
  1878. */
  1879. static inline void
  1880. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1881. struct task_struct *next)
  1882. {
  1883. trace_sched_switch(prev, next);
  1884. sched_info_switch(rq, prev, next);
  1885. perf_event_task_sched_out(prev, next);
  1886. fire_sched_out_preempt_notifiers(prev, next);
  1887. prepare_lock_switch(rq, next);
  1888. prepare_arch_switch(next);
  1889. }
  1890. /**
  1891. * finish_task_switch - clean up after a task-switch
  1892. * @rq: runqueue associated with task-switch
  1893. * @prev: the thread we just switched away from.
  1894. *
  1895. * finish_task_switch must be called after the context switch, paired
  1896. * with a prepare_task_switch call before the context switch.
  1897. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1898. * and do any other architecture-specific cleanup actions.
  1899. *
  1900. * Note that we may have delayed dropping an mm in context_switch(). If
  1901. * so, we finish that here outside of the runqueue lock. (Doing it
  1902. * with the lock held can cause deadlocks; see schedule() for
  1903. * details.)
  1904. */
  1905. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1906. __releases(rq->lock)
  1907. {
  1908. struct mm_struct *mm = rq->prev_mm;
  1909. long prev_state;
  1910. rq->prev_mm = NULL;
  1911. /*
  1912. * A task struct has one reference for the use as "current".
  1913. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1914. * schedule one last time. The schedule call will never return, and
  1915. * the scheduled task must drop that reference.
  1916. * The test for TASK_DEAD must occur while the runqueue locks are
  1917. * still held, otherwise prev could be scheduled on another cpu, die
  1918. * there before we look at prev->state, and then the reference would
  1919. * be dropped twice.
  1920. * Manfred Spraul <manfred@colorfullife.com>
  1921. */
  1922. prev_state = prev->state;
  1923. vtime_task_switch(prev);
  1924. finish_arch_switch(prev);
  1925. perf_event_task_sched_in(prev, current);
  1926. finish_lock_switch(rq, prev);
  1927. finish_arch_post_lock_switch();
  1928. fire_sched_in_preempt_notifiers(current);
  1929. if (mm)
  1930. mmdrop(mm);
  1931. if (unlikely(prev_state == TASK_DEAD)) {
  1932. if (prev->sched_class->task_dead)
  1933. prev->sched_class->task_dead(prev);
  1934. /*
  1935. * Remove function-return probe instances associated with this
  1936. * task and put them back on the free list.
  1937. */
  1938. kprobe_flush_task(prev);
  1939. put_task_struct(prev);
  1940. }
  1941. tick_nohz_task_switch(current);
  1942. }
  1943. #ifdef CONFIG_SMP
  1944. /* rq->lock is NOT held, but preemption is disabled */
  1945. static inline void post_schedule(struct rq *rq)
  1946. {
  1947. if (rq->post_schedule) {
  1948. unsigned long flags;
  1949. raw_spin_lock_irqsave(&rq->lock, flags);
  1950. if (rq->curr->sched_class->post_schedule)
  1951. rq->curr->sched_class->post_schedule(rq);
  1952. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1953. rq->post_schedule = 0;
  1954. }
  1955. }
  1956. #else
  1957. static inline void post_schedule(struct rq *rq)
  1958. {
  1959. }
  1960. #endif
  1961. /**
  1962. * schedule_tail - first thing a freshly forked thread must call.
  1963. * @prev: the thread we just switched away from.
  1964. */
  1965. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  1966. __releases(rq->lock)
  1967. {
  1968. struct rq *rq = this_rq();
  1969. finish_task_switch(rq, prev);
  1970. /*
  1971. * FIXME: do we need to worry about rq being invalidated by the
  1972. * task_switch?
  1973. */
  1974. post_schedule(rq);
  1975. if (current->set_child_tid)
  1976. put_user(task_pid_vnr(current), current->set_child_tid);
  1977. }
  1978. /*
  1979. * context_switch - switch to the new MM and the new
  1980. * thread's register state.
  1981. */
  1982. static inline void
  1983. context_switch(struct rq *rq, struct task_struct *prev,
  1984. struct task_struct *next)
  1985. {
  1986. struct mm_struct *mm, *oldmm;
  1987. prepare_task_switch(rq, prev, next);
  1988. mm = next->mm;
  1989. oldmm = prev->active_mm;
  1990. /*
  1991. * For paravirt, this is coupled with an exit in switch_to to
  1992. * combine the page table reload and the switch backend into
  1993. * one hypercall.
  1994. */
  1995. arch_start_context_switch(prev);
  1996. if (!mm) {
  1997. next->active_mm = oldmm;
  1998. atomic_inc(&oldmm->mm_count);
  1999. enter_lazy_tlb(oldmm, next);
  2000. } else
  2001. switch_mm(oldmm, mm, next);
  2002. if (!prev->mm) {
  2003. prev->active_mm = NULL;
  2004. rq->prev_mm = oldmm;
  2005. }
  2006. /*
  2007. * Since the runqueue lock will be released by the next
  2008. * task (which is an invalid locking op but in the case
  2009. * of the scheduler it's an obvious special-case), so we
  2010. * do an early lockdep release here:
  2011. */
  2012. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2013. context_tracking_task_switch(prev, next);
  2014. /* Here we just switch the register state and the stack. */
  2015. switch_to(prev, next, prev);
  2016. barrier();
  2017. /*
  2018. * this_rq must be evaluated again because prev may have moved
  2019. * CPUs since it called schedule(), thus the 'rq' on its stack
  2020. * frame will be invalid.
  2021. */
  2022. finish_task_switch(this_rq(), prev);
  2023. }
  2024. /*
  2025. * nr_running and nr_context_switches:
  2026. *
  2027. * externally visible scheduler statistics: current number of runnable
  2028. * threads, total number of context switches performed since bootup.
  2029. */
  2030. unsigned long nr_running(void)
  2031. {
  2032. unsigned long i, sum = 0;
  2033. for_each_online_cpu(i)
  2034. sum += cpu_rq(i)->nr_running;
  2035. return sum;
  2036. }
  2037. /*
  2038. * Check if only the current task is running on the cpu.
  2039. */
  2040. bool single_task_running(void)
  2041. {
  2042. if (cpu_rq(smp_processor_id())->nr_running == 1)
  2043. return true;
  2044. else
  2045. return false;
  2046. }
  2047. EXPORT_SYMBOL(single_task_running);
  2048. unsigned long long nr_context_switches(void)
  2049. {
  2050. int i;
  2051. unsigned long long sum = 0;
  2052. for_each_possible_cpu(i)
  2053. sum += cpu_rq(i)->nr_switches;
  2054. return sum;
  2055. }
  2056. unsigned long nr_iowait(void)
  2057. {
  2058. unsigned long i, sum = 0;
  2059. for_each_possible_cpu(i)
  2060. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2061. return sum;
  2062. }
  2063. unsigned long nr_iowait_cpu(int cpu)
  2064. {
  2065. struct rq *this = cpu_rq(cpu);
  2066. return atomic_read(&this->nr_iowait);
  2067. }
  2068. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2069. {
  2070. struct rq *this = this_rq();
  2071. *nr_waiters = atomic_read(&this->nr_iowait);
  2072. *load = this->cpu_load[0];
  2073. }
  2074. #ifdef CONFIG_SMP
  2075. /*
  2076. * sched_exec - execve() is a valuable balancing opportunity, because at
  2077. * this point the task has the smallest effective memory and cache footprint.
  2078. */
  2079. void sched_exec(void)
  2080. {
  2081. struct task_struct *p = current;
  2082. unsigned long flags;
  2083. int dest_cpu;
  2084. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2085. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2086. if (dest_cpu == smp_processor_id())
  2087. goto unlock;
  2088. if (likely(cpu_active(dest_cpu))) {
  2089. struct migration_arg arg = { p, dest_cpu };
  2090. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2091. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2092. return;
  2093. }
  2094. unlock:
  2095. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2096. }
  2097. #endif
  2098. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2099. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2100. EXPORT_PER_CPU_SYMBOL(kstat);
  2101. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2102. /*
  2103. * Return accounted runtime for the task.
  2104. * In case the task is currently running, return the runtime plus current's
  2105. * pending runtime that have not been accounted yet.
  2106. */
  2107. unsigned long long task_sched_runtime(struct task_struct *p)
  2108. {
  2109. unsigned long flags;
  2110. struct rq *rq;
  2111. u64 ns;
  2112. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2113. /*
  2114. * 64-bit doesn't need locks to atomically read a 64bit value.
  2115. * So we have a optimization chance when the task's delta_exec is 0.
  2116. * Reading ->on_cpu is racy, but this is ok.
  2117. *
  2118. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2119. * If we race with it entering cpu, unaccounted time is 0. This is
  2120. * indistinguishable from the read occurring a few cycles earlier.
  2121. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2122. * been accounted, so we're correct here as well.
  2123. */
  2124. if (!p->on_cpu || !task_on_rq_queued(p))
  2125. return p->se.sum_exec_runtime;
  2126. #endif
  2127. rq = task_rq_lock(p, &flags);
  2128. /*
  2129. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2130. * project cycles that may never be accounted to this
  2131. * thread, breaking clock_gettime().
  2132. */
  2133. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2134. update_rq_clock(rq);
  2135. p->sched_class->update_curr(rq);
  2136. }
  2137. ns = p->se.sum_exec_runtime;
  2138. task_rq_unlock(rq, p, &flags);
  2139. return ns;
  2140. }
  2141. /*
  2142. * This function gets called by the timer code, with HZ frequency.
  2143. * We call it with interrupts disabled.
  2144. */
  2145. void scheduler_tick(void)
  2146. {
  2147. int cpu = smp_processor_id();
  2148. struct rq *rq = cpu_rq(cpu);
  2149. struct task_struct *curr = rq->curr;
  2150. sched_clock_tick();
  2151. raw_spin_lock(&rq->lock);
  2152. update_rq_clock(rq);
  2153. curr->sched_class->task_tick(rq, curr, 0);
  2154. update_cpu_load_active(rq);
  2155. raw_spin_unlock(&rq->lock);
  2156. perf_event_task_tick();
  2157. #ifdef CONFIG_SMP
  2158. rq->idle_balance = idle_cpu(cpu);
  2159. trigger_load_balance(rq);
  2160. #endif
  2161. rq_last_tick_reset(rq);
  2162. }
  2163. #ifdef CONFIG_NO_HZ_FULL
  2164. /**
  2165. * scheduler_tick_max_deferment
  2166. *
  2167. * Keep at least one tick per second when a single
  2168. * active task is running because the scheduler doesn't
  2169. * yet completely support full dynticks environment.
  2170. *
  2171. * This makes sure that uptime, CFS vruntime, load
  2172. * balancing, etc... continue to move forward, even
  2173. * with a very low granularity.
  2174. *
  2175. * Return: Maximum deferment in nanoseconds.
  2176. */
  2177. u64 scheduler_tick_max_deferment(void)
  2178. {
  2179. struct rq *rq = this_rq();
  2180. unsigned long next, now = ACCESS_ONCE(jiffies);
  2181. next = rq->last_sched_tick + HZ;
  2182. if (time_before_eq(next, now))
  2183. return 0;
  2184. return jiffies_to_nsecs(next - now);
  2185. }
  2186. #endif
  2187. notrace unsigned long get_parent_ip(unsigned long addr)
  2188. {
  2189. if (in_lock_functions(addr)) {
  2190. addr = CALLER_ADDR2;
  2191. if (in_lock_functions(addr))
  2192. addr = CALLER_ADDR3;
  2193. }
  2194. return addr;
  2195. }
  2196. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2197. defined(CONFIG_PREEMPT_TRACER))
  2198. void preempt_count_add(int val)
  2199. {
  2200. #ifdef CONFIG_DEBUG_PREEMPT
  2201. /*
  2202. * Underflow?
  2203. */
  2204. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2205. return;
  2206. #endif
  2207. __preempt_count_add(val);
  2208. #ifdef CONFIG_DEBUG_PREEMPT
  2209. /*
  2210. * Spinlock count overflowing soon?
  2211. */
  2212. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2213. PREEMPT_MASK - 10);
  2214. #endif
  2215. if (preempt_count() == val) {
  2216. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2217. #ifdef CONFIG_DEBUG_PREEMPT
  2218. current->preempt_disable_ip = ip;
  2219. #endif
  2220. trace_preempt_off(CALLER_ADDR0, ip);
  2221. }
  2222. }
  2223. EXPORT_SYMBOL(preempt_count_add);
  2224. NOKPROBE_SYMBOL(preempt_count_add);
  2225. void preempt_count_sub(int val)
  2226. {
  2227. #ifdef CONFIG_DEBUG_PREEMPT
  2228. /*
  2229. * Underflow?
  2230. */
  2231. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2232. return;
  2233. /*
  2234. * Is the spinlock portion underflowing?
  2235. */
  2236. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2237. !(preempt_count() & PREEMPT_MASK)))
  2238. return;
  2239. #endif
  2240. if (preempt_count() == val)
  2241. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2242. __preempt_count_sub(val);
  2243. }
  2244. EXPORT_SYMBOL(preempt_count_sub);
  2245. NOKPROBE_SYMBOL(preempt_count_sub);
  2246. #endif
  2247. /*
  2248. * Print scheduling while atomic bug:
  2249. */
  2250. static noinline void __schedule_bug(struct task_struct *prev)
  2251. {
  2252. if (oops_in_progress)
  2253. return;
  2254. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2255. prev->comm, prev->pid, preempt_count());
  2256. debug_show_held_locks(prev);
  2257. print_modules();
  2258. if (irqs_disabled())
  2259. print_irqtrace_events(prev);
  2260. #ifdef CONFIG_DEBUG_PREEMPT
  2261. if (in_atomic_preempt_off()) {
  2262. pr_err("Preemption disabled at:");
  2263. print_ip_sym(current->preempt_disable_ip);
  2264. pr_cont("\n");
  2265. }
  2266. #endif
  2267. dump_stack();
  2268. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2269. }
  2270. /*
  2271. * Various schedule()-time debugging checks and statistics:
  2272. */
  2273. static inline void schedule_debug(struct task_struct *prev)
  2274. {
  2275. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2276. BUG_ON(unlikely(task_stack_end_corrupted(prev)));
  2277. #endif
  2278. /*
  2279. * Test if we are atomic. Since do_exit() needs to call into
  2280. * schedule() atomically, we ignore that path. Otherwise whine
  2281. * if we are scheduling when we should not.
  2282. */
  2283. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2284. __schedule_bug(prev);
  2285. rcu_sleep_check();
  2286. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2287. schedstat_inc(this_rq(), sched_count);
  2288. }
  2289. /*
  2290. * Pick up the highest-prio task:
  2291. */
  2292. static inline struct task_struct *
  2293. pick_next_task(struct rq *rq, struct task_struct *prev)
  2294. {
  2295. const struct sched_class *class = &fair_sched_class;
  2296. struct task_struct *p;
  2297. /*
  2298. * Optimization: we know that if all tasks are in
  2299. * the fair class we can call that function directly:
  2300. */
  2301. if (likely(prev->sched_class == class &&
  2302. rq->nr_running == rq->cfs.h_nr_running)) {
  2303. p = fair_sched_class.pick_next_task(rq, prev);
  2304. if (unlikely(p == RETRY_TASK))
  2305. goto again;
  2306. /* assumes fair_sched_class->next == idle_sched_class */
  2307. if (unlikely(!p))
  2308. p = idle_sched_class.pick_next_task(rq, prev);
  2309. return p;
  2310. }
  2311. again:
  2312. for_each_class(class) {
  2313. p = class->pick_next_task(rq, prev);
  2314. if (p) {
  2315. if (unlikely(p == RETRY_TASK))
  2316. goto again;
  2317. return p;
  2318. }
  2319. }
  2320. BUG(); /* the idle class will always have a runnable task */
  2321. }
  2322. /*
  2323. * __schedule() is the main scheduler function.
  2324. *
  2325. * The main means of driving the scheduler and thus entering this function are:
  2326. *
  2327. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2328. *
  2329. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2330. * paths. For example, see arch/x86/entry_64.S.
  2331. *
  2332. * To drive preemption between tasks, the scheduler sets the flag in timer
  2333. * interrupt handler scheduler_tick().
  2334. *
  2335. * 3. Wakeups don't really cause entry into schedule(). They add a
  2336. * task to the run-queue and that's it.
  2337. *
  2338. * Now, if the new task added to the run-queue preempts the current
  2339. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2340. * called on the nearest possible occasion:
  2341. *
  2342. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2343. *
  2344. * - in syscall or exception context, at the next outmost
  2345. * preempt_enable(). (this might be as soon as the wake_up()'s
  2346. * spin_unlock()!)
  2347. *
  2348. * - in IRQ context, return from interrupt-handler to
  2349. * preemptible context
  2350. *
  2351. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2352. * then at the next:
  2353. *
  2354. * - cond_resched() call
  2355. * - explicit schedule() call
  2356. * - return from syscall or exception to user-space
  2357. * - return from interrupt-handler to user-space
  2358. */
  2359. static void __sched __schedule(void)
  2360. {
  2361. struct task_struct *prev, *next;
  2362. unsigned long *switch_count;
  2363. struct rq *rq;
  2364. int cpu;
  2365. need_resched:
  2366. preempt_disable();
  2367. cpu = smp_processor_id();
  2368. rq = cpu_rq(cpu);
  2369. rcu_note_context_switch(cpu);
  2370. prev = rq->curr;
  2371. schedule_debug(prev);
  2372. if (sched_feat(HRTICK))
  2373. hrtick_clear(rq);
  2374. /*
  2375. * Make sure that signal_pending_state()->signal_pending() below
  2376. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2377. * done by the caller to avoid the race with signal_wake_up().
  2378. */
  2379. smp_mb__before_spinlock();
  2380. raw_spin_lock_irq(&rq->lock);
  2381. switch_count = &prev->nivcsw;
  2382. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2383. if (unlikely(signal_pending_state(prev->state, prev))) {
  2384. prev->state = TASK_RUNNING;
  2385. } else {
  2386. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2387. prev->on_rq = 0;
  2388. /*
  2389. * If a worker went to sleep, notify and ask workqueue
  2390. * whether it wants to wake up a task to maintain
  2391. * concurrency.
  2392. */
  2393. if (prev->flags & PF_WQ_WORKER) {
  2394. struct task_struct *to_wakeup;
  2395. to_wakeup = wq_worker_sleeping(prev, cpu);
  2396. if (to_wakeup)
  2397. try_to_wake_up_local(to_wakeup);
  2398. }
  2399. }
  2400. switch_count = &prev->nvcsw;
  2401. }
  2402. if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
  2403. update_rq_clock(rq);
  2404. next = pick_next_task(rq, prev);
  2405. clear_tsk_need_resched(prev);
  2406. clear_preempt_need_resched();
  2407. rq->skip_clock_update = 0;
  2408. if (likely(prev != next)) {
  2409. rq->nr_switches++;
  2410. rq->curr = next;
  2411. ++*switch_count;
  2412. context_switch(rq, prev, next); /* unlocks the rq */
  2413. /*
  2414. * The context switch have flipped the stack from under us
  2415. * and restored the local variables which were saved when
  2416. * this task called schedule() in the past. prev == current
  2417. * is still correct, but it can be moved to another cpu/rq.
  2418. */
  2419. cpu = smp_processor_id();
  2420. rq = cpu_rq(cpu);
  2421. } else
  2422. raw_spin_unlock_irq(&rq->lock);
  2423. post_schedule(rq);
  2424. sched_preempt_enable_no_resched();
  2425. if (need_resched())
  2426. goto need_resched;
  2427. }
  2428. static inline void sched_submit_work(struct task_struct *tsk)
  2429. {
  2430. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2431. return;
  2432. /*
  2433. * If we are going to sleep and we have plugged IO queued,
  2434. * make sure to submit it to avoid deadlocks.
  2435. */
  2436. if (blk_needs_flush_plug(tsk))
  2437. blk_schedule_flush_plug(tsk);
  2438. }
  2439. asmlinkage __visible void __sched schedule(void)
  2440. {
  2441. struct task_struct *tsk = current;
  2442. sched_submit_work(tsk);
  2443. __schedule();
  2444. }
  2445. EXPORT_SYMBOL(schedule);
  2446. #ifdef CONFIG_CONTEXT_TRACKING
  2447. asmlinkage __visible void __sched schedule_user(void)
  2448. {
  2449. /*
  2450. * If we come here after a random call to set_need_resched(),
  2451. * or we have been woken up remotely but the IPI has not yet arrived,
  2452. * we haven't yet exited the RCU idle mode. Do it here manually until
  2453. * we find a better solution.
  2454. */
  2455. user_exit();
  2456. schedule();
  2457. user_enter();
  2458. }
  2459. #endif
  2460. /**
  2461. * schedule_preempt_disabled - called with preemption disabled
  2462. *
  2463. * Returns with preemption disabled. Note: preempt_count must be 1
  2464. */
  2465. void __sched schedule_preempt_disabled(void)
  2466. {
  2467. sched_preempt_enable_no_resched();
  2468. schedule();
  2469. preempt_disable();
  2470. }
  2471. #ifdef CONFIG_PREEMPT
  2472. /*
  2473. * this is the entry point to schedule() from in-kernel preemption
  2474. * off of preempt_enable. Kernel preemptions off return from interrupt
  2475. * occur there and call schedule directly.
  2476. */
  2477. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2478. {
  2479. /*
  2480. * If there is a non-zero preempt_count or interrupts are disabled,
  2481. * we do not want to preempt the current task. Just return..
  2482. */
  2483. if (likely(!preemptible()))
  2484. return;
  2485. do {
  2486. __preempt_count_add(PREEMPT_ACTIVE);
  2487. __schedule();
  2488. __preempt_count_sub(PREEMPT_ACTIVE);
  2489. /*
  2490. * Check again in case we missed a preemption opportunity
  2491. * between schedule and now.
  2492. */
  2493. barrier();
  2494. } while (need_resched());
  2495. }
  2496. NOKPROBE_SYMBOL(preempt_schedule);
  2497. EXPORT_SYMBOL(preempt_schedule);
  2498. #ifdef CONFIG_CONTEXT_TRACKING
  2499. /**
  2500. * preempt_schedule_context - preempt_schedule called by tracing
  2501. *
  2502. * The tracing infrastructure uses preempt_enable_notrace to prevent
  2503. * recursion and tracing preempt enabling caused by the tracing
  2504. * infrastructure itself. But as tracing can happen in areas coming
  2505. * from userspace or just about to enter userspace, a preempt enable
  2506. * can occur before user_exit() is called. This will cause the scheduler
  2507. * to be called when the system is still in usermode.
  2508. *
  2509. * To prevent this, the preempt_enable_notrace will use this function
  2510. * instead of preempt_schedule() to exit user context if needed before
  2511. * calling the scheduler.
  2512. */
  2513. asmlinkage __visible void __sched notrace preempt_schedule_context(void)
  2514. {
  2515. enum ctx_state prev_ctx;
  2516. if (likely(!preemptible()))
  2517. return;
  2518. do {
  2519. __preempt_count_add(PREEMPT_ACTIVE);
  2520. /*
  2521. * Needs preempt disabled in case user_exit() is traced
  2522. * and the tracer calls preempt_enable_notrace() causing
  2523. * an infinite recursion.
  2524. */
  2525. prev_ctx = exception_enter();
  2526. __schedule();
  2527. exception_exit(prev_ctx);
  2528. __preempt_count_sub(PREEMPT_ACTIVE);
  2529. barrier();
  2530. } while (need_resched());
  2531. }
  2532. EXPORT_SYMBOL_GPL(preempt_schedule_context);
  2533. #endif /* CONFIG_CONTEXT_TRACKING */
  2534. #endif /* CONFIG_PREEMPT */
  2535. /*
  2536. * this is the entry point to schedule() from kernel preemption
  2537. * off of irq context.
  2538. * Note, that this is called and return with irqs disabled. This will
  2539. * protect us against recursive calling from irq.
  2540. */
  2541. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2542. {
  2543. enum ctx_state prev_state;
  2544. /* Catch callers which need to be fixed */
  2545. BUG_ON(preempt_count() || !irqs_disabled());
  2546. prev_state = exception_enter();
  2547. do {
  2548. __preempt_count_add(PREEMPT_ACTIVE);
  2549. local_irq_enable();
  2550. __schedule();
  2551. local_irq_disable();
  2552. __preempt_count_sub(PREEMPT_ACTIVE);
  2553. /*
  2554. * Check again in case we missed a preemption opportunity
  2555. * between schedule and now.
  2556. */
  2557. barrier();
  2558. } while (need_resched());
  2559. exception_exit(prev_state);
  2560. }
  2561. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2562. void *key)
  2563. {
  2564. return try_to_wake_up(curr->private, mode, wake_flags);
  2565. }
  2566. EXPORT_SYMBOL(default_wake_function);
  2567. #ifdef CONFIG_RT_MUTEXES
  2568. /*
  2569. * rt_mutex_setprio - set the current priority of a task
  2570. * @p: task
  2571. * @prio: prio value (kernel-internal form)
  2572. *
  2573. * This function changes the 'effective' priority of a task. It does
  2574. * not touch ->normal_prio like __setscheduler().
  2575. *
  2576. * Used by the rt_mutex code to implement priority inheritance
  2577. * logic. Call site only calls if the priority of the task changed.
  2578. */
  2579. void rt_mutex_setprio(struct task_struct *p, int prio)
  2580. {
  2581. int oldprio, queued, running, enqueue_flag = 0;
  2582. struct rq *rq;
  2583. const struct sched_class *prev_class;
  2584. BUG_ON(prio > MAX_PRIO);
  2585. rq = __task_rq_lock(p);
  2586. /*
  2587. * Idle task boosting is a nono in general. There is one
  2588. * exception, when PREEMPT_RT and NOHZ is active:
  2589. *
  2590. * The idle task calls get_next_timer_interrupt() and holds
  2591. * the timer wheel base->lock on the CPU and another CPU wants
  2592. * to access the timer (probably to cancel it). We can safely
  2593. * ignore the boosting request, as the idle CPU runs this code
  2594. * with interrupts disabled and will complete the lock
  2595. * protected section without being interrupted. So there is no
  2596. * real need to boost.
  2597. */
  2598. if (unlikely(p == rq->idle)) {
  2599. WARN_ON(p != rq->curr);
  2600. WARN_ON(p->pi_blocked_on);
  2601. goto out_unlock;
  2602. }
  2603. trace_sched_pi_setprio(p, prio);
  2604. oldprio = p->prio;
  2605. prev_class = p->sched_class;
  2606. queued = task_on_rq_queued(p);
  2607. running = task_current(rq, p);
  2608. if (queued)
  2609. dequeue_task(rq, p, 0);
  2610. if (running)
  2611. put_prev_task(rq, p);
  2612. /*
  2613. * Boosting condition are:
  2614. * 1. -rt task is running and holds mutex A
  2615. * --> -dl task blocks on mutex A
  2616. *
  2617. * 2. -dl task is running and holds mutex A
  2618. * --> -dl task blocks on mutex A and could preempt the
  2619. * running task
  2620. */
  2621. if (dl_prio(prio)) {
  2622. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  2623. if (!dl_prio(p->normal_prio) ||
  2624. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  2625. p->dl.dl_boosted = 1;
  2626. p->dl.dl_throttled = 0;
  2627. enqueue_flag = ENQUEUE_REPLENISH;
  2628. } else
  2629. p->dl.dl_boosted = 0;
  2630. p->sched_class = &dl_sched_class;
  2631. } else if (rt_prio(prio)) {
  2632. if (dl_prio(oldprio))
  2633. p->dl.dl_boosted = 0;
  2634. if (oldprio < prio)
  2635. enqueue_flag = ENQUEUE_HEAD;
  2636. p->sched_class = &rt_sched_class;
  2637. } else {
  2638. if (dl_prio(oldprio))
  2639. p->dl.dl_boosted = 0;
  2640. p->sched_class = &fair_sched_class;
  2641. }
  2642. p->prio = prio;
  2643. if (running)
  2644. p->sched_class->set_curr_task(rq);
  2645. if (queued)
  2646. enqueue_task(rq, p, enqueue_flag);
  2647. check_class_changed(rq, p, prev_class, oldprio);
  2648. out_unlock:
  2649. __task_rq_unlock(rq);
  2650. }
  2651. #endif
  2652. void set_user_nice(struct task_struct *p, long nice)
  2653. {
  2654. int old_prio, delta, queued;
  2655. unsigned long flags;
  2656. struct rq *rq;
  2657. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2658. return;
  2659. /*
  2660. * We have to be careful, if called from sys_setpriority(),
  2661. * the task might be in the middle of scheduling on another CPU.
  2662. */
  2663. rq = task_rq_lock(p, &flags);
  2664. /*
  2665. * The RT priorities are set via sched_setscheduler(), but we still
  2666. * allow the 'normal' nice value to be set - but as expected
  2667. * it wont have any effect on scheduling until the task is
  2668. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2669. */
  2670. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2671. p->static_prio = NICE_TO_PRIO(nice);
  2672. goto out_unlock;
  2673. }
  2674. queued = task_on_rq_queued(p);
  2675. if (queued)
  2676. dequeue_task(rq, p, 0);
  2677. p->static_prio = NICE_TO_PRIO(nice);
  2678. set_load_weight(p);
  2679. old_prio = p->prio;
  2680. p->prio = effective_prio(p);
  2681. delta = p->prio - old_prio;
  2682. if (queued) {
  2683. enqueue_task(rq, p, 0);
  2684. /*
  2685. * If the task increased its priority or is running and
  2686. * lowered its priority, then reschedule its CPU:
  2687. */
  2688. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2689. resched_curr(rq);
  2690. }
  2691. out_unlock:
  2692. task_rq_unlock(rq, p, &flags);
  2693. }
  2694. EXPORT_SYMBOL(set_user_nice);
  2695. /*
  2696. * can_nice - check if a task can reduce its nice value
  2697. * @p: task
  2698. * @nice: nice value
  2699. */
  2700. int can_nice(const struct task_struct *p, const int nice)
  2701. {
  2702. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2703. int nice_rlim = nice_to_rlimit(nice);
  2704. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2705. capable(CAP_SYS_NICE));
  2706. }
  2707. #ifdef __ARCH_WANT_SYS_NICE
  2708. /*
  2709. * sys_nice - change the priority of the current process.
  2710. * @increment: priority increment
  2711. *
  2712. * sys_setpriority is a more generic, but much slower function that
  2713. * does similar things.
  2714. */
  2715. SYSCALL_DEFINE1(nice, int, increment)
  2716. {
  2717. long nice, retval;
  2718. /*
  2719. * Setpriority might change our priority at the same moment.
  2720. * We don't have to worry. Conceptually one call occurs first
  2721. * and we have a single winner.
  2722. */
  2723. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2724. nice = task_nice(current) + increment;
  2725. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2726. if (increment < 0 && !can_nice(current, nice))
  2727. return -EPERM;
  2728. retval = security_task_setnice(current, nice);
  2729. if (retval)
  2730. return retval;
  2731. set_user_nice(current, nice);
  2732. return 0;
  2733. }
  2734. #endif
  2735. /**
  2736. * task_prio - return the priority value of a given task.
  2737. * @p: the task in question.
  2738. *
  2739. * Return: The priority value as seen by users in /proc.
  2740. * RT tasks are offset by -200. Normal tasks are centered
  2741. * around 0, value goes from -16 to +15.
  2742. */
  2743. int task_prio(const struct task_struct *p)
  2744. {
  2745. return p->prio - MAX_RT_PRIO;
  2746. }
  2747. /**
  2748. * idle_cpu - is a given cpu idle currently?
  2749. * @cpu: the processor in question.
  2750. *
  2751. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2752. */
  2753. int idle_cpu(int cpu)
  2754. {
  2755. struct rq *rq = cpu_rq(cpu);
  2756. if (rq->curr != rq->idle)
  2757. return 0;
  2758. if (rq->nr_running)
  2759. return 0;
  2760. #ifdef CONFIG_SMP
  2761. if (!llist_empty(&rq->wake_list))
  2762. return 0;
  2763. #endif
  2764. return 1;
  2765. }
  2766. /**
  2767. * idle_task - return the idle task for a given cpu.
  2768. * @cpu: the processor in question.
  2769. *
  2770. * Return: The idle task for the cpu @cpu.
  2771. */
  2772. struct task_struct *idle_task(int cpu)
  2773. {
  2774. return cpu_rq(cpu)->idle;
  2775. }
  2776. /**
  2777. * find_process_by_pid - find a process with a matching PID value.
  2778. * @pid: the pid in question.
  2779. *
  2780. * The task of @pid, if found. %NULL otherwise.
  2781. */
  2782. static struct task_struct *find_process_by_pid(pid_t pid)
  2783. {
  2784. return pid ? find_task_by_vpid(pid) : current;
  2785. }
  2786. /*
  2787. * This function initializes the sched_dl_entity of a newly becoming
  2788. * SCHED_DEADLINE task.
  2789. *
  2790. * Only the static values are considered here, the actual runtime and the
  2791. * absolute deadline will be properly calculated when the task is enqueued
  2792. * for the first time with its new policy.
  2793. */
  2794. static void
  2795. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2796. {
  2797. struct sched_dl_entity *dl_se = &p->dl;
  2798. init_dl_task_timer(dl_se);
  2799. dl_se->dl_runtime = attr->sched_runtime;
  2800. dl_se->dl_deadline = attr->sched_deadline;
  2801. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2802. dl_se->flags = attr->sched_flags;
  2803. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2804. dl_se->dl_throttled = 0;
  2805. dl_se->dl_new = 1;
  2806. dl_se->dl_yielded = 0;
  2807. }
  2808. /*
  2809. * sched_setparam() passes in -1 for its policy, to let the functions
  2810. * it calls know not to change it.
  2811. */
  2812. #define SETPARAM_POLICY -1
  2813. static void __setscheduler_params(struct task_struct *p,
  2814. const struct sched_attr *attr)
  2815. {
  2816. int policy = attr->sched_policy;
  2817. if (policy == SETPARAM_POLICY)
  2818. policy = p->policy;
  2819. p->policy = policy;
  2820. if (dl_policy(policy))
  2821. __setparam_dl(p, attr);
  2822. else if (fair_policy(policy))
  2823. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2824. /*
  2825. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2826. * !rt_policy. Always setting this ensures that things like
  2827. * getparam()/getattr() don't report silly values for !rt tasks.
  2828. */
  2829. p->rt_priority = attr->sched_priority;
  2830. p->normal_prio = normal_prio(p);
  2831. set_load_weight(p);
  2832. }
  2833. /* Actually do priority change: must hold pi & rq lock. */
  2834. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2835. const struct sched_attr *attr)
  2836. {
  2837. __setscheduler_params(p, attr);
  2838. /*
  2839. * If we get here, there was no pi waiters boosting the
  2840. * task. It is safe to use the normal prio.
  2841. */
  2842. p->prio = normal_prio(p);
  2843. if (dl_prio(p->prio))
  2844. p->sched_class = &dl_sched_class;
  2845. else if (rt_prio(p->prio))
  2846. p->sched_class = &rt_sched_class;
  2847. else
  2848. p->sched_class = &fair_sched_class;
  2849. }
  2850. static void
  2851. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  2852. {
  2853. struct sched_dl_entity *dl_se = &p->dl;
  2854. attr->sched_priority = p->rt_priority;
  2855. attr->sched_runtime = dl_se->dl_runtime;
  2856. attr->sched_deadline = dl_se->dl_deadline;
  2857. attr->sched_period = dl_se->dl_period;
  2858. attr->sched_flags = dl_se->flags;
  2859. }
  2860. /*
  2861. * This function validates the new parameters of a -deadline task.
  2862. * We ask for the deadline not being zero, and greater or equal
  2863. * than the runtime, as well as the period of being zero or
  2864. * greater than deadline. Furthermore, we have to be sure that
  2865. * user parameters are above the internal resolution of 1us (we
  2866. * check sched_runtime only since it is always the smaller one) and
  2867. * below 2^63 ns (we have to check both sched_deadline and
  2868. * sched_period, as the latter can be zero).
  2869. */
  2870. static bool
  2871. __checkparam_dl(const struct sched_attr *attr)
  2872. {
  2873. /* deadline != 0 */
  2874. if (attr->sched_deadline == 0)
  2875. return false;
  2876. /*
  2877. * Since we truncate DL_SCALE bits, make sure we're at least
  2878. * that big.
  2879. */
  2880. if (attr->sched_runtime < (1ULL << DL_SCALE))
  2881. return false;
  2882. /*
  2883. * Since we use the MSB for wrap-around and sign issues, make
  2884. * sure it's not set (mind that period can be equal to zero).
  2885. */
  2886. if (attr->sched_deadline & (1ULL << 63) ||
  2887. attr->sched_period & (1ULL << 63))
  2888. return false;
  2889. /* runtime <= deadline <= period (if period != 0) */
  2890. if ((attr->sched_period != 0 &&
  2891. attr->sched_period < attr->sched_deadline) ||
  2892. attr->sched_deadline < attr->sched_runtime)
  2893. return false;
  2894. return true;
  2895. }
  2896. /*
  2897. * check the target process has a UID that matches the current process's
  2898. */
  2899. static bool check_same_owner(struct task_struct *p)
  2900. {
  2901. const struct cred *cred = current_cred(), *pcred;
  2902. bool match;
  2903. rcu_read_lock();
  2904. pcred = __task_cred(p);
  2905. match = (uid_eq(cred->euid, pcred->euid) ||
  2906. uid_eq(cred->euid, pcred->uid));
  2907. rcu_read_unlock();
  2908. return match;
  2909. }
  2910. static int __sched_setscheduler(struct task_struct *p,
  2911. const struct sched_attr *attr,
  2912. bool user)
  2913. {
  2914. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  2915. MAX_RT_PRIO - 1 - attr->sched_priority;
  2916. int retval, oldprio, oldpolicy = -1, queued, running;
  2917. int policy = attr->sched_policy;
  2918. unsigned long flags;
  2919. const struct sched_class *prev_class;
  2920. struct rq *rq;
  2921. int reset_on_fork;
  2922. /* may grab non-irq protected spin_locks */
  2923. BUG_ON(in_interrupt());
  2924. recheck:
  2925. /* double check policy once rq lock held */
  2926. if (policy < 0) {
  2927. reset_on_fork = p->sched_reset_on_fork;
  2928. policy = oldpolicy = p->policy;
  2929. } else {
  2930. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  2931. if (policy != SCHED_DEADLINE &&
  2932. policy != SCHED_FIFO && policy != SCHED_RR &&
  2933. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2934. policy != SCHED_IDLE)
  2935. return -EINVAL;
  2936. }
  2937. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  2938. return -EINVAL;
  2939. /*
  2940. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2941. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2942. * SCHED_BATCH and SCHED_IDLE is 0.
  2943. */
  2944. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  2945. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  2946. return -EINVAL;
  2947. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  2948. (rt_policy(policy) != (attr->sched_priority != 0)))
  2949. return -EINVAL;
  2950. /*
  2951. * Allow unprivileged RT tasks to decrease priority:
  2952. */
  2953. if (user && !capable(CAP_SYS_NICE)) {
  2954. if (fair_policy(policy)) {
  2955. if (attr->sched_nice < task_nice(p) &&
  2956. !can_nice(p, attr->sched_nice))
  2957. return -EPERM;
  2958. }
  2959. if (rt_policy(policy)) {
  2960. unsigned long rlim_rtprio =
  2961. task_rlimit(p, RLIMIT_RTPRIO);
  2962. /* can't set/change the rt policy */
  2963. if (policy != p->policy && !rlim_rtprio)
  2964. return -EPERM;
  2965. /* can't increase priority */
  2966. if (attr->sched_priority > p->rt_priority &&
  2967. attr->sched_priority > rlim_rtprio)
  2968. return -EPERM;
  2969. }
  2970. /*
  2971. * Can't set/change SCHED_DEADLINE policy at all for now
  2972. * (safest behavior); in the future we would like to allow
  2973. * unprivileged DL tasks to increase their relative deadline
  2974. * or reduce their runtime (both ways reducing utilization)
  2975. */
  2976. if (dl_policy(policy))
  2977. return -EPERM;
  2978. /*
  2979. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2980. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2981. */
  2982. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2983. if (!can_nice(p, task_nice(p)))
  2984. return -EPERM;
  2985. }
  2986. /* can't change other user's priorities */
  2987. if (!check_same_owner(p))
  2988. return -EPERM;
  2989. /* Normal users shall not reset the sched_reset_on_fork flag */
  2990. if (p->sched_reset_on_fork && !reset_on_fork)
  2991. return -EPERM;
  2992. }
  2993. if (user) {
  2994. retval = security_task_setscheduler(p);
  2995. if (retval)
  2996. return retval;
  2997. }
  2998. /*
  2999. * make sure no PI-waiters arrive (or leave) while we are
  3000. * changing the priority of the task:
  3001. *
  3002. * To be able to change p->policy safely, the appropriate
  3003. * runqueue lock must be held.
  3004. */
  3005. rq = task_rq_lock(p, &flags);
  3006. /*
  3007. * Changing the policy of the stop threads its a very bad idea
  3008. */
  3009. if (p == rq->stop) {
  3010. task_rq_unlock(rq, p, &flags);
  3011. return -EINVAL;
  3012. }
  3013. /*
  3014. * If not changing anything there's no need to proceed further,
  3015. * but store a possible modification of reset_on_fork.
  3016. */
  3017. if (unlikely(policy == p->policy)) {
  3018. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3019. goto change;
  3020. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3021. goto change;
  3022. if (dl_policy(policy))
  3023. goto change;
  3024. p->sched_reset_on_fork = reset_on_fork;
  3025. task_rq_unlock(rq, p, &flags);
  3026. return 0;
  3027. }
  3028. change:
  3029. if (user) {
  3030. #ifdef CONFIG_RT_GROUP_SCHED
  3031. /*
  3032. * Do not allow realtime tasks into groups that have no runtime
  3033. * assigned.
  3034. */
  3035. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3036. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3037. !task_group_is_autogroup(task_group(p))) {
  3038. task_rq_unlock(rq, p, &flags);
  3039. return -EPERM;
  3040. }
  3041. #endif
  3042. #ifdef CONFIG_SMP
  3043. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3044. cpumask_t *span = rq->rd->span;
  3045. /*
  3046. * Don't allow tasks with an affinity mask smaller than
  3047. * the entire root_domain to become SCHED_DEADLINE. We
  3048. * will also fail if there's no bandwidth available.
  3049. */
  3050. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3051. rq->rd->dl_bw.bw == 0) {
  3052. task_rq_unlock(rq, p, &flags);
  3053. return -EPERM;
  3054. }
  3055. }
  3056. #endif
  3057. }
  3058. /* recheck policy now with rq lock held */
  3059. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3060. policy = oldpolicy = -1;
  3061. task_rq_unlock(rq, p, &flags);
  3062. goto recheck;
  3063. }
  3064. /*
  3065. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3066. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3067. * is available.
  3068. */
  3069. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3070. task_rq_unlock(rq, p, &flags);
  3071. return -EBUSY;
  3072. }
  3073. p->sched_reset_on_fork = reset_on_fork;
  3074. oldprio = p->prio;
  3075. /*
  3076. * Special case for priority boosted tasks.
  3077. *
  3078. * If the new priority is lower or equal (user space view)
  3079. * than the current (boosted) priority, we just store the new
  3080. * normal parameters and do not touch the scheduler class and
  3081. * the runqueue. This will be done when the task deboost
  3082. * itself.
  3083. */
  3084. if (rt_mutex_check_prio(p, newprio)) {
  3085. __setscheduler_params(p, attr);
  3086. task_rq_unlock(rq, p, &flags);
  3087. return 0;
  3088. }
  3089. queued = task_on_rq_queued(p);
  3090. running = task_current(rq, p);
  3091. if (queued)
  3092. dequeue_task(rq, p, 0);
  3093. if (running)
  3094. put_prev_task(rq, p);
  3095. prev_class = p->sched_class;
  3096. __setscheduler(rq, p, attr);
  3097. if (running)
  3098. p->sched_class->set_curr_task(rq);
  3099. if (queued) {
  3100. /*
  3101. * We enqueue to tail when the priority of a task is
  3102. * increased (user space view).
  3103. */
  3104. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3105. }
  3106. check_class_changed(rq, p, prev_class, oldprio);
  3107. task_rq_unlock(rq, p, &flags);
  3108. rt_mutex_adjust_pi(p);
  3109. return 0;
  3110. }
  3111. static int _sched_setscheduler(struct task_struct *p, int policy,
  3112. const struct sched_param *param, bool check)
  3113. {
  3114. struct sched_attr attr = {
  3115. .sched_policy = policy,
  3116. .sched_priority = param->sched_priority,
  3117. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3118. };
  3119. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3120. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3121. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3122. policy &= ~SCHED_RESET_ON_FORK;
  3123. attr.sched_policy = policy;
  3124. }
  3125. return __sched_setscheduler(p, &attr, check);
  3126. }
  3127. /**
  3128. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3129. * @p: the task in question.
  3130. * @policy: new policy.
  3131. * @param: structure containing the new RT priority.
  3132. *
  3133. * Return: 0 on success. An error code otherwise.
  3134. *
  3135. * NOTE that the task may be already dead.
  3136. */
  3137. int sched_setscheduler(struct task_struct *p, int policy,
  3138. const struct sched_param *param)
  3139. {
  3140. return _sched_setscheduler(p, policy, param, true);
  3141. }
  3142. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3143. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3144. {
  3145. return __sched_setscheduler(p, attr, true);
  3146. }
  3147. EXPORT_SYMBOL_GPL(sched_setattr);
  3148. /**
  3149. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3150. * @p: the task in question.
  3151. * @policy: new policy.
  3152. * @param: structure containing the new RT priority.
  3153. *
  3154. * Just like sched_setscheduler, only don't bother checking if the
  3155. * current context has permission. For example, this is needed in
  3156. * stop_machine(): we create temporary high priority worker threads,
  3157. * but our caller might not have that capability.
  3158. *
  3159. * Return: 0 on success. An error code otherwise.
  3160. */
  3161. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3162. const struct sched_param *param)
  3163. {
  3164. return _sched_setscheduler(p, policy, param, false);
  3165. }
  3166. static int
  3167. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3168. {
  3169. struct sched_param lparam;
  3170. struct task_struct *p;
  3171. int retval;
  3172. if (!param || pid < 0)
  3173. return -EINVAL;
  3174. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3175. return -EFAULT;
  3176. rcu_read_lock();
  3177. retval = -ESRCH;
  3178. p = find_process_by_pid(pid);
  3179. if (p != NULL)
  3180. retval = sched_setscheduler(p, policy, &lparam);
  3181. rcu_read_unlock();
  3182. return retval;
  3183. }
  3184. /*
  3185. * Mimics kernel/events/core.c perf_copy_attr().
  3186. */
  3187. static int sched_copy_attr(struct sched_attr __user *uattr,
  3188. struct sched_attr *attr)
  3189. {
  3190. u32 size;
  3191. int ret;
  3192. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3193. return -EFAULT;
  3194. /*
  3195. * zero the full structure, so that a short copy will be nice.
  3196. */
  3197. memset(attr, 0, sizeof(*attr));
  3198. ret = get_user(size, &uattr->size);
  3199. if (ret)
  3200. return ret;
  3201. if (size > PAGE_SIZE) /* silly large */
  3202. goto err_size;
  3203. if (!size) /* abi compat */
  3204. size = SCHED_ATTR_SIZE_VER0;
  3205. if (size < SCHED_ATTR_SIZE_VER0)
  3206. goto err_size;
  3207. /*
  3208. * If we're handed a bigger struct than we know of,
  3209. * ensure all the unknown bits are 0 - i.e. new
  3210. * user-space does not rely on any kernel feature
  3211. * extensions we dont know about yet.
  3212. */
  3213. if (size > sizeof(*attr)) {
  3214. unsigned char __user *addr;
  3215. unsigned char __user *end;
  3216. unsigned char val;
  3217. addr = (void __user *)uattr + sizeof(*attr);
  3218. end = (void __user *)uattr + size;
  3219. for (; addr < end; addr++) {
  3220. ret = get_user(val, addr);
  3221. if (ret)
  3222. return ret;
  3223. if (val)
  3224. goto err_size;
  3225. }
  3226. size = sizeof(*attr);
  3227. }
  3228. ret = copy_from_user(attr, uattr, size);
  3229. if (ret)
  3230. return -EFAULT;
  3231. /*
  3232. * XXX: do we want to be lenient like existing syscalls; or do we want
  3233. * to be strict and return an error on out-of-bounds values?
  3234. */
  3235. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3236. return 0;
  3237. err_size:
  3238. put_user(sizeof(*attr), &uattr->size);
  3239. return -E2BIG;
  3240. }
  3241. /**
  3242. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3243. * @pid: the pid in question.
  3244. * @policy: new policy.
  3245. * @param: structure containing the new RT priority.
  3246. *
  3247. * Return: 0 on success. An error code otherwise.
  3248. */
  3249. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3250. struct sched_param __user *, param)
  3251. {
  3252. /* negative values for policy are not valid */
  3253. if (policy < 0)
  3254. return -EINVAL;
  3255. return do_sched_setscheduler(pid, policy, param);
  3256. }
  3257. /**
  3258. * sys_sched_setparam - set/change the RT priority of a thread
  3259. * @pid: the pid in question.
  3260. * @param: structure containing the new RT priority.
  3261. *
  3262. * Return: 0 on success. An error code otherwise.
  3263. */
  3264. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3265. {
  3266. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3267. }
  3268. /**
  3269. * sys_sched_setattr - same as above, but with extended sched_attr
  3270. * @pid: the pid in question.
  3271. * @uattr: structure containing the extended parameters.
  3272. * @flags: for future extension.
  3273. */
  3274. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3275. unsigned int, flags)
  3276. {
  3277. struct sched_attr attr;
  3278. struct task_struct *p;
  3279. int retval;
  3280. if (!uattr || pid < 0 || flags)
  3281. return -EINVAL;
  3282. retval = sched_copy_attr(uattr, &attr);
  3283. if (retval)
  3284. return retval;
  3285. if ((int)attr.sched_policy < 0)
  3286. return -EINVAL;
  3287. rcu_read_lock();
  3288. retval = -ESRCH;
  3289. p = find_process_by_pid(pid);
  3290. if (p != NULL)
  3291. retval = sched_setattr(p, &attr);
  3292. rcu_read_unlock();
  3293. return retval;
  3294. }
  3295. /**
  3296. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3297. * @pid: the pid in question.
  3298. *
  3299. * Return: On success, the policy of the thread. Otherwise, a negative error
  3300. * code.
  3301. */
  3302. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3303. {
  3304. struct task_struct *p;
  3305. int retval;
  3306. if (pid < 0)
  3307. return -EINVAL;
  3308. retval = -ESRCH;
  3309. rcu_read_lock();
  3310. p = find_process_by_pid(pid);
  3311. if (p) {
  3312. retval = security_task_getscheduler(p);
  3313. if (!retval)
  3314. retval = p->policy
  3315. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3316. }
  3317. rcu_read_unlock();
  3318. return retval;
  3319. }
  3320. /**
  3321. * sys_sched_getparam - get the RT priority of a thread
  3322. * @pid: the pid in question.
  3323. * @param: structure containing the RT priority.
  3324. *
  3325. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3326. * code.
  3327. */
  3328. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3329. {
  3330. struct sched_param lp = { .sched_priority = 0 };
  3331. struct task_struct *p;
  3332. int retval;
  3333. if (!param || pid < 0)
  3334. return -EINVAL;
  3335. rcu_read_lock();
  3336. p = find_process_by_pid(pid);
  3337. retval = -ESRCH;
  3338. if (!p)
  3339. goto out_unlock;
  3340. retval = security_task_getscheduler(p);
  3341. if (retval)
  3342. goto out_unlock;
  3343. if (task_has_rt_policy(p))
  3344. lp.sched_priority = p->rt_priority;
  3345. rcu_read_unlock();
  3346. /*
  3347. * This one might sleep, we cannot do it with a spinlock held ...
  3348. */
  3349. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3350. return retval;
  3351. out_unlock:
  3352. rcu_read_unlock();
  3353. return retval;
  3354. }
  3355. static int sched_read_attr(struct sched_attr __user *uattr,
  3356. struct sched_attr *attr,
  3357. unsigned int usize)
  3358. {
  3359. int ret;
  3360. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3361. return -EFAULT;
  3362. /*
  3363. * If we're handed a smaller struct than we know of,
  3364. * ensure all the unknown bits are 0 - i.e. old
  3365. * user-space does not get uncomplete information.
  3366. */
  3367. if (usize < sizeof(*attr)) {
  3368. unsigned char *addr;
  3369. unsigned char *end;
  3370. addr = (void *)attr + usize;
  3371. end = (void *)attr + sizeof(*attr);
  3372. for (; addr < end; addr++) {
  3373. if (*addr)
  3374. return -EFBIG;
  3375. }
  3376. attr->size = usize;
  3377. }
  3378. ret = copy_to_user(uattr, attr, attr->size);
  3379. if (ret)
  3380. return -EFAULT;
  3381. return 0;
  3382. }
  3383. /**
  3384. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3385. * @pid: the pid in question.
  3386. * @uattr: structure containing the extended parameters.
  3387. * @size: sizeof(attr) for fwd/bwd comp.
  3388. * @flags: for future extension.
  3389. */
  3390. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3391. unsigned int, size, unsigned int, flags)
  3392. {
  3393. struct sched_attr attr = {
  3394. .size = sizeof(struct sched_attr),
  3395. };
  3396. struct task_struct *p;
  3397. int retval;
  3398. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3399. size < SCHED_ATTR_SIZE_VER0 || flags)
  3400. return -EINVAL;
  3401. rcu_read_lock();
  3402. p = find_process_by_pid(pid);
  3403. retval = -ESRCH;
  3404. if (!p)
  3405. goto out_unlock;
  3406. retval = security_task_getscheduler(p);
  3407. if (retval)
  3408. goto out_unlock;
  3409. attr.sched_policy = p->policy;
  3410. if (p->sched_reset_on_fork)
  3411. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3412. if (task_has_dl_policy(p))
  3413. __getparam_dl(p, &attr);
  3414. else if (task_has_rt_policy(p))
  3415. attr.sched_priority = p->rt_priority;
  3416. else
  3417. attr.sched_nice = task_nice(p);
  3418. rcu_read_unlock();
  3419. retval = sched_read_attr(uattr, &attr, size);
  3420. return retval;
  3421. out_unlock:
  3422. rcu_read_unlock();
  3423. return retval;
  3424. }
  3425. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3426. {
  3427. cpumask_var_t cpus_allowed, new_mask;
  3428. struct task_struct *p;
  3429. int retval;
  3430. rcu_read_lock();
  3431. p = find_process_by_pid(pid);
  3432. if (!p) {
  3433. rcu_read_unlock();
  3434. return -ESRCH;
  3435. }
  3436. /* Prevent p going away */
  3437. get_task_struct(p);
  3438. rcu_read_unlock();
  3439. if (p->flags & PF_NO_SETAFFINITY) {
  3440. retval = -EINVAL;
  3441. goto out_put_task;
  3442. }
  3443. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3444. retval = -ENOMEM;
  3445. goto out_put_task;
  3446. }
  3447. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3448. retval = -ENOMEM;
  3449. goto out_free_cpus_allowed;
  3450. }
  3451. retval = -EPERM;
  3452. if (!check_same_owner(p)) {
  3453. rcu_read_lock();
  3454. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3455. rcu_read_unlock();
  3456. goto out_free_new_mask;
  3457. }
  3458. rcu_read_unlock();
  3459. }
  3460. retval = security_task_setscheduler(p);
  3461. if (retval)
  3462. goto out_free_new_mask;
  3463. cpuset_cpus_allowed(p, cpus_allowed);
  3464. cpumask_and(new_mask, in_mask, cpus_allowed);
  3465. /*
  3466. * Since bandwidth control happens on root_domain basis,
  3467. * if admission test is enabled, we only admit -deadline
  3468. * tasks allowed to run on all the CPUs in the task's
  3469. * root_domain.
  3470. */
  3471. #ifdef CONFIG_SMP
  3472. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  3473. rcu_read_lock();
  3474. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  3475. retval = -EBUSY;
  3476. rcu_read_unlock();
  3477. goto out_free_new_mask;
  3478. }
  3479. rcu_read_unlock();
  3480. }
  3481. #endif
  3482. again:
  3483. retval = set_cpus_allowed_ptr(p, new_mask);
  3484. if (!retval) {
  3485. cpuset_cpus_allowed(p, cpus_allowed);
  3486. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3487. /*
  3488. * We must have raced with a concurrent cpuset
  3489. * update. Just reset the cpus_allowed to the
  3490. * cpuset's cpus_allowed
  3491. */
  3492. cpumask_copy(new_mask, cpus_allowed);
  3493. goto again;
  3494. }
  3495. }
  3496. out_free_new_mask:
  3497. free_cpumask_var(new_mask);
  3498. out_free_cpus_allowed:
  3499. free_cpumask_var(cpus_allowed);
  3500. out_put_task:
  3501. put_task_struct(p);
  3502. return retval;
  3503. }
  3504. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3505. struct cpumask *new_mask)
  3506. {
  3507. if (len < cpumask_size())
  3508. cpumask_clear(new_mask);
  3509. else if (len > cpumask_size())
  3510. len = cpumask_size();
  3511. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3512. }
  3513. /**
  3514. * sys_sched_setaffinity - set the cpu affinity of a process
  3515. * @pid: pid of the process
  3516. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3517. * @user_mask_ptr: user-space pointer to the new cpu mask
  3518. *
  3519. * Return: 0 on success. An error code otherwise.
  3520. */
  3521. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3522. unsigned long __user *, user_mask_ptr)
  3523. {
  3524. cpumask_var_t new_mask;
  3525. int retval;
  3526. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3527. return -ENOMEM;
  3528. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3529. if (retval == 0)
  3530. retval = sched_setaffinity(pid, new_mask);
  3531. free_cpumask_var(new_mask);
  3532. return retval;
  3533. }
  3534. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3535. {
  3536. struct task_struct *p;
  3537. unsigned long flags;
  3538. int retval;
  3539. rcu_read_lock();
  3540. retval = -ESRCH;
  3541. p = find_process_by_pid(pid);
  3542. if (!p)
  3543. goto out_unlock;
  3544. retval = security_task_getscheduler(p);
  3545. if (retval)
  3546. goto out_unlock;
  3547. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3548. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3549. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3550. out_unlock:
  3551. rcu_read_unlock();
  3552. return retval;
  3553. }
  3554. /**
  3555. * sys_sched_getaffinity - get the cpu affinity of a process
  3556. * @pid: pid of the process
  3557. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3558. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3559. *
  3560. * Return: 0 on success. An error code otherwise.
  3561. */
  3562. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3563. unsigned long __user *, user_mask_ptr)
  3564. {
  3565. int ret;
  3566. cpumask_var_t mask;
  3567. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3568. return -EINVAL;
  3569. if (len & (sizeof(unsigned long)-1))
  3570. return -EINVAL;
  3571. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3572. return -ENOMEM;
  3573. ret = sched_getaffinity(pid, mask);
  3574. if (ret == 0) {
  3575. size_t retlen = min_t(size_t, len, cpumask_size());
  3576. if (copy_to_user(user_mask_ptr, mask, retlen))
  3577. ret = -EFAULT;
  3578. else
  3579. ret = retlen;
  3580. }
  3581. free_cpumask_var(mask);
  3582. return ret;
  3583. }
  3584. /**
  3585. * sys_sched_yield - yield the current processor to other threads.
  3586. *
  3587. * This function yields the current CPU to other tasks. If there are no
  3588. * other threads running on this CPU then this function will return.
  3589. *
  3590. * Return: 0.
  3591. */
  3592. SYSCALL_DEFINE0(sched_yield)
  3593. {
  3594. struct rq *rq = this_rq_lock();
  3595. schedstat_inc(rq, yld_count);
  3596. current->sched_class->yield_task(rq);
  3597. /*
  3598. * Since we are going to call schedule() anyway, there's
  3599. * no need to preempt or enable interrupts:
  3600. */
  3601. __release(rq->lock);
  3602. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3603. do_raw_spin_unlock(&rq->lock);
  3604. sched_preempt_enable_no_resched();
  3605. schedule();
  3606. return 0;
  3607. }
  3608. static void __cond_resched(void)
  3609. {
  3610. __preempt_count_add(PREEMPT_ACTIVE);
  3611. __schedule();
  3612. __preempt_count_sub(PREEMPT_ACTIVE);
  3613. }
  3614. int __sched _cond_resched(void)
  3615. {
  3616. if (should_resched()) {
  3617. __cond_resched();
  3618. return 1;
  3619. }
  3620. return 0;
  3621. }
  3622. EXPORT_SYMBOL(_cond_resched);
  3623. /*
  3624. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3625. * call schedule, and on return reacquire the lock.
  3626. *
  3627. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3628. * operations here to prevent schedule() from being called twice (once via
  3629. * spin_unlock(), once by hand).
  3630. */
  3631. int __cond_resched_lock(spinlock_t *lock)
  3632. {
  3633. int resched = should_resched();
  3634. int ret = 0;
  3635. lockdep_assert_held(lock);
  3636. if (spin_needbreak(lock) || resched) {
  3637. spin_unlock(lock);
  3638. if (resched)
  3639. __cond_resched();
  3640. else
  3641. cpu_relax();
  3642. ret = 1;
  3643. spin_lock(lock);
  3644. }
  3645. return ret;
  3646. }
  3647. EXPORT_SYMBOL(__cond_resched_lock);
  3648. int __sched __cond_resched_softirq(void)
  3649. {
  3650. BUG_ON(!in_softirq());
  3651. if (should_resched()) {
  3652. local_bh_enable();
  3653. __cond_resched();
  3654. local_bh_disable();
  3655. return 1;
  3656. }
  3657. return 0;
  3658. }
  3659. EXPORT_SYMBOL(__cond_resched_softirq);
  3660. /**
  3661. * yield - yield the current processor to other threads.
  3662. *
  3663. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3664. *
  3665. * The scheduler is at all times free to pick the calling task as the most
  3666. * eligible task to run, if removing the yield() call from your code breaks
  3667. * it, its already broken.
  3668. *
  3669. * Typical broken usage is:
  3670. *
  3671. * while (!event)
  3672. * yield();
  3673. *
  3674. * where one assumes that yield() will let 'the other' process run that will
  3675. * make event true. If the current task is a SCHED_FIFO task that will never
  3676. * happen. Never use yield() as a progress guarantee!!
  3677. *
  3678. * If you want to use yield() to wait for something, use wait_event().
  3679. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3680. * If you still want to use yield(), do not!
  3681. */
  3682. void __sched yield(void)
  3683. {
  3684. set_current_state(TASK_RUNNING);
  3685. sys_sched_yield();
  3686. }
  3687. EXPORT_SYMBOL(yield);
  3688. /**
  3689. * yield_to - yield the current processor to another thread in
  3690. * your thread group, or accelerate that thread toward the
  3691. * processor it's on.
  3692. * @p: target task
  3693. * @preempt: whether task preemption is allowed or not
  3694. *
  3695. * It's the caller's job to ensure that the target task struct
  3696. * can't go away on us before we can do any checks.
  3697. *
  3698. * Return:
  3699. * true (>0) if we indeed boosted the target task.
  3700. * false (0) if we failed to boost the target.
  3701. * -ESRCH if there's no task to yield to.
  3702. */
  3703. int __sched yield_to(struct task_struct *p, bool preempt)
  3704. {
  3705. struct task_struct *curr = current;
  3706. struct rq *rq, *p_rq;
  3707. unsigned long flags;
  3708. int yielded = 0;
  3709. local_irq_save(flags);
  3710. rq = this_rq();
  3711. again:
  3712. p_rq = task_rq(p);
  3713. /*
  3714. * If we're the only runnable task on the rq and target rq also
  3715. * has only one task, there's absolutely no point in yielding.
  3716. */
  3717. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3718. yielded = -ESRCH;
  3719. goto out_irq;
  3720. }
  3721. double_rq_lock(rq, p_rq);
  3722. if (task_rq(p) != p_rq) {
  3723. double_rq_unlock(rq, p_rq);
  3724. goto again;
  3725. }
  3726. if (!curr->sched_class->yield_to_task)
  3727. goto out_unlock;
  3728. if (curr->sched_class != p->sched_class)
  3729. goto out_unlock;
  3730. if (task_running(p_rq, p) || p->state)
  3731. goto out_unlock;
  3732. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3733. if (yielded) {
  3734. schedstat_inc(rq, yld_count);
  3735. /*
  3736. * Make p's CPU reschedule; pick_next_entity takes care of
  3737. * fairness.
  3738. */
  3739. if (preempt && rq != p_rq)
  3740. resched_curr(p_rq);
  3741. }
  3742. out_unlock:
  3743. double_rq_unlock(rq, p_rq);
  3744. out_irq:
  3745. local_irq_restore(flags);
  3746. if (yielded > 0)
  3747. schedule();
  3748. return yielded;
  3749. }
  3750. EXPORT_SYMBOL_GPL(yield_to);
  3751. /*
  3752. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3753. * that process accounting knows that this is a task in IO wait state.
  3754. */
  3755. void __sched io_schedule(void)
  3756. {
  3757. struct rq *rq = raw_rq();
  3758. delayacct_blkio_start();
  3759. atomic_inc(&rq->nr_iowait);
  3760. blk_flush_plug(current);
  3761. current->in_iowait = 1;
  3762. schedule();
  3763. current->in_iowait = 0;
  3764. atomic_dec(&rq->nr_iowait);
  3765. delayacct_blkio_end();
  3766. }
  3767. EXPORT_SYMBOL(io_schedule);
  3768. long __sched io_schedule_timeout(long timeout)
  3769. {
  3770. struct rq *rq = raw_rq();
  3771. long ret;
  3772. delayacct_blkio_start();
  3773. atomic_inc(&rq->nr_iowait);
  3774. blk_flush_plug(current);
  3775. current->in_iowait = 1;
  3776. ret = schedule_timeout(timeout);
  3777. current->in_iowait = 0;
  3778. atomic_dec(&rq->nr_iowait);
  3779. delayacct_blkio_end();
  3780. return ret;
  3781. }
  3782. /**
  3783. * sys_sched_get_priority_max - return maximum RT priority.
  3784. * @policy: scheduling class.
  3785. *
  3786. * Return: On success, this syscall returns the maximum
  3787. * rt_priority that can be used by a given scheduling class.
  3788. * On failure, a negative error code is returned.
  3789. */
  3790. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3791. {
  3792. int ret = -EINVAL;
  3793. switch (policy) {
  3794. case SCHED_FIFO:
  3795. case SCHED_RR:
  3796. ret = MAX_USER_RT_PRIO-1;
  3797. break;
  3798. case SCHED_DEADLINE:
  3799. case SCHED_NORMAL:
  3800. case SCHED_BATCH:
  3801. case SCHED_IDLE:
  3802. ret = 0;
  3803. break;
  3804. }
  3805. return ret;
  3806. }
  3807. /**
  3808. * sys_sched_get_priority_min - return minimum RT priority.
  3809. * @policy: scheduling class.
  3810. *
  3811. * Return: On success, this syscall returns the minimum
  3812. * rt_priority that can be used by a given scheduling class.
  3813. * On failure, a negative error code is returned.
  3814. */
  3815. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3816. {
  3817. int ret = -EINVAL;
  3818. switch (policy) {
  3819. case SCHED_FIFO:
  3820. case SCHED_RR:
  3821. ret = 1;
  3822. break;
  3823. case SCHED_DEADLINE:
  3824. case SCHED_NORMAL:
  3825. case SCHED_BATCH:
  3826. case SCHED_IDLE:
  3827. ret = 0;
  3828. }
  3829. return ret;
  3830. }
  3831. /**
  3832. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3833. * @pid: pid of the process.
  3834. * @interval: userspace pointer to the timeslice value.
  3835. *
  3836. * this syscall writes the default timeslice value of a given process
  3837. * into the user-space timespec buffer. A value of '0' means infinity.
  3838. *
  3839. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3840. * an error code.
  3841. */
  3842. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3843. struct timespec __user *, interval)
  3844. {
  3845. struct task_struct *p;
  3846. unsigned int time_slice;
  3847. unsigned long flags;
  3848. struct rq *rq;
  3849. int retval;
  3850. struct timespec t;
  3851. if (pid < 0)
  3852. return -EINVAL;
  3853. retval = -ESRCH;
  3854. rcu_read_lock();
  3855. p = find_process_by_pid(pid);
  3856. if (!p)
  3857. goto out_unlock;
  3858. retval = security_task_getscheduler(p);
  3859. if (retval)
  3860. goto out_unlock;
  3861. rq = task_rq_lock(p, &flags);
  3862. time_slice = 0;
  3863. if (p->sched_class->get_rr_interval)
  3864. time_slice = p->sched_class->get_rr_interval(rq, p);
  3865. task_rq_unlock(rq, p, &flags);
  3866. rcu_read_unlock();
  3867. jiffies_to_timespec(time_slice, &t);
  3868. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3869. return retval;
  3870. out_unlock:
  3871. rcu_read_unlock();
  3872. return retval;
  3873. }
  3874. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3875. void sched_show_task(struct task_struct *p)
  3876. {
  3877. unsigned long free = 0;
  3878. int ppid;
  3879. unsigned state;
  3880. state = p->state ? __ffs(p->state) + 1 : 0;
  3881. printk(KERN_INFO "%-15.15s %c", p->comm,
  3882. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3883. #if BITS_PER_LONG == 32
  3884. if (state == TASK_RUNNING)
  3885. printk(KERN_CONT " running ");
  3886. else
  3887. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3888. #else
  3889. if (state == TASK_RUNNING)
  3890. printk(KERN_CONT " running task ");
  3891. else
  3892. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3893. #endif
  3894. #ifdef CONFIG_DEBUG_STACK_USAGE
  3895. free = stack_not_used(p);
  3896. #endif
  3897. rcu_read_lock();
  3898. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3899. rcu_read_unlock();
  3900. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3901. task_pid_nr(p), ppid,
  3902. (unsigned long)task_thread_info(p)->flags);
  3903. print_worker_info(KERN_INFO, p);
  3904. show_stack(p, NULL);
  3905. }
  3906. void show_state_filter(unsigned long state_filter)
  3907. {
  3908. struct task_struct *g, *p;
  3909. #if BITS_PER_LONG == 32
  3910. printk(KERN_INFO
  3911. " task PC stack pid father\n");
  3912. #else
  3913. printk(KERN_INFO
  3914. " task PC stack pid father\n");
  3915. #endif
  3916. rcu_read_lock();
  3917. for_each_process_thread(g, p) {
  3918. /*
  3919. * reset the NMI-timeout, listing all files on a slow
  3920. * console might take a lot of time:
  3921. */
  3922. touch_nmi_watchdog();
  3923. if (!state_filter || (p->state & state_filter))
  3924. sched_show_task(p);
  3925. }
  3926. touch_all_softlockup_watchdogs();
  3927. #ifdef CONFIG_SCHED_DEBUG
  3928. sysrq_sched_debug_show();
  3929. #endif
  3930. rcu_read_unlock();
  3931. /*
  3932. * Only show locks if all tasks are dumped:
  3933. */
  3934. if (!state_filter)
  3935. debug_show_all_locks();
  3936. }
  3937. void init_idle_bootup_task(struct task_struct *idle)
  3938. {
  3939. idle->sched_class = &idle_sched_class;
  3940. }
  3941. /**
  3942. * init_idle - set up an idle thread for a given CPU
  3943. * @idle: task in question
  3944. * @cpu: cpu the idle task belongs to
  3945. *
  3946. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3947. * flag, to make booting more robust.
  3948. */
  3949. void init_idle(struct task_struct *idle, int cpu)
  3950. {
  3951. struct rq *rq = cpu_rq(cpu);
  3952. unsigned long flags;
  3953. raw_spin_lock_irqsave(&rq->lock, flags);
  3954. __sched_fork(0, idle);
  3955. idle->state = TASK_RUNNING;
  3956. idle->se.exec_start = sched_clock();
  3957. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3958. /*
  3959. * We're having a chicken and egg problem, even though we are
  3960. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3961. * lockdep check in task_group() will fail.
  3962. *
  3963. * Similar case to sched_fork(). / Alternatively we could
  3964. * use task_rq_lock() here and obtain the other rq->lock.
  3965. *
  3966. * Silence PROVE_RCU
  3967. */
  3968. rcu_read_lock();
  3969. __set_task_cpu(idle, cpu);
  3970. rcu_read_unlock();
  3971. rq->curr = rq->idle = idle;
  3972. idle->on_rq = TASK_ON_RQ_QUEUED;
  3973. #if defined(CONFIG_SMP)
  3974. idle->on_cpu = 1;
  3975. #endif
  3976. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3977. /* Set the preempt count _outside_ the spinlocks! */
  3978. init_idle_preempt_count(idle, cpu);
  3979. /*
  3980. * The idle tasks have their own, simple scheduling class:
  3981. */
  3982. idle->sched_class = &idle_sched_class;
  3983. ftrace_graph_init_idle_task(idle, cpu);
  3984. vtime_init_idle(idle, cpu);
  3985. #if defined(CONFIG_SMP)
  3986. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3987. #endif
  3988. }
  3989. #ifdef CONFIG_SMP
  3990. /*
  3991. * move_queued_task - move a queued task to new rq.
  3992. *
  3993. * Returns (locked) new rq. Old rq's lock is released.
  3994. */
  3995. static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
  3996. {
  3997. struct rq *rq = task_rq(p);
  3998. lockdep_assert_held(&rq->lock);
  3999. dequeue_task(rq, p, 0);
  4000. p->on_rq = TASK_ON_RQ_MIGRATING;
  4001. set_task_cpu(p, new_cpu);
  4002. raw_spin_unlock(&rq->lock);
  4003. rq = cpu_rq(new_cpu);
  4004. raw_spin_lock(&rq->lock);
  4005. BUG_ON(task_cpu(p) != new_cpu);
  4006. p->on_rq = TASK_ON_RQ_QUEUED;
  4007. enqueue_task(rq, p, 0);
  4008. check_preempt_curr(rq, p, 0);
  4009. return rq;
  4010. }
  4011. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4012. {
  4013. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4014. p->sched_class->set_cpus_allowed(p, new_mask);
  4015. cpumask_copy(&p->cpus_allowed, new_mask);
  4016. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4017. }
  4018. /*
  4019. * This is how migration works:
  4020. *
  4021. * 1) we invoke migration_cpu_stop() on the target CPU using
  4022. * stop_one_cpu().
  4023. * 2) stopper starts to run (implicitly forcing the migrated thread
  4024. * off the CPU)
  4025. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4026. * 4) if it's in the wrong runqueue then the migration thread removes
  4027. * it and puts it into the right queue.
  4028. * 5) stopper completes and stop_one_cpu() returns and the migration
  4029. * is done.
  4030. */
  4031. /*
  4032. * Change a given task's CPU affinity. Migrate the thread to a
  4033. * proper CPU and schedule it away if the CPU it's executing on
  4034. * is removed from the allowed bitmask.
  4035. *
  4036. * NOTE: the caller must have a valid reference to the task, the
  4037. * task must not exit() & deallocate itself prematurely. The
  4038. * call is not atomic; no spinlocks may be held.
  4039. */
  4040. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4041. {
  4042. unsigned long flags;
  4043. struct rq *rq;
  4044. unsigned int dest_cpu;
  4045. int ret = 0;
  4046. rq = task_rq_lock(p, &flags);
  4047. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4048. goto out;
  4049. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4050. ret = -EINVAL;
  4051. goto out;
  4052. }
  4053. do_set_cpus_allowed(p, new_mask);
  4054. /* Can the task run on the task's current CPU? If so, we're done */
  4055. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4056. goto out;
  4057. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4058. if (task_running(rq, p) || p->state == TASK_WAKING) {
  4059. struct migration_arg arg = { p, dest_cpu };
  4060. /* Need help from migration thread: drop lock and wait. */
  4061. task_rq_unlock(rq, p, &flags);
  4062. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4063. tlb_migrate_finish(p->mm);
  4064. return 0;
  4065. } else if (task_on_rq_queued(p))
  4066. rq = move_queued_task(p, dest_cpu);
  4067. out:
  4068. task_rq_unlock(rq, p, &flags);
  4069. return ret;
  4070. }
  4071. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4072. /*
  4073. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4074. * this because either it can't run here any more (set_cpus_allowed()
  4075. * away from this CPU, or CPU going down), or because we're
  4076. * attempting to rebalance this task on exec (sched_exec).
  4077. *
  4078. * So we race with normal scheduler movements, but that's OK, as long
  4079. * as the task is no longer on this CPU.
  4080. *
  4081. * Returns non-zero if task was successfully migrated.
  4082. */
  4083. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4084. {
  4085. struct rq *rq;
  4086. int ret = 0;
  4087. if (unlikely(!cpu_active(dest_cpu)))
  4088. return ret;
  4089. rq = cpu_rq(src_cpu);
  4090. raw_spin_lock(&p->pi_lock);
  4091. raw_spin_lock(&rq->lock);
  4092. /* Already moved. */
  4093. if (task_cpu(p) != src_cpu)
  4094. goto done;
  4095. /* Affinity changed (again). */
  4096. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4097. goto fail;
  4098. /*
  4099. * If we're not on a rq, the next wake-up will ensure we're
  4100. * placed properly.
  4101. */
  4102. if (task_on_rq_queued(p))
  4103. rq = move_queued_task(p, dest_cpu);
  4104. done:
  4105. ret = 1;
  4106. fail:
  4107. raw_spin_unlock(&rq->lock);
  4108. raw_spin_unlock(&p->pi_lock);
  4109. return ret;
  4110. }
  4111. #ifdef CONFIG_NUMA_BALANCING
  4112. /* Migrate current task p to target_cpu */
  4113. int migrate_task_to(struct task_struct *p, int target_cpu)
  4114. {
  4115. struct migration_arg arg = { p, target_cpu };
  4116. int curr_cpu = task_cpu(p);
  4117. if (curr_cpu == target_cpu)
  4118. return 0;
  4119. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4120. return -EINVAL;
  4121. /* TODO: This is not properly updating schedstats */
  4122. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4123. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4124. }
  4125. /*
  4126. * Requeue a task on a given node and accurately track the number of NUMA
  4127. * tasks on the runqueues
  4128. */
  4129. void sched_setnuma(struct task_struct *p, int nid)
  4130. {
  4131. struct rq *rq;
  4132. unsigned long flags;
  4133. bool queued, running;
  4134. rq = task_rq_lock(p, &flags);
  4135. queued = task_on_rq_queued(p);
  4136. running = task_current(rq, p);
  4137. if (queued)
  4138. dequeue_task(rq, p, 0);
  4139. if (running)
  4140. put_prev_task(rq, p);
  4141. p->numa_preferred_nid = nid;
  4142. if (running)
  4143. p->sched_class->set_curr_task(rq);
  4144. if (queued)
  4145. enqueue_task(rq, p, 0);
  4146. task_rq_unlock(rq, p, &flags);
  4147. }
  4148. #endif
  4149. /*
  4150. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4151. * and performs thread migration by bumping thread off CPU then
  4152. * 'pushing' onto another runqueue.
  4153. */
  4154. static int migration_cpu_stop(void *data)
  4155. {
  4156. struct migration_arg *arg = data;
  4157. /*
  4158. * The original target cpu might have gone down and we might
  4159. * be on another cpu but it doesn't matter.
  4160. */
  4161. local_irq_disable();
  4162. /*
  4163. * We need to explicitly wake pending tasks before running
  4164. * __migrate_task() such that we will not miss enforcing cpus_allowed
  4165. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  4166. */
  4167. sched_ttwu_pending();
  4168. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4169. local_irq_enable();
  4170. return 0;
  4171. }
  4172. #ifdef CONFIG_HOTPLUG_CPU
  4173. /*
  4174. * Ensures that the idle task is using init_mm right before its cpu goes
  4175. * offline.
  4176. */
  4177. void idle_task_exit(void)
  4178. {
  4179. struct mm_struct *mm = current->active_mm;
  4180. BUG_ON(cpu_online(smp_processor_id()));
  4181. if (mm != &init_mm) {
  4182. switch_mm(mm, &init_mm, current);
  4183. finish_arch_post_lock_switch();
  4184. }
  4185. mmdrop(mm);
  4186. }
  4187. /*
  4188. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4189. * we might have. Assumes we're called after migrate_tasks() so that the
  4190. * nr_active count is stable.
  4191. *
  4192. * Also see the comment "Global load-average calculations".
  4193. */
  4194. static void calc_load_migrate(struct rq *rq)
  4195. {
  4196. long delta = calc_load_fold_active(rq);
  4197. if (delta)
  4198. atomic_long_add(delta, &calc_load_tasks);
  4199. }
  4200. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4201. {
  4202. }
  4203. static const struct sched_class fake_sched_class = {
  4204. .put_prev_task = put_prev_task_fake,
  4205. };
  4206. static struct task_struct fake_task = {
  4207. /*
  4208. * Avoid pull_{rt,dl}_task()
  4209. */
  4210. .prio = MAX_PRIO + 1,
  4211. .sched_class = &fake_sched_class,
  4212. };
  4213. /*
  4214. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4215. * try_to_wake_up()->select_task_rq().
  4216. *
  4217. * Called with rq->lock held even though we'er in stop_machine() and
  4218. * there's no concurrency possible, we hold the required locks anyway
  4219. * because of lock validation efforts.
  4220. */
  4221. static void migrate_tasks(unsigned int dead_cpu)
  4222. {
  4223. struct rq *rq = cpu_rq(dead_cpu);
  4224. struct task_struct *next, *stop = rq->stop;
  4225. int dest_cpu;
  4226. /*
  4227. * Fudge the rq selection such that the below task selection loop
  4228. * doesn't get stuck on the currently eligible stop task.
  4229. *
  4230. * We're currently inside stop_machine() and the rq is either stuck
  4231. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4232. * either way we should never end up calling schedule() until we're
  4233. * done here.
  4234. */
  4235. rq->stop = NULL;
  4236. /*
  4237. * put_prev_task() and pick_next_task() sched
  4238. * class method both need to have an up-to-date
  4239. * value of rq->clock[_task]
  4240. */
  4241. update_rq_clock(rq);
  4242. for ( ; ; ) {
  4243. /*
  4244. * There's this thread running, bail when that's the only
  4245. * remaining thread.
  4246. */
  4247. if (rq->nr_running == 1)
  4248. break;
  4249. next = pick_next_task(rq, &fake_task);
  4250. BUG_ON(!next);
  4251. next->sched_class->put_prev_task(rq, next);
  4252. /* Find suitable destination for @next, with force if needed. */
  4253. dest_cpu = select_fallback_rq(dead_cpu, next);
  4254. raw_spin_unlock(&rq->lock);
  4255. __migrate_task(next, dead_cpu, dest_cpu);
  4256. raw_spin_lock(&rq->lock);
  4257. }
  4258. rq->stop = stop;
  4259. }
  4260. #endif /* CONFIG_HOTPLUG_CPU */
  4261. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4262. static struct ctl_table sd_ctl_dir[] = {
  4263. {
  4264. .procname = "sched_domain",
  4265. .mode = 0555,
  4266. },
  4267. {}
  4268. };
  4269. static struct ctl_table sd_ctl_root[] = {
  4270. {
  4271. .procname = "kernel",
  4272. .mode = 0555,
  4273. .child = sd_ctl_dir,
  4274. },
  4275. {}
  4276. };
  4277. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4278. {
  4279. struct ctl_table *entry =
  4280. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4281. return entry;
  4282. }
  4283. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4284. {
  4285. struct ctl_table *entry;
  4286. /*
  4287. * In the intermediate directories, both the child directory and
  4288. * procname are dynamically allocated and could fail but the mode
  4289. * will always be set. In the lowest directory the names are
  4290. * static strings and all have proc handlers.
  4291. */
  4292. for (entry = *tablep; entry->mode; entry++) {
  4293. if (entry->child)
  4294. sd_free_ctl_entry(&entry->child);
  4295. if (entry->proc_handler == NULL)
  4296. kfree(entry->procname);
  4297. }
  4298. kfree(*tablep);
  4299. *tablep = NULL;
  4300. }
  4301. static int min_load_idx = 0;
  4302. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4303. static void
  4304. set_table_entry(struct ctl_table *entry,
  4305. const char *procname, void *data, int maxlen,
  4306. umode_t mode, proc_handler *proc_handler,
  4307. bool load_idx)
  4308. {
  4309. entry->procname = procname;
  4310. entry->data = data;
  4311. entry->maxlen = maxlen;
  4312. entry->mode = mode;
  4313. entry->proc_handler = proc_handler;
  4314. if (load_idx) {
  4315. entry->extra1 = &min_load_idx;
  4316. entry->extra2 = &max_load_idx;
  4317. }
  4318. }
  4319. static struct ctl_table *
  4320. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4321. {
  4322. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4323. if (table == NULL)
  4324. return NULL;
  4325. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4326. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4327. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4328. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4329. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4330. sizeof(int), 0644, proc_dointvec_minmax, true);
  4331. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4332. sizeof(int), 0644, proc_dointvec_minmax, true);
  4333. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4334. sizeof(int), 0644, proc_dointvec_minmax, true);
  4335. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4336. sizeof(int), 0644, proc_dointvec_minmax, true);
  4337. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4338. sizeof(int), 0644, proc_dointvec_minmax, true);
  4339. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4340. sizeof(int), 0644, proc_dointvec_minmax, false);
  4341. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4342. sizeof(int), 0644, proc_dointvec_minmax, false);
  4343. set_table_entry(&table[9], "cache_nice_tries",
  4344. &sd->cache_nice_tries,
  4345. sizeof(int), 0644, proc_dointvec_minmax, false);
  4346. set_table_entry(&table[10], "flags", &sd->flags,
  4347. sizeof(int), 0644, proc_dointvec_minmax, false);
  4348. set_table_entry(&table[11], "max_newidle_lb_cost",
  4349. &sd->max_newidle_lb_cost,
  4350. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4351. set_table_entry(&table[12], "name", sd->name,
  4352. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4353. /* &table[13] is terminator */
  4354. return table;
  4355. }
  4356. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4357. {
  4358. struct ctl_table *entry, *table;
  4359. struct sched_domain *sd;
  4360. int domain_num = 0, i;
  4361. char buf[32];
  4362. for_each_domain(cpu, sd)
  4363. domain_num++;
  4364. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4365. if (table == NULL)
  4366. return NULL;
  4367. i = 0;
  4368. for_each_domain(cpu, sd) {
  4369. snprintf(buf, 32, "domain%d", i);
  4370. entry->procname = kstrdup(buf, GFP_KERNEL);
  4371. entry->mode = 0555;
  4372. entry->child = sd_alloc_ctl_domain_table(sd);
  4373. entry++;
  4374. i++;
  4375. }
  4376. return table;
  4377. }
  4378. static struct ctl_table_header *sd_sysctl_header;
  4379. static void register_sched_domain_sysctl(void)
  4380. {
  4381. int i, cpu_num = num_possible_cpus();
  4382. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4383. char buf[32];
  4384. WARN_ON(sd_ctl_dir[0].child);
  4385. sd_ctl_dir[0].child = entry;
  4386. if (entry == NULL)
  4387. return;
  4388. for_each_possible_cpu(i) {
  4389. snprintf(buf, 32, "cpu%d", i);
  4390. entry->procname = kstrdup(buf, GFP_KERNEL);
  4391. entry->mode = 0555;
  4392. entry->child = sd_alloc_ctl_cpu_table(i);
  4393. entry++;
  4394. }
  4395. WARN_ON(sd_sysctl_header);
  4396. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4397. }
  4398. /* may be called multiple times per register */
  4399. static void unregister_sched_domain_sysctl(void)
  4400. {
  4401. if (sd_sysctl_header)
  4402. unregister_sysctl_table(sd_sysctl_header);
  4403. sd_sysctl_header = NULL;
  4404. if (sd_ctl_dir[0].child)
  4405. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4406. }
  4407. #else
  4408. static void register_sched_domain_sysctl(void)
  4409. {
  4410. }
  4411. static void unregister_sched_domain_sysctl(void)
  4412. {
  4413. }
  4414. #endif
  4415. static void set_rq_online(struct rq *rq)
  4416. {
  4417. if (!rq->online) {
  4418. const struct sched_class *class;
  4419. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4420. rq->online = 1;
  4421. for_each_class(class) {
  4422. if (class->rq_online)
  4423. class->rq_online(rq);
  4424. }
  4425. }
  4426. }
  4427. static void set_rq_offline(struct rq *rq)
  4428. {
  4429. if (rq->online) {
  4430. const struct sched_class *class;
  4431. for_each_class(class) {
  4432. if (class->rq_offline)
  4433. class->rq_offline(rq);
  4434. }
  4435. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4436. rq->online = 0;
  4437. }
  4438. }
  4439. /*
  4440. * migration_call - callback that gets triggered when a CPU is added.
  4441. * Here we can start up the necessary migration thread for the new CPU.
  4442. */
  4443. static int
  4444. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4445. {
  4446. int cpu = (long)hcpu;
  4447. unsigned long flags;
  4448. struct rq *rq = cpu_rq(cpu);
  4449. switch (action & ~CPU_TASKS_FROZEN) {
  4450. case CPU_UP_PREPARE:
  4451. rq->calc_load_update = calc_load_update;
  4452. break;
  4453. case CPU_ONLINE:
  4454. /* Update our root-domain */
  4455. raw_spin_lock_irqsave(&rq->lock, flags);
  4456. if (rq->rd) {
  4457. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4458. set_rq_online(rq);
  4459. }
  4460. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4461. break;
  4462. #ifdef CONFIG_HOTPLUG_CPU
  4463. case CPU_DYING:
  4464. sched_ttwu_pending();
  4465. /* Update our root-domain */
  4466. raw_spin_lock_irqsave(&rq->lock, flags);
  4467. if (rq->rd) {
  4468. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4469. set_rq_offline(rq);
  4470. }
  4471. migrate_tasks(cpu);
  4472. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4473. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4474. break;
  4475. case CPU_DEAD:
  4476. calc_load_migrate(rq);
  4477. break;
  4478. #endif
  4479. }
  4480. update_max_interval();
  4481. return NOTIFY_OK;
  4482. }
  4483. /*
  4484. * Register at high priority so that task migration (migrate_all_tasks)
  4485. * happens before everything else. This has to be lower priority than
  4486. * the notifier in the perf_event subsystem, though.
  4487. */
  4488. static struct notifier_block migration_notifier = {
  4489. .notifier_call = migration_call,
  4490. .priority = CPU_PRI_MIGRATION,
  4491. };
  4492. static void __cpuinit set_cpu_rq_start_time(void)
  4493. {
  4494. int cpu = smp_processor_id();
  4495. struct rq *rq = cpu_rq(cpu);
  4496. rq->age_stamp = sched_clock_cpu(cpu);
  4497. }
  4498. static int sched_cpu_active(struct notifier_block *nfb,
  4499. unsigned long action, void *hcpu)
  4500. {
  4501. switch (action & ~CPU_TASKS_FROZEN) {
  4502. case CPU_STARTING:
  4503. set_cpu_rq_start_time();
  4504. return NOTIFY_OK;
  4505. case CPU_DOWN_FAILED:
  4506. set_cpu_active((long)hcpu, true);
  4507. return NOTIFY_OK;
  4508. default:
  4509. return NOTIFY_DONE;
  4510. }
  4511. }
  4512. static int sched_cpu_inactive(struct notifier_block *nfb,
  4513. unsigned long action, void *hcpu)
  4514. {
  4515. unsigned long flags;
  4516. long cpu = (long)hcpu;
  4517. struct dl_bw *dl_b;
  4518. switch (action & ~CPU_TASKS_FROZEN) {
  4519. case CPU_DOWN_PREPARE:
  4520. set_cpu_active(cpu, false);
  4521. /* explicitly allow suspend */
  4522. if (!(action & CPU_TASKS_FROZEN)) {
  4523. bool overflow;
  4524. int cpus;
  4525. rcu_read_lock_sched();
  4526. dl_b = dl_bw_of(cpu);
  4527. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4528. cpus = dl_bw_cpus(cpu);
  4529. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  4530. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4531. rcu_read_unlock_sched();
  4532. if (overflow)
  4533. return notifier_from_errno(-EBUSY);
  4534. }
  4535. return NOTIFY_OK;
  4536. }
  4537. return NOTIFY_DONE;
  4538. }
  4539. static int __init migration_init(void)
  4540. {
  4541. void *cpu = (void *)(long)smp_processor_id();
  4542. int err;
  4543. /* Initialize migration for the boot CPU */
  4544. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4545. BUG_ON(err == NOTIFY_BAD);
  4546. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4547. register_cpu_notifier(&migration_notifier);
  4548. /* Register cpu active notifiers */
  4549. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4550. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4551. return 0;
  4552. }
  4553. early_initcall(migration_init);
  4554. #endif
  4555. #ifdef CONFIG_SMP
  4556. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4557. #ifdef CONFIG_SCHED_DEBUG
  4558. static __read_mostly int sched_debug_enabled;
  4559. static int __init sched_debug_setup(char *str)
  4560. {
  4561. sched_debug_enabled = 1;
  4562. return 0;
  4563. }
  4564. early_param("sched_debug", sched_debug_setup);
  4565. static inline bool sched_debug(void)
  4566. {
  4567. return sched_debug_enabled;
  4568. }
  4569. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4570. struct cpumask *groupmask)
  4571. {
  4572. struct sched_group *group = sd->groups;
  4573. char str[256];
  4574. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4575. cpumask_clear(groupmask);
  4576. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4577. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4578. printk("does not load-balance\n");
  4579. if (sd->parent)
  4580. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4581. " has parent");
  4582. return -1;
  4583. }
  4584. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4585. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4586. printk(KERN_ERR "ERROR: domain->span does not contain "
  4587. "CPU%d\n", cpu);
  4588. }
  4589. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4590. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4591. " CPU%d\n", cpu);
  4592. }
  4593. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4594. do {
  4595. if (!group) {
  4596. printk("\n");
  4597. printk(KERN_ERR "ERROR: group is NULL\n");
  4598. break;
  4599. }
  4600. /*
  4601. * Even though we initialize ->capacity to something semi-sane,
  4602. * we leave capacity_orig unset. This allows us to detect if
  4603. * domain iteration is still funny without causing /0 traps.
  4604. */
  4605. if (!group->sgc->capacity_orig) {
  4606. printk(KERN_CONT "\n");
  4607. printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
  4608. break;
  4609. }
  4610. if (!cpumask_weight(sched_group_cpus(group))) {
  4611. printk(KERN_CONT "\n");
  4612. printk(KERN_ERR "ERROR: empty group\n");
  4613. break;
  4614. }
  4615. if (!(sd->flags & SD_OVERLAP) &&
  4616. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4617. printk(KERN_CONT "\n");
  4618. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4619. break;
  4620. }
  4621. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4622. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4623. printk(KERN_CONT " %s", str);
  4624. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4625. printk(KERN_CONT " (cpu_capacity = %d)",
  4626. group->sgc->capacity);
  4627. }
  4628. group = group->next;
  4629. } while (group != sd->groups);
  4630. printk(KERN_CONT "\n");
  4631. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4632. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4633. if (sd->parent &&
  4634. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4635. printk(KERN_ERR "ERROR: parent span is not a superset "
  4636. "of domain->span\n");
  4637. return 0;
  4638. }
  4639. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4640. {
  4641. int level = 0;
  4642. if (!sched_debug_enabled)
  4643. return;
  4644. if (!sd) {
  4645. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4646. return;
  4647. }
  4648. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4649. for (;;) {
  4650. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4651. break;
  4652. level++;
  4653. sd = sd->parent;
  4654. if (!sd)
  4655. break;
  4656. }
  4657. }
  4658. #else /* !CONFIG_SCHED_DEBUG */
  4659. # define sched_domain_debug(sd, cpu) do { } while (0)
  4660. static inline bool sched_debug(void)
  4661. {
  4662. return false;
  4663. }
  4664. #endif /* CONFIG_SCHED_DEBUG */
  4665. static int sd_degenerate(struct sched_domain *sd)
  4666. {
  4667. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4668. return 1;
  4669. /* Following flags need at least 2 groups */
  4670. if (sd->flags & (SD_LOAD_BALANCE |
  4671. SD_BALANCE_NEWIDLE |
  4672. SD_BALANCE_FORK |
  4673. SD_BALANCE_EXEC |
  4674. SD_SHARE_CPUCAPACITY |
  4675. SD_SHARE_PKG_RESOURCES |
  4676. SD_SHARE_POWERDOMAIN)) {
  4677. if (sd->groups != sd->groups->next)
  4678. return 0;
  4679. }
  4680. /* Following flags don't use groups */
  4681. if (sd->flags & (SD_WAKE_AFFINE))
  4682. return 0;
  4683. return 1;
  4684. }
  4685. static int
  4686. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4687. {
  4688. unsigned long cflags = sd->flags, pflags = parent->flags;
  4689. if (sd_degenerate(parent))
  4690. return 1;
  4691. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4692. return 0;
  4693. /* Flags needing groups don't count if only 1 group in parent */
  4694. if (parent->groups == parent->groups->next) {
  4695. pflags &= ~(SD_LOAD_BALANCE |
  4696. SD_BALANCE_NEWIDLE |
  4697. SD_BALANCE_FORK |
  4698. SD_BALANCE_EXEC |
  4699. SD_SHARE_CPUCAPACITY |
  4700. SD_SHARE_PKG_RESOURCES |
  4701. SD_PREFER_SIBLING |
  4702. SD_SHARE_POWERDOMAIN);
  4703. if (nr_node_ids == 1)
  4704. pflags &= ~SD_SERIALIZE;
  4705. }
  4706. if (~cflags & pflags)
  4707. return 0;
  4708. return 1;
  4709. }
  4710. static void free_rootdomain(struct rcu_head *rcu)
  4711. {
  4712. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4713. cpupri_cleanup(&rd->cpupri);
  4714. cpudl_cleanup(&rd->cpudl);
  4715. free_cpumask_var(rd->dlo_mask);
  4716. free_cpumask_var(rd->rto_mask);
  4717. free_cpumask_var(rd->online);
  4718. free_cpumask_var(rd->span);
  4719. kfree(rd);
  4720. }
  4721. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4722. {
  4723. struct root_domain *old_rd = NULL;
  4724. unsigned long flags;
  4725. raw_spin_lock_irqsave(&rq->lock, flags);
  4726. if (rq->rd) {
  4727. old_rd = rq->rd;
  4728. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4729. set_rq_offline(rq);
  4730. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4731. /*
  4732. * If we dont want to free the old_rd yet then
  4733. * set old_rd to NULL to skip the freeing later
  4734. * in this function:
  4735. */
  4736. if (!atomic_dec_and_test(&old_rd->refcount))
  4737. old_rd = NULL;
  4738. }
  4739. atomic_inc(&rd->refcount);
  4740. rq->rd = rd;
  4741. cpumask_set_cpu(rq->cpu, rd->span);
  4742. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4743. set_rq_online(rq);
  4744. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4745. if (old_rd)
  4746. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4747. }
  4748. static int init_rootdomain(struct root_domain *rd)
  4749. {
  4750. memset(rd, 0, sizeof(*rd));
  4751. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4752. goto out;
  4753. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4754. goto free_span;
  4755. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4756. goto free_online;
  4757. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4758. goto free_dlo_mask;
  4759. init_dl_bw(&rd->dl_bw);
  4760. if (cpudl_init(&rd->cpudl) != 0)
  4761. goto free_dlo_mask;
  4762. if (cpupri_init(&rd->cpupri) != 0)
  4763. goto free_rto_mask;
  4764. return 0;
  4765. free_rto_mask:
  4766. free_cpumask_var(rd->rto_mask);
  4767. free_dlo_mask:
  4768. free_cpumask_var(rd->dlo_mask);
  4769. free_online:
  4770. free_cpumask_var(rd->online);
  4771. free_span:
  4772. free_cpumask_var(rd->span);
  4773. out:
  4774. return -ENOMEM;
  4775. }
  4776. /*
  4777. * By default the system creates a single root-domain with all cpus as
  4778. * members (mimicking the global state we have today).
  4779. */
  4780. struct root_domain def_root_domain;
  4781. static void init_defrootdomain(void)
  4782. {
  4783. init_rootdomain(&def_root_domain);
  4784. atomic_set(&def_root_domain.refcount, 1);
  4785. }
  4786. static struct root_domain *alloc_rootdomain(void)
  4787. {
  4788. struct root_domain *rd;
  4789. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4790. if (!rd)
  4791. return NULL;
  4792. if (init_rootdomain(rd) != 0) {
  4793. kfree(rd);
  4794. return NULL;
  4795. }
  4796. return rd;
  4797. }
  4798. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  4799. {
  4800. struct sched_group *tmp, *first;
  4801. if (!sg)
  4802. return;
  4803. first = sg;
  4804. do {
  4805. tmp = sg->next;
  4806. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  4807. kfree(sg->sgc);
  4808. kfree(sg);
  4809. sg = tmp;
  4810. } while (sg != first);
  4811. }
  4812. static void free_sched_domain(struct rcu_head *rcu)
  4813. {
  4814. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4815. /*
  4816. * If its an overlapping domain it has private groups, iterate and
  4817. * nuke them all.
  4818. */
  4819. if (sd->flags & SD_OVERLAP) {
  4820. free_sched_groups(sd->groups, 1);
  4821. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4822. kfree(sd->groups->sgc);
  4823. kfree(sd->groups);
  4824. }
  4825. kfree(sd);
  4826. }
  4827. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4828. {
  4829. call_rcu(&sd->rcu, free_sched_domain);
  4830. }
  4831. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4832. {
  4833. for (; sd; sd = sd->parent)
  4834. destroy_sched_domain(sd, cpu);
  4835. }
  4836. /*
  4837. * Keep a special pointer to the highest sched_domain that has
  4838. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4839. * allows us to avoid some pointer chasing select_idle_sibling().
  4840. *
  4841. * Also keep a unique ID per domain (we use the first cpu number in
  4842. * the cpumask of the domain), this allows us to quickly tell if
  4843. * two cpus are in the same cache domain, see cpus_share_cache().
  4844. */
  4845. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4846. DEFINE_PER_CPU(int, sd_llc_size);
  4847. DEFINE_PER_CPU(int, sd_llc_id);
  4848. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4849. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4850. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4851. static void update_top_cache_domain(int cpu)
  4852. {
  4853. struct sched_domain *sd;
  4854. struct sched_domain *busy_sd = NULL;
  4855. int id = cpu;
  4856. int size = 1;
  4857. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4858. if (sd) {
  4859. id = cpumask_first(sched_domain_span(sd));
  4860. size = cpumask_weight(sched_domain_span(sd));
  4861. busy_sd = sd->parent; /* sd_busy */
  4862. }
  4863. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4864. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4865. per_cpu(sd_llc_size, cpu) = size;
  4866. per_cpu(sd_llc_id, cpu) = id;
  4867. sd = lowest_flag_domain(cpu, SD_NUMA);
  4868. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4869. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4870. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4871. }
  4872. /*
  4873. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4874. * hold the hotplug lock.
  4875. */
  4876. static void
  4877. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4878. {
  4879. struct rq *rq = cpu_rq(cpu);
  4880. struct sched_domain *tmp;
  4881. /* Remove the sched domains which do not contribute to scheduling. */
  4882. for (tmp = sd; tmp; ) {
  4883. struct sched_domain *parent = tmp->parent;
  4884. if (!parent)
  4885. break;
  4886. if (sd_parent_degenerate(tmp, parent)) {
  4887. tmp->parent = parent->parent;
  4888. if (parent->parent)
  4889. parent->parent->child = tmp;
  4890. /*
  4891. * Transfer SD_PREFER_SIBLING down in case of a
  4892. * degenerate parent; the spans match for this
  4893. * so the property transfers.
  4894. */
  4895. if (parent->flags & SD_PREFER_SIBLING)
  4896. tmp->flags |= SD_PREFER_SIBLING;
  4897. destroy_sched_domain(parent, cpu);
  4898. } else
  4899. tmp = tmp->parent;
  4900. }
  4901. if (sd && sd_degenerate(sd)) {
  4902. tmp = sd;
  4903. sd = sd->parent;
  4904. destroy_sched_domain(tmp, cpu);
  4905. if (sd)
  4906. sd->child = NULL;
  4907. }
  4908. sched_domain_debug(sd, cpu);
  4909. rq_attach_root(rq, rd);
  4910. tmp = rq->sd;
  4911. rcu_assign_pointer(rq->sd, sd);
  4912. destroy_sched_domains(tmp, cpu);
  4913. update_top_cache_domain(cpu);
  4914. }
  4915. /* cpus with isolated domains */
  4916. static cpumask_var_t cpu_isolated_map;
  4917. /* Setup the mask of cpus configured for isolated domains */
  4918. static int __init isolated_cpu_setup(char *str)
  4919. {
  4920. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4921. cpulist_parse(str, cpu_isolated_map);
  4922. return 1;
  4923. }
  4924. __setup("isolcpus=", isolated_cpu_setup);
  4925. struct s_data {
  4926. struct sched_domain ** __percpu sd;
  4927. struct root_domain *rd;
  4928. };
  4929. enum s_alloc {
  4930. sa_rootdomain,
  4931. sa_sd,
  4932. sa_sd_storage,
  4933. sa_none,
  4934. };
  4935. /*
  4936. * Build an iteration mask that can exclude certain CPUs from the upwards
  4937. * domain traversal.
  4938. *
  4939. * Asymmetric node setups can result in situations where the domain tree is of
  4940. * unequal depth, make sure to skip domains that already cover the entire
  4941. * range.
  4942. *
  4943. * In that case build_sched_domains() will have terminated the iteration early
  4944. * and our sibling sd spans will be empty. Domains should always include the
  4945. * cpu they're built on, so check that.
  4946. *
  4947. */
  4948. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4949. {
  4950. const struct cpumask *span = sched_domain_span(sd);
  4951. struct sd_data *sdd = sd->private;
  4952. struct sched_domain *sibling;
  4953. int i;
  4954. for_each_cpu(i, span) {
  4955. sibling = *per_cpu_ptr(sdd->sd, i);
  4956. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4957. continue;
  4958. cpumask_set_cpu(i, sched_group_mask(sg));
  4959. }
  4960. }
  4961. /*
  4962. * Return the canonical balance cpu for this group, this is the first cpu
  4963. * of this group that's also in the iteration mask.
  4964. */
  4965. int group_balance_cpu(struct sched_group *sg)
  4966. {
  4967. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4968. }
  4969. static int
  4970. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4971. {
  4972. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4973. const struct cpumask *span = sched_domain_span(sd);
  4974. struct cpumask *covered = sched_domains_tmpmask;
  4975. struct sd_data *sdd = sd->private;
  4976. struct sched_domain *sibling;
  4977. int i;
  4978. cpumask_clear(covered);
  4979. for_each_cpu(i, span) {
  4980. struct cpumask *sg_span;
  4981. if (cpumask_test_cpu(i, covered))
  4982. continue;
  4983. sibling = *per_cpu_ptr(sdd->sd, i);
  4984. /* See the comment near build_group_mask(). */
  4985. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4986. continue;
  4987. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4988. GFP_KERNEL, cpu_to_node(cpu));
  4989. if (!sg)
  4990. goto fail;
  4991. sg_span = sched_group_cpus(sg);
  4992. if (sibling->child)
  4993. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  4994. else
  4995. cpumask_set_cpu(i, sg_span);
  4996. cpumask_or(covered, covered, sg_span);
  4997. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  4998. if (atomic_inc_return(&sg->sgc->ref) == 1)
  4999. build_group_mask(sd, sg);
  5000. /*
  5001. * Initialize sgc->capacity such that even if we mess up the
  5002. * domains and no possible iteration will get us here, we won't
  5003. * die on a /0 trap.
  5004. */
  5005. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  5006. sg->sgc->capacity_orig = sg->sgc->capacity;
  5007. /*
  5008. * Make sure the first group of this domain contains the
  5009. * canonical balance cpu. Otherwise the sched_domain iteration
  5010. * breaks. See update_sg_lb_stats().
  5011. */
  5012. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5013. group_balance_cpu(sg) == cpu)
  5014. groups = sg;
  5015. if (!first)
  5016. first = sg;
  5017. if (last)
  5018. last->next = sg;
  5019. last = sg;
  5020. last->next = first;
  5021. }
  5022. sd->groups = groups;
  5023. return 0;
  5024. fail:
  5025. free_sched_groups(first, 0);
  5026. return -ENOMEM;
  5027. }
  5028. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5029. {
  5030. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5031. struct sched_domain *child = sd->child;
  5032. if (child)
  5033. cpu = cpumask_first(sched_domain_span(child));
  5034. if (sg) {
  5035. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5036. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5037. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5038. }
  5039. return cpu;
  5040. }
  5041. /*
  5042. * build_sched_groups will build a circular linked list of the groups
  5043. * covered by the given span, and will set each group's ->cpumask correctly,
  5044. * and ->cpu_capacity to 0.
  5045. *
  5046. * Assumes the sched_domain tree is fully constructed
  5047. */
  5048. static int
  5049. build_sched_groups(struct sched_domain *sd, int cpu)
  5050. {
  5051. struct sched_group *first = NULL, *last = NULL;
  5052. struct sd_data *sdd = sd->private;
  5053. const struct cpumask *span = sched_domain_span(sd);
  5054. struct cpumask *covered;
  5055. int i;
  5056. get_group(cpu, sdd, &sd->groups);
  5057. atomic_inc(&sd->groups->ref);
  5058. if (cpu != cpumask_first(span))
  5059. return 0;
  5060. lockdep_assert_held(&sched_domains_mutex);
  5061. covered = sched_domains_tmpmask;
  5062. cpumask_clear(covered);
  5063. for_each_cpu(i, span) {
  5064. struct sched_group *sg;
  5065. int group, j;
  5066. if (cpumask_test_cpu(i, covered))
  5067. continue;
  5068. group = get_group(i, sdd, &sg);
  5069. cpumask_setall(sched_group_mask(sg));
  5070. for_each_cpu(j, span) {
  5071. if (get_group(j, sdd, NULL) != group)
  5072. continue;
  5073. cpumask_set_cpu(j, covered);
  5074. cpumask_set_cpu(j, sched_group_cpus(sg));
  5075. }
  5076. if (!first)
  5077. first = sg;
  5078. if (last)
  5079. last->next = sg;
  5080. last = sg;
  5081. }
  5082. last->next = first;
  5083. return 0;
  5084. }
  5085. /*
  5086. * Initialize sched groups cpu_capacity.
  5087. *
  5088. * cpu_capacity indicates the capacity of sched group, which is used while
  5089. * distributing the load between different sched groups in a sched domain.
  5090. * Typically cpu_capacity for all the groups in a sched domain will be same
  5091. * unless there are asymmetries in the topology. If there are asymmetries,
  5092. * group having more cpu_capacity will pickup more load compared to the
  5093. * group having less cpu_capacity.
  5094. */
  5095. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5096. {
  5097. struct sched_group *sg = sd->groups;
  5098. WARN_ON(!sg);
  5099. do {
  5100. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5101. sg = sg->next;
  5102. } while (sg != sd->groups);
  5103. if (cpu != group_balance_cpu(sg))
  5104. return;
  5105. update_group_capacity(sd, cpu);
  5106. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5107. }
  5108. /*
  5109. * Initializers for schedule domains
  5110. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5111. */
  5112. static int default_relax_domain_level = -1;
  5113. int sched_domain_level_max;
  5114. static int __init setup_relax_domain_level(char *str)
  5115. {
  5116. if (kstrtoint(str, 0, &default_relax_domain_level))
  5117. pr_warn("Unable to set relax_domain_level\n");
  5118. return 1;
  5119. }
  5120. __setup("relax_domain_level=", setup_relax_domain_level);
  5121. static void set_domain_attribute(struct sched_domain *sd,
  5122. struct sched_domain_attr *attr)
  5123. {
  5124. int request;
  5125. if (!attr || attr->relax_domain_level < 0) {
  5126. if (default_relax_domain_level < 0)
  5127. return;
  5128. else
  5129. request = default_relax_domain_level;
  5130. } else
  5131. request = attr->relax_domain_level;
  5132. if (request < sd->level) {
  5133. /* turn off idle balance on this domain */
  5134. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5135. } else {
  5136. /* turn on idle balance on this domain */
  5137. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5138. }
  5139. }
  5140. static void __sdt_free(const struct cpumask *cpu_map);
  5141. static int __sdt_alloc(const struct cpumask *cpu_map);
  5142. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5143. const struct cpumask *cpu_map)
  5144. {
  5145. switch (what) {
  5146. case sa_rootdomain:
  5147. if (!atomic_read(&d->rd->refcount))
  5148. free_rootdomain(&d->rd->rcu); /* fall through */
  5149. case sa_sd:
  5150. free_percpu(d->sd); /* fall through */
  5151. case sa_sd_storage:
  5152. __sdt_free(cpu_map); /* fall through */
  5153. case sa_none:
  5154. break;
  5155. }
  5156. }
  5157. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5158. const struct cpumask *cpu_map)
  5159. {
  5160. memset(d, 0, sizeof(*d));
  5161. if (__sdt_alloc(cpu_map))
  5162. return sa_sd_storage;
  5163. d->sd = alloc_percpu(struct sched_domain *);
  5164. if (!d->sd)
  5165. return sa_sd_storage;
  5166. d->rd = alloc_rootdomain();
  5167. if (!d->rd)
  5168. return sa_sd;
  5169. return sa_rootdomain;
  5170. }
  5171. /*
  5172. * NULL the sd_data elements we've used to build the sched_domain and
  5173. * sched_group structure so that the subsequent __free_domain_allocs()
  5174. * will not free the data we're using.
  5175. */
  5176. static void claim_allocations(int cpu, struct sched_domain *sd)
  5177. {
  5178. struct sd_data *sdd = sd->private;
  5179. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5180. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5181. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5182. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5183. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5184. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5185. }
  5186. #ifdef CONFIG_NUMA
  5187. static int sched_domains_numa_levels;
  5188. static int *sched_domains_numa_distance;
  5189. static struct cpumask ***sched_domains_numa_masks;
  5190. static int sched_domains_curr_level;
  5191. #endif
  5192. /*
  5193. * SD_flags allowed in topology descriptions.
  5194. *
  5195. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5196. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5197. * SD_NUMA - describes NUMA topologies
  5198. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5199. *
  5200. * Odd one out:
  5201. * SD_ASYM_PACKING - describes SMT quirks
  5202. */
  5203. #define TOPOLOGY_SD_FLAGS \
  5204. (SD_SHARE_CPUCAPACITY | \
  5205. SD_SHARE_PKG_RESOURCES | \
  5206. SD_NUMA | \
  5207. SD_ASYM_PACKING | \
  5208. SD_SHARE_POWERDOMAIN)
  5209. static struct sched_domain *
  5210. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5211. {
  5212. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5213. int sd_weight, sd_flags = 0;
  5214. #ifdef CONFIG_NUMA
  5215. /*
  5216. * Ugly hack to pass state to sd_numa_mask()...
  5217. */
  5218. sched_domains_curr_level = tl->numa_level;
  5219. #endif
  5220. sd_weight = cpumask_weight(tl->mask(cpu));
  5221. if (tl->sd_flags)
  5222. sd_flags = (*tl->sd_flags)();
  5223. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5224. "wrong sd_flags in topology description\n"))
  5225. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5226. *sd = (struct sched_domain){
  5227. .min_interval = sd_weight,
  5228. .max_interval = 2*sd_weight,
  5229. .busy_factor = 32,
  5230. .imbalance_pct = 125,
  5231. .cache_nice_tries = 0,
  5232. .busy_idx = 0,
  5233. .idle_idx = 0,
  5234. .newidle_idx = 0,
  5235. .wake_idx = 0,
  5236. .forkexec_idx = 0,
  5237. .flags = 1*SD_LOAD_BALANCE
  5238. | 1*SD_BALANCE_NEWIDLE
  5239. | 1*SD_BALANCE_EXEC
  5240. | 1*SD_BALANCE_FORK
  5241. | 0*SD_BALANCE_WAKE
  5242. | 1*SD_WAKE_AFFINE
  5243. | 0*SD_SHARE_CPUCAPACITY
  5244. | 0*SD_SHARE_PKG_RESOURCES
  5245. | 0*SD_SERIALIZE
  5246. | 0*SD_PREFER_SIBLING
  5247. | 0*SD_NUMA
  5248. | sd_flags
  5249. ,
  5250. .last_balance = jiffies,
  5251. .balance_interval = sd_weight,
  5252. .smt_gain = 0,
  5253. .max_newidle_lb_cost = 0,
  5254. .next_decay_max_lb_cost = jiffies,
  5255. #ifdef CONFIG_SCHED_DEBUG
  5256. .name = tl->name,
  5257. #endif
  5258. };
  5259. /*
  5260. * Convert topological properties into behaviour.
  5261. */
  5262. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5263. sd->imbalance_pct = 110;
  5264. sd->smt_gain = 1178; /* ~15% */
  5265. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5266. sd->imbalance_pct = 117;
  5267. sd->cache_nice_tries = 1;
  5268. sd->busy_idx = 2;
  5269. #ifdef CONFIG_NUMA
  5270. } else if (sd->flags & SD_NUMA) {
  5271. sd->cache_nice_tries = 2;
  5272. sd->busy_idx = 3;
  5273. sd->idle_idx = 2;
  5274. sd->flags |= SD_SERIALIZE;
  5275. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5276. sd->flags &= ~(SD_BALANCE_EXEC |
  5277. SD_BALANCE_FORK |
  5278. SD_WAKE_AFFINE);
  5279. }
  5280. #endif
  5281. } else {
  5282. sd->flags |= SD_PREFER_SIBLING;
  5283. sd->cache_nice_tries = 1;
  5284. sd->busy_idx = 2;
  5285. sd->idle_idx = 1;
  5286. }
  5287. sd->private = &tl->data;
  5288. return sd;
  5289. }
  5290. /*
  5291. * Topology list, bottom-up.
  5292. */
  5293. static struct sched_domain_topology_level default_topology[] = {
  5294. #ifdef CONFIG_SCHED_SMT
  5295. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5296. #endif
  5297. #ifdef CONFIG_SCHED_MC
  5298. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5299. #endif
  5300. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5301. { NULL, },
  5302. };
  5303. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5304. #define for_each_sd_topology(tl) \
  5305. for (tl = sched_domain_topology; tl->mask; tl++)
  5306. void set_sched_topology(struct sched_domain_topology_level *tl)
  5307. {
  5308. sched_domain_topology = tl;
  5309. }
  5310. #ifdef CONFIG_NUMA
  5311. static const struct cpumask *sd_numa_mask(int cpu)
  5312. {
  5313. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5314. }
  5315. static void sched_numa_warn(const char *str)
  5316. {
  5317. static int done = false;
  5318. int i,j;
  5319. if (done)
  5320. return;
  5321. done = true;
  5322. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5323. for (i = 0; i < nr_node_ids; i++) {
  5324. printk(KERN_WARNING " ");
  5325. for (j = 0; j < nr_node_ids; j++)
  5326. printk(KERN_CONT "%02d ", node_distance(i,j));
  5327. printk(KERN_CONT "\n");
  5328. }
  5329. printk(KERN_WARNING "\n");
  5330. }
  5331. static bool find_numa_distance(int distance)
  5332. {
  5333. int i;
  5334. if (distance == node_distance(0, 0))
  5335. return true;
  5336. for (i = 0; i < sched_domains_numa_levels; i++) {
  5337. if (sched_domains_numa_distance[i] == distance)
  5338. return true;
  5339. }
  5340. return false;
  5341. }
  5342. static void sched_init_numa(void)
  5343. {
  5344. int next_distance, curr_distance = node_distance(0, 0);
  5345. struct sched_domain_topology_level *tl;
  5346. int level = 0;
  5347. int i, j, k;
  5348. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5349. if (!sched_domains_numa_distance)
  5350. return;
  5351. /*
  5352. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5353. * unique distances in the node_distance() table.
  5354. *
  5355. * Assumes node_distance(0,j) includes all distances in
  5356. * node_distance(i,j) in order to avoid cubic time.
  5357. */
  5358. next_distance = curr_distance;
  5359. for (i = 0; i < nr_node_ids; i++) {
  5360. for (j = 0; j < nr_node_ids; j++) {
  5361. for (k = 0; k < nr_node_ids; k++) {
  5362. int distance = node_distance(i, k);
  5363. if (distance > curr_distance &&
  5364. (distance < next_distance ||
  5365. next_distance == curr_distance))
  5366. next_distance = distance;
  5367. /*
  5368. * While not a strong assumption it would be nice to know
  5369. * about cases where if node A is connected to B, B is not
  5370. * equally connected to A.
  5371. */
  5372. if (sched_debug() && node_distance(k, i) != distance)
  5373. sched_numa_warn("Node-distance not symmetric");
  5374. if (sched_debug() && i && !find_numa_distance(distance))
  5375. sched_numa_warn("Node-0 not representative");
  5376. }
  5377. if (next_distance != curr_distance) {
  5378. sched_domains_numa_distance[level++] = next_distance;
  5379. sched_domains_numa_levels = level;
  5380. curr_distance = next_distance;
  5381. } else break;
  5382. }
  5383. /*
  5384. * In case of sched_debug() we verify the above assumption.
  5385. */
  5386. if (!sched_debug())
  5387. break;
  5388. }
  5389. if (!level)
  5390. return;
  5391. /*
  5392. * 'level' contains the number of unique distances, excluding the
  5393. * identity distance node_distance(i,i).
  5394. *
  5395. * The sched_domains_numa_distance[] array includes the actual distance
  5396. * numbers.
  5397. */
  5398. /*
  5399. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5400. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5401. * the array will contain less then 'level' members. This could be
  5402. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5403. * in other functions.
  5404. *
  5405. * We reset it to 'level' at the end of this function.
  5406. */
  5407. sched_domains_numa_levels = 0;
  5408. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5409. if (!sched_domains_numa_masks)
  5410. return;
  5411. /*
  5412. * Now for each level, construct a mask per node which contains all
  5413. * cpus of nodes that are that many hops away from us.
  5414. */
  5415. for (i = 0; i < level; i++) {
  5416. sched_domains_numa_masks[i] =
  5417. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5418. if (!sched_domains_numa_masks[i])
  5419. return;
  5420. for (j = 0; j < nr_node_ids; j++) {
  5421. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5422. if (!mask)
  5423. return;
  5424. sched_domains_numa_masks[i][j] = mask;
  5425. for (k = 0; k < nr_node_ids; k++) {
  5426. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5427. continue;
  5428. cpumask_or(mask, mask, cpumask_of_node(k));
  5429. }
  5430. }
  5431. }
  5432. /* Compute default topology size */
  5433. for (i = 0; sched_domain_topology[i].mask; i++);
  5434. tl = kzalloc((i + level + 1) *
  5435. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5436. if (!tl)
  5437. return;
  5438. /*
  5439. * Copy the default topology bits..
  5440. */
  5441. for (i = 0; sched_domain_topology[i].mask; i++)
  5442. tl[i] = sched_domain_topology[i];
  5443. /*
  5444. * .. and append 'j' levels of NUMA goodness.
  5445. */
  5446. for (j = 0; j < level; i++, j++) {
  5447. tl[i] = (struct sched_domain_topology_level){
  5448. .mask = sd_numa_mask,
  5449. .sd_flags = cpu_numa_flags,
  5450. .flags = SDTL_OVERLAP,
  5451. .numa_level = j,
  5452. SD_INIT_NAME(NUMA)
  5453. };
  5454. }
  5455. sched_domain_topology = tl;
  5456. sched_domains_numa_levels = level;
  5457. }
  5458. static void sched_domains_numa_masks_set(int cpu)
  5459. {
  5460. int i, j;
  5461. int node = cpu_to_node(cpu);
  5462. for (i = 0; i < sched_domains_numa_levels; i++) {
  5463. for (j = 0; j < nr_node_ids; j++) {
  5464. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5465. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5466. }
  5467. }
  5468. }
  5469. static void sched_domains_numa_masks_clear(int cpu)
  5470. {
  5471. int i, j;
  5472. for (i = 0; i < sched_domains_numa_levels; i++) {
  5473. for (j = 0; j < nr_node_ids; j++)
  5474. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5475. }
  5476. }
  5477. /*
  5478. * Update sched_domains_numa_masks[level][node] array when new cpus
  5479. * are onlined.
  5480. */
  5481. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5482. unsigned long action,
  5483. void *hcpu)
  5484. {
  5485. int cpu = (long)hcpu;
  5486. switch (action & ~CPU_TASKS_FROZEN) {
  5487. case CPU_ONLINE:
  5488. sched_domains_numa_masks_set(cpu);
  5489. break;
  5490. case CPU_DEAD:
  5491. sched_domains_numa_masks_clear(cpu);
  5492. break;
  5493. default:
  5494. return NOTIFY_DONE;
  5495. }
  5496. return NOTIFY_OK;
  5497. }
  5498. #else
  5499. static inline void sched_init_numa(void)
  5500. {
  5501. }
  5502. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5503. unsigned long action,
  5504. void *hcpu)
  5505. {
  5506. return 0;
  5507. }
  5508. #endif /* CONFIG_NUMA */
  5509. static int __sdt_alloc(const struct cpumask *cpu_map)
  5510. {
  5511. struct sched_domain_topology_level *tl;
  5512. int j;
  5513. for_each_sd_topology(tl) {
  5514. struct sd_data *sdd = &tl->data;
  5515. sdd->sd = alloc_percpu(struct sched_domain *);
  5516. if (!sdd->sd)
  5517. return -ENOMEM;
  5518. sdd->sg = alloc_percpu(struct sched_group *);
  5519. if (!sdd->sg)
  5520. return -ENOMEM;
  5521. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5522. if (!sdd->sgc)
  5523. return -ENOMEM;
  5524. for_each_cpu(j, cpu_map) {
  5525. struct sched_domain *sd;
  5526. struct sched_group *sg;
  5527. struct sched_group_capacity *sgc;
  5528. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5529. GFP_KERNEL, cpu_to_node(j));
  5530. if (!sd)
  5531. return -ENOMEM;
  5532. *per_cpu_ptr(sdd->sd, j) = sd;
  5533. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5534. GFP_KERNEL, cpu_to_node(j));
  5535. if (!sg)
  5536. return -ENOMEM;
  5537. sg->next = sg;
  5538. *per_cpu_ptr(sdd->sg, j) = sg;
  5539. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5540. GFP_KERNEL, cpu_to_node(j));
  5541. if (!sgc)
  5542. return -ENOMEM;
  5543. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5544. }
  5545. }
  5546. return 0;
  5547. }
  5548. static void __sdt_free(const struct cpumask *cpu_map)
  5549. {
  5550. struct sched_domain_topology_level *tl;
  5551. int j;
  5552. for_each_sd_topology(tl) {
  5553. struct sd_data *sdd = &tl->data;
  5554. for_each_cpu(j, cpu_map) {
  5555. struct sched_domain *sd;
  5556. if (sdd->sd) {
  5557. sd = *per_cpu_ptr(sdd->sd, j);
  5558. if (sd && (sd->flags & SD_OVERLAP))
  5559. free_sched_groups(sd->groups, 0);
  5560. kfree(*per_cpu_ptr(sdd->sd, j));
  5561. }
  5562. if (sdd->sg)
  5563. kfree(*per_cpu_ptr(sdd->sg, j));
  5564. if (sdd->sgc)
  5565. kfree(*per_cpu_ptr(sdd->sgc, j));
  5566. }
  5567. free_percpu(sdd->sd);
  5568. sdd->sd = NULL;
  5569. free_percpu(sdd->sg);
  5570. sdd->sg = NULL;
  5571. free_percpu(sdd->sgc);
  5572. sdd->sgc = NULL;
  5573. }
  5574. }
  5575. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5576. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5577. struct sched_domain *child, int cpu)
  5578. {
  5579. struct sched_domain *sd = sd_init(tl, cpu);
  5580. if (!sd)
  5581. return child;
  5582. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5583. if (child) {
  5584. sd->level = child->level + 1;
  5585. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5586. child->parent = sd;
  5587. sd->child = child;
  5588. if (!cpumask_subset(sched_domain_span(child),
  5589. sched_domain_span(sd))) {
  5590. pr_err("BUG: arch topology borken\n");
  5591. #ifdef CONFIG_SCHED_DEBUG
  5592. pr_err(" the %s domain not a subset of the %s domain\n",
  5593. child->name, sd->name);
  5594. #endif
  5595. /* Fixup, ensure @sd has at least @child cpus. */
  5596. cpumask_or(sched_domain_span(sd),
  5597. sched_domain_span(sd),
  5598. sched_domain_span(child));
  5599. }
  5600. }
  5601. set_domain_attribute(sd, attr);
  5602. return sd;
  5603. }
  5604. /*
  5605. * Build sched domains for a given set of cpus and attach the sched domains
  5606. * to the individual cpus
  5607. */
  5608. static int build_sched_domains(const struct cpumask *cpu_map,
  5609. struct sched_domain_attr *attr)
  5610. {
  5611. enum s_alloc alloc_state;
  5612. struct sched_domain *sd;
  5613. struct s_data d;
  5614. int i, ret = -ENOMEM;
  5615. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5616. if (alloc_state != sa_rootdomain)
  5617. goto error;
  5618. /* Set up domains for cpus specified by the cpu_map. */
  5619. for_each_cpu(i, cpu_map) {
  5620. struct sched_domain_topology_level *tl;
  5621. sd = NULL;
  5622. for_each_sd_topology(tl) {
  5623. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5624. if (tl == sched_domain_topology)
  5625. *per_cpu_ptr(d.sd, i) = sd;
  5626. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5627. sd->flags |= SD_OVERLAP;
  5628. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5629. break;
  5630. }
  5631. }
  5632. /* Build the groups for the domains */
  5633. for_each_cpu(i, cpu_map) {
  5634. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5635. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5636. if (sd->flags & SD_OVERLAP) {
  5637. if (build_overlap_sched_groups(sd, i))
  5638. goto error;
  5639. } else {
  5640. if (build_sched_groups(sd, i))
  5641. goto error;
  5642. }
  5643. }
  5644. }
  5645. /* Calculate CPU capacity for physical packages and nodes */
  5646. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5647. if (!cpumask_test_cpu(i, cpu_map))
  5648. continue;
  5649. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5650. claim_allocations(i, sd);
  5651. init_sched_groups_capacity(i, sd);
  5652. }
  5653. }
  5654. /* Attach the domains */
  5655. rcu_read_lock();
  5656. for_each_cpu(i, cpu_map) {
  5657. sd = *per_cpu_ptr(d.sd, i);
  5658. cpu_attach_domain(sd, d.rd, i);
  5659. }
  5660. rcu_read_unlock();
  5661. ret = 0;
  5662. error:
  5663. __free_domain_allocs(&d, alloc_state, cpu_map);
  5664. return ret;
  5665. }
  5666. static cpumask_var_t *doms_cur; /* current sched domains */
  5667. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5668. static struct sched_domain_attr *dattr_cur;
  5669. /* attribues of custom domains in 'doms_cur' */
  5670. /*
  5671. * Special case: If a kmalloc of a doms_cur partition (array of
  5672. * cpumask) fails, then fallback to a single sched domain,
  5673. * as determined by the single cpumask fallback_doms.
  5674. */
  5675. static cpumask_var_t fallback_doms;
  5676. /*
  5677. * arch_update_cpu_topology lets virtualized architectures update the
  5678. * cpu core maps. It is supposed to return 1 if the topology changed
  5679. * or 0 if it stayed the same.
  5680. */
  5681. int __weak arch_update_cpu_topology(void)
  5682. {
  5683. return 0;
  5684. }
  5685. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5686. {
  5687. int i;
  5688. cpumask_var_t *doms;
  5689. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5690. if (!doms)
  5691. return NULL;
  5692. for (i = 0; i < ndoms; i++) {
  5693. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5694. free_sched_domains(doms, i);
  5695. return NULL;
  5696. }
  5697. }
  5698. return doms;
  5699. }
  5700. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5701. {
  5702. unsigned int i;
  5703. for (i = 0; i < ndoms; i++)
  5704. free_cpumask_var(doms[i]);
  5705. kfree(doms);
  5706. }
  5707. /*
  5708. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5709. * For now this just excludes isolated cpus, but could be used to
  5710. * exclude other special cases in the future.
  5711. */
  5712. static int init_sched_domains(const struct cpumask *cpu_map)
  5713. {
  5714. int err;
  5715. arch_update_cpu_topology();
  5716. ndoms_cur = 1;
  5717. doms_cur = alloc_sched_domains(ndoms_cur);
  5718. if (!doms_cur)
  5719. doms_cur = &fallback_doms;
  5720. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5721. err = build_sched_domains(doms_cur[0], NULL);
  5722. register_sched_domain_sysctl();
  5723. return err;
  5724. }
  5725. /*
  5726. * Detach sched domains from a group of cpus specified in cpu_map
  5727. * These cpus will now be attached to the NULL domain
  5728. */
  5729. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5730. {
  5731. int i;
  5732. rcu_read_lock();
  5733. for_each_cpu(i, cpu_map)
  5734. cpu_attach_domain(NULL, &def_root_domain, i);
  5735. rcu_read_unlock();
  5736. }
  5737. /* handle null as "default" */
  5738. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5739. struct sched_domain_attr *new, int idx_new)
  5740. {
  5741. struct sched_domain_attr tmp;
  5742. /* fast path */
  5743. if (!new && !cur)
  5744. return 1;
  5745. tmp = SD_ATTR_INIT;
  5746. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5747. new ? (new + idx_new) : &tmp,
  5748. sizeof(struct sched_domain_attr));
  5749. }
  5750. /*
  5751. * Partition sched domains as specified by the 'ndoms_new'
  5752. * cpumasks in the array doms_new[] of cpumasks. This compares
  5753. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5754. * It destroys each deleted domain and builds each new domain.
  5755. *
  5756. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5757. * The masks don't intersect (don't overlap.) We should setup one
  5758. * sched domain for each mask. CPUs not in any of the cpumasks will
  5759. * not be load balanced. If the same cpumask appears both in the
  5760. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5761. * it as it is.
  5762. *
  5763. * The passed in 'doms_new' should be allocated using
  5764. * alloc_sched_domains. This routine takes ownership of it and will
  5765. * free_sched_domains it when done with it. If the caller failed the
  5766. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5767. * and partition_sched_domains() will fallback to the single partition
  5768. * 'fallback_doms', it also forces the domains to be rebuilt.
  5769. *
  5770. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5771. * ndoms_new == 0 is a special case for destroying existing domains,
  5772. * and it will not create the default domain.
  5773. *
  5774. * Call with hotplug lock held
  5775. */
  5776. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5777. struct sched_domain_attr *dattr_new)
  5778. {
  5779. int i, j, n;
  5780. int new_topology;
  5781. mutex_lock(&sched_domains_mutex);
  5782. /* always unregister in case we don't destroy any domains */
  5783. unregister_sched_domain_sysctl();
  5784. /* Let architecture update cpu core mappings. */
  5785. new_topology = arch_update_cpu_topology();
  5786. n = doms_new ? ndoms_new : 0;
  5787. /* Destroy deleted domains */
  5788. for (i = 0; i < ndoms_cur; i++) {
  5789. for (j = 0; j < n && !new_topology; j++) {
  5790. if (cpumask_equal(doms_cur[i], doms_new[j])
  5791. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5792. goto match1;
  5793. }
  5794. /* no match - a current sched domain not in new doms_new[] */
  5795. detach_destroy_domains(doms_cur[i]);
  5796. match1:
  5797. ;
  5798. }
  5799. n = ndoms_cur;
  5800. if (doms_new == NULL) {
  5801. n = 0;
  5802. doms_new = &fallback_doms;
  5803. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5804. WARN_ON_ONCE(dattr_new);
  5805. }
  5806. /* Build new domains */
  5807. for (i = 0; i < ndoms_new; i++) {
  5808. for (j = 0; j < n && !new_topology; j++) {
  5809. if (cpumask_equal(doms_new[i], doms_cur[j])
  5810. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5811. goto match2;
  5812. }
  5813. /* no match - add a new doms_new */
  5814. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5815. match2:
  5816. ;
  5817. }
  5818. /* Remember the new sched domains */
  5819. if (doms_cur != &fallback_doms)
  5820. free_sched_domains(doms_cur, ndoms_cur);
  5821. kfree(dattr_cur); /* kfree(NULL) is safe */
  5822. doms_cur = doms_new;
  5823. dattr_cur = dattr_new;
  5824. ndoms_cur = ndoms_new;
  5825. register_sched_domain_sysctl();
  5826. mutex_unlock(&sched_domains_mutex);
  5827. }
  5828. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5829. /*
  5830. * Update cpusets according to cpu_active mask. If cpusets are
  5831. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5832. * around partition_sched_domains().
  5833. *
  5834. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5835. * want to restore it back to its original state upon resume anyway.
  5836. */
  5837. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5838. void *hcpu)
  5839. {
  5840. switch (action) {
  5841. case CPU_ONLINE_FROZEN:
  5842. case CPU_DOWN_FAILED_FROZEN:
  5843. /*
  5844. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5845. * resume sequence. As long as this is not the last online
  5846. * operation in the resume sequence, just build a single sched
  5847. * domain, ignoring cpusets.
  5848. */
  5849. num_cpus_frozen--;
  5850. if (likely(num_cpus_frozen)) {
  5851. partition_sched_domains(1, NULL, NULL);
  5852. break;
  5853. }
  5854. /*
  5855. * This is the last CPU online operation. So fall through and
  5856. * restore the original sched domains by considering the
  5857. * cpuset configurations.
  5858. */
  5859. case CPU_ONLINE:
  5860. case CPU_DOWN_FAILED:
  5861. cpuset_update_active_cpus(true);
  5862. break;
  5863. default:
  5864. return NOTIFY_DONE;
  5865. }
  5866. return NOTIFY_OK;
  5867. }
  5868. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5869. void *hcpu)
  5870. {
  5871. switch (action) {
  5872. case CPU_DOWN_PREPARE:
  5873. cpuset_update_active_cpus(false);
  5874. break;
  5875. case CPU_DOWN_PREPARE_FROZEN:
  5876. num_cpus_frozen++;
  5877. partition_sched_domains(1, NULL, NULL);
  5878. break;
  5879. default:
  5880. return NOTIFY_DONE;
  5881. }
  5882. return NOTIFY_OK;
  5883. }
  5884. void __init sched_init_smp(void)
  5885. {
  5886. cpumask_var_t non_isolated_cpus;
  5887. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5888. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5889. sched_init_numa();
  5890. /*
  5891. * There's no userspace yet to cause hotplug operations; hence all the
  5892. * cpu masks are stable and all blatant races in the below code cannot
  5893. * happen.
  5894. */
  5895. mutex_lock(&sched_domains_mutex);
  5896. init_sched_domains(cpu_active_mask);
  5897. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5898. if (cpumask_empty(non_isolated_cpus))
  5899. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5900. mutex_unlock(&sched_domains_mutex);
  5901. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5902. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5903. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5904. init_hrtick();
  5905. /* Move init over to a non-isolated CPU */
  5906. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5907. BUG();
  5908. sched_init_granularity();
  5909. free_cpumask_var(non_isolated_cpus);
  5910. init_sched_rt_class();
  5911. init_sched_dl_class();
  5912. }
  5913. #else
  5914. void __init sched_init_smp(void)
  5915. {
  5916. sched_init_granularity();
  5917. }
  5918. #endif /* CONFIG_SMP */
  5919. const_debug unsigned int sysctl_timer_migration = 1;
  5920. int in_sched_functions(unsigned long addr)
  5921. {
  5922. return in_lock_functions(addr) ||
  5923. (addr >= (unsigned long)__sched_text_start
  5924. && addr < (unsigned long)__sched_text_end);
  5925. }
  5926. #ifdef CONFIG_CGROUP_SCHED
  5927. /*
  5928. * Default task group.
  5929. * Every task in system belongs to this group at bootup.
  5930. */
  5931. struct task_group root_task_group;
  5932. LIST_HEAD(task_groups);
  5933. #endif
  5934. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5935. void __init sched_init(void)
  5936. {
  5937. int i, j;
  5938. unsigned long alloc_size = 0, ptr;
  5939. #ifdef CONFIG_FAIR_GROUP_SCHED
  5940. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5941. #endif
  5942. #ifdef CONFIG_RT_GROUP_SCHED
  5943. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5944. #endif
  5945. #ifdef CONFIG_CPUMASK_OFFSTACK
  5946. alloc_size += num_possible_cpus() * cpumask_size();
  5947. #endif
  5948. if (alloc_size) {
  5949. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5950. #ifdef CONFIG_FAIR_GROUP_SCHED
  5951. root_task_group.se = (struct sched_entity **)ptr;
  5952. ptr += nr_cpu_ids * sizeof(void **);
  5953. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5954. ptr += nr_cpu_ids * sizeof(void **);
  5955. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5956. #ifdef CONFIG_RT_GROUP_SCHED
  5957. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5958. ptr += nr_cpu_ids * sizeof(void **);
  5959. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5960. ptr += nr_cpu_ids * sizeof(void **);
  5961. #endif /* CONFIG_RT_GROUP_SCHED */
  5962. #ifdef CONFIG_CPUMASK_OFFSTACK
  5963. for_each_possible_cpu(i) {
  5964. per_cpu(load_balance_mask, i) = (void *)ptr;
  5965. ptr += cpumask_size();
  5966. }
  5967. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5968. }
  5969. init_rt_bandwidth(&def_rt_bandwidth,
  5970. global_rt_period(), global_rt_runtime());
  5971. init_dl_bandwidth(&def_dl_bandwidth,
  5972. global_rt_period(), global_rt_runtime());
  5973. #ifdef CONFIG_SMP
  5974. init_defrootdomain();
  5975. #endif
  5976. #ifdef CONFIG_RT_GROUP_SCHED
  5977. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5978. global_rt_period(), global_rt_runtime());
  5979. #endif /* CONFIG_RT_GROUP_SCHED */
  5980. #ifdef CONFIG_CGROUP_SCHED
  5981. list_add(&root_task_group.list, &task_groups);
  5982. INIT_LIST_HEAD(&root_task_group.children);
  5983. INIT_LIST_HEAD(&root_task_group.siblings);
  5984. autogroup_init(&init_task);
  5985. #endif /* CONFIG_CGROUP_SCHED */
  5986. for_each_possible_cpu(i) {
  5987. struct rq *rq;
  5988. rq = cpu_rq(i);
  5989. raw_spin_lock_init(&rq->lock);
  5990. rq->nr_running = 0;
  5991. rq->calc_load_active = 0;
  5992. rq->calc_load_update = jiffies + LOAD_FREQ;
  5993. init_cfs_rq(&rq->cfs);
  5994. init_rt_rq(&rq->rt, rq);
  5995. init_dl_rq(&rq->dl, rq);
  5996. #ifdef CONFIG_FAIR_GROUP_SCHED
  5997. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5998. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5999. /*
  6000. * How much cpu bandwidth does root_task_group get?
  6001. *
  6002. * In case of task-groups formed thr' the cgroup filesystem, it
  6003. * gets 100% of the cpu resources in the system. This overall
  6004. * system cpu resource is divided among the tasks of
  6005. * root_task_group and its child task-groups in a fair manner,
  6006. * based on each entity's (task or task-group's) weight
  6007. * (se->load.weight).
  6008. *
  6009. * In other words, if root_task_group has 10 tasks of weight
  6010. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6011. * then A0's share of the cpu resource is:
  6012. *
  6013. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6014. *
  6015. * We achieve this by letting root_task_group's tasks sit
  6016. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6017. */
  6018. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6019. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6020. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6021. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6022. #ifdef CONFIG_RT_GROUP_SCHED
  6023. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6024. #endif
  6025. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6026. rq->cpu_load[j] = 0;
  6027. rq->last_load_update_tick = jiffies;
  6028. #ifdef CONFIG_SMP
  6029. rq->sd = NULL;
  6030. rq->rd = NULL;
  6031. rq->cpu_capacity = SCHED_CAPACITY_SCALE;
  6032. rq->post_schedule = 0;
  6033. rq->active_balance = 0;
  6034. rq->next_balance = jiffies;
  6035. rq->push_cpu = 0;
  6036. rq->cpu = i;
  6037. rq->online = 0;
  6038. rq->idle_stamp = 0;
  6039. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6040. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6041. INIT_LIST_HEAD(&rq->cfs_tasks);
  6042. rq_attach_root(rq, &def_root_domain);
  6043. #ifdef CONFIG_NO_HZ_COMMON
  6044. rq->nohz_flags = 0;
  6045. #endif
  6046. #ifdef CONFIG_NO_HZ_FULL
  6047. rq->last_sched_tick = 0;
  6048. #endif
  6049. #endif
  6050. init_rq_hrtick(rq);
  6051. atomic_set(&rq->nr_iowait, 0);
  6052. }
  6053. set_load_weight(&init_task);
  6054. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6055. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6056. #endif
  6057. /*
  6058. * The boot idle thread does lazy MMU switching as well:
  6059. */
  6060. atomic_inc(&init_mm.mm_count);
  6061. enter_lazy_tlb(&init_mm, current);
  6062. /*
  6063. * Make us the idle thread. Technically, schedule() should not be
  6064. * called from this thread, however somewhere below it might be,
  6065. * but because we are the idle thread, we just pick up running again
  6066. * when this runqueue becomes "idle".
  6067. */
  6068. init_idle(current, smp_processor_id());
  6069. calc_load_update = jiffies + LOAD_FREQ;
  6070. /*
  6071. * During early bootup we pretend to be a normal task:
  6072. */
  6073. current->sched_class = &fair_sched_class;
  6074. #ifdef CONFIG_SMP
  6075. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6076. /* May be allocated at isolcpus cmdline parse time */
  6077. if (cpu_isolated_map == NULL)
  6078. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6079. idle_thread_set_boot_cpu();
  6080. set_cpu_rq_start_time();
  6081. #endif
  6082. init_sched_fair_class();
  6083. scheduler_running = 1;
  6084. }
  6085. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6086. static inline int preempt_count_equals(int preempt_offset)
  6087. {
  6088. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6089. return (nested == preempt_offset);
  6090. }
  6091. void __might_sleep(const char *file, int line, int preempt_offset)
  6092. {
  6093. static unsigned long prev_jiffy; /* ratelimiting */
  6094. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6095. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6096. !is_idle_task(current)) ||
  6097. system_state != SYSTEM_RUNNING || oops_in_progress)
  6098. return;
  6099. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6100. return;
  6101. prev_jiffy = jiffies;
  6102. printk(KERN_ERR
  6103. "BUG: sleeping function called from invalid context at %s:%d\n",
  6104. file, line);
  6105. printk(KERN_ERR
  6106. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6107. in_atomic(), irqs_disabled(),
  6108. current->pid, current->comm);
  6109. debug_show_held_locks(current);
  6110. if (irqs_disabled())
  6111. print_irqtrace_events(current);
  6112. #ifdef CONFIG_DEBUG_PREEMPT
  6113. if (!preempt_count_equals(preempt_offset)) {
  6114. pr_err("Preemption disabled at:");
  6115. print_ip_sym(current->preempt_disable_ip);
  6116. pr_cont("\n");
  6117. }
  6118. #endif
  6119. dump_stack();
  6120. }
  6121. EXPORT_SYMBOL(__might_sleep);
  6122. #endif
  6123. #ifdef CONFIG_MAGIC_SYSRQ
  6124. static void normalize_task(struct rq *rq, struct task_struct *p)
  6125. {
  6126. const struct sched_class *prev_class = p->sched_class;
  6127. struct sched_attr attr = {
  6128. .sched_policy = SCHED_NORMAL,
  6129. };
  6130. int old_prio = p->prio;
  6131. int queued;
  6132. queued = task_on_rq_queued(p);
  6133. if (queued)
  6134. dequeue_task(rq, p, 0);
  6135. __setscheduler(rq, p, &attr);
  6136. if (queued) {
  6137. enqueue_task(rq, p, 0);
  6138. resched_curr(rq);
  6139. }
  6140. check_class_changed(rq, p, prev_class, old_prio);
  6141. }
  6142. void normalize_rt_tasks(void)
  6143. {
  6144. struct task_struct *g, *p;
  6145. unsigned long flags;
  6146. struct rq *rq;
  6147. read_lock(&tasklist_lock);
  6148. for_each_process_thread(g, p) {
  6149. /*
  6150. * Only normalize user tasks:
  6151. */
  6152. if (p->flags & PF_KTHREAD)
  6153. continue;
  6154. p->se.exec_start = 0;
  6155. #ifdef CONFIG_SCHEDSTATS
  6156. p->se.statistics.wait_start = 0;
  6157. p->se.statistics.sleep_start = 0;
  6158. p->se.statistics.block_start = 0;
  6159. #endif
  6160. if (!dl_task(p) && !rt_task(p)) {
  6161. /*
  6162. * Renice negative nice level userspace
  6163. * tasks back to 0:
  6164. */
  6165. if (task_nice(p) < 0)
  6166. set_user_nice(p, 0);
  6167. continue;
  6168. }
  6169. rq = task_rq_lock(p, &flags);
  6170. normalize_task(rq, p);
  6171. task_rq_unlock(rq, p, &flags);
  6172. }
  6173. read_unlock(&tasklist_lock);
  6174. }
  6175. #endif /* CONFIG_MAGIC_SYSRQ */
  6176. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6177. /*
  6178. * These functions are only useful for the IA64 MCA handling, or kdb.
  6179. *
  6180. * They can only be called when the whole system has been
  6181. * stopped - every CPU needs to be quiescent, and no scheduling
  6182. * activity can take place. Using them for anything else would
  6183. * be a serious bug, and as a result, they aren't even visible
  6184. * under any other configuration.
  6185. */
  6186. /**
  6187. * curr_task - return the current task for a given cpu.
  6188. * @cpu: the processor in question.
  6189. *
  6190. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6191. *
  6192. * Return: The current task for @cpu.
  6193. */
  6194. struct task_struct *curr_task(int cpu)
  6195. {
  6196. return cpu_curr(cpu);
  6197. }
  6198. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6199. #ifdef CONFIG_IA64
  6200. /**
  6201. * set_curr_task - set the current task for a given cpu.
  6202. * @cpu: the processor in question.
  6203. * @p: the task pointer to set.
  6204. *
  6205. * Description: This function must only be used when non-maskable interrupts
  6206. * are serviced on a separate stack. It allows the architecture to switch the
  6207. * notion of the current task on a cpu in a non-blocking manner. This function
  6208. * must be called with all CPU's synchronized, and interrupts disabled, the
  6209. * and caller must save the original value of the current task (see
  6210. * curr_task() above) and restore that value before reenabling interrupts and
  6211. * re-starting the system.
  6212. *
  6213. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6214. */
  6215. void set_curr_task(int cpu, struct task_struct *p)
  6216. {
  6217. cpu_curr(cpu) = p;
  6218. }
  6219. #endif
  6220. #ifdef CONFIG_CGROUP_SCHED
  6221. /* task_group_lock serializes the addition/removal of task groups */
  6222. static DEFINE_SPINLOCK(task_group_lock);
  6223. static void free_sched_group(struct task_group *tg)
  6224. {
  6225. free_fair_sched_group(tg);
  6226. free_rt_sched_group(tg);
  6227. autogroup_free(tg);
  6228. kfree(tg);
  6229. }
  6230. /* allocate runqueue etc for a new task group */
  6231. struct task_group *sched_create_group(struct task_group *parent)
  6232. {
  6233. struct task_group *tg;
  6234. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6235. if (!tg)
  6236. return ERR_PTR(-ENOMEM);
  6237. if (!alloc_fair_sched_group(tg, parent))
  6238. goto err;
  6239. if (!alloc_rt_sched_group(tg, parent))
  6240. goto err;
  6241. return tg;
  6242. err:
  6243. free_sched_group(tg);
  6244. return ERR_PTR(-ENOMEM);
  6245. }
  6246. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6247. {
  6248. unsigned long flags;
  6249. spin_lock_irqsave(&task_group_lock, flags);
  6250. list_add_rcu(&tg->list, &task_groups);
  6251. WARN_ON(!parent); /* root should already exist */
  6252. tg->parent = parent;
  6253. INIT_LIST_HEAD(&tg->children);
  6254. list_add_rcu(&tg->siblings, &parent->children);
  6255. spin_unlock_irqrestore(&task_group_lock, flags);
  6256. }
  6257. /* rcu callback to free various structures associated with a task group */
  6258. static void free_sched_group_rcu(struct rcu_head *rhp)
  6259. {
  6260. /* now it should be safe to free those cfs_rqs */
  6261. free_sched_group(container_of(rhp, struct task_group, rcu));
  6262. }
  6263. /* Destroy runqueue etc associated with a task group */
  6264. void sched_destroy_group(struct task_group *tg)
  6265. {
  6266. /* wait for possible concurrent references to cfs_rqs complete */
  6267. call_rcu(&tg->rcu, free_sched_group_rcu);
  6268. }
  6269. void sched_offline_group(struct task_group *tg)
  6270. {
  6271. unsigned long flags;
  6272. int i;
  6273. /* end participation in shares distribution */
  6274. for_each_possible_cpu(i)
  6275. unregister_fair_sched_group(tg, i);
  6276. spin_lock_irqsave(&task_group_lock, flags);
  6277. list_del_rcu(&tg->list);
  6278. list_del_rcu(&tg->siblings);
  6279. spin_unlock_irqrestore(&task_group_lock, flags);
  6280. }
  6281. /* change task's runqueue when it moves between groups.
  6282. * The caller of this function should have put the task in its new group
  6283. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6284. * reflect its new group.
  6285. */
  6286. void sched_move_task(struct task_struct *tsk)
  6287. {
  6288. struct task_group *tg;
  6289. int queued, running;
  6290. unsigned long flags;
  6291. struct rq *rq;
  6292. rq = task_rq_lock(tsk, &flags);
  6293. running = task_current(rq, tsk);
  6294. queued = task_on_rq_queued(tsk);
  6295. if (queued)
  6296. dequeue_task(rq, tsk, 0);
  6297. if (unlikely(running))
  6298. put_prev_task(rq, tsk);
  6299. /*
  6300. * All callers are synchronized by task_rq_lock(); we do not use RCU
  6301. * which is pointless here. Thus, we pass "true" to task_css_check()
  6302. * to prevent lockdep warnings.
  6303. */
  6304. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  6305. struct task_group, css);
  6306. tg = autogroup_task_group(tsk, tg);
  6307. tsk->sched_task_group = tg;
  6308. #ifdef CONFIG_FAIR_GROUP_SCHED
  6309. if (tsk->sched_class->task_move_group)
  6310. tsk->sched_class->task_move_group(tsk, queued);
  6311. else
  6312. #endif
  6313. set_task_rq(tsk, task_cpu(tsk));
  6314. if (unlikely(running))
  6315. tsk->sched_class->set_curr_task(rq);
  6316. if (queued)
  6317. enqueue_task(rq, tsk, 0);
  6318. task_rq_unlock(rq, tsk, &flags);
  6319. }
  6320. #endif /* CONFIG_CGROUP_SCHED */
  6321. #ifdef CONFIG_RT_GROUP_SCHED
  6322. /*
  6323. * Ensure that the real time constraints are schedulable.
  6324. */
  6325. static DEFINE_MUTEX(rt_constraints_mutex);
  6326. /* Must be called with tasklist_lock held */
  6327. static inline int tg_has_rt_tasks(struct task_group *tg)
  6328. {
  6329. struct task_struct *g, *p;
  6330. for_each_process_thread(g, p) {
  6331. if (rt_task(p) && task_group(p) == tg)
  6332. return 1;
  6333. }
  6334. return 0;
  6335. }
  6336. struct rt_schedulable_data {
  6337. struct task_group *tg;
  6338. u64 rt_period;
  6339. u64 rt_runtime;
  6340. };
  6341. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6342. {
  6343. struct rt_schedulable_data *d = data;
  6344. struct task_group *child;
  6345. unsigned long total, sum = 0;
  6346. u64 period, runtime;
  6347. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6348. runtime = tg->rt_bandwidth.rt_runtime;
  6349. if (tg == d->tg) {
  6350. period = d->rt_period;
  6351. runtime = d->rt_runtime;
  6352. }
  6353. /*
  6354. * Cannot have more runtime than the period.
  6355. */
  6356. if (runtime > period && runtime != RUNTIME_INF)
  6357. return -EINVAL;
  6358. /*
  6359. * Ensure we don't starve existing RT tasks.
  6360. */
  6361. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6362. return -EBUSY;
  6363. total = to_ratio(period, runtime);
  6364. /*
  6365. * Nobody can have more than the global setting allows.
  6366. */
  6367. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6368. return -EINVAL;
  6369. /*
  6370. * The sum of our children's runtime should not exceed our own.
  6371. */
  6372. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6373. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6374. runtime = child->rt_bandwidth.rt_runtime;
  6375. if (child == d->tg) {
  6376. period = d->rt_period;
  6377. runtime = d->rt_runtime;
  6378. }
  6379. sum += to_ratio(period, runtime);
  6380. }
  6381. if (sum > total)
  6382. return -EINVAL;
  6383. return 0;
  6384. }
  6385. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6386. {
  6387. int ret;
  6388. struct rt_schedulable_data data = {
  6389. .tg = tg,
  6390. .rt_period = period,
  6391. .rt_runtime = runtime,
  6392. };
  6393. rcu_read_lock();
  6394. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6395. rcu_read_unlock();
  6396. return ret;
  6397. }
  6398. static int tg_set_rt_bandwidth(struct task_group *tg,
  6399. u64 rt_period, u64 rt_runtime)
  6400. {
  6401. int i, err = 0;
  6402. mutex_lock(&rt_constraints_mutex);
  6403. read_lock(&tasklist_lock);
  6404. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6405. if (err)
  6406. goto unlock;
  6407. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6408. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6409. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6410. for_each_possible_cpu(i) {
  6411. struct rt_rq *rt_rq = tg->rt_rq[i];
  6412. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6413. rt_rq->rt_runtime = rt_runtime;
  6414. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6415. }
  6416. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6417. unlock:
  6418. read_unlock(&tasklist_lock);
  6419. mutex_unlock(&rt_constraints_mutex);
  6420. return err;
  6421. }
  6422. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6423. {
  6424. u64 rt_runtime, rt_period;
  6425. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6426. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6427. if (rt_runtime_us < 0)
  6428. rt_runtime = RUNTIME_INF;
  6429. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6430. }
  6431. static long sched_group_rt_runtime(struct task_group *tg)
  6432. {
  6433. u64 rt_runtime_us;
  6434. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6435. return -1;
  6436. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6437. do_div(rt_runtime_us, NSEC_PER_USEC);
  6438. return rt_runtime_us;
  6439. }
  6440. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6441. {
  6442. u64 rt_runtime, rt_period;
  6443. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6444. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6445. if (rt_period == 0)
  6446. return -EINVAL;
  6447. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6448. }
  6449. static long sched_group_rt_period(struct task_group *tg)
  6450. {
  6451. u64 rt_period_us;
  6452. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6453. do_div(rt_period_us, NSEC_PER_USEC);
  6454. return rt_period_us;
  6455. }
  6456. #endif /* CONFIG_RT_GROUP_SCHED */
  6457. #ifdef CONFIG_RT_GROUP_SCHED
  6458. static int sched_rt_global_constraints(void)
  6459. {
  6460. int ret = 0;
  6461. mutex_lock(&rt_constraints_mutex);
  6462. read_lock(&tasklist_lock);
  6463. ret = __rt_schedulable(NULL, 0, 0);
  6464. read_unlock(&tasklist_lock);
  6465. mutex_unlock(&rt_constraints_mutex);
  6466. return ret;
  6467. }
  6468. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6469. {
  6470. /* Don't accept realtime tasks when there is no way for them to run */
  6471. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6472. return 0;
  6473. return 1;
  6474. }
  6475. #else /* !CONFIG_RT_GROUP_SCHED */
  6476. static int sched_rt_global_constraints(void)
  6477. {
  6478. unsigned long flags;
  6479. int i, ret = 0;
  6480. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6481. for_each_possible_cpu(i) {
  6482. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6483. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6484. rt_rq->rt_runtime = global_rt_runtime();
  6485. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6486. }
  6487. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6488. return ret;
  6489. }
  6490. #endif /* CONFIG_RT_GROUP_SCHED */
  6491. static int sched_dl_global_constraints(void)
  6492. {
  6493. u64 runtime = global_rt_runtime();
  6494. u64 period = global_rt_period();
  6495. u64 new_bw = to_ratio(period, runtime);
  6496. struct dl_bw *dl_b;
  6497. int cpu, ret = 0;
  6498. unsigned long flags;
  6499. /*
  6500. * Here we want to check the bandwidth not being set to some
  6501. * value smaller than the currently allocated bandwidth in
  6502. * any of the root_domains.
  6503. *
  6504. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6505. * cycling on root_domains... Discussion on different/better
  6506. * solutions is welcome!
  6507. */
  6508. for_each_possible_cpu(cpu) {
  6509. rcu_read_lock_sched();
  6510. dl_b = dl_bw_of(cpu);
  6511. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6512. if (new_bw < dl_b->total_bw)
  6513. ret = -EBUSY;
  6514. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6515. rcu_read_unlock_sched();
  6516. if (ret)
  6517. break;
  6518. }
  6519. return ret;
  6520. }
  6521. static void sched_dl_do_global(void)
  6522. {
  6523. u64 new_bw = -1;
  6524. struct dl_bw *dl_b;
  6525. int cpu;
  6526. unsigned long flags;
  6527. def_dl_bandwidth.dl_period = global_rt_period();
  6528. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6529. if (global_rt_runtime() != RUNTIME_INF)
  6530. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6531. /*
  6532. * FIXME: As above...
  6533. */
  6534. for_each_possible_cpu(cpu) {
  6535. rcu_read_lock_sched();
  6536. dl_b = dl_bw_of(cpu);
  6537. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6538. dl_b->bw = new_bw;
  6539. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6540. rcu_read_unlock_sched();
  6541. }
  6542. }
  6543. static int sched_rt_global_validate(void)
  6544. {
  6545. if (sysctl_sched_rt_period <= 0)
  6546. return -EINVAL;
  6547. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6548. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6549. return -EINVAL;
  6550. return 0;
  6551. }
  6552. static void sched_rt_do_global(void)
  6553. {
  6554. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6555. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6556. }
  6557. int sched_rt_handler(struct ctl_table *table, int write,
  6558. void __user *buffer, size_t *lenp,
  6559. loff_t *ppos)
  6560. {
  6561. int old_period, old_runtime;
  6562. static DEFINE_MUTEX(mutex);
  6563. int ret;
  6564. mutex_lock(&mutex);
  6565. old_period = sysctl_sched_rt_period;
  6566. old_runtime = sysctl_sched_rt_runtime;
  6567. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6568. if (!ret && write) {
  6569. ret = sched_rt_global_validate();
  6570. if (ret)
  6571. goto undo;
  6572. ret = sched_rt_global_constraints();
  6573. if (ret)
  6574. goto undo;
  6575. ret = sched_dl_global_constraints();
  6576. if (ret)
  6577. goto undo;
  6578. sched_rt_do_global();
  6579. sched_dl_do_global();
  6580. }
  6581. if (0) {
  6582. undo:
  6583. sysctl_sched_rt_period = old_period;
  6584. sysctl_sched_rt_runtime = old_runtime;
  6585. }
  6586. mutex_unlock(&mutex);
  6587. return ret;
  6588. }
  6589. int sched_rr_handler(struct ctl_table *table, int write,
  6590. void __user *buffer, size_t *lenp,
  6591. loff_t *ppos)
  6592. {
  6593. int ret;
  6594. static DEFINE_MUTEX(mutex);
  6595. mutex_lock(&mutex);
  6596. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6597. /* make sure that internally we keep jiffies */
  6598. /* also, writing zero resets timeslice to default */
  6599. if (!ret && write) {
  6600. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6601. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6602. }
  6603. mutex_unlock(&mutex);
  6604. return ret;
  6605. }
  6606. #ifdef CONFIG_CGROUP_SCHED
  6607. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6608. {
  6609. return css ? container_of(css, struct task_group, css) : NULL;
  6610. }
  6611. static struct cgroup_subsys_state *
  6612. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6613. {
  6614. struct task_group *parent = css_tg(parent_css);
  6615. struct task_group *tg;
  6616. if (!parent) {
  6617. /* This is early initialization for the top cgroup */
  6618. return &root_task_group.css;
  6619. }
  6620. tg = sched_create_group(parent);
  6621. if (IS_ERR(tg))
  6622. return ERR_PTR(-ENOMEM);
  6623. return &tg->css;
  6624. }
  6625. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6626. {
  6627. struct task_group *tg = css_tg(css);
  6628. struct task_group *parent = css_tg(css->parent);
  6629. if (parent)
  6630. sched_online_group(tg, parent);
  6631. return 0;
  6632. }
  6633. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6634. {
  6635. struct task_group *tg = css_tg(css);
  6636. sched_destroy_group(tg);
  6637. }
  6638. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6639. {
  6640. struct task_group *tg = css_tg(css);
  6641. sched_offline_group(tg);
  6642. }
  6643. static void cpu_cgroup_fork(struct task_struct *task)
  6644. {
  6645. sched_move_task(task);
  6646. }
  6647. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6648. struct cgroup_taskset *tset)
  6649. {
  6650. struct task_struct *task;
  6651. cgroup_taskset_for_each(task, tset) {
  6652. #ifdef CONFIG_RT_GROUP_SCHED
  6653. if (!sched_rt_can_attach(css_tg(css), task))
  6654. return -EINVAL;
  6655. #else
  6656. /* We don't support RT-tasks being in separate groups */
  6657. if (task->sched_class != &fair_sched_class)
  6658. return -EINVAL;
  6659. #endif
  6660. }
  6661. return 0;
  6662. }
  6663. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6664. struct cgroup_taskset *tset)
  6665. {
  6666. struct task_struct *task;
  6667. cgroup_taskset_for_each(task, tset)
  6668. sched_move_task(task);
  6669. }
  6670. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6671. struct cgroup_subsys_state *old_css,
  6672. struct task_struct *task)
  6673. {
  6674. /*
  6675. * cgroup_exit() is called in the copy_process() failure path.
  6676. * Ignore this case since the task hasn't ran yet, this avoids
  6677. * trying to poke a half freed task state from generic code.
  6678. */
  6679. if (!(task->flags & PF_EXITING))
  6680. return;
  6681. sched_move_task(task);
  6682. }
  6683. #ifdef CONFIG_FAIR_GROUP_SCHED
  6684. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6685. struct cftype *cftype, u64 shareval)
  6686. {
  6687. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6688. }
  6689. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6690. struct cftype *cft)
  6691. {
  6692. struct task_group *tg = css_tg(css);
  6693. return (u64) scale_load_down(tg->shares);
  6694. }
  6695. #ifdef CONFIG_CFS_BANDWIDTH
  6696. static DEFINE_MUTEX(cfs_constraints_mutex);
  6697. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6698. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6699. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6700. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6701. {
  6702. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6703. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6704. if (tg == &root_task_group)
  6705. return -EINVAL;
  6706. /*
  6707. * Ensure we have at some amount of bandwidth every period. This is
  6708. * to prevent reaching a state of large arrears when throttled via
  6709. * entity_tick() resulting in prolonged exit starvation.
  6710. */
  6711. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6712. return -EINVAL;
  6713. /*
  6714. * Likewise, bound things on the otherside by preventing insane quota
  6715. * periods. This also allows us to normalize in computing quota
  6716. * feasibility.
  6717. */
  6718. if (period > max_cfs_quota_period)
  6719. return -EINVAL;
  6720. /*
  6721. * Prevent race between setting of cfs_rq->runtime_enabled and
  6722. * unthrottle_offline_cfs_rqs().
  6723. */
  6724. get_online_cpus();
  6725. mutex_lock(&cfs_constraints_mutex);
  6726. ret = __cfs_schedulable(tg, period, quota);
  6727. if (ret)
  6728. goto out_unlock;
  6729. runtime_enabled = quota != RUNTIME_INF;
  6730. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6731. /*
  6732. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6733. * before making related changes, and on->off must occur afterwards
  6734. */
  6735. if (runtime_enabled && !runtime_was_enabled)
  6736. cfs_bandwidth_usage_inc();
  6737. raw_spin_lock_irq(&cfs_b->lock);
  6738. cfs_b->period = ns_to_ktime(period);
  6739. cfs_b->quota = quota;
  6740. __refill_cfs_bandwidth_runtime(cfs_b);
  6741. /* restart the period timer (if active) to handle new period expiry */
  6742. if (runtime_enabled && cfs_b->timer_active) {
  6743. /* force a reprogram */
  6744. __start_cfs_bandwidth(cfs_b, true);
  6745. }
  6746. raw_spin_unlock_irq(&cfs_b->lock);
  6747. for_each_online_cpu(i) {
  6748. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6749. struct rq *rq = cfs_rq->rq;
  6750. raw_spin_lock_irq(&rq->lock);
  6751. cfs_rq->runtime_enabled = runtime_enabled;
  6752. cfs_rq->runtime_remaining = 0;
  6753. if (cfs_rq->throttled)
  6754. unthrottle_cfs_rq(cfs_rq);
  6755. raw_spin_unlock_irq(&rq->lock);
  6756. }
  6757. if (runtime_was_enabled && !runtime_enabled)
  6758. cfs_bandwidth_usage_dec();
  6759. out_unlock:
  6760. mutex_unlock(&cfs_constraints_mutex);
  6761. put_online_cpus();
  6762. return ret;
  6763. }
  6764. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6765. {
  6766. u64 quota, period;
  6767. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6768. if (cfs_quota_us < 0)
  6769. quota = RUNTIME_INF;
  6770. else
  6771. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6772. return tg_set_cfs_bandwidth(tg, period, quota);
  6773. }
  6774. long tg_get_cfs_quota(struct task_group *tg)
  6775. {
  6776. u64 quota_us;
  6777. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6778. return -1;
  6779. quota_us = tg->cfs_bandwidth.quota;
  6780. do_div(quota_us, NSEC_PER_USEC);
  6781. return quota_us;
  6782. }
  6783. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6784. {
  6785. u64 quota, period;
  6786. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6787. quota = tg->cfs_bandwidth.quota;
  6788. return tg_set_cfs_bandwidth(tg, period, quota);
  6789. }
  6790. long tg_get_cfs_period(struct task_group *tg)
  6791. {
  6792. u64 cfs_period_us;
  6793. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6794. do_div(cfs_period_us, NSEC_PER_USEC);
  6795. return cfs_period_us;
  6796. }
  6797. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6798. struct cftype *cft)
  6799. {
  6800. return tg_get_cfs_quota(css_tg(css));
  6801. }
  6802. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6803. struct cftype *cftype, s64 cfs_quota_us)
  6804. {
  6805. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6806. }
  6807. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6808. struct cftype *cft)
  6809. {
  6810. return tg_get_cfs_period(css_tg(css));
  6811. }
  6812. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6813. struct cftype *cftype, u64 cfs_period_us)
  6814. {
  6815. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6816. }
  6817. struct cfs_schedulable_data {
  6818. struct task_group *tg;
  6819. u64 period, quota;
  6820. };
  6821. /*
  6822. * normalize group quota/period to be quota/max_period
  6823. * note: units are usecs
  6824. */
  6825. static u64 normalize_cfs_quota(struct task_group *tg,
  6826. struct cfs_schedulable_data *d)
  6827. {
  6828. u64 quota, period;
  6829. if (tg == d->tg) {
  6830. period = d->period;
  6831. quota = d->quota;
  6832. } else {
  6833. period = tg_get_cfs_period(tg);
  6834. quota = tg_get_cfs_quota(tg);
  6835. }
  6836. /* note: these should typically be equivalent */
  6837. if (quota == RUNTIME_INF || quota == -1)
  6838. return RUNTIME_INF;
  6839. return to_ratio(period, quota);
  6840. }
  6841. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6842. {
  6843. struct cfs_schedulable_data *d = data;
  6844. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6845. s64 quota = 0, parent_quota = -1;
  6846. if (!tg->parent) {
  6847. quota = RUNTIME_INF;
  6848. } else {
  6849. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6850. quota = normalize_cfs_quota(tg, d);
  6851. parent_quota = parent_b->hierarchical_quota;
  6852. /*
  6853. * ensure max(child_quota) <= parent_quota, inherit when no
  6854. * limit is set
  6855. */
  6856. if (quota == RUNTIME_INF)
  6857. quota = parent_quota;
  6858. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6859. return -EINVAL;
  6860. }
  6861. cfs_b->hierarchical_quota = quota;
  6862. return 0;
  6863. }
  6864. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6865. {
  6866. int ret;
  6867. struct cfs_schedulable_data data = {
  6868. .tg = tg,
  6869. .period = period,
  6870. .quota = quota,
  6871. };
  6872. if (quota != RUNTIME_INF) {
  6873. do_div(data.period, NSEC_PER_USEC);
  6874. do_div(data.quota, NSEC_PER_USEC);
  6875. }
  6876. rcu_read_lock();
  6877. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6878. rcu_read_unlock();
  6879. return ret;
  6880. }
  6881. static int cpu_stats_show(struct seq_file *sf, void *v)
  6882. {
  6883. struct task_group *tg = css_tg(seq_css(sf));
  6884. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6885. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  6886. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  6887. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  6888. return 0;
  6889. }
  6890. #endif /* CONFIG_CFS_BANDWIDTH */
  6891. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6892. #ifdef CONFIG_RT_GROUP_SCHED
  6893. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6894. struct cftype *cft, s64 val)
  6895. {
  6896. return sched_group_set_rt_runtime(css_tg(css), val);
  6897. }
  6898. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6899. struct cftype *cft)
  6900. {
  6901. return sched_group_rt_runtime(css_tg(css));
  6902. }
  6903. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6904. struct cftype *cftype, u64 rt_period_us)
  6905. {
  6906. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6907. }
  6908. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6909. struct cftype *cft)
  6910. {
  6911. return sched_group_rt_period(css_tg(css));
  6912. }
  6913. #endif /* CONFIG_RT_GROUP_SCHED */
  6914. static struct cftype cpu_files[] = {
  6915. #ifdef CONFIG_FAIR_GROUP_SCHED
  6916. {
  6917. .name = "shares",
  6918. .read_u64 = cpu_shares_read_u64,
  6919. .write_u64 = cpu_shares_write_u64,
  6920. },
  6921. #endif
  6922. #ifdef CONFIG_CFS_BANDWIDTH
  6923. {
  6924. .name = "cfs_quota_us",
  6925. .read_s64 = cpu_cfs_quota_read_s64,
  6926. .write_s64 = cpu_cfs_quota_write_s64,
  6927. },
  6928. {
  6929. .name = "cfs_period_us",
  6930. .read_u64 = cpu_cfs_period_read_u64,
  6931. .write_u64 = cpu_cfs_period_write_u64,
  6932. },
  6933. {
  6934. .name = "stat",
  6935. .seq_show = cpu_stats_show,
  6936. },
  6937. #endif
  6938. #ifdef CONFIG_RT_GROUP_SCHED
  6939. {
  6940. .name = "rt_runtime_us",
  6941. .read_s64 = cpu_rt_runtime_read,
  6942. .write_s64 = cpu_rt_runtime_write,
  6943. },
  6944. {
  6945. .name = "rt_period_us",
  6946. .read_u64 = cpu_rt_period_read_uint,
  6947. .write_u64 = cpu_rt_period_write_uint,
  6948. },
  6949. #endif
  6950. { } /* terminate */
  6951. };
  6952. struct cgroup_subsys cpu_cgrp_subsys = {
  6953. .css_alloc = cpu_cgroup_css_alloc,
  6954. .css_free = cpu_cgroup_css_free,
  6955. .css_online = cpu_cgroup_css_online,
  6956. .css_offline = cpu_cgroup_css_offline,
  6957. .fork = cpu_cgroup_fork,
  6958. .can_attach = cpu_cgroup_can_attach,
  6959. .attach = cpu_cgroup_attach,
  6960. .exit = cpu_cgroup_exit,
  6961. .legacy_cftypes = cpu_files,
  6962. .early_init = 1,
  6963. };
  6964. #endif /* CONFIG_CGROUP_SCHED */
  6965. void dump_cpu_task(int cpu)
  6966. {
  6967. pr_info("Task dump for CPU %d:\n", cpu);
  6968. sched_show_task(cpu_curr(cpu));
  6969. }