mmu.c 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "x86.h"
  21. #include "kvm_cache_regs.h"
  22. #include <linux/kvm_host.h>
  23. #include <linux/types.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/highmem.h>
  27. #include <linux/module.h>
  28. #include <linux/swap.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/compiler.h>
  31. #include <linux/srcu.h>
  32. #include <linux/slab.h>
  33. #include <asm/page.h>
  34. #include <asm/cmpxchg.h>
  35. #include <asm/io.h>
  36. #include <asm/vmx.h>
  37. /*
  38. * When setting this variable to true it enables Two-Dimensional-Paging
  39. * where the hardware walks 2 page tables:
  40. * 1. the guest-virtual to guest-physical
  41. * 2. while doing 1. it walks guest-physical to host-physical
  42. * If the hardware supports that we don't need to do shadow paging.
  43. */
  44. bool tdp_enabled = false;
  45. #undef MMU_DEBUG
  46. #undef AUDIT
  47. #ifdef AUDIT
  48. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  49. #else
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  51. #endif
  52. #ifdef MMU_DEBUG
  53. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  54. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  55. #else
  56. #define pgprintk(x...) do { } while (0)
  57. #define rmap_printk(x...) do { } while (0)
  58. #endif
  59. #if defined(MMU_DEBUG) || defined(AUDIT)
  60. static int dbg = 0;
  61. module_param(dbg, bool, 0644);
  62. #endif
  63. static int oos_shadow = 1;
  64. module_param(oos_shadow, bool, 0644);
  65. #ifndef MMU_DEBUG
  66. #define ASSERT(x) do { } while (0)
  67. #else
  68. #define ASSERT(x) \
  69. if (!(x)) { \
  70. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  71. __FILE__, __LINE__, #x); \
  72. }
  73. #endif
  74. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  75. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  76. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  77. #define PT64_LEVEL_BITS 9
  78. #define PT64_LEVEL_SHIFT(level) \
  79. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  80. #define PT64_LEVEL_MASK(level) \
  81. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  82. #define PT64_INDEX(address, level)\
  83. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  84. #define PT32_LEVEL_BITS 10
  85. #define PT32_LEVEL_SHIFT(level) \
  86. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  87. #define PT32_LEVEL_MASK(level) \
  88. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  89. #define PT32_LVL_OFFSET_MASK(level) \
  90. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  91. * PT32_LEVEL_BITS))) - 1))
  92. #define PT32_INDEX(address, level)\
  93. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  94. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  95. #define PT64_DIR_BASE_ADDR_MASK \
  96. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  97. #define PT64_LVL_ADDR_MASK(level) \
  98. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT64_LEVEL_BITS))) - 1))
  100. #define PT64_LVL_OFFSET_MASK(level) \
  101. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  102. * PT64_LEVEL_BITS))) - 1))
  103. #define PT32_BASE_ADDR_MASK PAGE_MASK
  104. #define PT32_DIR_BASE_ADDR_MASK \
  105. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  106. #define PT32_LVL_ADDR_MASK(level) \
  107. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  108. * PT32_LEVEL_BITS))) - 1))
  109. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  110. | PT64_NX_MASK)
  111. #define RMAP_EXT 4
  112. #define ACC_EXEC_MASK 1
  113. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  114. #define ACC_USER_MASK PT_USER_MASK
  115. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  116. #include <trace/events/kvm.h>
  117. #undef TRACE_INCLUDE_FILE
  118. #define CREATE_TRACE_POINTS
  119. #include "mmutrace.h"
  120. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  121. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  122. struct kvm_rmap_desc {
  123. u64 *sptes[RMAP_EXT];
  124. struct kvm_rmap_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. int level;
  130. u64 *sptep;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. struct kvm_unsync_walk {
  138. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  139. };
  140. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  141. static struct kmem_cache *pte_chain_cache;
  142. static struct kmem_cache *rmap_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static u64 __read_mostly shadow_trap_nonpresent_pte;
  145. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  146. static u64 __read_mostly shadow_base_present_pte;
  147. static u64 __read_mostly shadow_nx_mask;
  148. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  149. static u64 __read_mostly shadow_user_mask;
  150. static u64 __read_mostly shadow_accessed_mask;
  151. static u64 __read_mostly shadow_dirty_mask;
  152. static inline u64 rsvd_bits(int s, int e)
  153. {
  154. return ((1ULL << (e - s + 1)) - 1) << s;
  155. }
  156. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  157. {
  158. shadow_trap_nonpresent_pte = trap_pte;
  159. shadow_notrap_nonpresent_pte = notrap_pte;
  160. }
  161. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  162. void kvm_mmu_set_base_ptes(u64 base_pte)
  163. {
  164. shadow_base_present_pte = base_pte;
  165. }
  166. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  167. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  168. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  169. {
  170. shadow_user_mask = user_mask;
  171. shadow_accessed_mask = accessed_mask;
  172. shadow_dirty_mask = dirty_mask;
  173. shadow_nx_mask = nx_mask;
  174. shadow_x_mask = x_mask;
  175. }
  176. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  177. static int is_write_protection(struct kvm_vcpu *vcpu)
  178. {
  179. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  180. }
  181. static int is_cpuid_PSE36(void)
  182. {
  183. return 1;
  184. }
  185. static int is_nx(struct kvm_vcpu *vcpu)
  186. {
  187. return vcpu->arch.efer & EFER_NX;
  188. }
  189. static int is_shadow_present_pte(u64 pte)
  190. {
  191. return pte != shadow_trap_nonpresent_pte
  192. && pte != shadow_notrap_nonpresent_pte;
  193. }
  194. static int is_large_pte(u64 pte)
  195. {
  196. return pte & PT_PAGE_SIZE_MASK;
  197. }
  198. static int is_writable_pte(unsigned long pte)
  199. {
  200. return pte & PT_WRITABLE_MASK;
  201. }
  202. static int is_dirty_gpte(unsigned long pte)
  203. {
  204. return pte & PT_DIRTY_MASK;
  205. }
  206. static int is_rmap_spte(u64 pte)
  207. {
  208. return is_shadow_present_pte(pte);
  209. }
  210. static int is_last_spte(u64 pte, int level)
  211. {
  212. if (level == PT_PAGE_TABLE_LEVEL)
  213. return 1;
  214. if (is_large_pte(pte))
  215. return 1;
  216. return 0;
  217. }
  218. static pfn_t spte_to_pfn(u64 pte)
  219. {
  220. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  221. }
  222. static gfn_t pse36_gfn_delta(u32 gpte)
  223. {
  224. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  225. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  226. }
  227. static void __set_spte(u64 *sptep, u64 spte)
  228. {
  229. #ifdef CONFIG_X86_64
  230. set_64bit((unsigned long *)sptep, spte);
  231. #else
  232. set_64bit((unsigned long long *)sptep, spte);
  233. #endif
  234. }
  235. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  236. struct kmem_cache *base_cache, int min)
  237. {
  238. void *obj;
  239. if (cache->nobjs >= min)
  240. return 0;
  241. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  242. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  243. if (!obj)
  244. return -ENOMEM;
  245. cache->objects[cache->nobjs++] = obj;
  246. }
  247. return 0;
  248. }
  249. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  250. {
  251. while (mc->nobjs)
  252. kfree(mc->objects[--mc->nobjs]);
  253. }
  254. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  255. int min)
  256. {
  257. struct page *page;
  258. if (cache->nobjs >= min)
  259. return 0;
  260. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  261. page = alloc_page(GFP_KERNEL);
  262. if (!page)
  263. return -ENOMEM;
  264. set_page_private(page, 0);
  265. cache->objects[cache->nobjs++] = page_address(page);
  266. }
  267. return 0;
  268. }
  269. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  270. {
  271. while (mc->nobjs)
  272. free_page((unsigned long)mc->objects[--mc->nobjs]);
  273. }
  274. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  275. {
  276. int r;
  277. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  278. pte_chain_cache, 4);
  279. if (r)
  280. goto out;
  281. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  282. rmap_desc_cache, 4);
  283. if (r)
  284. goto out;
  285. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  286. if (r)
  287. goto out;
  288. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  289. mmu_page_header_cache, 4);
  290. out:
  291. return r;
  292. }
  293. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  294. {
  295. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  296. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  297. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  298. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  299. }
  300. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  301. size_t size)
  302. {
  303. void *p;
  304. BUG_ON(!mc->nobjs);
  305. p = mc->objects[--mc->nobjs];
  306. return p;
  307. }
  308. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  309. {
  310. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  311. sizeof(struct kvm_pte_chain));
  312. }
  313. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  314. {
  315. kfree(pc);
  316. }
  317. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  318. {
  319. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  320. sizeof(struct kvm_rmap_desc));
  321. }
  322. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  323. {
  324. kfree(rd);
  325. }
  326. /*
  327. * Return the pointer to the largepage write count for a given
  328. * gfn, handling slots that are not large page aligned.
  329. */
  330. static int *slot_largepage_idx(gfn_t gfn,
  331. struct kvm_memory_slot *slot,
  332. int level)
  333. {
  334. unsigned long idx;
  335. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  336. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  337. return &slot->lpage_info[level - 2][idx].write_count;
  338. }
  339. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  340. {
  341. struct kvm_memory_slot *slot;
  342. int *write_count;
  343. int i;
  344. gfn = unalias_gfn(kvm, gfn);
  345. slot = gfn_to_memslot_unaliased(kvm, gfn);
  346. for (i = PT_DIRECTORY_LEVEL;
  347. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  348. write_count = slot_largepage_idx(gfn, slot, i);
  349. *write_count += 1;
  350. }
  351. }
  352. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  353. {
  354. struct kvm_memory_slot *slot;
  355. int *write_count;
  356. int i;
  357. gfn = unalias_gfn(kvm, gfn);
  358. for (i = PT_DIRECTORY_LEVEL;
  359. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  360. slot = gfn_to_memslot_unaliased(kvm, gfn);
  361. write_count = slot_largepage_idx(gfn, slot, i);
  362. *write_count -= 1;
  363. WARN_ON(*write_count < 0);
  364. }
  365. }
  366. static int has_wrprotected_page(struct kvm *kvm,
  367. gfn_t gfn,
  368. int level)
  369. {
  370. struct kvm_memory_slot *slot;
  371. int *largepage_idx;
  372. gfn = unalias_gfn(kvm, gfn);
  373. slot = gfn_to_memslot_unaliased(kvm, gfn);
  374. if (slot) {
  375. largepage_idx = slot_largepage_idx(gfn, slot, level);
  376. return *largepage_idx;
  377. }
  378. return 1;
  379. }
  380. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  381. {
  382. unsigned long page_size;
  383. int i, ret = 0;
  384. page_size = kvm_host_page_size(kvm, gfn);
  385. for (i = PT_PAGE_TABLE_LEVEL;
  386. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  387. if (page_size >= KVM_HPAGE_SIZE(i))
  388. ret = i;
  389. else
  390. break;
  391. }
  392. return ret;
  393. }
  394. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  395. {
  396. struct kvm_memory_slot *slot;
  397. int host_level, level, max_level;
  398. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  399. if (slot && slot->dirty_bitmap)
  400. return PT_PAGE_TABLE_LEVEL;
  401. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  402. if (host_level == PT_PAGE_TABLE_LEVEL)
  403. return host_level;
  404. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  405. kvm_x86_ops->get_lpage_level() : host_level;
  406. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  407. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  408. break;
  409. return level - 1;
  410. }
  411. /*
  412. * Take gfn and return the reverse mapping to it.
  413. * Note: gfn must be unaliased before this function get called
  414. */
  415. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  416. {
  417. struct kvm_memory_slot *slot;
  418. unsigned long idx;
  419. slot = gfn_to_memslot(kvm, gfn);
  420. if (likely(level == PT_PAGE_TABLE_LEVEL))
  421. return &slot->rmap[gfn - slot->base_gfn];
  422. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  423. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  424. return &slot->lpage_info[level - 2][idx].rmap_pde;
  425. }
  426. /*
  427. * Reverse mapping data structures:
  428. *
  429. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  430. * that points to page_address(page).
  431. *
  432. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  433. * containing more mappings.
  434. *
  435. * Returns the number of rmap entries before the spte was added or zero if
  436. * the spte was not added.
  437. *
  438. */
  439. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  440. {
  441. struct kvm_mmu_page *sp;
  442. struct kvm_rmap_desc *desc;
  443. unsigned long *rmapp;
  444. int i, count = 0;
  445. if (!is_rmap_spte(*spte))
  446. return count;
  447. gfn = unalias_gfn(vcpu->kvm, gfn);
  448. sp = page_header(__pa(spte));
  449. sp->gfns[spte - sp->spt] = gfn;
  450. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  451. if (!*rmapp) {
  452. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  453. *rmapp = (unsigned long)spte;
  454. } else if (!(*rmapp & 1)) {
  455. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  456. desc = mmu_alloc_rmap_desc(vcpu);
  457. desc->sptes[0] = (u64 *)*rmapp;
  458. desc->sptes[1] = spte;
  459. *rmapp = (unsigned long)desc | 1;
  460. } else {
  461. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  462. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  463. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  464. desc = desc->more;
  465. count += RMAP_EXT;
  466. }
  467. if (desc->sptes[RMAP_EXT-1]) {
  468. desc->more = mmu_alloc_rmap_desc(vcpu);
  469. desc = desc->more;
  470. }
  471. for (i = 0; desc->sptes[i]; ++i)
  472. ;
  473. desc->sptes[i] = spte;
  474. }
  475. return count;
  476. }
  477. static void rmap_desc_remove_entry(unsigned long *rmapp,
  478. struct kvm_rmap_desc *desc,
  479. int i,
  480. struct kvm_rmap_desc *prev_desc)
  481. {
  482. int j;
  483. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  484. ;
  485. desc->sptes[i] = desc->sptes[j];
  486. desc->sptes[j] = NULL;
  487. if (j != 0)
  488. return;
  489. if (!prev_desc && !desc->more)
  490. *rmapp = (unsigned long)desc->sptes[0];
  491. else
  492. if (prev_desc)
  493. prev_desc->more = desc->more;
  494. else
  495. *rmapp = (unsigned long)desc->more | 1;
  496. mmu_free_rmap_desc(desc);
  497. }
  498. static void rmap_remove(struct kvm *kvm, u64 *spte)
  499. {
  500. struct kvm_rmap_desc *desc;
  501. struct kvm_rmap_desc *prev_desc;
  502. struct kvm_mmu_page *sp;
  503. pfn_t pfn;
  504. unsigned long *rmapp;
  505. int i;
  506. if (!is_rmap_spte(*spte))
  507. return;
  508. sp = page_header(__pa(spte));
  509. pfn = spte_to_pfn(*spte);
  510. if (*spte & shadow_accessed_mask)
  511. kvm_set_pfn_accessed(pfn);
  512. if (is_writable_pte(*spte))
  513. kvm_set_pfn_dirty(pfn);
  514. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  515. if (!*rmapp) {
  516. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  517. BUG();
  518. } else if (!(*rmapp & 1)) {
  519. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  520. if ((u64 *)*rmapp != spte) {
  521. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  522. spte, *spte);
  523. BUG();
  524. }
  525. *rmapp = 0;
  526. } else {
  527. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  528. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  529. prev_desc = NULL;
  530. while (desc) {
  531. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  532. if (desc->sptes[i] == spte) {
  533. rmap_desc_remove_entry(rmapp,
  534. desc, i,
  535. prev_desc);
  536. return;
  537. }
  538. prev_desc = desc;
  539. desc = desc->more;
  540. }
  541. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  542. BUG();
  543. }
  544. }
  545. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  546. {
  547. struct kvm_rmap_desc *desc;
  548. struct kvm_rmap_desc *prev_desc;
  549. u64 *prev_spte;
  550. int i;
  551. if (!*rmapp)
  552. return NULL;
  553. else if (!(*rmapp & 1)) {
  554. if (!spte)
  555. return (u64 *)*rmapp;
  556. return NULL;
  557. }
  558. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  559. prev_desc = NULL;
  560. prev_spte = NULL;
  561. while (desc) {
  562. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  563. if (prev_spte == spte)
  564. return desc->sptes[i];
  565. prev_spte = desc->sptes[i];
  566. }
  567. desc = desc->more;
  568. }
  569. return NULL;
  570. }
  571. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  572. {
  573. unsigned long *rmapp;
  574. u64 *spte;
  575. int i, write_protected = 0;
  576. gfn = unalias_gfn(kvm, gfn);
  577. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  578. spte = rmap_next(kvm, rmapp, NULL);
  579. while (spte) {
  580. BUG_ON(!spte);
  581. BUG_ON(!(*spte & PT_PRESENT_MASK));
  582. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  583. if (is_writable_pte(*spte)) {
  584. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  585. write_protected = 1;
  586. }
  587. spte = rmap_next(kvm, rmapp, spte);
  588. }
  589. if (write_protected) {
  590. pfn_t pfn;
  591. spte = rmap_next(kvm, rmapp, NULL);
  592. pfn = spte_to_pfn(*spte);
  593. kvm_set_pfn_dirty(pfn);
  594. }
  595. /* check for huge page mappings */
  596. for (i = PT_DIRECTORY_LEVEL;
  597. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  598. rmapp = gfn_to_rmap(kvm, gfn, i);
  599. spte = rmap_next(kvm, rmapp, NULL);
  600. while (spte) {
  601. BUG_ON(!spte);
  602. BUG_ON(!(*spte & PT_PRESENT_MASK));
  603. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  604. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  605. if (is_writable_pte(*spte)) {
  606. rmap_remove(kvm, spte);
  607. --kvm->stat.lpages;
  608. __set_spte(spte, shadow_trap_nonpresent_pte);
  609. spte = NULL;
  610. write_protected = 1;
  611. }
  612. spte = rmap_next(kvm, rmapp, spte);
  613. }
  614. }
  615. return write_protected;
  616. }
  617. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  618. unsigned long data)
  619. {
  620. u64 *spte;
  621. int need_tlb_flush = 0;
  622. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  623. BUG_ON(!(*spte & PT_PRESENT_MASK));
  624. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  625. rmap_remove(kvm, spte);
  626. __set_spte(spte, shadow_trap_nonpresent_pte);
  627. need_tlb_flush = 1;
  628. }
  629. return need_tlb_flush;
  630. }
  631. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  632. unsigned long data)
  633. {
  634. int need_flush = 0;
  635. u64 *spte, new_spte;
  636. pte_t *ptep = (pte_t *)data;
  637. pfn_t new_pfn;
  638. WARN_ON(pte_huge(*ptep));
  639. new_pfn = pte_pfn(*ptep);
  640. spte = rmap_next(kvm, rmapp, NULL);
  641. while (spte) {
  642. BUG_ON(!is_shadow_present_pte(*spte));
  643. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  644. need_flush = 1;
  645. if (pte_write(*ptep)) {
  646. rmap_remove(kvm, spte);
  647. __set_spte(spte, shadow_trap_nonpresent_pte);
  648. spte = rmap_next(kvm, rmapp, NULL);
  649. } else {
  650. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  651. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  652. new_spte &= ~PT_WRITABLE_MASK;
  653. new_spte &= ~SPTE_HOST_WRITEABLE;
  654. if (is_writable_pte(*spte))
  655. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  656. __set_spte(spte, new_spte);
  657. spte = rmap_next(kvm, rmapp, spte);
  658. }
  659. }
  660. if (need_flush)
  661. kvm_flush_remote_tlbs(kvm);
  662. return 0;
  663. }
  664. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  665. unsigned long data,
  666. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  667. unsigned long data))
  668. {
  669. int i, j;
  670. int ret;
  671. int retval = 0;
  672. struct kvm_memslots *slots;
  673. slots = rcu_dereference(kvm->memslots);
  674. for (i = 0; i < slots->nmemslots; i++) {
  675. struct kvm_memory_slot *memslot = &slots->memslots[i];
  676. unsigned long start = memslot->userspace_addr;
  677. unsigned long end;
  678. end = start + (memslot->npages << PAGE_SHIFT);
  679. if (hva >= start && hva < end) {
  680. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  681. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  682. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  683. int idx = gfn_offset;
  684. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  685. ret |= handler(kvm,
  686. &memslot->lpage_info[j][idx].rmap_pde,
  687. data);
  688. }
  689. trace_kvm_age_page(hva, memslot, ret);
  690. retval |= ret;
  691. }
  692. }
  693. return retval;
  694. }
  695. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  696. {
  697. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  698. }
  699. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  700. {
  701. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  702. }
  703. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  704. unsigned long data)
  705. {
  706. u64 *spte;
  707. int young = 0;
  708. /*
  709. * Emulate the accessed bit for EPT, by checking if this page has
  710. * an EPT mapping, and clearing it if it does. On the next access,
  711. * a new EPT mapping will be established.
  712. * This has some overhead, but not as much as the cost of swapping
  713. * out actively used pages or breaking up actively used hugepages.
  714. */
  715. if (!shadow_accessed_mask)
  716. return kvm_unmap_rmapp(kvm, rmapp, data);
  717. spte = rmap_next(kvm, rmapp, NULL);
  718. while (spte) {
  719. int _young;
  720. u64 _spte = *spte;
  721. BUG_ON(!(_spte & PT_PRESENT_MASK));
  722. _young = _spte & PT_ACCESSED_MASK;
  723. if (_young) {
  724. young = 1;
  725. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  726. }
  727. spte = rmap_next(kvm, rmapp, spte);
  728. }
  729. return young;
  730. }
  731. #define RMAP_RECYCLE_THRESHOLD 1000
  732. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  733. {
  734. unsigned long *rmapp;
  735. struct kvm_mmu_page *sp;
  736. sp = page_header(__pa(spte));
  737. gfn = unalias_gfn(vcpu->kvm, gfn);
  738. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  739. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  740. kvm_flush_remote_tlbs(vcpu->kvm);
  741. }
  742. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  743. {
  744. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  745. }
  746. #ifdef MMU_DEBUG
  747. static int is_empty_shadow_page(u64 *spt)
  748. {
  749. u64 *pos;
  750. u64 *end;
  751. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  752. if (is_shadow_present_pte(*pos)) {
  753. printk(KERN_ERR "%s: %p %llx\n", __func__,
  754. pos, *pos);
  755. return 0;
  756. }
  757. return 1;
  758. }
  759. #endif
  760. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  761. {
  762. ASSERT(is_empty_shadow_page(sp->spt));
  763. list_del(&sp->link);
  764. __free_page(virt_to_page(sp->spt));
  765. __free_page(virt_to_page(sp->gfns));
  766. kfree(sp);
  767. ++kvm->arch.n_free_mmu_pages;
  768. }
  769. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  770. {
  771. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  772. }
  773. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  774. u64 *parent_pte)
  775. {
  776. struct kvm_mmu_page *sp;
  777. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  778. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  779. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  780. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  781. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  782. INIT_LIST_HEAD(&sp->oos_link);
  783. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  784. sp->multimapped = 0;
  785. sp->parent_pte = parent_pte;
  786. --vcpu->kvm->arch.n_free_mmu_pages;
  787. return sp;
  788. }
  789. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  790. struct kvm_mmu_page *sp, u64 *parent_pte)
  791. {
  792. struct kvm_pte_chain *pte_chain;
  793. struct hlist_node *node;
  794. int i;
  795. if (!parent_pte)
  796. return;
  797. if (!sp->multimapped) {
  798. u64 *old = sp->parent_pte;
  799. if (!old) {
  800. sp->parent_pte = parent_pte;
  801. return;
  802. }
  803. sp->multimapped = 1;
  804. pte_chain = mmu_alloc_pte_chain(vcpu);
  805. INIT_HLIST_HEAD(&sp->parent_ptes);
  806. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  807. pte_chain->parent_ptes[0] = old;
  808. }
  809. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  810. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  811. continue;
  812. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  813. if (!pte_chain->parent_ptes[i]) {
  814. pte_chain->parent_ptes[i] = parent_pte;
  815. return;
  816. }
  817. }
  818. pte_chain = mmu_alloc_pte_chain(vcpu);
  819. BUG_ON(!pte_chain);
  820. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  821. pte_chain->parent_ptes[0] = parent_pte;
  822. }
  823. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  824. u64 *parent_pte)
  825. {
  826. struct kvm_pte_chain *pte_chain;
  827. struct hlist_node *node;
  828. int i;
  829. if (!sp->multimapped) {
  830. BUG_ON(sp->parent_pte != parent_pte);
  831. sp->parent_pte = NULL;
  832. return;
  833. }
  834. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  835. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  836. if (!pte_chain->parent_ptes[i])
  837. break;
  838. if (pte_chain->parent_ptes[i] != parent_pte)
  839. continue;
  840. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  841. && pte_chain->parent_ptes[i + 1]) {
  842. pte_chain->parent_ptes[i]
  843. = pte_chain->parent_ptes[i + 1];
  844. ++i;
  845. }
  846. pte_chain->parent_ptes[i] = NULL;
  847. if (i == 0) {
  848. hlist_del(&pte_chain->link);
  849. mmu_free_pte_chain(pte_chain);
  850. if (hlist_empty(&sp->parent_ptes)) {
  851. sp->multimapped = 0;
  852. sp->parent_pte = NULL;
  853. }
  854. }
  855. return;
  856. }
  857. BUG();
  858. }
  859. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  860. mmu_parent_walk_fn fn)
  861. {
  862. struct kvm_pte_chain *pte_chain;
  863. struct hlist_node *node;
  864. struct kvm_mmu_page *parent_sp;
  865. int i;
  866. if (!sp->multimapped && sp->parent_pte) {
  867. parent_sp = page_header(__pa(sp->parent_pte));
  868. fn(vcpu, parent_sp);
  869. mmu_parent_walk(vcpu, parent_sp, fn);
  870. return;
  871. }
  872. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  873. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  874. if (!pte_chain->parent_ptes[i])
  875. break;
  876. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  877. fn(vcpu, parent_sp);
  878. mmu_parent_walk(vcpu, parent_sp, fn);
  879. }
  880. }
  881. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  882. {
  883. unsigned int index;
  884. struct kvm_mmu_page *sp = page_header(__pa(spte));
  885. index = spte - sp->spt;
  886. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  887. sp->unsync_children++;
  888. WARN_ON(!sp->unsync_children);
  889. }
  890. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  891. {
  892. struct kvm_pte_chain *pte_chain;
  893. struct hlist_node *node;
  894. int i;
  895. if (!sp->parent_pte)
  896. return;
  897. if (!sp->multimapped) {
  898. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  899. return;
  900. }
  901. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  902. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  903. if (!pte_chain->parent_ptes[i])
  904. break;
  905. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  906. }
  907. }
  908. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  909. {
  910. kvm_mmu_update_parents_unsync(sp);
  911. return 1;
  912. }
  913. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  914. struct kvm_mmu_page *sp)
  915. {
  916. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  917. kvm_mmu_update_parents_unsync(sp);
  918. }
  919. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  920. struct kvm_mmu_page *sp)
  921. {
  922. int i;
  923. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  924. sp->spt[i] = shadow_trap_nonpresent_pte;
  925. }
  926. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  927. struct kvm_mmu_page *sp)
  928. {
  929. return 1;
  930. }
  931. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  932. {
  933. }
  934. #define KVM_PAGE_ARRAY_NR 16
  935. struct kvm_mmu_pages {
  936. struct mmu_page_and_offset {
  937. struct kvm_mmu_page *sp;
  938. unsigned int idx;
  939. } page[KVM_PAGE_ARRAY_NR];
  940. unsigned int nr;
  941. };
  942. #define for_each_unsync_children(bitmap, idx) \
  943. for (idx = find_first_bit(bitmap, 512); \
  944. idx < 512; \
  945. idx = find_next_bit(bitmap, 512, idx+1))
  946. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  947. int idx)
  948. {
  949. int i;
  950. if (sp->unsync)
  951. for (i=0; i < pvec->nr; i++)
  952. if (pvec->page[i].sp == sp)
  953. return 0;
  954. pvec->page[pvec->nr].sp = sp;
  955. pvec->page[pvec->nr].idx = idx;
  956. pvec->nr++;
  957. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  958. }
  959. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  960. struct kvm_mmu_pages *pvec)
  961. {
  962. int i, ret, nr_unsync_leaf = 0;
  963. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  964. u64 ent = sp->spt[i];
  965. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  966. struct kvm_mmu_page *child;
  967. child = page_header(ent & PT64_BASE_ADDR_MASK);
  968. if (child->unsync_children) {
  969. if (mmu_pages_add(pvec, child, i))
  970. return -ENOSPC;
  971. ret = __mmu_unsync_walk(child, pvec);
  972. if (!ret)
  973. __clear_bit(i, sp->unsync_child_bitmap);
  974. else if (ret > 0)
  975. nr_unsync_leaf += ret;
  976. else
  977. return ret;
  978. }
  979. if (child->unsync) {
  980. nr_unsync_leaf++;
  981. if (mmu_pages_add(pvec, child, i))
  982. return -ENOSPC;
  983. }
  984. }
  985. }
  986. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  987. sp->unsync_children = 0;
  988. return nr_unsync_leaf;
  989. }
  990. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  991. struct kvm_mmu_pages *pvec)
  992. {
  993. if (!sp->unsync_children)
  994. return 0;
  995. mmu_pages_add(pvec, sp, 0);
  996. return __mmu_unsync_walk(sp, pvec);
  997. }
  998. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  999. {
  1000. unsigned index;
  1001. struct hlist_head *bucket;
  1002. struct kvm_mmu_page *sp;
  1003. struct hlist_node *node;
  1004. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1005. index = kvm_page_table_hashfn(gfn);
  1006. bucket = &kvm->arch.mmu_page_hash[index];
  1007. hlist_for_each_entry(sp, node, bucket, hash_link)
  1008. if (sp->gfn == gfn && !sp->role.direct
  1009. && !sp->role.invalid) {
  1010. pgprintk("%s: found role %x\n",
  1011. __func__, sp->role.word);
  1012. return sp;
  1013. }
  1014. return NULL;
  1015. }
  1016. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1017. {
  1018. WARN_ON(!sp->unsync);
  1019. sp->unsync = 0;
  1020. --kvm->stat.mmu_unsync;
  1021. }
  1022. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  1023. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1024. {
  1025. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  1026. kvm_mmu_zap_page(vcpu->kvm, sp);
  1027. return 1;
  1028. }
  1029. trace_kvm_mmu_sync_page(sp);
  1030. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  1031. kvm_flush_remote_tlbs(vcpu->kvm);
  1032. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1033. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1034. kvm_mmu_zap_page(vcpu->kvm, sp);
  1035. return 1;
  1036. }
  1037. kvm_mmu_flush_tlb(vcpu);
  1038. return 0;
  1039. }
  1040. struct mmu_page_path {
  1041. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1042. unsigned int idx[PT64_ROOT_LEVEL-1];
  1043. };
  1044. #define for_each_sp(pvec, sp, parents, i) \
  1045. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1046. sp = pvec.page[i].sp; \
  1047. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1048. i = mmu_pages_next(&pvec, &parents, i))
  1049. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1050. struct mmu_page_path *parents,
  1051. int i)
  1052. {
  1053. int n;
  1054. for (n = i+1; n < pvec->nr; n++) {
  1055. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1056. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1057. parents->idx[0] = pvec->page[n].idx;
  1058. return n;
  1059. }
  1060. parents->parent[sp->role.level-2] = sp;
  1061. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1062. }
  1063. return n;
  1064. }
  1065. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1066. {
  1067. struct kvm_mmu_page *sp;
  1068. unsigned int level = 0;
  1069. do {
  1070. unsigned int idx = parents->idx[level];
  1071. sp = parents->parent[level];
  1072. if (!sp)
  1073. return;
  1074. --sp->unsync_children;
  1075. WARN_ON((int)sp->unsync_children < 0);
  1076. __clear_bit(idx, sp->unsync_child_bitmap);
  1077. level++;
  1078. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1079. }
  1080. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1081. struct mmu_page_path *parents,
  1082. struct kvm_mmu_pages *pvec)
  1083. {
  1084. parents->parent[parent->role.level-1] = NULL;
  1085. pvec->nr = 0;
  1086. }
  1087. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1088. struct kvm_mmu_page *parent)
  1089. {
  1090. int i;
  1091. struct kvm_mmu_page *sp;
  1092. struct mmu_page_path parents;
  1093. struct kvm_mmu_pages pages;
  1094. kvm_mmu_pages_init(parent, &parents, &pages);
  1095. while (mmu_unsync_walk(parent, &pages)) {
  1096. int protected = 0;
  1097. for_each_sp(pages, sp, parents, i)
  1098. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1099. if (protected)
  1100. kvm_flush_remote_tlbs(vcpu->kvm);
  1101. for_each_sp(pages, sp, parents, i) {
  1102. kvm_sync_page(vcpu, sp);
  1103. mmu_pages_clear_parents(&parents);
  1104. }
  1105. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1106. kvm_mmu_pages_init(parent, &parents, &pages);
  1107. }
  1108. }
  1109. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1110. gfn_t gfn,
  1111. gva_t gaddr,
  1112. unsigned level,
  1113. int direct,
  1114. unsigned access,
  1115. u64 *parent_pte)
  1116. {
  1117. union kvm_mmu_page_role role;
  1118. unsigned index;
  1119. unsigned quadrant;
  1120. struct hlist_head *bucket;
  1121. struct kvm_mmu_page *sp;
  1122. struct hlist_node *node, *tmp;
  1123. role = vcpu->arch.mmu.base_role;
  1124. role.level = level;
  1125. role.direct = direct;
  1126. role.access = access;
  1127. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1128. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1129. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1130. role.quadrant = quadrant;
  1131. }
  1132. index = kvm_page_table_hashfn(gfn);
  1133. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1134. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1135. if (sp->gfn == gfn) {
  1136. if (sp->unsync)
  1137. if (kvm_sync_page(vcpu, sp))
  1138. continue;
  1139. if (sp->role.word != role.word)
  1140. continue;
  1141. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1142. if (sp->unsync_children) {
  1143. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1144. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1145. }
  1146. trace_kvm_mmu_get_page(sp, false);
  1147. return sp;
  1148. }
  1149. ++vcpu->kvm->stat.mmu_cache_miss;
  1150. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1151. if (!sp)
  1152. return sp;
  1153. sp->gfn = gfn;
  1154. sp->role = role;
  1155. hlist_add_head(&sp->hash_link, bucket);
  1156. if (!direct) {
  1157. if (rmap_write_protect(vcpu->kvm, gfn))
  1158. kvm_flush_remote_tlbs(vcpu->kvm);
  1159. account_shadowed(vcpu->kvm, gfn);
  1160. }
  1161. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1162. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1163. else
  1164. nonpaging_prefetch_page(vcpu, sp);
  1165. trace_kvm_mmu_get_page(sp, true);
  1166. return sp;
  1167. }
  1168. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1169. struct kvm_vcpu *vcpu, u64 addr)
  1170. {
  1171. iterator->addr = addr;
  1172. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1173. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1174. if (iterator->level == PT32E_ROOT_LEVEL) {
  1175. iterator->shadow_addr
  1176. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1177. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1178. --iterator->level;
  1179. if (!iterator->shadow_addr)
  1180. iterator->level = 0;
  1181. }
  1182. }
  1183. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1184. {
  1185. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1186. return false;
  1187. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1188. if (is_large_pte(*iterator->sptep))
  1189. return false;
  1190. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1191. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1192. return true;
  1193. }
  1194. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1195. {
  1196. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1197. --iterator->level;
  1198. }
  1199. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1200. struct kvm_mmu_page *sp)
  1201. {
  1202. unsigned i;
  1203. u64 *pt;
  1204. u64 ent;
  1205. pt = sp->spt;
  1206. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1207. ent = pt[i];
  1208. if (is_shadow_present_pte(ent)) {
  1209. if (!is_last_spte(ent, sp->role.level)) {
  1210. ent &= PT64_BASE_ADDR_MASK;
  1211. mmu_page_remove_parent_pte(page_header(ent),
  1212. &pt[i]);
  1213. } else {
  1214. if (is_large_pte(ent))
  1215. --kvm->stat.lpages;
  1216. rmap_remove(kvm, &pt[i]);
  1217. }
  1218. }
  1219. pt[i] = shadow_trap_nonpresent_pte;
  1220. }
  1221. }
  1222. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1223. {
  1224. mmu_page_remove_parent_pte(sp, parent_pte);
  1225. }
  1226. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1227. {
  1228. int i;
  1229. struct kvm_vcpu *vcpu;
  1230. kvm_for_each_vcpu(i, vcpu, kvm)
  1231. vcpu->arch.last_pte_updated = NULL;
  1232. }
  1233. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1234. {
  1235. u64 *parent_pte;
  1236. while (sp->multimapped || sp->parent_pte) {
  1237. if (!sp->multimapped)
  1238. parent_pte = sp->parent_pte;
  1239. else {
  1240. struct kvm_pte_chain *chain;
  1241. chain = container_of(sp->parent_ptes.first,
  1242. struct kvm_pte_chain, link);
  1243. parent_pte = chain->parent_ptes[0];
  1244. }
  1245. BUG_ON(!parent_pte);
  1246. kvm_mmu_put_page(sp, parent_pte);
  1247. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1248. }
  1249. }
  1250. static int mmu_zap_unsync_children(struct kvm *kvm,
  1251. struct kvm_mmu_page *parent)
  1252. {
  1253. int i, zapped = 0;
  1254. struct mmu_page_path parents;
  1255. struct kvm_mmu_pages pages;
  1256. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1257. return 0;
  1258. kvm_mmu_pages_init(parent, &parents, &pages);
  1259. while (mmu_unsync_walk(parent, &pages)) {
  1260. struct kvm_mmu_page *sp;
  1261. for_each_sp(pages, sp, parents, i) {
  1262. kvm_mmu_zap_page(kvm, sp);
  1263. mmu_pages_clear_parents(&parents);
  1264. }
  1265. zapped += pages.nr;
  1266. kvm_mmu_pages_init(parent, &parents, &pages);
  1267. }
  1268. return zapped;
  1269. }
  1270. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1271. {
  1272. int ret;
  1273. trace_kvm_mmu_zap_page(sp);
  1274. ++kvm->stat.mmu_shadow_zapped;
  1275. ret = mmu_zap_unsync_children(kvm, sp);
  1276. kvm_mmu_page_unlink_children(kvm, sp);
  1277. kvm_mmu_unlink_parents(kvm, sp);
  1278. kvm_flush_remote_tlbs(kvm);
  1279. if (!sp->role.invalid && !sp->role.direct)
  1280. unaccount_shadowed(kvm, sp->gfn);
  1281. if (sp->unsync)
  1282. kvm_unlink_unsync_page(kvm, sp);
  1283. if (!sp->root_count) {
  1284. hlist_del(&sp->hash_link);
  1285. kvm_mmu_free_page(kvm, sp);
  1286. } else {
  1287. sp->role.invalid = 1;
  1288. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1289. kvm_reload_remote_mmus(kvm);
  1290. }
  1291. kvm_mmu_reset_last_pte_updated(kvm);
  1292. return ret;
  1293. }
  1294. /*
  1295. * Changing the number of mmu pages allocated to the vm
  1296. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1297. */
  1298. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1299. {
  1300. int used_pages;
  1301. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1302. used_pages = max(0, used_pages);
  1303. /*
  1304. * If we set the number of mmu pages to be smaller be than the
  1305. * number of actived pages , we must to free some mmu pages before we
  1306. * change the value
  1307. */
  1308. if (used_pages > kvm_nr_mmu_pages) {
  1309. while (used_pages > kvm_nr_mmu_pages) {
  1310. struct kvm_mmu_page *page;
  1311. page = container_of(kvm->arch.active_mmu_pages.prev,
  1312. struct kvm_mmu_page, link);
  1313. kvm_mmu_zap_page(kvm, page);
  1314. used_pages--;
  1315. }
  1316. kvm->arch.n_free_mmu_pages = 0;
  1317. }
  1318. else
  1319. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1320. - kvm->arch.n_alloc_mmu_pages;
  1321. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1322. }
  1323. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1324. {
  1325. unsigned index;
  1326. struct hlist_head *bucket;
  1327. struct kvm_mmu_page *sp;
  1328. struct hlist_node *node, *n;
  1329. int r;
  1330. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1331. r = 0;
  1332. index = kvm_page_table_hashfn(gfn);
  1333. bucket = &kvm->arch.mmu_page_hash[index];
  1334. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1335. if (sp->gfn == gfn && !sp->role.direct) {
  1336. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1337. sp->role.word);
  1338. r = 1;
  1339. if (kvm_mmu_zap_page(kvm, sp))
  1340. n = bucket->first;
  1341. }
  1342. return r;
  1343. }
  1344. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1345. {
  1346. unsigned index;
  1347. struct hlist_head *bucket;
  1348. struct kvm_mmu_page *sp;
  1349. struct hlist_node *node, *nn;
  1350. index = kvm_page_table_hashfn(gfn);
  1351. bucket = &kvm->arch.mmu_page_hash[index];
  1352. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1353. if (sp->gfn == gfn && !sp->role.direct
  1354. && !sp->role.invalid) {
  1355. pgprintk("%s: zap %lx %x\n",
  1356. __func__, gfn, sp->role.word);
  1357. kvm_mmu_zap_page(kvm, sp);
  1358. }
  1359. }
  1360. }
  1361. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1362. {
  1363. int slot = memslot_id(kvm, gfn);
  1364. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1365. __set_bit(slot, sp->slot_bitmap);
  1366. }
  1367. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1368. {
  1369. int i;
  1370. u64 *pt = sp->spt;
  1371. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1372. return;
  1373. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1374. if (pt[i] == shadow_notrap_nonpresent_pte)
  1375. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1376. }
  1377. }
  1378. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1379. {
  1380. struct page *page;
  1381. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  1382. if (gpa == UNMAPPED_GVA)
  1383. return NULL;
  1384. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1385. return page;
  1386. }
  1387. /*
  1388. * The function is based on mtrr_type_lookup() in
  1389. * arch/x86/kernel/cpu/mtrr/generic.c
  1390. */
  1391. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1392. u64 start, u64 end)
  1393. {
  1394. int i;
  1395. u64 base, mask;
  1396. u8 prev_match, curr_match;
  1397. int num_var_ranges = KVM_NR_VAR_MTRR;
  1398. if (!mtrr_state->enabled)
  1399. return 0xFF;
  1400. /* Make end inclusive end, instead of exclusive */
  1401. end--;
  1402. /* Look in fixed ranges. Just return the type as per start */
  1403. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1404. int idx;
  1405. if (start < 0x80000) {
  1406. idx = 0;
  1407. idx += (start >> 16);
  1408. return mtrr_state->fixed_ranges[idx];
  1409. } else if (start < 0xC0000) {
  1410. idx = 1 * 8;
  1411. idx += ((start - 0x80000) >> 14);
  1412. return mtrr_state->fixed_ranges[idx];
  1413. } else if (start < 0x1000000) {
  1414. idx = 3 * 8;
  1415. idx += ((start - 0xC0000) >> 12);
  1416. return mtrr_state->fixed_ranges[idx];
  1417. }
  1418. }
  1419. /*
  1420. * Look in variable ranges
  1421. * Look of multiple ranges matching this address and pick type
  1422. * as per MTRR precedence
  1423. */
  1424. if (!(mtrr_state->enabled & 2))
  1425. return mtrr_state->def_type;
  1426. prev_match = 0xFF;
  1427. for (i = 0; i < num_var_ranges; ++i) {
  1428. unsigned short start_state, end_state;
  1429. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1430. continue;
  1431. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1432. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1433. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1434. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1435. start_state = ((start & mask) == (base & mask));
  1436. end_state = ((end & mask) == (base & mask));
  1437. if (start_state != end_state)
  1438. return 0xFE;
  1439. if ((start & mask) != (base & mask))
  1440. continue;
  1441. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1442. if (prev_match == 0xFF) {
  1443. prev_match = curr_match;
  1444. continue;
  1445. }
  1446. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1447. curr_match == MTRR_TYPE_UNCACHABLE)
  1448. return MTRR_TYPE_UNCACHABLE;
  1449. if ((prev_match == MTRR_TYPE_WRBACK &&
  1450. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1451. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1452. curr_match == MTRR_TYPE_WRBACK)) {
  1453. prev_match = MTRR_TYPE_WRTHROUGH;
  1454. curr_match = MTRR_TYPE_WRTHROUGH;
  1455. }
  1456. if (prev_match != curr_match)
  1457. return MTRR_TYPE_UNCACHABLE;
  1458. }
  1459. if (prev_match != 0xFF)
  1460. return prev_match;
  1461. return mtrr_state->def_type;
  1462. }
  1463. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1464. {
  1465. u8 mtrr;
  1466. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1467. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1468. if (mtrr == 0xfe || mtrr == 0xff)
  1469. mtrr = MTRR_TYPE_WRBACK;
  1470. return mtrr;
  1471. }
  1472. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1473. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1474. {
  1475. unsigned index;
  1476. struct hlist_head *bucket;
  1477. struct kvm_mmu_page *s;
  1478. struct hlist_node *node, *n;
  1479. trace_kvm_mmu_unsync_page(sp);
  1480. index = kvm_page_table_hashfn(sp->gfn);
  1481. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1482. /* don't unsync if pagetable is shadowed with multiple roles */
  1483. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1484. if (s->gfn != sp->gfn || s->role.direct)
  1485. continue;
  1486. if (s->role.word != sp->role.word)
  1487. return 1;
  1488. }
  1489. ++vcpu->kvm->stat.mmu_unsync;
  1490. sp->unsync = 1;
  1491. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1492. mmu_convert_notrap(sp);
  1493. return 0;
  1494. }
  1495. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1496. bool can_unsync)
  1497. {
  1498. struct kvm_mmu_page *shadow;
  1499. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1500. if (shadow) {
  1501. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1502. return 1;
  1503. if (shadow->unsync)
  1504. return 0;
  1505. if (can_unsync && oos_shadow)
  1506. return kvm_unsync_page(vcpu, shadow);
  1507. return 1;
  1508. }
  1509. return 0;
  1510. }
  1511. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1512. unsigned pte_access, int user_fault,
  1513. int write_fault, int dirty, int level,
  1514. gfn_t gfn, pfn_t pfn, bool speculative,
  1515. bool can_unsync, bool reset_host_protection)
  1516. {
  1517. u64 spte;
  1518. int ret = 0;
  1519. /*
  1520. * We don't set the accessed bit, since we sometimes want to see
  1521. * whether the guest actually used the pte (in order to detect
  1522. * demand paging).
  1523. */
  1524. spte = shadow_base_present_pte | shadow_dirty_mask;
  1525. if (!speculative)
  1526. spte |= shadow_accessed_mask;
  1527. if (!dirty)
  1528. pte_access &= ~ACC_WRITE_MASK;
  1529. if (pte_access & ACC_EXEC_MASK)
  1530. spte |= shadow_x_mask;
  1531. else
  1532. spte |= shadow_nx_mask;
  1533. if (pte_access & ACC_USER_MASK)
  1534. spte |= shadow_user_mask;
  1535. if (level > PT_PAGE_TABLE_LEVEL)
  1536. spte |= PT_PAGE_SIZE_MASK;
  1537. if (tdp_enabled)
  1538. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1539. kvm_is_mmio_pfn(pfn));
  1540. if (reset_host_protection)
  1541. spte |= SPTE_HOST_WRITEABLE;
  1542. spte |= (u64)pfn << PAGE_SHIFT;
  1543. if ((pte_access & ACC_WRITE_MASK)
  1544. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1545. if (level > PT_PAGE_TABLE_LEVEL &&
  1546. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1547. ret = 1;
  1548. spte = shadow_trap_nonpresent_pte;
  1549. goto set_pte;
  1550. }
  1551. spte |= PT_WRITABLE_MASK;
  1552. /*
  1553. * Optimization: for pte sync, if spte was writable the hash
  1554. * lookup is unnecessary (and expensive). Write protection
  1555. * is responsibility of mmu_get_page / kvm_sync_page.
  1556. * Same reasoning can be applied to dirty page accounting.
  1557. */
  1558. if (!can_unsync && is_writable_pte(*sptep))
  1559. goto set_pte;
  1560. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1561. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1562. __func__, gfn);
  1563. ret = 1;
  1564. pte_access &= ~ACC_WRITE_MASK;
  1565. if (is_writable_pte(spte))
  1566. spte &= ~PT_WRITABLE_MASK;
  1567. }
  1568. }
  1569. if (pte_access & ACC_WRITE_MASK)
  1570. mark_page_dirty(vcpu->kvm, gfn);
  1571. set_pte:
  1572. __set_spte(sptep, spte);
  1573. return ret;
  1574. }
  1575. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1576. unsigned pt_access, unsigned pte_access,
  1577. int user_fault, int write_fault, int dirty,
  1578. int *ptwrite, int level, gfn_t gfn,
  1579. pfn_t pfn, bool speculative,
  1580. bool reset_host_protection)
  1581. {
  1582. int was_rmapped = 0;
  1583. int was_writable = is_writable_pte(*sptep);
  1584. int rmap_count;
  1585. pgprintk("%s: spte %llx access %x write_fault %d"
  1586. " user_fault %d gfn %lx\n",
  1587. __func__, *sptep, pt_access,
  1588. write_fault, user_fault, gfn);
  1589. if (is_rmap_spte(*sptep)) {
  1590. /*
  1591. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1592. * the parent of the now unreachable PTE.
  1593. */
  1594. if (level > PT_PAGE_TABLE_LEVEL &&
  1595. !is_large_pte(*sptep)) {
  1596. struct kvm_mmu_page *child;
  1597. u64 pte = *sptep;
  1598. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1599. mmu_page_remove_parent_pte(child, sptep);
  1600. } else if (pfn != spte_to_pfn(*sptep)) {
  1601. pgprintk("hfn old %lx new %lx\n",
  1602. spte_to_pfn(*sptep), pfn);
  1603. rmap_remove(vcpu->kvm, sptep);
  1604. } else
  1605. was_rmapped = 1;
  1606. }
  1607. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1608. dirty, level, gfn, pfn, speculative, true,
  1609. reset_host_protection)) {
  1610. if (write_fault)
  1611. *ptwrite = 1;
  1612. kvm_x86_ops->tlb_flush(vcpu);
  1613. }
  1614. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1615. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1616. is_large_pte(*sptep)? "2MB" : "4kB",
  1617. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1618. *sptep, sptep);
  1619. if (!was_rmapped && is_large_pte(*sptep))
  1620. ++vcpu->kvm->stat.lpages;
  1621. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1622. if (!was_rmapped) {
  1623. rmap_count = rmap_add(vcpu, sptep, gfn);
  1624. kvm_release_pfn_clean(pfn);
  1625. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1626. rmap_recycle(vcpu, sptep, gfn);
  1627. } else {
  1628. if (was_writable)
  1629. kvm_release_pfn_dirty(pfn);
  1630. else
  1631. kvm_release_pfn_clean(pfn);
  1632. }
  1633. if (speculative) {
  1634. vcpu->arch.last_pte_updated = sptep;
  1635. vcpu->arch.last_pte_gfn = gfn;
  1636. }
  1637. }
  1638. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1639. {
  1640. }
  1641. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1642. int level, gfn_t gfn, pfn_t pfn)
  1643. {
  1644. struct kvm_shadow_walk_iterator iterator;
  1645. struct kvm_mmu_page *sp;
  1646. int pt_write = 0;
  1647. gfn_t pseudo_gfn;
  1648. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1649. if (iterator.level == level) {
  1650. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1651. 0, write, 1, &pt_write,
  1652. level, gfn, pfn, false, true);
  1653. ++vcpu->stat.pf_fixed;
  1654. break;
  1655. }
  1656. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1657. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1658. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1659. iterator.level - 1,
  1660. 1, ACC_ALL, iterator.sptep);
  1661. if (!sp) {
  1662. pgprintk("nonpaging_map: ENOMEM\n");
  1663. kvm_release_pfn_clean(pfn);
  1664. return -ENOMEM;
  1665. }
  1666. __set_spte(iterator.sptep,
  1667. __pa(sp->spt)
  1668. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1669. | shadow_user_mask | shadow_x_mask);
  1670. }
  1671. }
  1672. return pt_write;
  1673. }
  1674. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1675. {
  1676. int r;
  1677. int level;
  1678. pfn_t pfn;
  1679. unsigned long mmu_seq;
  1680. level = mapping_level(vcpu, gfn);
  1681. /*
  1682. * This path builds a PAE pagetable - so we can map 2mb pages at
  1683. * maximum. Therefore check if the level is larger than that.
  1684. */
  1685. if (level > PT_DIRECTORY_LEVEL)
  1686. level = PT_DIRECTORY_LEVEL;
  1687. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1688. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1689. smp_rmb();
  1690. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1691. /* mmio */
  1692. if (is_error_pfn(pfn)) {
  1693. kvm_release_pfn_clean(pfn);
  1694. return 1;
  1695. }
  1696. spin_lock(&vcpu->kvm->mmu_lock);
  1697. if (mmu_notifier_retry(vcpu, mmu_seq))
  1698. goto out_unlock;
  1699. kvm_mmu_free_some_pages(vcpu);
  1700. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1701. spin_unlock(&vcpu->kvm->mmu_lock);
  1702. return r;
  1703. out_unlock:
  1704. spin_unlock(&vcpu->kvm->mmu_lock);
  1705. kvm_release_pfn_clean(pfn);
  1706. return 0;
  1707. }
  1708. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1709. {
  1710. int i;
  1711. struct kvm_mmu_page *sp;
  1712. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1713. return;
  1714. spin_lock(&vcpu->kvm->mmu_lock);
  1715. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1716. hpa_t root = vcpu->arch.mmu.root_hpa;
  1717. sp = page_header(root);
  1718. --sp->root_count;
  1719. if (!sp->root_count && sp->role.invalid)
  1720. kvm_mmu_zap_page(vcpu->kvm, sp);
  1721. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1722. spin_unlock(&vcpu->kvm->mmu_lock);
  1723. return;
  1724. }
  1725. for (i = 0; i < 4; ++i) {
  1726. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1727. if (root) {
  1728. root &= PT64_BASE_ADDR_MASK;
  1729. sp = page_header(root);
  1730. --sp->root_count;
  1731. if (!sp->root_count && sp->role.invalid)
  1732. kvm_mmu_zap_page(vcpu->kvm, sp);
  1733. }
  1734. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1735. }
  1736. spin_unlock(&vcpu->kvm->mmu_lock);
  1737. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1738. }
  1739. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1740. {
  1741. int ret = 0;
  1742. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1743. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1744. ret = 1;
  1745. }
  1746. return ret;
  1747. }
  1748. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1749. {
  1750. int i;
  1751. gfn_t root_gfn;
  1752. struct kvm_mmu_page *sp;
  1753. int direct = 0;
  1754. u64 pdptr;
  1755. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1756. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1757. hpa_t root = vcpu->arch.mmu.root_hpa;
  1758. ASSERT(!VALID_PAGE(root));
  1759. if (tdp_enabled)
  1760. direct = 1;
  1761. if (mmu_check_root(vcpu, root_gfn))
  1762. return 1;
  1763. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1764. PT64_ROOT_LEVEL, direct,
  1765. ACC_ALL, NULL);
  1766. root = __pa(sp->spt);
  1767. ++sp->root_count;
  1768. vcpu->arch.mmu.root_hpa = root;
  1769. return 0;
  1770. }
  1771. direct = !is_paging(vcpu);
  1772. if (tdp_enabled)
  1773. direct = 1;
  1774. for (i = 0; i < 4; ++i) {
  1775. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1776. ASSERT(!VALID_PAGE(root));
  1777. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1778. pdptr = kvm_pdptr_read(vcpu, i);
  1779. if (!is_present_gpte(pdptr)) {
  1780. vcpu->arch.mmu.pae_root[i] = 0;
  1781. continue;
  1782. }
  1783. root_gfn = pdptr >> PAGE_SHIFT;
  1784. } else if (vcpu->arch.mmu.root_level == 0)
  1785. root_gfn = 0;
  1786. if (mmu_check_root(vcpu, root_gfn))
  1787. return 1;
  1788. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1789. PT32_ROOT_LEVEL, direct,
  1790. ACC_ALL, NULL);
  1791. root = __pa(sp->spt);
  1792. ++sp->root_count;
  1793. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1794. }
  1795. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1796. return 0;
  1797. }
  1798. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1799. {
  1800. int i;
  1801. struct kvm_mmu_page *sp;
  1802. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1803. return;
  1804. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1805. hpa_t root = vcpu->arch.mmu.root_hpa;
  1806. sp = page_header(root);
  1807. mmu_sync_children(vcpu, sp);
  1808. return;
  1809. }
  1810. for (i = 0; i < 4; ++i) {
  1811. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1812. if (root && VALID_PAGE(root)) {
  1813. root &= PT64_BASE_ADDR_MASK;
  1814. sp = page_header(root);
  1815. mmu_sync_children(vcpu, sp);
  1816. }
  1817. }
  1818. }
  1819. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1820. {
  1821. spin_lock(&vcpu->kvm->mmu_lock);
  1822. mmu_sync_roots(vcpu);
  1823. spin_unlock(&vcpu->kvm->mmu_lock);
  1824. }
  1825. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1826. u32 access, u32 *error)
  1827. {
  1828. if (error)
  1829. *error = 0;
  1830. return vaddr;
  1831. }
  1832. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1833. u32 error_code)
  1834. {
  1835. gfn_t gfn;
  1836. int r;
  1837. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1838. r = mmu_topup_memory_caches(vcpu);
  1839. if (r)
  1840. return r;
  1841. ASSERT(vcpu);
  1842. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1843. gfn = gva >> PAGE_SHIFT;
  1844. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1845. error_code & PFERR_WRITE_MASK, gfn);
  1846. }
  1847. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1848. u32 error_code)
  1849. {
  1850. pfn_t pfn;
  1851. int r;
  1852. int level;
  1853. gfn_t gfn = gpa >> PAGE_SHIFT;
  1854. unsigned long mmu_seq;
  1855. ASSERT(vcpu);
  1856. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1857. r = mmu_topup_memory_caches(vcpu);
  1858. if (r)
  1859. return r;
  1860. level = mapping_level(vcpu, gfn);
  1861. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1862. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1863. smp_rmb();
  1864. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1865. if (is_error_pfn(pfn)) {
  1866. kvm_release_pfn_clean(pfn);
  1867. return 1;
  1868. }
  1869. spin_lock(&vcpu->kvm->mmu_lock);
  1870. if (mmu_notifier_retry(vcpu, mmu_seq))
  1871. goto out_unlock;
  1872. kvm_mmu_free_some_pages(vcpu);
  1873. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1874. level, gfn, pfn);
  1875. spin_unlock(&vcpu->kvm->mmu_lock);
  1876. return r;
  1877. out_unlock:
  1878. spin_unlock(&vcpu->kvm->mmu_lock);
  1879. kvm_release_pfn_clean(pfn);
  1880. return 0;
  1881. }
  1882. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1883. {
  1884. mmu_free_roots(vcpu);
  1885. }
  1886. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1887. {
  1888. struct kvm_mmu *context = &vcpu->arch.mmu;
  1889. context->new_cr3 = nonpaging_new_cr3;
  1890. context->page_fault = nonpaging_page_fault;
  1891. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1892. context->free = nonpaging_free;
  1893. context->prefetch_page = nonpaging_prefetch_page;
  1894. context->sync_page = nonpaging_sync_page;
  1895. context->invlpg = nonpaging_invlpg;
  1896. context->root_level = 0;
  1897. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1898. context->root_hpa = INVALID_PAGE;
  1899. return 0;
  1900. }
  1901. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1902. {
  1903. ++vcpu->stat.tlb_flush;
  1904. kvm_x86_ops->tlb_flush(vcpu);
  1905. }
  1906. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1907. {
  1908. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1909. mmu_free_roots(vcpu);
  1910. }
  1911. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1912. u64 addr,
  1913. u32 err_code)
  1914. {
  1915. kvm_inject_page_fault(vcpu, addr, err_code);
  1916. }
  1917. static void paging_free(struct kvm_vcpu *vcpu)
  1918. {
  1919. nonpaging_free(vcpu);
  1920. }
  1921. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1922. {
  1923. int bit7;
  1924. bit7 = (gpte >> 7) & 1;
  1925. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1926. }
  1927. #define PTTYPE 64
  1928. #include "paging_tmpl.h"
  1929. #undef PTTYPE
  1930. #define PTTYPE 32
  1931. #include "paging_tmpl.h"
  1932. #undef PTTYPE
  1933. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1934. {
  1935. struct kvm_mmu *context = &vcpu->arch.mmu;
  1936. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1937. u64 exb_bit_rsvd = 0;
  1938. if (!is_nx(vcpu))
  1939. exb_bit_rsvd = rsvd_bits(63, 63);
  1940. switch (level) {
  1941. case PT32_ROOT_LEVEL:
  1942. /* no rsvd bits for 2 level 4K page table entries */
  1943. context->rsvd_bits_mask[0][1] = 0;
  1944. context->rsvd_bits_mask[0][0] = 0;
  1945. if (is_cpuid_PSE36())
  1946. /* 36bits PSE 4MB page */
  1947. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1948. else
  1949. /* 32 bits PSE 4MB page */
  1950. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1951. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1952. break;
  1953. case PT32E_ROOT_LEVEL:
  1954. context->rsvd_bits_mask[0][2] =
  1955. rsvd_bits(maxphyaddr, 63) |
  1956. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1957. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1958. rsvd_bits(maxphyaddr, 62); /* PDE */
  1959. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1960. rsvd_bits(maxphyaddr, 62); /* PTE */
  1961. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1962. rsvd_bits(maxphyaddr, 62) |
  1963. rsvd_bits(13, 20); /* large page */
  1964. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1965. break;
  1966. case PT64_ROOT_LEVEL:
  1967. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1968. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1969. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1970. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1971. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1972. rsvd_bits(maxphyaddr, 51);
  1973. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1974. rsvd_bits(maxphyaddr, 51);
  1975. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  1976. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  1977. rsvd_bits(maxphyaddr, 51) |
  1978. rsvd_bits(13, 29);
  1979. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1980. rsvd_bits(maxphyaddr, 51) |
  1981. rsvd_bits(13, 20); /* large page */
  1982. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1983. break;
  1984. }
  1985. }
  1986. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1987. {
  1988. struct kvm_mmu *context = &vcpu->arch.mmu;
  1989. ASSERT(is_pae(vcpu));
  1990. context->new_cr3 = paging_new_cr3;
  1991. context->page_fault = paging64_page_fault;
  1992. context->gva_to_gpa = paging64_gva_to_gpa;
  1993. context->prefetch_page = paging64_prefetch_page;
  1994. context->sync_page = paging64_sync_page;
  1995. context->invlpg = paging64_invlpg;
  1996. context->free = paging_free;
  1997. context->root_level = level;
  1998. context->shadow_root_level = level;
  1999. context->root_hpa = INVALID_PAGE;
  2000. return 0;
  2001. }
  2002. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2003. {
  2004. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2005. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2006. }
  2007. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2008. {
  2009. struct kvm_mmu *context = &vcpu->arch.mmu;
  2010. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2011. context->new_cr3 = paging_new_cr3;
  2012. context->page_fault = paging32_page_fault;
  2013. context->gva_to_gpa = paging32_gva_to_gpa;
  2014. context->free = paging_free;
  2015. context->prefetch_page = paging32_prefetch_page;
  2016. context->sync_page = paging32_sync_page;
  2017. context->invlpg = paging32_invlpg;
  2018. context->root_level = PT32_ROOT_LEVEL;
  2019. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2020. context->root_hpa = INVALID_PAGE;
  2021. return 0;
  2022. }
  2023. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2024. {
  2025. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2026. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2027. }
  2028. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2029. {
  2030. struct kvm_mmu *context = &vcpu->arch.mmu;
  2031. context->new_cr3 = nonpaging_new_cr3;
  2032. context->page_fault = tdp_page_fault;
  2033. context->free = nonpaging_free;
  2034. context->prefetch_page = nonpaging_prefetch_page;
  2035. context->sync_page = nonpaging_sync_page;
  2036. context->invlpg = nonpaging_invlpg;
  2037. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2038. context->root_hpa = INVALID_PAGE;
  2039. if (!is_paging(vcpu)) {
  2040. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2041. context->root_level = 0;
  2042. } else if (is_long_mode(vcpu)) {
  2043. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2044. context->gva_to_gpa = paging64_gva_to_gpa;
  2045. context->root_level = PT64_ROOT_LEVEL;
  2046. } else if (is_pae(vcpu)) {
  2047. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2048. context->gva_to_gpa = paging64_gva_to_gpa;
  2049. context->root_level = PT32E_ROOT_LEVEL;
  2050. } else {
  2051. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2052. context->gva_to_gpa = paging32_gva_to_gpa;
  2053. context->root_level = PT32_ROOT_LEVEL;
  2054. }
  2055. return 0;
  2056. }
  2057. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2058. {
  2059. int r;
  2060. ASSERT(vcpu);
  2061. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2062. if (!is_paging(vcpu))
  2063. r = nonpaging_init_context(vcpu);
  2064. else if (is_long_mode(vcpu))
  2065. r = paging64_init_context(vcpu);
  2066. else if (is_pae(vcpu))
  2067. r = paging32E_init_context(vcpu);
  2068. else
  2069. r = paging32_init_context(vcpu);
  2070. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  2071. return r;
  2072. }
  2073. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2074. {
  2075. vcpu->arch.update_pte.pfn = bad_pfn;
  2076. if (tdp_enabled)
  2077. return init_kvm_tdp_mmu(vcpu);
  2078. else
  2079. return init_kvm_softmmu(vcpu);
  2080. }
  2081. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2082. {
  2083. ASSERT(vcpu);
  2084. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  2085. vcpu->arch.mmu.free(vcpu);
  2086. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2087. }
  2088. }
  2089. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2090. {
  2091. destroy_kvm_mmu(vcpu);
  2092. return init_kvm_mmu(vcpu);
  2093. }
  2094. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2095. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2096. {
  2097. int r;
  2098. r = mmu_topup_memory_caches(vcpu);
  2099. if (r)
  2100. goto out;
  2101. spin_lock(&vcpu->kvm->mmu_lock);
  2102. kvm_mmu_free_some_pages(vcpu);
  2103. r = mmu_alloc_roots(vcpu);
  2104. mmu_sync_roots(vcpu);
  2105. spin_unlock(&vcpu->kvm->mmu_lock);
  2106. if (r)
  2107. goto out;
  2108. /* set_cr3() should ensure TLB has been flushed */
  2109. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2110. out:
  2111. return r;
  2112. }
  2113. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2114. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2115. {
  2116. mmu_free_roots(vcpu);
  2117. }
  2118. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2119. struct kvm_mmu_page *sp,
  2120. u64 *spte)
  2121. {
  2122. u64 pte;
  2123. struct kvm_mmu_page *child;
  2124. pte = *spte;
  2125. if (is_shadow_present_pte(pte)) {
  2126. if (is_last_spte(pte, sp->role.level))
  2127. rmap_remove(vcpu->kvm, spte);
  2128. else {
  2129. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2130. mmu_page_remove_parent_pte(child, spte);
  2131. }
  2132. }
  2133. __set_spte(spte, shadow_trap_nonpresent_pte);
  2134. if (is_large_pte(pte))
  2135. --vcpu->kvm->stat.lpages;
  2136. }
  2137. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2138. struct kvm_mmu_page *sp,
  2139. u64 *spte,
  2140. const void *new)
  2141. {
  2142. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2143. ++vcpu->kvm->stat.mmu_pde_zapped;
  2144. return;
  2145. }
  2146. ++vcpu->kvm->stat.mmu_pte_updated;
  2147. if (sp->role.glevels == PT32_ROOT_LEVEL)
  2148. paging32_update_pte(vcpu, sp, spte, new);
  2149. else
  2150. paging64_update_pte(vcpu, sp, spte, new);
  2151. }
  2152. static bool need_remote_flush(u64 old, u64 new)
  2153. {
  2154. if (!is_shadow_present_pte(old))
  2155. return false;
  2156. if (!is_shadow_present_pte(new))
  2157. return true;
  2158. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2159. return true;
  2160. old ^= PT64_NX_MASK;
  2161. new ^= PT64_NX_MASK;
  2162. return (old & ~new & PT64_PERM_MASK) != 0;
  2163. }
  2164. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2165. {
  2166. if (need_remote_flush(old, new))
  2167. kvm_flush_remote_tlbs(vcpu->kvm);
  2168. else
  2169. kvm_mmu_flush_tlb(vcpu);
  2170. }
  2171. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2172. {
  2173. u64 *spte = vcpu->arch.last_pte_updated;
  2174. return !!(spte && (*spte & shadow_accessed_mask));
  2175. }
  2176. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2177. const u8 *new, int bytes)
  2178. {
  2179. gfn_t gfn;
  2180. int r;
  2181. u64 gpte = 0;
  2182. pfn_t pfn;
  2183. if (bytes != 4 && bytes != 8)
  2184. return;
  2185. /*
  2186. * Assume that the pte write on a page table of the same type
  2187. * as the current vcpu paging mode. This is nearly always true
  2188. * (might be false while changing modes). Note it is verified later
  2189. * by update_pte().
  2190. */
  2191. if (is_pae(vcpu)) {
  2192. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2193. if ((bytes == 4) && (gpa % 4 == 0)) {
  2194. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2195. if (r)
  2196. return;
  2197. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2198. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2199. memcpy((void *)&gpte, new, 8);
  2200. }
  2201. } else {
  2202. if ((bytes == 4) && (gpa % 4 == 0))
  2203. memcpy((void *)&gpte, new, 4);
  2204. }
  2205. if (!is_present_gpte(gpte))
  2206. return;
  2207. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2208. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2209. smp_rmb();
  2210. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2211. if (is_error_pfn(pfn)) {
  2212. kvm_release_pfn_clean(pfn);
  2213. return;
  2214. }
  2215. vcpu->arch.update_pte.gfn = gfn;
  2216. vcpu->arch.update_pte.pfn = pfn;
  2217. }
  2218. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2219. {
  2220. u64 *spte = vcpu->arch.last_pte_updated;
  2221. if (spte
  2222. && vcpu->arch.last_pte_gfn == gfn
  2223. && shadow_accessed_mask
  2224. && !(*spte & shadow_accessed_mask)
  2225. && is_shadow_present_pte(*spte))
  2226. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2227. }
  2228. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2229. const u8 *new, int bytes,
  2230. bool guest_initiated)
  2231. {
  2232. gfn_t gfn = gpa >> PAGE_SHIFT;
  2233. struct kvm_mmu_page *sp;
  2234. struct hlist_node *node, *n;
  2235. struct hlist_head *bucket;
  2236. unsigned index;
  2237. u64 entry, gentry;
  2238. u64 *spte;
  2239. unsigned offset = offset_in_page(gpa);
  2240. unsigned pte_size;
  2241. unsigned page_offset;
  2242. unsigned misaligned;
  2243. unsigned quadrant;
  2244. int level;
  2245. int flooded = 0;
  2246. int npte;
  2247. int r;
  2248. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2249. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2250. spin_lock(&vcpu->kvm->mmu_lock);
  2251. kvm_mmu_access_page(vcpu, gfn);
  2252. kvm_mmu_free_some_pages(vcpu);
  2253. ++vcpu->kvm->stat.mmu_pte_write;
  2254. kvm_mmu_audit(vcpu, "pre pte write");
  2255. if (guest_initiated) {
  2256. if (gfn == vcpu->arch.last_pt_write_gfn
  2257. && !last_updated_pte_accessed(vcpu)) {
  2258. ++vcpu->arch.last_pt_write_count;
  2259. if (vcpu->arch.last_pt_write_count >= 3)
  2260. flooded = 1;
  2261. } else {
  2262. vcpu->arch.last_pt_write_gfn = gfn;
  2263. vcpu->arch.last_pt_write_count = 1;
  2264. vcpu->arch.last_pte_updated = NULL;
  2265. }
  2266. }
  2267. index = kvm_page_table_hashfn(gfn);
  2268. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2269. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2270. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2271. continue;
  2272. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2273. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2274. misaligned |= bytes < 4;
  2275. if (misaligned || flooded) {
  2276. /*
  2277. * Misaligned accesses are too much trouble to fix
  2278. * up; also, they usually indicate a page is not used
  2279. * as a page table.
  2280. *
  2281. * If we're seeing too many writes to a page,
  2282. * it may no longer be a page table, or we may be
  2283. * forking, in which case it is better to unmap the
  2284. * page.
  2285. */
  2286. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2287. gpa, bytes, sp->role.word);
  2288. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2289. n = bucket->first;
  2290. ++vcpu->kvm->stat.mmu_flooded;
  2291. continue;
  2292. }
  2293. page_offset = offset;
  2294. level = sp->role.level;
  2295. npte = 1;
  2296. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2297. page_offset <<= 1; /* 32->64 */
  2298. /*
  2299. * A 32-bit pde maps 4MB while the shadow pdes map
  2300. * only 2MB. So we need to double the offset again
  2301. * and zap two pdes instead of one.
  2302. */
  2303. if (level == PT32_ROOT_LEVEL) {
  2304. page_offset &= ~7; /* kill rounding error */
  2305. page_offset <<= 1;
  2306. npte = 2;
  2307. }
  2308. quadrant = page_offset >> PAGE_SHIFT;
  2309. page_offset &= ~PAGE_MASK;
  2310. if (quadrant != sp->role.quadrant)
  2311. continue;
  2312. }
  2313. spte = &sp->spt[page_offset / sizeof(*spte)];
  2314. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2315. gentry = 0;
  2316. r = kvm_read_guest_atomic(vcpu->kvm,
  2317. gpa & ~(u64)(pte_size - 1),
  2318. &gentry, pte_size);
  2319. new = (const void *)&gentry;
  2320. if (r < 0)
  2321. new = NULL;
  2322. }
  2323. while (npte--) {
  2324. entry = *spte;
  2325. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2326. if (new)
  2327. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2328. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2329. ++spte;
  2330. }
  2331. }
  2332. kvm_mmu_audit(vcpu, "post pte write");
  2333. spin_unlock(&vcpu->kvm->mmu_lock);
  2334. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2335. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2336. vcpu->arch.update_pte.pfn = bad_pfn;
  2337. }
  2338. }
  2339. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2340. {
  2341. gpa_t gpa;
  2342. int r;
  2343. if (tdp_enabled)
  2344. return 0;
  2345. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2346. spin_lock(&vcpu->kvm->mmu_lock);
  2347. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2348. spin_unlock(&vcpu->kvm->mmu_lock);
  2349. return r;
  2350. }
  2351. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2352. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2353. {
  2354. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2355. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2356. struct kvm_mmu_page *sp;
  2357. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2358. struct kvm_mmu_page, link);
  2359. kvm_mmu_zap_page(vcpu->kvm, sp);
  2360. ++vcpu->kvm->stat.mmu_recycled;
  2361. }
  2362. }
  2363. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2364. {
  2365. int r;
  2366. enum emulation_result er;
  2367. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2368. if (r < 0)
  2369. goto out;
  2370. if (!r) {
  2371. r = 1;
  2372. goto out;
  2373. }
  2374. r = mmu_topup_memory_caches(vcpu);
  2375. if (r)
  2376. goto out;
  2377. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2378. switch (er) {
  2379. case EMULATE_DONE:
  2380. return 1;
  2381. case EMULATE_DO_MMIO:
  2382. ++vcpu->stat.mmio_exits;
  2383. return 0;
  2384. case EMULATE_FAIL:
  2385. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2386. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2387. vcpu->run->internal.ndata = 0;
  2388. return 0;
  2389. default:
  2390. BUG();
  2391. }
  2392. out:
  2393. return r;
  2394. }
  2395. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2396. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2397. {
  2398. vcpu->arch.mmu.invlpg(vcpu, gva);
  2399. kvm_mmu_flush_tlb(vcpu);
  2400. ++vcpu->stat.invlpg;
  2401. }
  2402. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2403. void kvm_enable_tdp(void)
  2404. {
  2405. tdp_enabled = true;
  2406. }
  2407. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2408. void kvm_disable_tdp(void)
  2409. {
  2410. tdp_enabled = false;
  2411. }
  2412. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2413. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2414. {
  2415. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2416. }
  2417. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2418. {
  2419. struct page *page;
  2420. int i;
  2421. ASSERT(vcpu);
  2422. /*
  2423. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2424. * Therefore we need to allocate shadow page tables in the first
  2425. * 4GB of memory, which happens to fit the DMA32 zone.
  2426. */
  2427. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2428. if (!page)
  2429. return -ENOMEM;
  2430. vcpu->arch.mmu.pae_root = page_address(page);
  2431. for (i = 0; i < 4; ++i)
  2432. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2433. return 0;
  2434. }
  2435. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2436. {
  2437. ASSERT(vcpu);
  2438. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2439. return alloc_mmu_pages(vcpu);
  2440. }
  2441. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2442. {
  2443. ASSERT(vcpu);
  2444. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2445. return init_kvm_mmu(vcpu);
  2446. }
  2447. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2448. {
  2449. ASSERT(vcpu);
  2450. destroy_kvm_mmu(vcpu);
  2451. free_mmu_pages(vcpu);
  2452. mmu_free_memory_caches(vcpu);
  2453. }
  2454. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2455. {
  2456. struct kvm_mmu_page *sp;
  2457. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2458. int i;
  2459. u64 *pt;
  2460. if (!test_bit(slot, sp->slot_bitmap))
  2461. continue;
  2462. pt = sp->spt;
  2463. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2464. /* avoid RMW */
  2465. if (pt[i] & PT_WRITABLE_MASK)
  2466. pt[i] &= ~PT_WRITABLE_MASK;
  2467. }
  2468. kvm_flush_remote_tlbs(kvm);
  2469. }
  2470. void kvm_mmu_zap_all(struct kvm *kvm)
  2471. {
  2472. struct kvm_mmu_page *sp, *node;
  2473. spin_lock(&kvm->mmu_lock);
  2474. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2475. if (kvm_mmu_zap_page(kvm, sp))
  2476. node = container_of(kvm->arch.active_mmu_pages.next,
  2477. struct kvm_mmu_page, link);
  2478. spin_unlock(&kvm->mmu_lock);
  2479. kvm_flush_remote_tlbs(kvm);
  2480. }
  2481. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2482. {
  2483. struct kvm_mmu_page *page;
  2484. page = container_of(kvm->arch.active_mmu_pages.prev,
  2485. struct kvm_mmu_page, link);
  2486. kvm_mmu_zap_page(kvm, page);
  2487. }
  2488. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2489. {
  2490. struct kvm *kvm;
  2491. struct kvm *kvm_freed = NULL;
  2492. int cache_count = 0;
  2493. spin_lock(&kvm_lock);
  2494. list_for_each_entry(kvm, &vm_list, vm_list) {
  2495. int npages, idx;
  2496. idx = srcu_read_lock(&kvm->srcu);
  2497. spin_lock(&kvm->mmu_lock);
  2498. npages = kvm->arch.n_alloc_mmu_pages -
  2499. kvm->arch.n_free_mmu_pages;
  2500. cache_count += npages;
  2501. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2502. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2503. cache_count--;
  2504. kvm_freed = kvm;
  2505. }
  2506. nr_to_scan--;
  2507. spin_unlock(&kvm->mmu_lock);
  2508. srcu_read_unlock(&kvm->srcu, idx);
  2509. }
  2510. if (kvm_freed)
  2511. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2512. spin_unlock(&kvm_lock);
  2513. return cache_count;
  2514. }
  2515. static struct shrinker mmu_shrinker = {
  2516. .shrink = mmu_shrink,
  2517. .seeks = DEFAULT_SEEKS * 10,
  2518. };
  2519. static void mmu_destroy_caches(void)
  2520. {
  2521. if (pte_chain_cache)
  2522. kmem_cache_destroy(pte_chain_cache);
  2523. if (rmap_desc_cache)
  2524. kmem_cache_destroy(rmap_desc_cache);
  2525. if (mmu_page_header_cache)
  2526. kmem_cache_destroy(mmu_page_header_cache);
  2527. }
  2528. void kvm_mmu_module_exit(void)
  2529. {
  2530. mmu_destroy_caches();
  2531. unregister_shrinker(&mmu_shrinker);
  2532. }
  2533. int kvm_mmu_module_init(void)
  2534. {
  2535. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2536. sizeof(struct kvm_pte_chain),
  2537. 0, 0, NULL);
  2538. if (!pte_chain_cache)
  2539. goto nomem;
  2540. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2541. sizeof(struct kvm_rmap_desc),
  2542. 0, 0, NULL);
  2543. if (!rmap_desc_cache)
  2544. goto nomem;
  2545. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2546. sizeof(struct kvm_mmu_page),
  2547. 0, 0, NULL);
  2548. if (!mmu_page_header_cache)
  2549. goto nomem;
  2550. register_shrinker(&mmu_shrinker);
  2551. return 0;
  2552. nomem:
  2553. mmu_destroy_caches();
  2554. return -ENOMEM;
  2555. }
  2556. /*
  2557. * Caculate mmu pages needed for kvm.
  2558. */
  2559. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2560. {
  2561. int i;
  2562. unsigned int nr_mmu_pages;
  2563. unsigned int nr_pages = 0;
  2564. struct kvm_memslots *slots;
  2565. slots = rcu_dereference(kvm->memslots);
  2566. for (i = 0; i < slots->nmemslots; i++)
  2567. nr_pages += slots->memslots[i].npages;
  2568. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2569. nr_mmu_pages = max(nr_mmu_pages,
  2570. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2571. return nr_mmu_pages;
  2572. }
  2573. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2574. unsigned len)
  2575. {
  2576. if (len > buffer->len)
  2577. return NULL;
  2578. return buffer->ptr;
  2579. }
  2580. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2581. unsigned len)
  2582. {
  2583. void *ret;
  2584. ret = pv_mmu_peek_buffer(buffer, len);
  2585. if (!ret)
  2586. return ret;
  2587. buffer->ptr += len;
  2588. buffer->len -= len;
  2589. buffer->processed += len;
  2590. return ret;
  2591. }
  2592. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2593. gpa_t addr, gpa_t value)
  2594. {
  2595. int bytes = 8;
  2596. int r;
  2597. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2598. bytes = 4;
  2599. r = mmu_topup_memory_caches(vcpu);
  2600. if (r)
  2601. return r;
  2602. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2603. return -EFAULT;
  2604. return 1;
  2605. }
  2606. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2607. {
  2608. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2609. return 1;
  2610. }
  2611. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2612. {
  2613. spin_lock(&vcpu->kvm->mmu_lock);
  2614. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2615. spin_unlock(&vcpu->kvm->mmu_lock);
  2616. return 1;
  2617. }
  2618. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2619. struct kvm_pv_mmu_op_buffer *buffer)
  2620. {
  2621. struct kvm_mmu_op_header *header;
  2622. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2623. if (!header)
  2624. return 0;
  2625. switch (header->op) {
  2626. case KVM_MMU_OP_WRITE_PTE: {
  2627. struct kvm_mmu_op_write_pte *wpte;
  2628. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2629. if (!wpte)
  2630. return 0;
  2631. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2632. wpte->pte_val);
  2633. }
  2634. case KVM_MMU_OP_FLUSH_TLB: {
  2635. struct kvm_mmu_op_flush_tlb *ftlb;
  2636. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2637. if (!ftlb)
  2638. return 0;
  2639. return kvm_pv_mmu_flush_tlb(vcpu);
  2640. }
  2641. case KVM_MMU_OP_RELEASE_PT: {
  2642. struct kvm_mmu_op_release_pt *rpt;
  2643. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2644. if (!rpt)
  2645. return 0;
  2646. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2647. }
  2648. default: return 0;
  2649. }
  2650. }
  2651. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2652. gpa_t addr, unsigned long *ret)
  2653. {
  2654. int r;
  2655. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2656. buffer->ptr = buffer->buf;
  2657. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2658. buffer->processed = 0;
  2659. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2660. if (r)
  2661. goto out;
  2662. while (buffer->len) {
  2663. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2664. if (r < 0)
  2665. goto out;
  2666. if (r == 0)
  2667. break;
  2668. }
  2669. r = 1;
  2670. out:
  2671. *ret = buffer->processed;
  2672. return r;
  2673. }
  2674. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2675. {
  2676. struct kvm_shadow_walk_iterator iterator;
  2677. int nr_sptes = 0;
  2678. spin_lock(&vcpu->kvm->mmu_lock);
  2679. for_each_shadow_entry(vcpu, addr, iterator) {
  2680. sptes[iterator.level-1] = *iterator.sptep;
  2681. nr_sptes++;
  2682. if (!is_shadow_present_pte(*iterator.sptep))
  2683. break;
  2684. }
  2685. spin_unlock(&vcpu->kvm->mmu_lock);
  2686. return nr_sptes;
  2687. }
  2688. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2689. #ifdef AUDIT
  2690. static const char *audit_msg;
  2691. static gva_t canonicalize(gva_t gva)
  2692. {
  2693. #ifdef CONFIG_X86_64
  2694. gva = (long long)(gva << 16) >> 16;
  2695. #endif
  2696. return gva;
  2697. }
  2698. typedef void (*inspect_spte_fn) (struct kvm *kvm, struct kvm_mmu_page *sp,
  2699. u64 *sptep);
  2700. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2701. inspect_spte_fn fn)
  2702. {
  2703. int i;
  2704. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2705. u64 ent = sp->spt[i];
  2706. if (is_shadow_present_pte(ent)) {
  2707. if (!is_last_spte(ent, sp->role.level)) {
  2708. struct kvm_mmu_page *child;
  2709. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2710. __mmu_spte_walk(kvm, child, fn);
  2711. } else
  2712. fn(kvm, sp, &sp->spt[i]);
  2713. }
  2714. }
  2715. }
  2716. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2717. {
  2718. int i;
  2719. struct kvm_mmu_page *sp;
  2720. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2721. return;
  2722. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2723. hpa_t root = vcpu->arch.mmu.root_hpa;
  2724. sp = page_header(root);
  2725. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2726. return;
  2727. }
  2728. for (i = 0; i < 4; ++i) {
  2729. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2730. if (root && VALID_PAGE(root)) {
  2731. root &= PT64_BASE_ADDR_MASK;
  2732. sp = page_header(root);
  2733. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2734. }
  2735. }
  2736. return;
  2737. }
  2738. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2739. gva_t va, int level)
  2740. {
  2741. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2742. int i;
  2743. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2744. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2745. u64 ent = pt[i];
  2746. if (ent == shadow_trap_nonpresent_pte)
  2747. continue;
  2748. va = canonicalize(va);
  2749. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2750. audit_mappings_page(vcpu, ent, va, level - 1);
  2751. else {
  2752. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2753. gfn_t gfn = gpa >> PAGE_SHIFT;
  2754. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2755. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2756. if (is_error_pfn(pfn)) {
  2757. kvm_release_pfn_clean(pfn);
  2758. continue;
  2759. }
  2760. if (is_shadow_present_pte(ent)
  2761. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2762. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2763. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2764. audit_msg, vcpu->arch.mmu.root_level,
  2765. va, gpa, hpa, ent,
  2766. is_shadow_present_pte(ent));
  2767. else if (ent == shadow_notrap_nonpresent_pte
  2768. && !is_error_hpa(hpa))
  2769. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2770. " valid guest gva %lx\n", audit_msg, va);
  2771. kvm_release_pfn_clean(pfn);
  2772. }
  2773. }
  2774. }
  2775. static void audit_mappings(struct kvm_vcpu *vcpu)
  2776. {
  2777. unsigned i;
  2778. if (vcpu->arch.mmu.root_level == 4)
  2779. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2780. else
  2781. for (i = 0; i < 4; ++i)
  2782. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2783. audit_mappings_page(vcpu,
  2784. vcpu->arch.mmu.pae_root[i],
  2785. i << 30,
  2786. 2);
  2787. }
  2788. static int count_rmaps(struct kvm_vcpu *vcpu)
  2789. {
  2790. int nmaps = 0;
  2791. int i, j, k, idx;
  2792. idx = srcu_read_lock(&kvm->srcu);
  2793. slots = rcu_dereference(kvm->memslots);
  2794. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2795. struct kvm_memory_slot *m = &slots->memslots[i];
  2796. struct kvm_rmap_desc *d;
  2797. for (j = 0; j < m->npages; ++j) {
  2798. unsigned long *rmapp = &m->rmap[j];
  2799. if (!*rmapp)
  2800. continue;
  2801. if (!(*rmapp & 1)) {
  2802. ++nmaps;
  2803. continue;
  2804. }
  2805. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2806. while (d) {
  2807. for (k = 0; k < RMAP_EXT; ++k)
  2808. if (d->sptes[k])
  2809. ++nmaps;
  2810. else
  2811. break;
  2812. d = d->more;
  2813. }
  2814. }
  2815. }
  2816. srcu_read_unlock(&kvm->srcu, idx);
  2817. return nmaps;
  2818. }
  2819. void inspect_spte_has_rmap(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *sptep)
  2820. {
  2821. unsigned long *rmapp;
  2822. struct kvm_mmu_page *rev_sp;
  2823. gfn_t gfn;
  2824. if (*sptep & PT_WRITABLE_MASK) {
  2825. rev_sp = page_header(__pa(sptep));
  2826. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2827. if (!gfn_to_memslot(kvm, gfn)) {
  2828. if (!printk_ratelimit())
  2829. return;
  2830. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2831. audit_msg, gfn);
  2832. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2833. audit_msg, sptep - rev_sp->spt,
  2834. rev_sp->gfn);
  2835. dump_stack();
  2836. return;
  2837. }
  2838. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2839. is_large_pte(*sptep));
  2840. if (!*rmapp) {
  2841. if (!printk_ratelimit())
  2842. return;
  2843. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2844. audit_msg, *sptep);
  2845. dump_stack();
  2846. }
  2847. }
  2848. }
  2849. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2850. {
  2851. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2852. }
  2853. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2854. {
  2855. struct kvm_mmu_page *sp;
  2856. int i;
  2857. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2858. u64 *pt = sp->spt;
  2859. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2860. continue;
  2861. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2862. u64 ent = pt[i];
  2863. if (!(ent & PT_PRESENT_MASK))
  2864. continue;
  2865. if (!(ent & PT_WRITABLE_MASK))
  2866. continue;
  2867. inspect_spte_has_rmap(vcpu->kvm, sp, &pt[i]);
  2868. }
  2869. }
  2870. return;
  2871. }
  2872. static void audit_rmap(struct kvm_vcpu *vcpu)
  2873. {
  2874. check_writable_mappings_rmap(vcpu);
  2875. count_rmaps(vcpu);
  2876. }
  2877. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2878. {
  2879. struct kvm_mmu_page *sp;
  2880. struct kvm_memory_slot *slot;
  2881. unsigned long *rmapp;
  2882. u64 *spte;
  2883. gfn_t gfn;
  2884. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2885. if (sp->role.direct)
  2886. continue;
  2887. if (sp->unsync)
  2888. continue;
  2889. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2890. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2891. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2892. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2893. while (spte) {
  2894. if (*spte & PT_WRITABLE_MASK)
  2895. printk(KERN_ERR "%s: (%s) shadow page has "
  2896. "writable mappings: gfn %lx role %x\n",
  2897. __func__, audit_msg, sp->gfn,
  2898. sp->role.word);
  2899. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2900. }
  2901. }
  2902. }
  2903. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2904. {
  2905. int olddbg = dbg;
  2906. dbg = 0;
  2907. audit_msg = msg;
  2908. audit_rmap(vcpu);
  2909. audit_write_protection(vcpu);
  2910. if (strcmp("pre pte write", audit_msg) != 0)
  2911. audit_mappings(vcpu);
  2912. audit_writable_sptes_have_rmaps(vcpu);
  2913. dbg = olddbg;
  2914. }
  2915. #endif