intel_ringbuffer.c 83 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. static void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. struct intel_engine_cs *ring = req->ring;
  87. u32 cmd;
  88. int ret;
  89. cmd = MI_FLUSH;
  90. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  91. cmd |= MI_NO_WRITE_FLUSH;
  92. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  93. cmd |= MI_READ_FLUSH;
  94. ret = intel_ring_begin(req, 2);
  95. if (ret)
  96. return ret;
  97. intel_ring_emit(ring, cmd);
  98. intel_ring_emit(ring, MI_NOOP);
  99. intel_ring_advance(ring);
  100. return 0;
  101. }
  102. static int
  103. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  104. u32 invalidate_domains,
  105. u32 flush_domains)
  106. {
  107. struct intel_engine_cs *ring = req->ring;
  108. struct drm_device *dev = ring->dev;
  109. u32 cmd;
  110. int ret;
  111. /*
  112. * read/write caches:
  113. *
  114. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  115. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  116. * also flushed at 2d versus 3d pipeline switches.
  117. *
  118. * read-only caches:
  119. *
  120. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  121. * MI_READ_FLUSH is set, and is always flushed on 965.
  122. *
  123. * I915_GEM_DOMAIN_COMMAND may not exist?
  124. *
  125. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  126. * invalidated when MI_EXE_FLUSH is set.
  127. *
  128. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  129. * invalidated with every MI_FLUSH.
  130. *
  131. * TLBs:
  132. *
  133. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  134. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  135. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  136. * are flushed at any MI_FLUSH.
  137. */
  138. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  139. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  140. cmd &= ~MI_NO_WRITE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  142. cmd |= MI_EXE_FLUSH;
  143. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  144. (IS_G4X(dev) || IS_GEN5(dev)))
  145. cmd |= MI_INVALIDATE_ISP;
  146. ret = intel_ring_begin(req, 2);
  147. if (ret)
  148. return ret;
  149. intel_ring_emit(ring, cmd);
  150. intel_ring_emit(ring, MI_NOOP);
  151. intel_ring_advance(ring);
  152. return 0;
  153. }
  154. /**
  155. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  156. * implementing two workarounds on gen6. From section 1.4.7.1
  157. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  158. *
  159. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  160. * produced by non-pipelined state commands), software needs to first
  161. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  162. * 0.
  163. *
  164. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  165. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  166. *
  167. * And the workaround for these two requires this workaround first:
  168. *
  169. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  170. * BEFORE the pipe-control with a post-sync op and no write-cache
  171. * flushes.
  172. *
  173. * And this last workaround is tricky because of the requirements on
  174. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  175. * volume 2 part 1:
  176. *
  177. * "1 of the following must also be set:
  178. * - Render Target Cache Flush Enable ([12] of DW1)
  179. * - Depth Cache Flush Enable ([0] of DW1)
  180. * - Stall at Pixel Scoreboard ([1] of DW1)
  181. * - Depth Stall ([13] of DW1)
  182. * - Post-Sync Operation ([13] of DW1)
  183. * - Notify Enable ([8] of DW1)"
  184. *
  185. * The cache flushes require the workaround flush that triggered this
  186. * one, so we can't use it. Depth stall would trigger the same.
  187. * Post-sync nonzero is what triggered this second workaround, so we
  188. * can't use that one either. Notify enable is IRQs, which aren't
  189. * really our business. That leaves only stall at scoreboard.
  190. */
  191. static int
  192. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  193. {
  194. struct intel_engine_cs *ring = req->ring;
  195. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  196. int ret;
  197. ret = intel_ring_begin(req, 6);
  198. if (ret)
  199. return ret;
  200. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  201. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  202. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  203. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  204. intel_ring_emit(ring, 0); /* low dword */
  205. intel_ring_emit(ring, 0); /* high dword */
  206. intel_ring_emit(ring, MI_NOOP);
  207. intel_ring_advance(ring);
  208. ret = intel_ring_begin(req, 6);
  209. if (ret)
  210. return ret;
  211. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  212. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  213. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  214. intel_ring_emit(ring, 0);
  215. intel_ring_emit(ring, 0);
  216. intel_ring_emit(ring, MI_NOOP);
  217. intel_ring_advance(ring);
  218. return 0;
  219. }
  220. static int
  221. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  222. u32 invalidate_domains, u32 flush_domains)
  223. {
  224. struct intel_engine_cs *ring = req->ring;
  225. u32 flags = 0;
  226. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  227. int ret;
  228. /* Force SNB workarounds for PIPE_CONTROL flushes */
  229. ret = intel_emit_post_sync_nonzero_flush(req);
  230. if (ret)
  231. return ret;
  232. /* Just flush everything. Experiments have shown that reducing the
  233. * number of bits based on the write domains has little performance
  234. * impact.
  235. */
  236. if (flush_domains) {
  237. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  238. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  239. /*
  240. * Ensure that any following seqno writes only happen
  241. * when the render cache is indeed flushed.
  242. */
  243. flags |= PIPE_CONTROL_CS_STALL;
  244. }
  245. if (invalidate_domains) {
  246. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  247. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  248. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  249. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  250. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  251. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  252. /*
  253. * TLB invalidate requires a post-sync write.
  254. */
  255. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  256. }
  257. ret = intel_ring_begin(req, 4);
  258. if (ret)
  259. return ret;
  260. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  261. intel_ring_emit(ring, flags);
  262. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  263. intel_ring_emit(ring, 0);
  264. intel_ring_advance(ring);
  265. return 0;
  266. }
  267. static int
  268. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  269. {
  270. struct intel_engine_cs *ring = req->ring;
  271. int ret;
  272. ret = intel_ring_begin(req, 4);
  273. if (ret)
  274. return ret;
  275. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  276. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  277. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  278. intel_ring_emit(ring, 0);
  279. intel_ring_emit(ring, 0);
  280. intel_ring_advance(ring);
  281. return 0;
  282. }
  283. static int
  284. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  285. u32 invalidate_domains, u32 flush_domains)
  286. {
  287. struct intel_engine_cs *ring = req->ring;
  288. u32 flags = 0;
  289. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  290. int ret;
  291. /*
  292. * Ensure that any following seqno writes only happen when the render
  293. * cache is indeed flushed.
  294. *
  295. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  296. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  297. * don't try to be clever and just set it unconditionally.
  298. */
  299. flags |= PIPE_CONTROL_CS_STALL;
  300. /* Just flush everything. Experiments have shown that reducing the
  301. * number of bits based on the write domains has little performance
  302. * impact.
  303. */
  304. if (flush_domains) {
  305. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  306. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  307. }
  308. if (invalidate_domains) {
  309. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  310. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  311. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  312. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  313. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  314. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  316. /*
  317. * TLB invalidate requires a post-sync write.
  318. */
  319. flags |= PIPE_CONTROL_QW_WRITE;
  320. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  321. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  322. /* Workaround: we must issue a pipe_control with CS-stall bit
  323. * set before a pipe_control command that has the state cache
  324. * invalidate bit set. */
  325. gen7_render_ring_cs_stall_wa(req);
  326. }
  327. ret = intel_ring_begin(req, 4);
  328. if (ret)
  329. return ret;
  330. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  331. intel_ring_emit(ring, flags);
  332. intel_ring_emit(ring, scratch_addr);
  333. intel_ring_emit(ring, 0);
  334. intel_ring_advance(ring);
  335. return 0;
  336. }
  337. static int
  338. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  339. u32 flags, u32 scratch_addr)
  340. {
  341. struct intel_engine_cs *ring = req->ring;
  342. int ret;
  343. ret = intel_ring_begin(req, 6);
  344. if (ret)
  345. return ret;
  346. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  347. intel_ring_emit(ring, flags);
  348. intel_ring_emit(ring, scratch_addr);
  349. intel_ring_emit(ring, 0);
  350. intel_ring_emit(ring, 0);
  351. intel_ring_emit(ring, 0);
  352. intel_ring_advance(ring);
  353. return 0;
  354. }
  355. static int
  356. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  357. u32 invalidate_domains, u32 flush_domains)
  358. {
  359. u32 flags = 0;
  360. u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  361. int ret;
  362. flags |= PIPE_CONTROL_CS_STALL;
  363. if (flush_domains) {
  364. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  365. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  366. }
  367. if (invalidate_domains) {
  368. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  369. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  370. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  371. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  372. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  373. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  374. flags |= PIPE_CONTROL_QW_WRITE;
  375. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  376. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  377. ret = gen8_emit_pipe_control(req,
  378. PIPE_CONTROL_CS_STALL |
  379. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  380. 0);
  381. if (ret)
  382. return ret;
  383. }
  384. return gen8_emit_pipe_control(req, flags, scratch_addr);
  385. }
  386. static void ring_write_tail(struct intel_engine_cs *ring,
  387. u32 value)
  388. {
  389. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  390. I915_WRITE_TAIL(ring, value);
  391. }
  392. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  393. {
  394. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  395. u64 acthd;
  396. if (INTEL_INFO(ring->dev)->gen >= 8)
  397. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  398. RING_ACTHD_UDW(ring->mmio_base));
  399. else if (INTEL_INFO(ring->dev)->gen >= 4)
  400. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  401. else
  402. acthd = I915_READ(ACTHD);
  403. return acthd;
  404. }
  405. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  406. {
  407. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  408. u32 addr;
  409. addr = dev_priv->status_page_dmah->busaddr;
  410. if (INTEL_INFO(ring->dev)->gen >= 4)
  411. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  412. I915_WRITE(HWS_PGA, addr);
  413. }
  414. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  415. {
  416. struct drm_device *dev = ring->dev;
  417. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  418. u32 mmio = 0;
  419. /* The ring status page addresses are no longer next to the rest of
  420. * the ring registers as of gen7.
  421. */
  422. if (IS_GEN7(dev)) {
  423. switch (ring->id) {
  424. case RCS:
  425. mmio = RENDER_HWS_PGA_GEN7;
  426. break;
  427. case BCS:
  428. mmio = BLT_HWS_PGA_GEN7;
  429. break;
  430. /*
  431. * VCS2 actually doesn't exist on Gen7. Only shut up
  432. * gcc switch check warning
  433. */
  434. case VCS2:
  435. case VCS:
  436. mmio = BSD_HWS_PGA_GEN7;
  437. break;
  438. case VECS:
  439. mmio = VEBOX_HWS_PGA_GEN7;
  440. break;
  441. }
  442. } else if (IS_GEN6(ring->dev)) {
  443. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  444. } else {
  445. /* XXX: gen8 returns to sanity */
  446. mmio = RING_HWS_PGA(ring->mmio_base);
  447. }
  448. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  449. POSTING_READ(mmio);
  450. /*
  451. * Flush the TLB for this page
  452. *
  453. * FIXME: These two bits have disappeared on gen8, so a question
  454. * arises: do we still need this and if so how should we go about
  455. * invalidating the TLB?
  456. */
  457. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  458. u32 reg = RING_INSTPM(ring->mmio_base);
  459. /* ring should be idle before issuing a sync flush*/
  460. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  461. I915_WRITE(reg,
  462. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  463. INSTPM_SYNC_FLUSH));
  464. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  465. 1000))
  466. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  467. ring->name);
  468. }
  469. }
  470. static bool stop_ring(struct intel_engine_cs *ring)
  471. {
  472. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  473. if (!IS_GEN2(ring->dev)) {
  474. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  475. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  476. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  477. /* Sometimes we observe that the idle flag is not
  478. * set even though the ring is empty. So double
  479. * check before giving up.
  480. */
  481. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  482. return false;
  483. }
  484. }
  485. I915_WRITE_CTL(ring, 0);
  486. I915_WRITE_HEAD(ring, 0);
  487. ring->write_tail(ring, 0);
  488. if (!IS_GEN2(ring->dev)) {
  489. (void)I915_READ_CTL(ring);
  490. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  491. }
  492. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  493. }
  494. static int init_ring_common(struct intel_engine_cs *ring)
  495. {
  496. struct drm_device *dev = ring->dev;
  497. struct drm_i915_private *dev_priv = dev->dev_private;
  498. struct intel_ringbuffer *ringbuf = ring->buffer;
  499. struct drm_i915_gem_object *obj = ringbuf->obj;
  500. int ret = 0;
  501. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  502. if (!stop_ring(ring)) {
  503. /* G45 ring initialization often fails to reset head to zero */
  504. DRM_DEBUG_KMS("%s head not reset to zero "
  505. "ctl %08x head %08x tail %08x start %08x\n",
  506. ring->name,
  507. I915_READ_CTL(ring),
  508. I915_READ_HEAD(ring),
  509. I915_READ_TAIL(ring),
  510. I915_READ_START(ring));
  511. if (!stop_ring(ring)) {
  512. DRM_ERROR("failed to set %s head to zero "
  513. "ctl %08x head %08x tail %08x start %08x\n",
  514. ring->name,
  515. I915_READ_CTL(ring),
  516. I915_READ_HEAD(ring),
  517. I915_READ_TAIL(ring),
  518. I915_READ_START(ring));
  519. ret = -EIO;
  520. goto out;
  521. }
  522. }
  523. if (I915_NEED_GFX_HWS(dev))
  524. intel_ring_setup_status_page(ring);
  525. else
  526. ring_setup_phys_status_page(ring);
  527. /* Enforce ordering by reading HEAD register back */
  528. I915_READ_HEAD(ring);
  529. /* Initialize the ring. This must happen _after_ we've cleared the ring
  530. * registers with the above sequence (the readback of the HEAD registers
  531. * also enforces ordering), otherwise the hw might lose the new ring
  532. * register values. */
  533. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  534. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  535. if (I915_READ_HEAD(ring))
  536. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  537. ring->name, I915_READ_HEAD(ring));
  538. I915_WRITE_HEAD(ring, 0);
  539. (void)I915_READ_HEAD(ring);
  540. I915_WRITE_CTL(ring,
  541. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  542. | RING_VALID);
  543. /* If the head is still not zero, the ring is dead */
  544. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  545. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  546. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  547. DRM_ERROR("%s initialization failed "
  548. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  549. ring->name,
  550. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  551. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  552. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  553. ret = -EIO;
  554. goto out;
  555. }
  556. ringbuf->last_retired_head = -1;
  557. ringbuf->head = I915_READ_HEAD(ring);
  558. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  559. intel_ring_update_space(ringbuf);
  560. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  561. out:
  562. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  563. return ret;
  564. }
  565. void
  566. intel_fini_pipe_control(struct intel_engine_cs *ring)
  567. {
  568. struct drm_device *dev = ring->dev;
  569. if (ring->scratch.obj == NULL)
  570. return;
  571. if (INTEL_INFO(dev)->gen >= 5) {
  572. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  573. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  574. }
  575. drm_gem_object_unreference(&ring->scratch.obj->base);
  576. ring->scratch.obj = NULL;
  577. }
  578. int
  579. intel_init_pipe_control(struct intel_engine_cs *ring)
  580. {
  581. int ret;
  582. WARN_ON(ring->scratch.obj);
  583. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  584. if (ring->scratch.obj == NULL) {
  585. DRM_ERROR("Failed to allocate seqno page\n");
  586. ret = -ENOMEM;
  587. goto err;
  588. }
  589. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  590. if (ret)
  591. goto err_unref;
  592. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  593. if (ret)
  594. goto err_unref;
  595. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  596. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  597. if (ring->scratch.cpu_page == NULL) {
  598. ret = -ENOMEM;
  599. goto err_unpin;
  600. }
  601. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  602. ring->name, ring->scratch.gtt_offset);
  603. return 0;
  604. err_unpin:
  605. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  606. err_unref:
  607. drm_gem_object_unreference(&ring->scratch.obj->base);
  608. err:
  609. return ret;
  610. }
  611. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  612. {
  613. int ret, i;
  614. struct intel_engine_cs *ring = req->ring;
  615. struct drm_device *dev = ring->dev;
  616. struct drm_i915_private *dev_priv = dev->dev_private;
  617. struct i915_workarounds *w = &dev_priv->workarounds;
  618. if (WARN_ON_ONCE(w->count == 0))
  619. return 0;
  620. ring->gpu_caches_dirty = true;
  621. ret = intel_ring_flush_all_caches(req);
  622. if (ret)
  623. return ret;
  624. ret = intel_ring_begin(req, (w->count * 2 + 2));
  625. if (ret)
  626. return ret;
  627. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  628. for (i = 0; i < w->count; i++) {
  629. intel_ring_emit(ring, w->reg[i].addr);
  630. intel_ring_emit(ring, w->reg[i].value);
  631. }
  632. intel_ring_emit(ring, MI_NOOP);
  633. intel_ring_advance(ring);
  634. ring->gpu_caches_dirty = true;
  635. ret = intel_ring_flush_all_caches(req);
  636. if (ret)
  637. return ret;
  638. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  639. return 0;
  640. }
  641. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  642. {
  643. int ret;
  644. ret = intel_ring_workarounds_emit(req);
  645. if (ret != 0)
  646. return ret;
  647. ret = i915_gem_render_state_init(req);
  648. if (ret)
  649. DRM_ERROR("init render state: %d\n", ret);
  650. return ret;
  651. }
  652. static int wa_add(struct drm_i915_private *dev_priv,
  653. const u32 addr, const u32 mask, const u32 val)
  654. {
  655. const u32 idx = dev_priv->workarounds.count;
  656. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  657. return -ENOSPC;
  658. dev_priv->workarounds.reg[idx].addr = addr;
  659. dev_priv->workarounds.reg[idx].value = val;
  660. dev_priv->workarounds.reg[idx].mask = mask;
  661. dev_priv->workarounds.count++;
  662. return 0;
  663. }
  664. #define WA_REG(addr, mask, val) do { \
  665. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  666. if (r) \
  667. return r; \
  668. } while (0)
  669. #define WA_SET_BIT_MASKED(addr, mask) \
  670. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  671. #define WA_CLR_BIT_MASKED(addr, mask) \
  672. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  673. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  674. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  675. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  676. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  677. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  678. static int gen8_init_workarounds(struct intel_engine_cs *ring)
  679. {
  680. struct drm_device *dev = ring->dev;
  681. struct drm_i915_private *dev_priv = dev->dev_private;
  682. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  683. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  684. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  685. /* WaDisablePartialInstShootdown:bdw,chv */
  686. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  687. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  688. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  689. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  690. * polygons in the same 8x4 pixel/sample area to be processed without
  691. * stalling waiting for the earlier ones to write to Hierarchical Z
  692. * buffer."
  693. *
  694. * This optimization is off by default for BDW and CHV; turn it on.
  695. */
  696. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  697. return 0;
  698. }
  699. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  700. {
  701. int ret;
  702. struct drm_device *dev = ring->dev;
  703. struct drm_i915_private *dev_priv = dev->dev_private;
  704. ret = gen8_init_workarounds(ring);
  705. if (ret)
  706. return ret;
  707. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  708. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  709. /* WaDisableDopClockGating:bdw */
  710. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  711. DOP_CLOCK_GATING_DISABLE);
  712. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  713. GEN8_SAMPLER_POWER_BYPASS_DIS);
  714. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  715. * workaround for for a possible hang in the unlikely event a TLB
  716. * invalidation occurs during a PSD flush.
  717. */
  718. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  719. /* WaForceEnableNonCoherent:bdw */
  720. HDC_FORCE_NON_COHERENT |
  721. /* WaForceContextSaveRestoreNonCoherent:bdw */
  722. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  723. /* WaHdcDisableFetchWhenMasked:bdw */
  724. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  725. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  726. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  727. /* Wa4x4STCOptimizationDisable:bdw */
  728. WA_SET_BIT_MASKED(CACHE_MODE_1,
  729. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  730. /*
  731. * BSpec recommends 8x4 when MSAA is used,
  732. * however in practice 16x4 seems fastest.
  733. *
  734. * Note that PS/WM thread counts depend on the WIZ hashing
  735. * disable bit, which we don't touch here, but it's good
  736. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  737. */
  738. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  739. GEN6_WIZ_HASHING_MASK,
  740. GEN6_WIZ_HASHING_16x4);
  741. return 0;
  742. }
  743. static int chv_init_workarounds(struct intel_engine_cs *ring)
  744. {
  745. int ret;
  746. struct drm_device *dev = ring->dev;
  747. struct drm_i915_private *dev_priv = dev->dev_private;
  748. ret = gen8_init_workarounds(ring);
  749. if (ret)
  750. return ret;
  751. /* WaDisableThreadStallDopClockGating:chv */
  752. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  753. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  754. * workaround for a possible hang in the unlikely event a TLB
  755. * invalidation occurs during a PSD flush.
  756. */
  757. /* WaForceEnableNonCoherent:chv */
  758. /* WaHdcDisableFetchWhenMasked:chv */
  759. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  760. HDC_FORCE_NON_COHERENT |
  761. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  762. /* Wa4x4STCOptimizationDisable:chv */
  763. WA_SET_BIT_MASKED(CACHE_MODE_1,
  764. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  765. /* Improve HiZ throughput on CHV. */
  766. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  767. /*
  768. * BSpec recommends 8x4 when MSAA is used,
  769. * however in practice 16x4 seems fastest.
  770. *
  771. * Note that PS/WM thread counts depend on the WIZ hashing
  772. * disable bit, which we don't touch here, but it's good
  773. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  774. */
  775. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  776. GEN6_WIZ_HASHING_MASK,
  777. GEN6_WIZ_HASHING_16x4);
  778. return 0;
  779. }
  780. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  781. {
  782. struct drm_device *dev = ring->dev;
  783. struct drm_i915_private *dev_priv = dev->dev_private;
  784. uint32_t tmp;
  785. /* WaDisablePartialInstShootdown:skl,bxt */
  786. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  787. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  788. /* Syncing dependencies between camera and graphics:skl,bxt */
  789. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  790. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  791. if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
  792. INTEL_REVID(dev) == SKL_REVID_B0)) ||
  793. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  794. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  795. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  796. GEN9_DG_MIRROR_FIX_ENABLE);
  797. }
  798. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
  799. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  800. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  801. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  802. GEN9_RHWO_OPTIMIZATION_DISABLE);
  803. /*
  804. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  805. * but we do that in per ctx batchbuffer as there is an issue
  806. * with this register not getting restored on ctx restore
  807. */
  808. }
  809. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
  810. IS_BROXTON(dev)) {
  811. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  812. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  813. GEN9_ENABLE_YV12_BUGFIX);
  814. }
  815. /* Wa4x4STCOptimizationDisable:skl,bxt */
  816. /* WaDisablePartialResolveInVc:skl,bxt */
  817. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  818. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  819. /* WaCcsTlbPrefetchDisable:skl,bxt */
  820. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  821. GEN9_CCS_TLB_PREFETCH_ENABLE);
  822. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  823. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
  824. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
  825. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  826. PIXEL_MASK_CAMMING_DISABLE);
  827. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  828. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  829. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
  830. (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
  831. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  832. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  833. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
  834. if (IS_SKYLAKE(dev) ||
  835. (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_B0)) {
  836. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  837. GEN8_SAMPLER_POWER_BYPASS_DIS);
  838. }
  839. /* WaDisableSTUnitPowerOptimization:skl,bxt */
  840. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  841. return 0;
  842. }
  843. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  844. {
  845. struct drm_device *dev = ring->dev;
  846. struct drm_i915_private *dev_priv = dev->dev_private;
  847. u8 vals[3] = { 0, 0, 0 };
  848. unsigned int i;
  849. for (i = 0; i < 3; i++) {
  850. u8 ss;
  851. /*
  852. * Only consider slices where one, and only one, subslice has 7
  853. * EUs
  854. */
  855. if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
  856. continue;
  857. /*
  858. * subslice_7eu[i] != 0 (because of the check above) and
  859. * ss_max == 4 (maximum number of subslices possible per slice)
  860. *
  861. * -> 0 <= ss <= 3;
  862. */
  863. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  864. vals[i] = 3 - ss;
  865. }
  866. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  867. return 0;
  868. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  869. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  870. GEN9_IZ_HASHING_MASK(2) |
  871. GEN9_IZ_HASHING_MASK(1) |
  872. GEN9_IZ_HASHING_MASK(0),
  873. GEN9_IZ_HASHING(2, vals[2]) |
  874. GEN9_IZ_HASHING(1, vals[1]) |
  875. GEN9_IZ_HASHING(0, vals[0]));
  876. return 0;
  877. }
  878. static int skl_init_workarounds(struct intel_engine_cs *ring)
  879. {
  880. int ret;
  881. struct drm_device *dev = ring->dev;
  882. struct drm_i915_private *dev_priv = dev->dev_private;
  883. ret = gen9_init_workarounds(ring);
  884. if (ret)
  885. return ret;
  886. /* WaDisablePowerCompilerClockGating:skl */
  887. if (INTEL_REVID(dev) == SKL_REVID_B0)
  888. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  889. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  890. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  891. /*
  892. *Use Force Non-Coherent whenever executing a 3D context. This
  893. * is a workaround for a possible hang in the unlikely event
  894. * a TLB invalidation occurs during a PSD flush.
  895. */
  896. /* WaForceEnableNonCoherent:skl */
  897. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  898. HDC_FORCE_NON_COHERENT);
  899. }
  900. if (INTEL_REVID(dev) == SKL_REVID_C0 ||
  901. INTEL_REVID(dev) == SKL_REVID_D0)
  902. /* WaBarrierPerformanceFixDisable:skl */
  903. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  904. HDC_FENCE_DEST_SLM_DISABLE |
  905. HDC_BARRIER_PERFORMANCE_DISABLE);
  906. /* WaDisableSbeCacheDispatchPortSharing:skl */
  907. if (INTEL_REVID(dev) <= SKL_REVID_F0) {
  908. WA_SET_BIT_MASKED(
  909. GEN7_HALF_SLICE_CHICKEN1,
  910. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  911. }
  912. return skl_tune_iz_hashing(ring);
  913. }
  914. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  915. {
  916. int ret;
  917. struct drm_device *dev = ring->dev;
  918. struct drm_i915_private *dev_priv = dev->dev_private;
  919. ret = gen9_init_workarounds(ring);
  920. if (ret)
  921. return ret;
  922. /* WaDisableThreadStallDopClockGating:bxt */
  923. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  924. STALL_DOP_GATING_DISABLE);
  925. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  926. if (INTEL_REVID(dev) <= BXT_REVID_B0) {
  927. WA_SET_BIT_MASKED(
  928. GEN7_HALF_SLICE_CHICKEN1,
  929. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  930. }
  931. return 0;
  932. }
  933. int init_workarounds_ring(struct intel_engine_cs *ring)
  934. {
  935. struct drm_device *dev = ring->dev;
  936. struct drm_i915_private *dev_priv = dev->dev_private;
  937. WARN_ON(ring->id != RCS);
  938. dev_priv->workarounds.count = 0;
  939. if (IS_BROADWELL(dev))
  940. return bdw_init_workarounds(ring);
  941. if (IS_CHERRYVIEW(dev))
  942. return chv_init_workarounds(ring);
  943. if (IS_SKYLAKE(dev))
  944. return skl_init_workarounds(ring);
  945. if (IS_BROXTON(dev))
  946. return bxt_init_workarounds(ring);
  947. return 0;
  948. }
  949. static int init_render_ring(struct intel_engine_cs *ring)
  950. {
  951. struct drm_device *dev = ring->dev;
  952. struct drm_i915_private *dev_priv = dev->dev_private;
  953. int ret = init_ring_common(ring);
  954. if (ret)
  955. return ret;
  956. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  957. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  958. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  959. /* We need to disable the AsyncFlip performance optimisations in order
  960. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  961. * programmed to '1' on all products.
  962. *
  963. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  964. */
  965. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  966. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  967. /* Required for the hardware to program scanline values for waiting */
  968. /* WaEnableFlushTlbInvalidationMode:snb */
  969. if (INTEL_INFO(dev)->gen == 6)
  970. I915_WRITE(GFX_MODE,
  971. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  972. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  973. if (IS_GEN7(dev))
  974. I915_WRITE(GFX_MODE_GEN7,
  975. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  976. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  977. if (IS_GEN6(dev)) {
  978. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  979. * "If this bit is set, STCunit will have LRA as replacement
  980. * policy. [...] This bit must be reset. LRA replacement
  981. * policy is not supported."
  982. */
  983. I915_WRITE(CACHE_MODE_0,
  984. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  985. }
  986. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  987. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  988. if (HAS_L3_DPF(dev))
  989. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  990. return init_workarounds_ring(ring);
  991. }
  992. static void render_ring_cleanup(struct intel_engine_cs *ring)
  993. {
  994. struct drm_device *dev = ring->dev;
  995. struct drm_i915_private *dev_priv = dev->dev_private;
  996. if (dev_priv->semaphore_obj) {
  997. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  998. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  999. dev_priv->semaphore_obj = NULL;
  1000. }
  1001. intel_fini_pipe_control(ring);
  1002. }
  1003. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1004. unsigned int num_dwords)
  1005. {
  1006. #define MBOX_UPDATE_DWORDS 8
  1007. struct intel_engine_cs *signaller = signaller_req->ring;
  1008. struct drm_device *dev = signaller->dev;
  1009. struct drm_i915_private *dev_priv = dev->dev_private;
  1010. struct intel_engine_cs *waiter;
  1011. int i, ret, num_rings;
  1012. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1013. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1014. #undef MBOX_UPDATE_DWORDS
  1015. ret = intel_ring_begin(signaller_req, num_dwords);
  1016. if (ret)
  1017. return ret;
  1018. for_each_ring(waiter, dev_priv, i) {
  1019. u32 seqno;
  1020. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1021. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1022. continue;
  1023. seqno = i915_gem_request_get_seqno(signaller_req);
  1024. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1025. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1026. PIPE_CONTROL_QW_WRITE |
  1027. PIPE_CONTROL_FLUSH_ENABLE);
  1028. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1029. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1030. intel_ring_emit(signaller, seqno);
  1031. intel_ring_emit(signaller, 0);
  1032. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1033. MI_SEMAPHORE_TARGET(waiter->id));
  1034. intel_ring_emit(signaller, 0);
  1035. }
  1036. return 0;
  1037. }
  1038. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1039. unsigned int num_dwords)
  1040. {
  1041. #define MBOX_UPDATE_DWORDS 6
  1042. struct intel_engine_cs *signaller = signaller_req->ring;
  1043. struct drm_device *dev = signaller->dev;
  1044. struct drm_i915_private *dev_priv = dev->dev_private;
  1045. struct intel_engine_cs *waiter;
  1046. int i, ret, num_rings;
  1047. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1048. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1049. #undef MBOX_UPDATE_DWORDS
  1050. ret = intel_ring_begin(signaller_req, num_dwords);
  1051. if (ret)
  1052. return ret;
  1053. for_each_ring(waiter, dev_priv, i) {
  1054. u32 seqno;
  1055. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1056. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1057. continue;
  1058. seqno = i915_gem_request_get_seqno(signaller_req);
  1059. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1060. MI_FLUSH_DW_OP_STOREDW);
  1061. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1062. MI_FLUSH_DW_USE_GTT);
  1063. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1064. intel_ring_emit(signaller, seqno);
  1065. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1066. MI_SEMAPHORE_TARGET(waiter->id));
  1067. intel_ring_emit(signaller, 0);
  1068. }
  1069. return 0;
  1070. }
  1071. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1072. unsigned int num_dwords)
  1073. {
  1074. struct intel_engine_cs *signaller = signaller_req->ring;
  1075. struct drm_device *dev = signaller->dev;
  1076. struct drm_i915_private *dev_priv = dev->dev_private;
  1077. struct intel_engine_cs *useless;
  1078. int i, ret, num_rings;
  1079. #define MBOX_UPDATE_DWORDS 3
  1080. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1081. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1082. #undef MBOX_UPDATE_DWORDS
  1083. ret = intel_ring_begin(signaller_req, num_dwords);
  1084. if (ret)
  1085. return ret;
  1086. for_each_ring(useless, dev_priv, i) {
  1087. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  1088. if (mbox_reg != GEN6_NOSYNC) {
  1089. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1090. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1091. intel_ring_emit(signaller, mbox_reg);
  1092. intel_ring_emit(signaller, seqno);
  1093. }
  1094. }
  1095. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1096. if (num_rings % 2 == 0)
  1097. intel_ring_emit(signaller, MI_NOOP);
  1098. return 0;
  1099. }
  1100. /**
  1101. * gen6_add_request - Update the semaphore mailbox registers
  1102. *
  1103. * @request - request to write to the ring
  1104. *
  1105. * Update the mailbox registers in the *other* rings with the current seqno.
  1106. * This acts like a signal in the canonical semaphore.
  1107. */
  1108. static int
  1109. gen6_add_request(struct drm_i915_gem_request *req)
  1110. {
  1111. struct intel_engine_cs *ring = req->ring;
  1112. int ret;
  1113. if (ring->semaphore.signal)
  1114. ret = ring->semaphore.signal(req, 4);
  1115. else
  1116. ret = intel_ring_begin(req, 4);
  1117. if (ret)
  1118. return ret;
  1119. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1120. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1121. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1122. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1123. __intel_ring_advance(ring);
  1124. return 0;
  1125. }
  1126. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1127. u32 seqno)
  1128. {
  1129. struct drm_i915_private *dev_priv = dev->dev_private;
  1130. return dev_priv->last_seqno < seqno;
  1131. }
  1132. /**
  1133. * intel_ring_sync - sync the waiter to the signaller on seqno
  1134. *
  1135. * @waiter - ring that is waiting
  1136. * @signaller - ring which has, or will signal
  1137. * @seqno - seqno which the waiter will block on
  1138. */
  1139. static int
  1140. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1141. struct intel_engine_cs *signaller,
  1142. u32 seqno)
  1143. {
  1144. struct intel_engine_cs *waiter = waiter_req->ring;
  1145. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1146. int ret;
  1147. ret = intel_ring_begin(waiter_req, 4);
  1148. if (ret)
  1149. return ret;
  1150. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1151. MI_SEMAPHORE_GLOBAL_GTT |
  1152. MI_SEMAPHORE_POLL |
  1153. MI_SEMAPHORE_SAD_GTE_SDD);
  1154. intel_ring_emit(waiter, seqno);
  1155. intel_ring_emit(waiter,
  1156. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1157. intel_ring_emit(waiter,
  1158. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1159. intel_ring_advance(waiter);
  1160. return 0;
  1161. }
  1162. static int
  1163. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1164. struct intel_engine_cs *signaller,
  1165. u32 seqno)
  1166. {
  1167. struct intel_engine_cs *waiter = waiter_req->ring;
  1168. u32 dw1 = MI_SEMAPHORE_MBOX |
  1169. MI_SEMAPHORE_COMPARE |
  1170. MI_SEMAPHORE_REGISTER;
  1171. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1172. int ret;
  1173. /* Throughout all of the GEM code, seqno passed implies our current
  1174. * seqno is >= the last seqno executed. However for hardware the
  1175. * comparison is strictly greater than.
  1176. */
  1177. seqno -= 1;
  1178. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1179. ret = intel_ring_begin(waiter_req, 4);
  1180. if (ret)
  1181. return ret;
  1182. /* If seqno wrap happened, omit the wait with no-ops */
  1183. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1184. intel_ring_emit(waiter, dw1 | wait_mbox);
  1185. intel_ring_emit(waiter, seqno);
  1186. intel_ring_emit(waiter, 0);
  1187. intel_ring_emit(waiter, MI_NOOP);
  1188. } else {
  1189. intel_ring_emit(waiter, MI_NOOP);
  1190. intel_ring_emit(waiter, MI_NOOP);
  1191. intel_ring_emit(waiter, MI_NOOP);
  1192. intel_ring_emit(waiter, MI_NOOP);
  1193. }
  1194. intel_ring_advance(waiter);
  1195. return 0;
  1196. }
  1197. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1198. do { \
  1199. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1200. PIPE_CONTROL_DEPTH_STALL); \
  1201. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1202. intel_ring_emit(ring__, 0); \
  1203. intel_ring_emit(ring__, 0); \
  1204. } while (0)
  1205. static int
  1206. pc_render_add_request(struct drm_i915_gem_request *req)
  1207. {
  1208. struct intel_engine_cs *ring = req->ring;
  1209. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1210. int ret;
  1211. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1212. * incoherent with writes to memory, i.e. completely fubar,
  1213. * so we need to use PIPE_NOTIFY instead.
  1214. *
  1215. * However, we also need to workaround the qword write
  1216. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1217. * memory before requesting an interrupt.
  1218. */
  1219. ret = intel_ring_begin(req, 32);
  1220. if (ret)
  1221. return ret;
  1222. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1223. PIPE_CONTROL_WRITE_FLUSH |
  1224. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1225. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1226. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1227. intel_ring_emit(ring, 0);
  1228. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1229. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1230. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1231. scratch_addr += 2 * CACHELINE_BYTES;
  1232. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1233. scratch_addr += 2 * CACHELINE_BYTES;
  1234. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1235. scratch_addr += 2 * CACHELINE_BYTES;
  1236. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1237. scratch_addr += 2 * CACHELINE_BYTES;
  1238. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1239. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1240. PIPE_CONTROL_WRITE_FLUSH |
  1241. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1242. PIPE_CONTROL_NOTIFY);
  1243. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1244. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1245. intel_ring_emit(ring, 0);
  1246. __intel_ring_advance(ring);
  1247. return 0;
  1248. }
  1249. static u32
  1250. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1251. {
  1252. /* Workaround to force correct ordering between irq and seqno writes on
  1253. * ivb (and maybe also on snb) by reading from a CS register (like
  1254. * ACTHD) before reading the status page. */
  1255. if (!lazy_coherency) {
  1256. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1257. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1258. }
  1259. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1260. }
  1261. static u32
  1262. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1263. {
  1264. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1265. }
  1266. static void
  1267. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1268. {
  1269. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1270. }
  1271. static u32
  1272. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1273. {
  1274. return ring->scratch.cpu_page[0];
  1275. }
  1276. static void
  1277. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1278. {
  1279. ring->scratch.cpu_page[0] = seqno;
  1280. }
  1281. static bool
  1282. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1283. {
  1284. struct drm_device *dev = ring->dev;
  1285. struct drm_i915_private *dev_priv = dev->dev_private;
  1286. unsigned long flags;
  1287. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1288. return false;
  1289. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1290. if (ring->irq_refcount++ == 0)
  1291. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1292. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1293. return true;
  1294. }
  1295. static void
  1296. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1297. {
  1298. struct drm_device *dev = ring->dev;
  1299. struct drm_i915_private *dev_priv = dev->dev_private;
  1300. unsigned long flags;
  1301. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1302. if (--ring->irq_refcount == 0)
  1303. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1304. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1305. }
  1306. static bool
  1307. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1308. {
  1309. struct drm_device *dev = ring->dev;
  1310. struct drm_i915_private *dev_priv = dev->dev_private;
  1311. unsigned long flags;
  1312. if (!intel_irqs_enabled(dev_priv))
  1313. return false;
  1314. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1315. if (ring->irq_refcount++ == 0) {
  1316. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1317. I915_WRITE(IMR, dev_priv->irq_mask);
  1318. POSTING_READ(IMR);
  1319. }
  1320. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1321. return true;
  1322. }
  1323. static void
  1324. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1325. {
  1326. struct drm_device *dev = ring->dev;
  1327. struct drm_i915_private *dev_priv = dev->dev_private;
  1328. unsigned long flags;
  1329. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1330. if (--ring->irq_refcount == 0) {
  1331. dev_priv->irq_mask |= ring->irq_enable_mask;
  1332. I915_WRITE(IMR, dev_priv->irq_mask);
  1333. POSTING_READ(IMR);
  1334. }
  1335. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1336. }
  1337. static bool
  1338. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1339. {
  1340. struct drm_device *dev = ring->dev;
  1341. struct drm_i915_private *dev_priv = dev->dev_private;
  1342. unsigned long flags;
  1343. if (!intel_irqs_enabled(dev_priv))
  1344. return false;
  1345. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1346. if (ring->irq_refcount++ == 0) {
  1347. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1348. I915_WRITE16(IMR, dev_priv->irq_mask);
  1349. POSTING_READ16(IMR);
  1350. }
  1351. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1352. return true;
  1353. }
  1354. static void
  1355. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1356. {
  1357. struct drm_device *dev = ring->dev;
  1358. struct drm_i915_private *dev_priv = dev->dev_private;
  1359. unsigned long flags;
  1360. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1361. if (--ring->irq_refcount == 0) {
  1362. dev_priv->irq_mask |= ring->irq_enable_mask;
  1363. I915_WRITE16(IMR, dev_priv->irq_mask);
  1364. POSTING_READ16(IMR);
  1365. }
  1366. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1367. }
  1368. static int
  1369. bsd_ring_flush(struct drm_i915_gem_request *req,
  1370. u32 invalidate_domains,
  1371. u32 flush_domains)
  1372. {
  1373. struct intel_engine_cs *ring = req->ring;
  1374. int ret;
  1375. ret = intel_ring_begin(req, 2);
  1376. if (ret)
  1377. return ret;
  1378. intel_ring_emit(ring, MI_FLUSH);
  1379. intel_ring_emit(ring, MI_NOOP);
  1380. intel_ring_advance(ring);
  1381. return 0;
  1382. }
  1383. static int
  1384. i9xx_add_request(struct drm_i915_gem_request *req)
  1385. {
  1386. struct intel_engine_cs *ring = req->ring;
  1387. int ret;
  1388. ret = intel_ring_begin(req, 4);
  1389. if (ret)
  1390. return ret;
  1391. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1392. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1393. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1394. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1395. __intel_ring_advance(ring);
  1396. return 0;
  1397. }
  1398. static bool
  1399. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1400. {
  1401. struct drm_device *dev = ring->dev;
  1402. struct drm_i915_private *dev_priv = dev->dev_private;
  1403. unsigned long flags;
  1404. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1405. return false;
  1406. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1407. if (ring->irq_refcount++ == 0) {
  1408. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1409. I915_WRITE_IMR(ring,
  1410. ~(ring->irq_enable_mask |
  1411. GT_PARITY_ERROR(dev)));
  1412. else
  1413. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1414. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1415. }
  1416. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1417. return true;
  1418. }
  1419. static void
  1420. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1421. {
  1422. struct drm_device *dev = ring->dev;
  1423. struct drm_i915_private *dev_priv = dev->dev_private;
  1424. unsigned long flags;
  1425. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1426. if (--ring->irq_refcount == 0) {
  1427. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1428. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1429. else
  1430. I915_WRITE_IMR(ring, ~0);
  1431. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1432. }
  1433. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1434. }
  1435. static bool
  1436. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1437. {
  1438. struct drm_device *dev = ring->dev;
  1439. struct drm_i915_private *dev_priv = dev->dev_private;
  1440. unsigned long flags;
  1441. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1442. return false;
  1443. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1444. if (ring->irq_refcount++ == 0) {
  1445. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1446. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1447. }
  1448. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1449. return true;
  1450. }
  1451. static void
  1452. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1453. {
  1454. struct drm_device *dev = ring->dev;
  1455. struct drm_i915_private *dev_priv = dev->dev_private;
  1456. unsigned long flags;
  1457. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1458. if (--ring->irq_refcount == 0) {
  1459. I915_WRITE_IMR(ring, ~0);
  1460. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1461. }
  1462. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1463. }
  1464. static bool
  1465. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1466. {
  1467. struct drm_device *dev = ring->dev;
  1468. struct drm_i915_private *dev_priv = dev->dev_private;
  1469. unsigned long flags;
  1470. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1471. return false;
  1472. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1473. if (ring->irq_refcount++ == 0) {
  1474. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1475. I915_WRITE_IMR(ring,
  1476. ~(ring->irq_enable_mask |
  1477. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1478. } else {
  1479. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1480. }
  1481. POSTING_READ(RING_IMR(ring->mmio_base));
  1482. }
  1483. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1484. return true;
  1485. }
  1486. static void
  1487. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1488. {
  1489. struct drm_device *dev = ring->dev;
  1490. struct drm_i915_private *dev_priv = dev->dev_private;
  1491. unsigned long flags;
  1492. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1493. if (--ring->irq_refcount == 0) {
  1494. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1495. I915_WRITE_IMR(ring,
  1496. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1497. } else {
  1498. I915_WRITE_IMR(ring, ~0);
  1499. }
  1500. POSTING_READ(RING_IMR(ring->mmio_base));
  1501. }
  1502. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1503. }
  1504. static int
  1505. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1506. u64 offset, u32 length,
  1507. unsigned dispatch_flags)
  1508. {
  1509. struct intel_engine_cs *ring = req->ring;
  1510. int ret;
  1511. ret = intel_ring_begin(req, 2);
  1512. if (ret)
  1513. return ret;
  1514. intel_ring_emit(ring,
  1515. MI_BATCH_BUFFER_START |
  1516. MI_BATCH_GTT |
  1517. (dispatch_flags & I915_DISPATCH_SECURE ?
  1518. 0 : MI_BATCH_NON_SECURE_I965));
  1519. intel_ring_emit(ring, offset);
  1520. intel_ring_advance(ring);
  1521. return 0;
  1522. }
  1523. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1524. #define I830_BATCH_LIMIT (256*1024)
  1525. #define I830_TLB_ENTRIES (2)
  1526. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1527. static int
  1528. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1529. u64 offset, u32 len,
  1530. unsigned dispatch_flags)
  1531. {
  1532. struct intel_engine_cs *ring = req->ring;
  1533. u32 cs_offset = ring->scratch.gtt_offset;
  1534. int ret;
  1535. ret = intel_ring_begin(req, 6);
  1536. if (ret)
  1537. return ret;
  1538. /* Evict the invalid PTE TLBs */
  1539. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1540. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1541. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1542. intel_ring_emit(ring, cs_offset);
  1543. intel_ring_emit(ring, 0xdeadbeef);
  1544. intel_ring_emit(ring, MI_NOOP);
  1545. intel_ring_advance(ring);
  1546. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1547. if (len > I830_BATCH_LIMIT)
  1548. return -ENOSPC;
  1549. ret = intel_ring_begin(req, 6 + 2);
  1550. if (ret)
  1551. return ret;
  1552. /* Blit the batch (which has now all relocs applied) to the
  1553. * stable batch scratch bo area (so that the CS never
  1554. * stumbles over its tlb invalidation bug) ...
  1555. */
  1556. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1557. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1558. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1559. intel_ring_emit(ring, cs_offset);
  1560. intel_ring_emit(ring, 4096);
  1561. intel_ring_emit(ring, offset);
  1562. intel_ring_emit(ring, MI_FLUSH);
  1563. intel_ring_emit(ring, MI_NOOP);
  1564. intel_ring_advance(ring);
  1565. /* ... and execute it. */
  1566. offset = cs_offset;
  1567. }
  1568. ret = intel_ring_begin(req, 4);
  1569. if (ret)
  1570. return ret;
  1571. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1572. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1573. 0 : MI_BATCH_NON_SECURE));
  1574. intel_ring_emit(ring, offset + len - 8);
  1575. intel_ring_emit(ring, MI_NOOP);
  1576. intel_ring_advance(ring);
  1577. return 0;
  1578. }
  1579. static int
  1580. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1581. u64 offset, u32 len,
  1582. unsigned dispatch_flags)
  1583. {
  1584. struct intel_engine_cs *ring = req->ring;
  1585. int ret;
  1586. ret = intel_ring_begin(req, 2);
  1587. if (ret)
  1588. return ret;
  1589. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1590. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1591. 0 : MI_BATCH_NON_SECURE));
  1592. intel_ring_advance(ring);
  1593. return 0;
  1594. }
  1595. static void cleanup_status_page(struct intel_engine_cs *ring)
  1596. {
  1597. struct drm_i915_gem_object *obj;
  1598. obj = ring->status_page.obj;
  1599. if (obj == NULL)
  1600. return;
  1601. kunmap(sg_page(obj->pages->sgl));
  1602. i915_gem_object_ggtt_unpin(obj);
  1603. drm_gem_object_unreference(&obj->base);
  1604. ring->status_page.obj = NULL;
  1605. }
  1606. static int init_status_page(struct intel_engine_cs *ring)
  1607. {
  1608. struct drm_i915_gem_object *obj;
  1609. if ((obj = ring->status_page.obj) == NULL) {
  1610. unsigned flags;
  1611. int ret;
  1612. obj = i915_gem_alloc_object(ring->dev, 4096);
  1613. if (obj == NULL) {
  1614. DRM_ERROR("Failed to allocate status page\n");
  1615. return -ENOMEM;
  1616. }
  1617. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1618. if (ret)
  1619. goto err_unref;
  1620. flags = 0;
  1621. if (!HAS_LLC(ring->dev))
  1622. /* On g33, we cannot place HWS above 256MiB, so
  1623. * restrict its pinning to the low mappable arena.
  1624. * Though this restriction is not documented for
  1625. * gen4, gen5, or byt, they also behave similarly
  1626. * and hang if the HWS is placed at the top of the
  1627. * GTT. To generalise, it appears that all !llc
  1628. * platforms have issues with us placing the HWS
  1629. * above the mappable region (even though we never
  1630. * actualy map it).
  1631. */
  1632. flags |= PIN_MAPPABLE;
  1633. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1634. if (ret) {
  1635. err_unref:
  1636. drm_gem_object_unreference(&obj->base);
  1637. return ret;
  1638. }
  1639. ring->status_page.obj = obj;
  1640. }
  1641. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1642. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1643. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1644. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1645. ring->name, ring->status_page.gfx_addr);
  1646. return 0;
  1647. }
  1648. static int init_phys_status_page(struct intel_engine_cs *ring)
  1649. {
  1650. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1651. if (!dev_priv->status_page_dmah) {
  1652. dev_priv->status_page_dmah =
  1653. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1654. if (!dev_priv->status_page_dmah)
  1655. return -ENOMEM;
  1656. }
  1657. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1658. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1659. return 0;
  1660. }
  1661. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1662. {
  1663. iounmap(ringbuf->virtual_start);
  1664. ringbuf->virtual_start = NULL;
  1665. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1666. }
  1667. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1668. struct intel_ringbuffer *ringbuf)
  1669. {
  1670. struct drm_i915_private *dev_priv = to_i915(dev);
  1671. struct drm_i915_gem_object *obj = ringbuf->obj;
  1672. int ret;
  1673. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1674. if (ret)
  1675. return ret;
  1676. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1677. if (ret) {
  1678. i915_gem_object_ggtt_unpin(obj);
  1679. return ret;
  1680. }
  1681. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1682. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1683. if (ringbuf->virtual_start == NULL) {
  1684. i915_gem_object_ggtt_unpin(obj);
  1685. return -EINVAL;
  1686. }
  1687. return 0;
  1688. }
  1689. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1690. {
  1691. drm_gem_object_unreference(&ringbuf->obj->base);
  1692. ringbuf->obj = NULL;
  1693. }
  1694. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1695. struct intel_ringbuffer *ringbuf)
  1696. {
  1697. struct drm_i915_gem_object *obj;
  1698. obj = NULL;
  1699. if (!HAS_LLC(dev))
  1700. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1701. if (obj == NULL)
  1702. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1703. if (obj == NULL)
  1704. return -ENOMEM;
  1705. /* mark ring buffers as read-only from GPU side by default */
  1706. obj->gt_ro = 1;
  1707. ringbuf->obj = obj;
  1708. return 0;
  1709. }
  1710. struct intel_ringbuffer *
  1711. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1712. {
  1713. struct intel_ringbuffer *ring;
  1714. int ret;
  1715. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1716. if (ring == NULL)
  1717. return ERR_PTR(-ENOMEM);
  1718. ring->ring = engine;
  1719. ring->size = size;
  1720. /* Workaround an erratum on the i830 which causes a hang if
  1721. * the TAIL pointer points to within the last 2 cachelines
  1722. * of the buffer.
  1723. */
  1724. ring->effective_size = size;
  1725. if (IS_I830(engine->dev) || IS_845G(engine->dev))
  1726. ring->effective_size -= 2 * CACHELINE_BYTES;
  1727. ring->last_retired_head = -1;
  1728. intel_ring_update_space(ring);
  1729. ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
  1730. if (ret) {
  1731. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1732. engine->name, ret);
  1733. kfree(ring);
  1734. return ERR_PTR(ret);
  1735. }
  1736. return ring;
  1737. }
  1738. void
  1739. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1740. {
  1741. intel_destroy_ringbuffer_obj(ring);
  1742. kfree(ring);
  1743. }
  1744. static int intel_init_ring_buffer(struct drm_device *dev,
  1745. struct intel_engine_cs *ring)
  1746. {
  1747. struct intel_ringbuffer *ringbuf;
  1748. int ret;
  1749. WARN_ON(ring->buffer);
  1750. ring->dev = dev;
  1751. INIT_LIST_HEAD(&ring->active_list);
  1752. INIT_LIST_HEAD(&ring->request_list);
  1753. INIT_LIST_HEAD(&ring->execlist_queue);
  1754. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1755. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1756. init_waitqueue_head(&ring->irq_queue);
  1757. ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
  1758. if (IS_ERR(ringbuf))
  1759. return PTR_ERR(ringbuf);
  1760. ring->buffer = ringbuf;
  1761. if (I915_NEED_GFX_HWS(dev)) {
  1762. ret = init_status_page(ring);
  1763. if (ret)
  1764. goto error;
  1765. } else {
  1766. BUG_ON(ring->id != RCS);
  1767. ret = init_phys_status_page(ring);
  1768. if (ret)
  1769. goto error;
  1770. }
  1771. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1772. if (ret) {
  1773. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1774. ring->name, ret);
  1775. intel_destroy_ringbuffer_obj(ringbuf);
  1776. goto error;
  1777. }
  1778. ret = i915_cmd_parser_init_ring(ring);
  1779. if (ret)
  1780. goto error;
  1781. return 0;
  1782. error:
  1783. intel_ringbuffer_free(ringbuf);
  1784. ring->buffer = NULL;
  1785. return ret;
  1786. }
  1787. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1788. {
  1789. struct drm_i915_private *dev_priv;
  1790. if (!intel_ring_initialized(ring))
  1791. return;
  1792. dev_priv = to_i915(ring->dev);
  1793. intel_stop_ring_buffer(ring);
  1794. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1795. intel_unpin_ringbuffer_obj(ring->buffer);
  1796. intel_ringbuffer_free(ring->buffer);
  1797. ring->buffer = NULL;
  1798. if (ring->cleanup)
  1799. ring->cleanup(ring);
  1800. cleanup_status_page(ring);
  1801. i915_cmd_parser_fini_ring(ring);
  1802. i915_gem_batch_pool_fini(&ring->batch_pool);
  1803. }
  1804. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1805. {
  1806. struct intel_ringbuffer *ringbuf = ring->buffer;
  1807. struct drm_i915_gem_request *request;
  1808. unsigned space;
  1809. int ret;
  1810. if (intel_ring_space(ringbuf) >= n)
  1811. return 0;
  1812. /* The whole point of reserving space is to not wait! */
  1813. WARN_ON(ringbuf->reserved_in_use);
  1814. list_for_each_entry(request, &ring->request_list, list) {
  1815. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1816. ringbuf->size);
  1817. if (space >= n)
  1818. break;
  1819. }
  1820. if (WARN_ON(&request->list == &ring->request_list))
  1821. return -ENOSPC;
  1822. ret = i915_wait_request(request);
  1823. if (ret)
  1824. return ret;
  1825. ringbuf->space = space;
  1826. return 0;
  1827. }
  1828. static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
  1829. {
  1830. uint32_t __iomem *virt;
  1831. int rem = ringbuf->size - ringbuf->tail;
  1832. virt = ringbuf->virtual_start + ringbuf->tail;
  1833. rem /= 4;
  1834. while (rem--)
  1835. iowrite32(MI_NOOP, virt++);
  1836. ringbuf->tail = 0;
  1837. intel_ring_update_space(ringbuf);
  1838. }
  1839. int intel_ring_idle(struct intel_engine_cs *ring)
  1840. {
  1841. struct drm_i915_gem_request *req;
  1842. /* Wait upon the last request to be completed */
  1843. if (list_empty(&ring->request_list))
  1844. return 0;
  1845. req = list_entry(ring->request_list.prev,
  1846. struct drm_i915_gem_request,
  1847. list);
  1848. /* Make sure we do not trigger any retires */
  1849. return __i915_wait_request(req,
  1850. atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
  1851. to_i915(ring->dev)->mm.interruptible,
  1852. NULL, NULL);
  1853. }
  1854. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1855. {
  1856. request->ringbuf = request->ring->buffer;
  1857. return 0;
  1858. }
  1859. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1860. {
  1861. /*
  1862. * The first call merely notes the reserve request and is common for
  1863. * all back ends. The subsequent localised _begin() call actually
  1864. * ensures that the reservation is available. Without the begin, if
  1865. * the request creator immediately submitted the request without
  1866. * adding any commands to it then there might not actually be
  1867. * sufficient room for the submission commands.
  1868. */
  1869. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  1870. return intel_ring_begin(request, 0);
  1871. }
  1872. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1873. {
  1874. WARN_ON(ringbuf->reserved_size);
  1875. WARN_ON(ringbuf->reserved_in_use);
  1876. ringbuf->reserved_size = size;
  1877. }
  1878. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  1879. {
  1880. WARN_ON(ringbuf->reserved_in_use);
  1881. ringbuf->reserved_size = 0;
  1882. ringbuf->reserved_in_use = false;
  1883. }
  1884. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  1885. {
  1886. WARN_ON(ringbuf->reserved_in_use);
  1887. ringbuf->reserved_in_use = true;
  1888. ringbuf->reserved_tail = ringbuf->tail;
  1889. }
  1890. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  1891. {
  1892. WARN_ON(!ringbuf->reserved_in_use);
  1893. if (ringbuf->tail > ringbuf->reserved_tail) {
  1894. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  1895. "request reserved size too small: %d vs %d!\n",
  1896. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  1897. } else {
  1898. /*
  1899. * The ring was wrapped while the reserved space was in use.
  1900. * That means that some unknown amount of the ring tail was
  1901. * no-op filled and skipped. Thus simply adding the ring size
  1902. * to the tail and doing the above space check will not work.
  1903. * Rather than attempt to track how much tail was skipped,
  1904. * it is much simpler to say that also skipping the sanity
  1905. * check every once in a while is not a big issue.
  1906. */
  1907. }
  1908. ringbuf->reserved_size = 0;
  1909. ringbuf->reserved_in_use = false;
  1910. }
  1911. static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
  1912. {
  1913. struct intel_ringbuffer *ringbuf = ring->buffer;
  1914. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  1915. int remain_actual = ringbuf->size - ringbuf->tail;
  1916. int ret, total_bytes, wait_bytes = 0;
  1917. bool need_wrap = false;
  1918. if (ringbuf->reserved_in_use)
  1919. total_bytes = bytes;
  1920. else
  1921. total_bytes = bytes + ringbuf->reserved_size;
  1922. if (unlikely(bytes > remain_usable)) {
  1923. /*
  1924. * Not enough space for the basic request. So need to flush
  1925. * out the remainder and then wait for base + reserved.
  1926. */
  1927. wait_bytes = remain_actual + total_bytes;
  1928. need_wrap = true;
  1929. } else {
  1930. if (unlikely(total_bytes > remain_usable)) {
  1931. /*
  1932. * The base request will fit but the reserved space
  1933. * falls off the end. So only need to to wait for the
  1934. * reserved size after flushing out the remainder.
  1935. */
  1936. wait_bytes = remain_actual + ringbuf->reserved_size;
  1937. need_wrap = true;
  1938. } else if (total_bytes > ringbuf->space) {
  1939. /* No wrapping required, just waiting. */
  1940. wait_bytes = total_bytes;
  1941. }
  1942. }
  1943. if (wait_bytes) {
  1944. ret = ring_wait_for_space(ring, wait_bytes);
  1945. if (unlikely(ret))
  1946. return ret;
  1947. if (need_wrap)
  1948. __wrap_ring_buffer(ringbuf);
  1949. }
  1950. return 0;
  1951. }
  1952. int intel_ring_begin(struct drm_i915_gem_request *req,
  1953. int num_dwords)
  1954. {
  1955. struct intel_engine_cs *ring;
  1956. struct drm_i915_private *dev_priv;
  1957. int ret;
  1958. WARN_ON(req == NULL);
  1959. ring = req->ring;
  1960. dev_priv = ring->dev->dev_private;
  1961. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1962. dev_priv->mm.interruptible);
  1963. if (ret)
  1964. return ret;
  1965. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1966. if (ret)
  1967. return ret;
  1968. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1969. return 0;
  1970. }
  1971. /* Align the ring tail to a cacheline boundary */
  1972. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1973. {
  1974. struct intel_engine_cs *ring = req->ring;
  1975. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1976. int ret;
  1977. if (num_dwords == 0)
  1978. return 0;
  1979. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1980. ret = intel_ring_begin(req, num_dwords);
  1981. if (ret)
  1982. return ret;
  1983. while (num_dwords--)
  1984. intel_ring_emit(ring, MI_NOOP);
  1985. intel_ring_advance(ring);
  1986. return 0;
  1987. }
  1988. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1989. {
  1990. struct drm_device *dev = ring->dev;
  1991. struct drm_i915_private *dev_priv = dev->dev_private;
  1992. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1993. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1994. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1995. if (HAS_VEBOX(dev))
  1996. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1997. }
  1998. ring->set_seqno(ring, seqno);
  1999. ring->hangcheck.seqno = seqno;
  2000. }
  2001. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  2002. u32 value)
  2003. {
  2004. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2005. /* Every tail move must follow the sequence below */
  2006. /* Disable notification that the ring is IDLE. The GT
  2007. * will then assume that it is busy and bring it out of rc6.
  2008. */
  2009. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2010. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2011. /* Clear the context id. Here be magic! */
  2012. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2013. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2014. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2015. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2016. 50))
  2017. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2018. /* Now that the ring is fully powered up, update the tail */
  2019. I915_WRITE_TAIL(ring, value);
  2020. POSTING_READ(RING_TAIL(ring->mmio_base));
  2021. /* Let the ring send IDLE messages to the GT again,
  2022. * and so let it sleep to conserve power when idle.
  2023. */
  2024. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2025. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2026. }
  2027. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2028. u32 invalidate, u32 flush)
  2029. {
  2030. struct intel_engine_cs *ring = req->ring;
  2031. uint32_t cmd;
  2032. int ret;
  2033. ret = intel_ring_begin(req, 4);
  2034. if (ret)
  2035. return ret;
  2036. cmd = MI_FLUSH_DW;
  2037. if (INTEL_INFO(ring->dev)->gen >= 8)
  2038. cmd += 1;
  2039. /* We always require a command barrier so that subsequent
  2040. * commands, such as breadcrumb interrupts, are strictly ordered
  2041. * wrt the contents of the write cache being flushed to memory
  2042. * (and thus being coherent from the CPU).
  2043. */
  2044. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2045. /*
  2046. * Bspec vol 1c.5 - video engine command streamer:
  2047. * "If ENABLED, all TLBs will be invalidated once the flush
  2048. * operation is complete. This bit is only valid when the
  2049. * Post-Sync Operation field is a value of 1h or 3h."
  2050. */
  2051. if (invalidate & I915_GEM_GPU_DOMAINS)
  2052. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2053. intel_ring_emit(ring, cmd);
  2054. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2055. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2056. intel_ring_emit(ring, 0); /* upper addr */
  2057. intel_ring_emit(ring, 0); /* value */
  2058. } else {
  2059. intel_ring_emit(ring, 0);
  2060. intel_ring_emit(ring, MI_NOOP);
  2061. }
  2062. intel_ring_advance(ring);
  2063. return 0;
  2064. }
  2065. static int
  2066. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2067. u64 offset, u32 len,
  2068. unsigned dispatch_flags)
  2069. {
  2070. struct intel_engine_cs *ring = req->ring;
  2071. bool ppgtt = USES_PPGTT(ring->dev) &&
  2072. !(dispatch_flags & I915_DISPATCH_SECURE);
  2073. int ret;
  2074. ret = intel_ring_begin(req, 4);
  2075. if (ret)
  2076. return ret;
  2077. /* FIXME(BDW): Address space and security selectors. */
  2078. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2079. (dispatch_flags & I915_DISPATCH_RS ?
  2080. MI_BATCH_RESOURCE_STREAMER : 0));
  2081. intel_ring_emit(ring, lower_32_bits(offset));
  2082. intel_ring_emit(ring, upper_32_bits(offset));
  2083. intel_ring_emit(ring, MI_NOOP);
  2084. intel_ring_advance(ring);
  2085. return 0;
  2086. }
  2087. static int
  2088. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2089. u64 offset, u32 len,
  2090. unsigned dispatch_flags)
  2091. {
  2092. struct intel_engine_cs *ring = req->ring;
  2093. int ret;
  2094. ret = intel_ring_begin(req, 2);
  2095. if (ret)
  2096. return ret;
  2097. intel_ring_emit(ring,
  2098. MI_BATCH_BUFFER_START |
  2099. (dispatch_flags & I915_DISPATCH_SECURE ?
  2100. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2101. (dispatch_flags & I915_DISPATCH_RS ?
  2102. MI_BATCH_RESOURCE_STREAMER : 0));
  2103. /* bit0-7 is the length on GEN6+ */
  2104. intel_ring_emit(ring, offset);
  2105. intel_ring_advance(ring);
  2106. return 0;
  2107. }
  2108. static int
  2109. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2110. u64 offset, u32 len,
  2111. unsigned dispatch_flags)
  2112. {
  2113. struct intel_engine_cs *ring = req->ring;
  2114. int ret;
  2115. ret = intel_ring_begin(req, 2);
  2116. if (ret)
  2117. return ret;
  2118. intel_ring_emit(ring,
  2119. MI_BATCH_BUFFER_START |
  2120. (dispatch_flags & I915_DISPATCH_SECURE ?
  2121. 0 : MI_BATCH_NON_SECURE_I965));
  2122. /* bit0-7 is the length on GEN6+ */
  2123. intel_ring_emit(ring, offset);
  2124. intel_ring_advance(ring);
  2125. return 0;
  2126. }
  2127. /* Blitter support (SandyBridge+) */
  2128. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2129. u32 invalidate, u32 flush)
  2130. {
  2131. struct intel_engine_cs *ring = req->ring;
  2132. struct drm_device *dev = ring->dev;
  2133. uint32_t cmd;
  2134. int ret;
  2135. ret = intel_ring_begin(req, 4);
  2136. if (ret)
  2137. return ret;
  2138. cmd = MI_FLUSH_DW;
  2139. if (INTEL_INFO(dev)->gen >= 8)
  2140. cmd += 1;
  2141. /* We always require a command barrier so that subsequent
  2142. * commands, such as breadcrumb interrupts, are strictly ordered
  2143. * wrt the contents of the write cache being flushed to memory
  2144. * (and thus being coherent from the CPU).
  2145. */
  2146. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2147. /*
  2148. * Bspec vol 1c.3 - blitter engine command streamer:
  2149. * "If ENABLED, all TLBs will be invalidated once the flush
  2150. * operation is complete. This bit is only valid when the
  2151. * Post-Sync Operation field is a value of 1h or 3h."
  2152. */
  2153. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2154. cmd |= MI_INVALIDATE_TLB;
  2155. intel_ring_emit(ring, cmd);
  2156. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2157. if (INTEL_INFO(dev)->gen >= 8) {
  2158. intel_ring_emit(ring, 0); /* upper addr */
  2159. intel_ring_emit(ring, 0); /* value */
  2160. } else {
  2161. intel_ring_emit(ring, 0);
  2162. intel_ring_emit(ring, MI_NOOP);
  2163. }
  2164. intel_ring_advance(ring);
  2165. return 0;
  2166. }
  2167. int intel_init_render_ring_buffer(struct drm_device *dev)
  2168. {
  2169. struct drm_i915_private *dev_priv = dev->dev_private;
  2170. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2171. struct drm_i915_gem_object *obj;
  2172. int ret;
  2173. ring->name = "render ring";
  2174. ring->id = RCS;
  2175. ring->mmio_base = RENDER_RING_BASE;
  2176. if (INTEL_INFO(dev)->gen >= 8) {
  2177. if (i915_semaphore_is_enabled(dev)) {
  2178. obj = i915_gem_alloc_object(dev, 4096);
  2179. if (obj == NULL) {
  2180. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2181. i915.semaphores = 0;
  2182. } else {
  2183. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2184. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2185. if (ret != 0) {
  2186. drm_gem_object_unreference(&obj->base);
  2187. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2188. i915.semaphores = 0;
  2189. } else
  2190. dev_priv->semaphore_obj = obj;
  2191. }
  2192. }
  2193. ring->init_context = intel_rcs_ctx_init;
  2194. ring->add_request = gen6_add_request;
  2195. ring->flush = gen8_render_ring_flush;
  2196. ring->irq_get = gen8_ring_get_irq;
  2197. ring->irq_put = gen8_ring_put_irq;
  2198. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2199. ring->get_seqno = gen6_ring_get_seqno;
  2200. ring->set_seqno = ring_set_seqno;
  2201. if (i915_semaphore_is_enabled(dev)) {
  2202. WARN_ON(!dev_priv->semaphore_obj);
  2203. ring->semaphore.sync_to = gen8_ring_sync;
  2204. ring->semaphore.signal = gen8_rcs_signal;
  2205. GEN8_RING_SEMAPHORE_INIT;
  2206. }
  2207. } else if (INTEL_INFO(dev)->gen >= 6) {
  2208. ring->add_request = gen6_add_request;
  2209. ring->flush = gen7_render_ring_flush;
  2210. if (INTEL_INFO(dev)->gen == 6)
  2211. ring->flush = gen6_render_ring_flush;
  2212. ring->irq_get = gen6_ring_get_irq;
  2213. ring->irq_put = gen6_ring_put_irq;
  2214. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2215. ring->get_seqno = gen6_ring_get_seqno;
  2216. ring->set_seqno = ring_set_seqno;
  2217. if (i915_semaphore_is_enabled(dev)) {
  2218. ring->semaphore.sync_to = gen6_ring_sync;
  2219. ring->semaphore.signal = gen6_signal;
  2220. /*
  2221. * The current semaphore is only applied on pre-gen8
  2222. * platform. And there is no VCS2 ring on the pre-gen8
  2223. * platform. So the semaphore between RCS and VCS2 is
  2224. * initialized as INVALID. Gen8 will initialize the
  2225. * sema between VCS2 and RCS later.
  2226. */
  2227. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2228. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2229. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2230. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2231. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2232. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2233. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2234. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2235. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2236. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2237. }
  2238. } else if (IS_GEN5(dev)) {
  2239. ring->add_request = pc_render_add_request;
  2240. ring->flush = gen4_render_ring_flush;
  2241. ring->get_seqno = pc_render_get_seqno;
  2242. ring->set_seqno = pc_render_set_seqno;
  2243. ring->irq_get = gen5_ring_get_irq;
  2244. ring->irq_put = gen5_ring_put_irq;
  2245. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2246. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2247. } else {
  2248. ring->add_request = i9xx_add_request;
  2249. if (INTEL_INFO(dev)->gen < 4)
  2250. ring->flush = gen2_render_ring_flush;
  2251. else
  2252. ring->flush = gen4_render_ring_flush;
  2253. ring->get_seqno = ring_get_seqno;
  2254. ring->set_seqno = ring_set_seqno;
  2255. if (IS_GEN2(dev)) {
  2256. ring->irq_get = i8xx_ring_get_irq;
  2257. ring->irq_put = i8xx_ring_put_irq;
  2258. } else {
  2259. ring->irq_get = i9xx_ring_get_irq;
  2260. ring->irq_put = i9xx_ring_put_irq;
  2261. }
  2262. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2263. }
  2264. ring->write_tail = ring_write_tail;
  2265. if (IS_HASWELL(dev))
  2266. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2267. else if (IS_GEN8(dev))
  2268. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2269. else if (INTEL_INFO(dev)->gen >= 6)
  2270. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2271. else if (INTEL_INFO(dev)->gen >= 4)
  2272. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2273. else if (IS_I830(dev) || IS_845G(dev))
  2274. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2275. else
  2276. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2277. ring->init_hw = init_render_ring;
  2278. ring->cleanup = render_ring_cleanup;
  2279. /* Workaround batchbuffer to combat CS tlb bug. */
  2280. if (HAS_BROKEN_CS_TLB(dev)) {
  2281. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2282. if (obj == NULL) {
  2283. DRM_ERROR("Failed to allocate batch bo\n");
  2284. return -ENOMEM;
  2285. }
  2286. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2287. if (ret != 0) {
  2288. drm_gem_object_unreference(&obj->base);
  2289. DRM_ERROR("Failed to ping batch bo\n");
  2290. return ret;
  2291. }
  2292. ring->scratch.obj = obj;
  2293. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2294. }
  2295. ret = intel_init_ring_buffer(dev, ring);
  2296. if (ret)
  2297. return ret;
  2298. if (INTEL_INFO(dev)->gen >= 5) {
  2299. ret = intel_init_pipe_control(ring);
  2300. if (ret)
  2301. return ret;
  2302. }
  2303. return 0;
  2304. }
  2305. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2306. {
  2307. struct drm_i915_private *dev_priv = dev->dev_private;
  2308. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2309. ring->name = "bsd ring";
  2310. ring->id = VCS;
  2311. ring->write_tail = ring_write_tail;
  2312. if (INTEL_INFO(dev)->gen >= 6) {
  2313. ring->mmio_base = GEN6_BSD_RING_BASE;
  2314. /* gen6 bsd needs a special wa for tail updates */
  2315. if (IS_GEN6(dev))
  2316. ring->write_tail = gen6_bsd_ring_write_tail;
  2317. ring->flush = gen6_bsd_ring_flush;
  2318. ring->add_request = gen6_add_request;
  2319. ring->get_seqno = gen6_ring_get_seqno;
  2320. ring->set_seqno = ring_set_seqno;
  2321. if (INTEL_INFO(dev)->gen >= 8) {
  2322. ring->irq_enable_mask =
  2323. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2324. ring->irq_get = gen8_ring_get_irq;
  2325. ring->irq_put = gen8_ring_put_irq;
  2326. ring->dispatch_execbuffer =
  2327. gen8_ring_dispatch_execbuffer;
  2328. if (i915_semaphore_is_enabled(dev)) {
  2329. ring->semaphore.sync_to = gen8_ring_sync;
  2330. ring->semaphore.signal = gen8_xcs_signal;
  2331. GEN8_RING_SEMAPHORE_INIT;
  2332. }
  2333. } else {
  2334. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2335. ring->irq_get = gen6_ring_get_irq;
  2336. ring->irq_put = gen6_ring_put_irq;
  2337. ring->dispatch_execbuffer =
  2338. gen6_ring_dispatch_execbuffer;
  2339. if (i915_semaphore_is_enabled(dev)) {
  2340. ring->semaphore.sync_to = gen6_ring_sync;
  2341. ring->semaphore.signal = gen6_signal;
  2342. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2343. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2344. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2345. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2346. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2347. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2348. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2349. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2350. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2351. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2352. }
  2353. }
  2354. } else {
  2355. ring->mmio_base = BSD_RING_BASE;
  2356. ring->flush = bsd_ring_flush;
  2357. ring->add_request = i9xx_add_request;
  2358. ring->get_seqno = ring_get_seqno;
  2359. ring->set_seqno = ring_set_seqno;
  2360. if (IS_GEN5(dev)) {
  2361. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2362. ring->irq_get = gen5_ring_get_irq;
  2363. ring->irq_put = gen5_ring_put_irq;
  2364. } else {
  2365. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2366. ring->irq_get = i9xx_ring_get_irq;
  2367. ring->irq_put = i9xx_ring_put_irq;
  2368. }
  2369. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2370. }
  2371. ring->init_hw = init_ring_common;
  2372. return intel_init_ring_buffer(dev, ring);
  2373. }
  2374. /**
  2375. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2376. */
  2377. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2378. {
  2379. struct drm_i915_private *dev_priv = dev->dev_private;
  2380. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2381. ring->name = "bsd2 ring";
  2382. ring->id = VCS2;
  2383. ring->write_tail = ring_write_tail;
  2384. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2385. ring->flush = gen6_bsd_ring_flush;
  2386. ring->add_request = gen6_add_request;
  2387. ring->get_seqno = gen6_ring_get_seqno;
  2388. ring->set_seqno = ring_set_seqno;
  2389. ring->irq_enable_mask =
  2390. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2391. ring->irq_get = gen8_ring_get_irq;
  2392. ring->irq_put = gen8_ring_put_irq;
  2393. ring->dispatch_execbuffer =
  2394. gen8_ring_dispatch_execbuffer;
  2395. if (i915_semaphore_is_enabled(dev)) {
  2396. ring->semaphore.sync_to = gen8_ring_sync;
  2397. ring->semaphore.signal = gen8_xcs_signal;
  2398. GEN8_RING_SEMAPHORE_INIT;
  2399. }
  2400. ring->init_hw = init_ring_common;
  2401. return intel_init_ring_buffer(dev, ring);
  2402. }
  2403. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2404. {
  2405. struct drm_i915_private *dev_priv = dev->dev_private;
  2406. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2407. ring->name = "blitter ring";
  2408. ring->id = BCS;
  2409. ring->mmio_base = BLT_RING_BASE;
  2410. ring->write_tail = ring_write_tail;
  2411. ring->flush = gen6_ring_flush;
  2412. ring->add_request = gen6_add_request;
  2413. ring->get_seqno = gen6_ring_get_seqno;
  2414. ring->set_seqno = ring_set_seqno;
  2415. if (INTEL_INFO(dev)->gen >= 8) {
  2416. ring->irq_enable_mask =
  2417. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2418. ring->irq_get = gen8_ring_get_irq;
  2419. ring->irq_put = gen8_ring_put_irq;
  2420. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2421. if (i915_semaphore_is_enabled(dev)) {
  2422. ring->semaphore.sync_to = gen8_ring_sync;
  2423. ring->semaphore.signal = gen8_xcs_signal;
  2424. GEN8_RING_SEMAPHORE_INIT;
  2425. }
  2426. } else {
  2427. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2428. ring->irq_get = gen6_ring_get_irq;
  2429. ring->irq_put = gen6_ring_put_irq;
  2430. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2431. if (i915_semaphore_is_enabled(dev)) {
  2432. ring->semaphore.signal = gen6_signal;
  2433. ring->semaphore.sync_to = gen6_ring_sync;
  2434. /*
  2435. * The current semaphore is only applied on pre-gen8
  2436. * platform. And there is no VCS2 ring on the pre-gen8
  2437. * platform. So the semaphore between BCS and VCS2 is
  2438. * initialized as INVALID. Gen8 will initialize the
  2439. * sema between BCS and VCS2 later.
  2440. */
  2441. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2442. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2443. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2444. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2445. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2446. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2447. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2448. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2449. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2450. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2451. }
  2452. }
  2453. ring->init_hw = init_ring_common;
  2454. return intel_init_ring_buffer(dev, ring);
  2455. }
  2456. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2457. {
  2458. struct drm_i915_private *dev_priv = dev->dev_private;
  2459. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2460. ring->name = "video enhancement ring";
  2461. ring->id = VECS;
  2462. ring->mmio_base = VEBOX_RING_BASE;
  2463. ring->write_tail = ring_write_tail;
  2464. ring->flush = gen6_ring_flush;
  2465. ring->add_request = gen6_add_request;
  2466. ring->get_seqno = gen6_ring_get_seqno;
  2467. ring->set_seqno = ring_set_seqno;
  2468. if (INTEL_INFO(dev)->gen >= 8) {
  2469. ring->irq_enable_mask =
  2470. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2471. ring->irq_get = gen8_ring_get_irq;
  2472. ring->irq_put = gen8_ring_put_irq;
  2473. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2474. if (i915_semaphore_is_enabled(dev)) {
  2475. ring->semaphore.sync_to = gen8_ring_sync;
  2476. ring->semaphore.signal = gen8_xcs_signal;
  2477. GEN8_RING_SEMAPHORE_INIT;
  2478. }
  2479. } else {
  2480. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2481. ring->irq_get = hsw_vebox_get_irq;
  2482. ring->irq_put = hsw_vebox_put_irq;
  2483. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2484. if (i915_semaphore_is_enabled(dev)) {
  2485. ring->semaphore.sync_to = gen6_ring_sync;
  2486. ring->semaphore.signal = gen6_signal;
  2487. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2488. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2489. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2490. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2491. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2492. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2493. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2494. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2495. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2496. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2497. }
  2498. }
  2499. ring->init_hw = init_ring_common;
  2500. return intel_init_ring_buffer(dev, ring);
  2501. }
  2502. int
  2503. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2504. {
  2505. struct intel_engine_cs *ring = req->ring;
  2506. int ret;
  2507. if (!ring->gpu_caches_dirty)
  2508. return 0;
  2509. ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2510. if (ret)
  2511. return ret;
  2512. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2513. ring->gpu_caches_dirty = false;
  2514. return 0;
  2515. }
  2516. int
  2517. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2518. {
  2519. struct intel_engine_cs *ring = req->ring;
  2520. uint32_t flush_domains;
  2521. int ret;
  2522. flush_domains = 0;
  2523. if (ring->gpu_caches_dirty)
  2524. flush_domains = I915_GEM_GPU_DOMAINS;
  2525. ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2526. if (ret)
  2527. return ret;
  2528. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2529. ring->gpu_caches_dirty = false;
  2530. return 0;
  2531. }
  2532. void
  2533. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2534. {
  2535. int ret;
  2536. if (!intel_ring_initialized(ring))
  2537. return;
  2538. ret = intel_ring_idle(ring);
  2539. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2540. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2541. ring->name, ret);
  2542. stop_ring(ring);
  2543. }