dm-thin.c 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113
  1. /*
  2. * Copyright (C) 2011-2012 Red Hat UK.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "dm-bio-prison.h"
  8. #include "dm.h"
  9. #include <linux/device-mapper.h>
  10. #include <linux/dm-io.h>
  11. #include <linux/dm-kcopyd.h>
  12. #include <linux/list.h>
  13. #include <linux/init.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #define DM_MSG_PREFIX "thin"
  17. /*
  18. * Tunable constants
  19. */
  20. #define ENDIO_HOOK_POOL_SIZE 1024
  21. #define MAPPING_POOL_SIZE 1024
  22. #define PRISON_CELLS 1024
  23. #define COMMIT_PERIOD HZ
  24. DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  25. "A percentage of time allocated for copy on write");
  26. /*
  27. * The block size of the device holding pool data must be
  28. * between 64KB and 1GB.
  29. */
  30. #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  31. #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  32. /*
  33. * Device id is restricted to 24 bits.
  34. */
  35. #define MAX_DEV_ID ((1 << 24) - 1)
  36. /*
  37. * How do we handle breaking sharing of data blocks?
  38. * =================================================
  39. *
  40. * We use a standard copy-on-write btree to store the mappings for the
  41. * devices (note I'm talking about copy-on-write of the metadata here, not
  42. * the data). When you take an internal snapshot you clone the root node
  43. * of the origin btree. After this there is no concept of an origin or a
  44. * snapshot. They are just two device trees that happen to point to the
  45. * same data blocks.
  46. *
  47. * When we get a write in we decide if it's to a shared data block using
  48. * some timestamp magic. If it is, we have to break sharing.
  49. *
  50. * Let's say we write to a shared block in what was the origin. The
  51. * steps are:
  52. *
  53. * i) plug io further to this physical block. (see bio_prison code).
  54. *
  55. * ii) quiesce any read io to that shared data block. Obviously
  56. * including all devices that share this block. (see dm_deferred_set code)
  57. *
  58. * iii) copy the data block to a newly allocate block. This step can be
  59. * missed out if the io covers the block. (schedule_copy).
  60. *
  61. * iv) insert the new mapping into the origin's btree
  62. * (process_prepared_mapping). This act of inserting breaks some
  63. * sharing of btree nodes between the two devices. Breaking sharing only
  64. * effects the btree of that specific device. Btrees for the other
  65. * devices that share the block never change. The btree for the origin
  66. * device as it was after the last commit is untouched, ie. we're using
  67. * persistent data structures in the functional programming sense.
  68. *
  69. * v) unplug io to this physical block, including the io that triggered
  70. * the breaking of sharing.
  71. *
  72. * Steps (ii) and (iii) occur in parallel.
  73. *
  74. * The metadata _doesn't_ need to be committed before the io continues. We
  75. * get away with this because the io is always written to a _new_ block.
  76. * If there's a crash, then:
  77. *
  78. * - The origin mapping will point to the old origin block (the shared
  79. * one). This will contain the data as it was before the io that triggered
  80. * the breaking of sharing came in.
  81. *
  82. * - The snap mapping still points to the old block. As it would after
  83. * the commit.
  84. *
  85. * The downside of this scheme is the timestamp magic isn't perfect, and
  86. * will continue to think that data block in the snapshot device is shared
  87. * even after the write to the origin has broken sharing. I suspect data
  88. * blocks will typically be shared by many different devices, so we're
  89. * breaking sharing n + 1 times, rather than n, where n is the number of
  90. * devices that reference this data block. At the moment I think the
  91. * benefits far, far outweigh the disadvantages.
  92. */
  93. /*----------------------------------------------------------------*/
  94. /*
  95. * Key building.
  96. */
  97. static void build_data_key(struct dm_thin_device *td,
  98. dm_block_t b, struct dm_cell_key *key)
  99. {
  100. key->virtual = 0;
  101. key->dev = dm_thin_dev_id(td);
  102. key->block = b;
  103. }
  104. static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
  105. struct dm_cell_key *key)
  106. {
  107. key->virtual = 1;
  108. key->dev = dm_thin_dev_id(td);
  109. key->block = b;
  110. }
  111. /*----------------------------------------------------------------*/
  112. /*
  113. * A pool device ties together a metadata device and a data device. It
  114. * also provides the interface for creating and destroying internal
  115. * devices.
  116. */
  117. struct dm_thin_new_mapping;
  118. /*
  119. * The pool runs in 3 modes. Ordered in degraded order for comparisons.
  120. */
  121. enum pool_mode {
  122. PM_WRITE, /* metadata may be changed */
  123. PM_READ_ONLY, /* metadata may not be changed */
  124. PM_FAIL, /* all I/O fails */
  125. };
  126. struct pool_features {
  127. enum pool_mode mode;
  128. bool zero_new_blocks:1;
  129. bool discard_enabled:1;
  130. bool discard_passdown:1;
  131. bool error_if_no_space:1;
  132. };
  133. struct thin_c;
  134. typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
  135. typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
  136. struct pool {
  137. struct list_head list;
  138. struct dm_target *ti; /* Only set if a pool target is bound */
  139. struct mapped_device *pool_md;
  140. struct block_device *md_dev;
  141. struct dm_pool_metadata *pmd;
  142. dm_block_t low_water_blocks;
  143. uint32_t sectors_per_block;
  144. int sectors_per_block_shift;
  145. struct pool_features pf;
  146. bool low_water_triggered:1; /* A dm event has been sent */
  147. struct dm_bio_prison *prison;
  148. struct dm_kcopyd_client *copier;
  149. struct workqueue_struct *wq;
  150. struct work_struct worker;
  151. struct delayed_work waker;
  152. unsigned long last_commit_jiffies;
  153. unsigned ref_count;
  154. spinlock_t lock;
  155. struct bio_list deferred_bios;
  156. struct bio_list deferred_flush_bios;
  157. struct list_head prepared_mappings;
  158. struct list_head prepared_discards;
  159. struct bio_list retry_on_resume_list;
  160. struct dm_deferred_set *shared_read_ds;
  161. struct dm_deferred_set *all_io_ds;
  162. struct dm_thin_new_mapping *next_mapping;
  163. mempool_t *mapping_pool;
  164. process_bio_fn process_bio;
  165. process_bio_fn process_discard;
  166. process_mapping_fn process_prepared_mapping;
  167. process_mapping_fn process_prepared_discard;
  168. };
  169. static enum pool_mode get_pool_mode(struct pool *pool);
  170. static void out_of_data_space(struct pool *pool);
  171. static void metadata_operation_failed(struct pool *pool, const char *op, int r);
  172. /*
  173. * Target context for a pool.
  174. */
  175. struct pool_c {
  176. struct dm_target *ti;
  177. struct pool *pool;
  178. struct dm_dev *data_dev;
  179. struct dm_dev *metadata_dev;
  180. struct dm_target_callbacks callbacks;
  181. dm_block_t low_water_blocks;
  182. struct pool_features requested_pf; /* Features requested during table load */
  183. struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
  184. };
  185. /*
  186. * Target context for a thin.
  187. */
  188. struct thin_c {
  189. struct dm_dev *pool_dev;
  190. struct dm_dev *origin_dev;
  191. dm_thin_id dev_id;
  192. struct pool *pool;
  193. struct dm_thin_device *td;
  194. };
  195. /*----------------------------------------------------------------*/
  196. /*
  197. * wake_worker() is used when new work is queued and when pool_resume is
  198. * ready to continue deferred IO processing.
  199. */
  200. static void wake_worker(struct pool *pool)
  201. {
  202. queue_work(pool->wq, &pool->worker);
  203. }
  204. /*----------------------------------------------------------------*/
  205. static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
  206. struct dm_bio_prison_cell **cell_result)
  207. {
  208. int r;
  209. struct dm_bio_prison_cell *cell_prealloc;
  210. /*
  211. * Allocate a cell from the prison's mempool.
  212. * This might block but it can't fail.
  213. */
  214. cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
  215. r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
  216. if (r)
  217. /*
  218. * We reused an old cell; we can get rid of
  219. * the new one.
  220. */
  221. dm_bio_prison_free_cell(pool->prison, cell_prealloc);
  222. return r;
  223. }
  224. static void cell_release(struct pool *pool,
  225. struct dm_bio_prison_cell *cell,
  226. struct bio_list *bios)
  227. {
  228. dm_cell_release(pool->prison, cell, bios);
  229. dm_bio_prison_free_cell(pool->prison, cell);
  230. }
  231. static void cell_release_no_holder(struct pool *pool,
  232. struct dm_bio_prison_cell *cell,
  233. struct bio_list *bios)
  234. {
  235. dm_cell_release_no_holder(pool->prison, cell, bios);
  236. dm_bio_prison_free_cell(pool->prison, cell);
  237. }
  238. static void cell_defer_no_holder_no_free(struct thin_c *tc,
  239. struct dm_bio_prison_cell *cell)
  240. {
  241. struct pool *pool = tc->pool;
  242. unsigned long flags;
  243. spin_lock_irqsave(&pool->lock, flags);
  244. dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
  245. spin_unlock_irqrestore(&pool->lock, flags);
  246. wake_worker(pool);
  247. }
  248. static void cell_error(struct pool *pool,
  249. struct dm_bio_prison_cell *cell)
  250. {
  251. dm_cell_error(pool->prison, cell);
  252. dm_bio_prison_free_cell(pool->prison, cell);
  253. }
  254. /*----------------------------------------------------------------*/
  255. /*
  256. * A global list of pools that uses a struct mapped_device as a key.
  257. */
  258. static struct dm_thin_pool_table {
  259. struct mutex mutex;
  260. struct list_head pools;
  261. } dm_thin_pool_table;
  262. static void pool_table_init(void)
  263. {
  264. mutex_init(&dm_thin_pool_table.mutex);
  265. INIT_LIST_HEAD(&dm_thin_pool_table.pools);
  266. }
  267. static void __pool_table_insert(struct pool *pool)
  268. {
  269. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  270. list_add(&pool->list, &dm_thin_pool_table.pools);
  271. }
  272. static void __pool_table_remove(struct pool *pool)
  273. {
  274. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  275. list_del(&pool->list);
  276. }
  277. static struct pool *__pool_table_lookup(struct mapped_device *md)
  278. {
  279. struct pool *pool = NULL, *tmp;
  280. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  281. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  282. if (tmp->pool_md == md) {
  283. pool = tmp;
  284. break;
  285. }
  286. }
  287. return pool;
  288. }
  289. static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
  290. {
  291. struct pool *pool = NULL, *tmp;
  292. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  293. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  294. if (tmp->md_dev == md_dev) {
  295. pool = tmp;
  296. break;
  297. }
  298. }
  299. return pool;
  300. }
  301. /*----------------------------------------------------------------*/
  302. struct dm_thin_endio_hook {
  303. struct thin_c *tc;
  304. struct dm_deferred_entry *shared_read_entry;
  305. struct dm_deferred_entry *all_io_entry;
  306. struct dm_thin_new_mapping *overwrite_mapping;
  307. };
  308. static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
  309. {
  310. struct bio *bio;
  311. struct bio_list bios;
  312. bio_list_init(&bios);
  313. bio_list_merge(&bios, master);
  314. bio_list_init(master);
  315. while ((bio = bio_list_pop(&bios))) {
  316. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  317. if (h->tc == tc)
  318. bio_endio(bio, DM_ENDIO_REQUEUE);
  319. else
  320. bio_list_add(master, bio);
  321. }
  322. }
  323. static void requeue_io(struct thin_c *tc)
  324. {
  325. struct pool *pool = tc->pool;
  326. unsigned long flags;
  327. spin_lock_irqsave(&pool->lock, flags);
  328. __requeue_bio_list(tc, &pool->deferred_bios);
  329. __requeue_bio_list(tc, &pool->retry_on_resume_list);
  330. spin_unlock_irqrestore(&pool->lock, flags);
  331. }
  332. /*
  333. * This section of code contains the logic for processing a thin device's IO.
  334. * Much of the code depends on pool object resources (lists, workqueues, etc)
  335. * but most is exclusively called from the thin target rather than the thin-pool
  336. * target.
  337. */
  338. static bool block_size_is_power_of_two(struct pool *pool)
  339. {
  340. return pool->sectors_per_block_shift >= 0;
  341. }
  342. static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
  343. {
  344. struct pool *pool = tc->pool;
  345. sector_t block_nr = bio->bi_sector;
  346. if (block_size_is_power_of_two(pool))
  347. block_nr >>= pool->sectors_per_block_shift;
  348. else
  349. (void) sector_div(block_nr, pool->sectors_per_block);
  350. return block_nr;
  351. }
  352. static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
  353. {
  354. struct pool *pool = tc->pool;
  355. sector_t bi_sector = bio->bi_sector;
  356. bio->bi_bdev = tc->pool_dev->bdev;
  357. if (block_size_is_power_of_two(pool))
  358. bio->bi_sector = (block << pool->sectors_per_block_shift) |
  359. (bi_sector & (pool->sectors_per_block - 1));
  360. else
  361. bio->bi_sector = (block * pool->sectors_per_block) +
  362. sector_div(bi_sector, pool->sectors_per_block);
  363. }
  364. static void remap_to_origin(struct thin_c *tc, struct bio *bio)
  365. {
  366. bio->bi_bdev = tc->origin_dev->bdev;
  367. }
  368. static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
  369. {
  370. return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
  371. dm_thin_changed_this_transaction(tc->td);
  372. }
  373. static void inc_all_io_entry(struct pool *pool, struct bio *bio)
  374. {
  375. struct dm_thin_endio_hook *h;
  376. if (bio->bi_rw & REQ_DISCARD)
  377. return;
  378. h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  379. h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
  380. }
  381. static void issue(struct thin_c *tc, struct bio *bio)
  382. {
  383. struct pool *pool = tc->pool;
  384. unsigned long flags;
  385. if (!bio_triggers_commit(tc, bio)) {
  386. generic_make_request(bio);
  387. return;
  388. }
  389. /*
  390. * Complete bio with an error if earlier I/O caused changes to
  391. * the metadata that can't be committed e.g, due to I/O errors
  392. * on the metadata device.
  393. */
  394. if (dm_thin_aborted_changes(tc->td)) {
  395. bio_io_error(bio);
  396. return;
  397. }
  398. /*
  399. * Batch together any bios that trigger commits and then issue a
  400. * single commit for them in process_deferred_bios().
  401. */
  402. spin_lock_irqsave(&pool->lock, flags);
  403. bio_list_add(&pool->deferred_flush_bios, bio);
  404. spin_unlock_irqrestore(&pool->lock, flags);
  405. }
  406. static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
  407. {
  408. remap_to_origin(tc, bio);
  409. issue(tc, bio);
  410. }
  411. static void remap_and_issue(struct thin_c *tc, struct bio *bio,
  412. dm_block_t block)
  413. {
  414. remap(tc, bio, block);
  415. issue(tc, bio);
  416. }
  417. /*----------------------------------------------------------------*/
  418. /*
  419. * Bio endio functions.
  420. */
  421. struct dm_thin_new_mapping {
  422. struct list_head list;
  423. bool quiesced:1;
  424. bool prepared:1;
  425. bool pass_discard:1;
  426. bool definitely_not_shared:1;
  427. int err;
  428. struct thin_c *tc;
  429. dm_block_t virt_block;
  430. dm_block_t data_block;
  431. struct dm_bio_prison_cell *cell, *cell2;
  432. /*
  433. * If the bio covers the whole area of a block then we can avoid
  434. * zeroing or copying. Instead this bio is hooked. The bio will
  435. * still be in the cell, so care has to be taken to avoid issuing
  436. * the bio twice.
  437. */
  438. struct bio *bio;
  439. bio_end_io_t *saved_bi_end_io;
  440. };
  441. static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
  442. {
  443. struct pool *pool = m->tc->pool;
  444. if (m->quiesced && m->prepared) {
  445. list_add_tail(&m->list, &pool->prepared_mappings);
  446. wake_worker(pool);
  447. }
  448. }
  449. static void copy_complete(int read_err, unsigned long write_err, void *context)
  450. {
  451. unsigned long flags;
  452. struct dm_thin_new_mapping *m = context;
  453. struct pool *pool = m->tc->pool;
  454. m->err = read_err || write_err ? -EIO : 0;
  455. spin_lock_irqsave(&pool->lock, flags);
  456. m->prepared = true;
  457. __maybe_add_mapping(m);
  458. spin_unlock_irqrestore(&pool->lock, flags);
  459. }
  460. static void overwrite_endio(struct bio *bio, int err)
  461. {
  462. unsigned long flags;
  463. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  464. struct dm_thin_new_mapping *m = h->overwrite_mapping;
  465. struct pool *pool = m->tc->pool;
  466. m->err = err;
  467. spin_lock_irqsave(&pool->lock, flags);
  468. m->prepared = true;
  469. __maybe_add_mapping(m);
  470. spin_unlock_irqrestore(&pool->lock, flags);
  471. }
  472. /*----------------------------------------------------------------*/
  473. /*
  474. * Workqueue.
  475. */
  476. /*
  477. * Prepared mapping jobs.
  478. */
  479. /*
  480. * This sends the bios in the cell back to the deferred_bios list.
  481. */
  482. static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
  483. {
  484. struct pool *pool = tc->pool;
  485. unsigned long flags;
  486. spin_lock_irqsave(&pool->lock, flags);
  487. cell_release(pool, cell, &pool->deferred_bios);
  488. spin_unlock_irqrestore(&tc->pool->lock, flags);
  489. wake_worker(pool);
  490. }
  491. /*
  492. * Same as cell_defer above, except it omits the original holder of the cell.
  493. */
  494. static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
  495. {
  496. struct pool *pool = tc->pool;
  497. unsigned long flags;
  498. spin_lock_irqsave(&pool->lock, flags);
  499. cell_release_no_holder(pool, cell, &pool->deferred_bios);
  500. spin_unlock_irqrestore(&pool->lock, flags);
  501. wake_worker(pool);
  502. }
  503. static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
  504. {
  505. if (m->bio)
  506. m->bio->bi_end_io = m->saved_bi_end_io;
  507. cell_error(m->tc->pool, m->cell);
  508. list_del(&m->list);
  509. mempool_free(m, m->tc->pool->mapping_pool);
  510. }
  511. static void process_prepared_mapping(struct dm_thin_new_mapping *m)
  512. {
  513. struct thin_c *tc = m->tc;
  514. struct pool *pool = tc->pool;
  515. struct bio *bio;
  516. int r;
  517. bio = m->bio;
  518. if (bio)
  519. bio->bi_end_io = m->saved_bi_end_io;
  520. if (m->err) {
  521. cell_error(pool, m->cell);
  522. goto out;
  523. }
  524. /*
  525. * Commit the prepared block into the mapping btree.
  526. * Any I/O for this block arriving after this point will get
  527. * remapped to it directly.
  528. */
  529. r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
  530. if (r) {
  531. metadata_operation_failed(pool, "dm_thin_insert_block", r);
  532. cell_error(pool, m->cell);
  533. goto out;
  534. }
  535. /*
  536. * Release any bios held while the block was being provisioned.
  537. * If we are processing a write bio that completely covers the block,
  538. * we already processed it so can ignore it now when processing
  539. * the bios in the cell.
  540. */
  541. if (bio) {
  542. cell_defer_no_holder(tc, m->cell);
  543. bio_endio(bio, 0);
  544. } else
  545. cell_defer(tc, m->cell);
  546. out:
  547. list_del(&m->list);
  548. mempool_free(m, pool->mapping_pool);
  549. }
  550. static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
  551. {
  552. struct thin_c *tc = m->tc;
  553. bio_io_error(m->bio);
  554. cell_defer_no_holder(tc, m->cell);
  555. cell_defer_no_holder(tc, m->cell2);
  556. mempool_free(m, tc->pool->mapping_pool);
  557. }
  558. static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
  559. {
  560. struct thin_c *tc = m->tc;
  561. inc_all_io_entry(tc->pool, m->bio);
  562. cell_defer_no_holder(tc, m->cell);
  563. cell_defer_no_holder(tc, m->cell2);
  564. if (m->pass_discard)
  565. if (m->definitely_not_shared)
  566. remap_and_issue(tc, m->bio, m->data_block);
  567. else {
  568. bool used = false;
  569. if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
  570. bio_endio(m->bio, 0);
  571. else
  572. remap_and_issue(tc, m->bio, m->data_block);
  573. }
  574. else
  575. bio_endio(m->bio, 0);
  576. mempool_free(m, tc->pool->mapping_pool);
  577. }
  578. static void process_prepared_discard(struct dm_thin_new_mapping *m)
  579. {
  580. int r;
  581. struct thin_c *tc = m->tc;
  582. r = dm_thin_remove_block(tc->td, m->virt_block);
  583. if (r)
  584. DMERR_LIMIT("dm_thin_remove_block() failed");
  585. process_prepared_discard_passdown(m);
  586. }
  587. static void process_prepared(struct pool *pool, struct list_head *head,
  588. process_mapping_fn *fn)
  589. {
  590. unsigned long flags;
  591. struct list_head maps;
  592. struct dm_thin_new_mapping *m, *tmp;
  593. INIT_LIST_HEAD(&maps);
  594. spin_lock_irqsave(&pool->lock, flags);
  595. list_splice_init(head, &maps);
  596. spin_unlock_irqrestore(&pool->lock, flags);
  597. list_for_each_entry_safe(m, tmp, &maps, list)
  598. (*fn)(m);
  599. }
  600. /*
  601. * Deferred bio jobs.
  602. */
  603. static int io_overlaps_block(struct pool *pool, struct bio *bio)
  604. {
  605. return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
  606. }
  607. static int io_overwrites_block(struct pool *pool, struct bio *bio)
  608. {
  609. return (bio_data_dir(bio) == WRITE) &&
  610. io_overlaps_block(pool, bio);
  611. }
  612. static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
  613. bio_end_io_t *fn)
  614. {
  615. *save = bio->bi_end_io;
  616. bio->bi_end_io = fn;
  617. }
  618. static int ensure_next_mapping(struct pool *pool)
  619. {
  620. if (pool->next_mapping)
  621. return 0;
  622. pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
  623. return pool->next_mapping ? 0 : -ENOMEM;
  624. }
  625. static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
  626. {
  627. struct dm_thin_new_mapping *m = pool->next_mapping;
  628. BUG_ON(!pool->next_mapping);
  629. memset(m, 0, sizeof(struct dm_thin_new_mapping));
  630. INIT_LIST_HEAD(&m->list);
  631. m->bio = NULL;
  632. pool->next_mapping = NULL;
  633. return m;
  634. }
  635. static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
  636. struct dm_dev *origin, dm_block_t data_origin,
  637. dm_block_t data_dest,
  638. struct dm_bio_prison_cell *cell, struct bio *bio)
  639. {
  640. int r;
  641. struct pool *pool = tc->pool;
  642. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  643. m->tc = tc;
  644. m->virt_block = virt_block;
  645. m->data_block = data_dest;
  646. m->cell = cell;
  647. if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
  648. m->quiesced = true;
  649. /*
  650. * IO to pool_dev remaps to the pool target's data_dev.
  651. *
  652. * If the whole block of data is being overwritten, we can issue the
  653. * bio immediately. Otherwise we use kcopyd to clone the data first.
  654. */
  655. if (io_overwrites_block(pool, bio)) {
  656. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  657. h->overwrite_mapping = m;
  658. m->bio = bio;
  659. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  660. inc_all_io_entry(pool, bio);
  661. remap_and_issue(tc, bio, data_dest);
  662. } else {
  663. struct dm_io_region from, to;
  664. from.bdev = origin->bdev;
  665. from.sector = data_origin * pool->sectors_per_block;
  666. from.count = pool->sectors_per_block;
  667. to.bdev = tc->pool_dev->bdev;
  668. to.sector = data_dest * pool->sectors_per_block;
  669. to.count = pool->sectors_per_block;
  670. r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
  671. 0, copy_complete, m);
  672. if (r < 0) {
  673. mempool_free(m, pool->mapping_pool);
  674. DMERR_LIMIT("dm_kcopyd_copy() failed");
  675. cell_error(pool, cell);
  676. }
  677. }
  678. }
  679. static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
  680. dm_block_t data_origin, dm_block_t data_dest,
  681. struct dm_bio_prison_cell *cell, struct bio *bio)
  682. {
  683. schedule_copy(tc, virt_block, tc->pool_dev,
  684. data_origin, data_dest, cell, bio);
  685. }
  686. static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
  687. dm_block_t data_dest,
  688. struct dm_bio_prison_cell *cell, struct bio *bio)
  689. {
  690. schedule_copy(tc, virt_block, tc->origin_dev,
  691. virt_block, data_dest, cell, bio);
  692. }
  693. static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
  694. dm_block_t data_block, struct dm_bio_prison_cell *cell,
  695. struct bio *bio)
  696. {
  697. struct pool *pool = tc->pool;
  698. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  699. m->quiesced = true;
  700. m->prepared = false;
  701. m->tc = tc;
  702. m->virt_block = virt_block;
  703. m->data_block = data_block;
  704. m->cell = cell;
  705. /*
  706. * If the whole block of data is being overwritten or we are not
  707. * zeroing pre-existing data, we can issue the bio immediately.
  708. * Otherwise we use kcopyd to zero the data first.
  709. */
  710. if (!pool->pf.zero_new_blocks)
  711. process_prepared_mapping(m);
  712. else if (io_overwrites_block(pool, bio)) {
  713. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  714. h->overwrite_mapping = m;
  715. m->bio = bio;
  716. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  717. inc_all_io_entry(pool, bio);
  718. remap_and_issue(tc, bio, data_block);
  719. } else {
  720. int r;
  721. struct dm_io_region to;
  722. to.bdev = tc->pool_dev->bdev;
  723. to.sector = data_block * pool->sectors_per_block;
  724. to.count = pool->sectors_per_block;
  725. r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
  726. if (r < 0) {
  727. mempool_free(m, pool->mapping_pool);
  728. DMERR_LIMIT("dm_kcopyd_zero() failed");
  729. cell_error(pool, cell);
  730. }
  731. }
  732. }
  733. /*
  734. * A non-zero return indicates read_only or fail_io mode.
  735. * Many callers don't care about the return value.
  736. */
  737. static int commit(struct pool *pool)
  738. {
  739. int r;
  740. if (get_pool_mode(pool) != PM_WRITE)
  741. return -EINVAL;
  742. r = dm_pool_commit_metadata(pool->pmd);
  743. if (r)
  744. metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
  745. return r;
  746. }
  747. static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
  748. {
  749. unsigned long flags;
  750. if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
  751. DMWARN("%s: reached low water mark for data device: sending event.",
  752. dm_device_name(pool->pool_md));
  753. spin_lock_irqsave(&pool->lock, flags);
  754. pool->low_water_triggered = true;
  755. spin_unlock_irqrestore(&pool->lock, flags);
  756. dm_table_event(pool->ti->table);
  757. }
  758. }
  759. static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
  760. {
  761. int r;
  762. dm_block_t free_blocks;
  763. struct pool *pool = tc->pool;
  764. if (get_pool_mode(pool) != PM_WRITE)
  765. return -EINVAL;
  766. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  767. if (r) {
  768. metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
  769. return r;
  770. }
  771. check_low_water_mark(pool, free_blocks);
  772. if (!free_blocks) {
  773. /*
  774. * Try to commit to see if that will free up some
  775. * more space.
  776. */
  777. r = commit(pool);
  778. if (r)
  779. return r;
  780. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  781. if (r) {
  782. metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
  783. return r;
  784. }
  785. if (!free_blocks) {
  786. out_of_data_space(pool);
  787. return -ENOSPC;
  788. }
  789. }
  790. r = dm_pool_alloc_data_block(pool->pmd, result);
  791. if (r) {
  792. metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
  793. return r;
  794. }
  795. return 0;
  796. }
  797. /*
  798. * If we have run out of space, queue bios until the device is
  799. * resumed, presumably after having been reloaded with more space.
  800. */
  801. static void retry_on_resume(struct bio *bio)
  802. {
  803. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  804. struct thin_c *tc = h->tc;
  805. struct pool *pool = tc->pool;
  806. unsigned long flags;
  807. spin_lock_irqsave(&pool->lock, flags);
  808. bio_list_add(&pool->retry_on_resume_list, bio);
  809. spin_unlock_irqrestore(&pool->lock, flags);
  810. }
  811. static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
  812. {
  813. /*
  814. * When pool is read-only, no cell locking is needed because
  815. * nothing is changing.
  816. */
  817. WARN_ON_ONCE(get_pool_mode(pool) != PM_READ_ONLY);
  818. if (pool->pf.error_if_no_space)
  819. bio_io_error(bio);
  820. else
  821. retry_on_resume(bio);
  822. }
  823. static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
  824. {
  825. struct bio *bio;
  826. struct bio_list bios;
  827. bio_list_init(&bios);
  828. cell_release(pool, cell, &bios);
  829. while ((bio = bio_list_pop(&bios)))
  830. handle_unserviceable_bio(pool, bio);
  831. }
  832. static void process_discard(struct thin_c *tc, struct bio *bio)
  833. {
  834. int r;
  835. unsigned long flags;
  836. struct pool *pool = tc->pool;
  837. struct dm_bio_prison_cell *cell, *cell2;
  838. struct dm_cell_key key, key2;
  839. dm_block_t block = get_bio_block(tc, bio);
  840. struct dm_thin_lookup_result lookup_result;
  841. struct dm_thin_new_mapping *m;
  842. build_virtual_key(tc->td, block, &key);
  843. if (bio_detain(tc->pool, &key, bio, &cell))
  844. return;
  845. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  846. switch (r) {
  847. case 0:
  848. /*
  849. * Check nobody is fiddling with this pool block. This can
  850. * happen if someone's in the process of breaking sharing
  851. * on this block.
  852. */
  853. build_data_key(tc->td, lookup_result.block, &key2);
  854. if (bio_detain(tc->pool, &key2, bio, &cell2)) {
  855. cell_defer_no_holder(tc, cell);
  856. break;
  857. }
  858. if (io_overlaps_block(pool, bio)) {
  859. /*
  860. * IO may still be going to the destination block. We must
  861. * quiesce before we can do the removal.
  862. */
  863. m = get_next_mapping(pool);
  864. m->tc = tc;
  865. m->pass_discard = pool->pf.discard_passdown;
  866. m->definitely_not_shared = !lookup_result.shared;
  867. m->virt_block = block;
  868. m->data_block = lookup_result.block;
  869. m->cell = cell;
  870. m->cell2 = cell2;
  871. m->bio = bio;
  872. if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
  873. spin_lock_irqsave(&pool->lock, flags);
  874. list_add_tail(&m->list, &pool->prepared_discards);
  875. spin_unlock_irqrestore(&pool->lock, flags);
  876. wake_worker(pool);
  877. }
  878. } else {
  879. inc_all_io_entry(pool, bio);
  880. cell_defer_no_holder(tc, cell);
  881. cell_defer_no_holder(tc, cell2);
  882. /*
  883. * The DM core makes sure that the discard doesn't span
  884. * a block boundary. So we submit the discard of a
  885. * partial block appropriately.
  886. */
  887. if ((!lookup_result.shared) && pool->pf.discard_passdown)
  888. remap_and_issue(tc, bio, lookup_result.block);
  889. else
  890. bio_endio(bio, 0);
  891. }
  892. break;
  893. case -ENODATA:
  894. /*
  895. * It isn't provisioned, just forget it.
  896. */
  897. cell_defer_no_holder(tc, cell);
  898. bio_endio(bio, 0);
  899. break;
  900. default:
  901. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  902. __func__, r);
  903. cell_defer_no_holder(tc, cell);
  904. bio_io_error(bio);
  905. break;
  906. }
  907. }
  908. static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
  909. struct dm_cell_key *key,
  910. struct dm_thin_lookup_result *lookup_result,
  911. struct dm_bio_prison_cell *cell)
  912. {
  913. int r;
  914. dm_block_t data_block;
  915. struct pool *pool = tc->pool;
  916. r = alloc_data_block(tc, &data_block);
  917. switch (r) {
  918. case 0:
  919. schedule_internal_copy(tc, block, lookup_result->block,
  920. data_block, cell, bio);
  921. break;
  922. case -ENOSPC:
  923. retry_bios_on_resume(pool, cell);
  924. break;
  925. default:
  926. DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
  927. __func__, r);
  928. cell_error(pool, cell);
  929. break;
  930. }
  931. }
  932. static void process_shared_bio(struct thin_c *tc, struct bio *bio,
  933. dm_block_t block,
  934. struct dm_thin_lookup_result *lookup_result)
  935. {
  936. struct dm_bio_prison_cell *cell;
  937. struct pool *pool = tc->pool;
  938. struct dm_cell_key key;
  939. /*
  940. * If cell is already occupied, then sharing is already in the process
  941. * of being broken so we have nothing further to do here.
  942. */
  943. build_data_key(tc->td, lookup_result->block, &key);
  944. if (bio_detain(pool, &key, bio, &cell))
  945. return;
  946. if (bio_data_dir(bio) == WRITE && bio->bi_size)
  947. break_sharing(tc, bio, block, &key, lookup_result, cell);
  948. else {
  949. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  950. h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
  951. inc_all_io_entry(pool, bio);
  952. cell_defer_no_holder(tc, cell);
  953. remap_and_issue(tc, bio, lookup_result->block);
  954. }
  955. }
  956. static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
  957. struct dm_bio_prison_cell *cell)
  958. {
  959. int r;
  960. dm_block_t data_block;
  961. struct pool *pool = tc->pool;
  962. /*
  963. * Remap empty bios (flushes) immediately, without provisioning.
  964. */
  965. if (!bio->bi_size) {
  966. inc_all_io_entry(pool, bio);
  967. cell_defer_no_holder(tc, cell);
  968. remap_and_issue(tc, bio, 0);
  969. return;
  970. }
  971. /*
  972. * Fill read bios with zeroes and complete them immediately.
  973. */
  974. if (bio_data_dir(bio) == READ) {
  975. zero_fill_bio(bio);
  976. cell_defer_no_holder(tc, cell);
  977. bio_endio(bio, 0);
  978. return;
  979. }
  980. r = alloc_data_block(tc, &data_block);
  981. switch (r) {
  982. case 0:
  983. if (tc->origin_dev)
  984. schedule_external_copy(tc, block, data_block, cell, bio);
  985. else
  986. schedule_zero(tc, block, data_block, cell, bio);
  987. break;
  988. case -ENOSPC:
  989. retry_bios_on_resume(pool, cell);
  990. break;
  991. default:
  992. DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
  993. __func__, r);
  994. cell_error(pool, cell);
  995. break;
  996. }
  997. }
  998. static void process_bio(struct thin_c *tc, struct bio *bio)
  999. {
  1000. int r;
  1001. struct pool *pool = tc->pool;
  1002. dm_block_t block = get_bio_block(tc, bio);
  1003. struct dm_bio_prison_cell *cell;
  1004. struct dm_cell_key key;
  1005. struct dm_thin_lookup_result lookup_result;
  1006. /*
  1007. * If cell is already occupied, then the block is already
  1008. * being provisioned so we have nothing further to do here.
  1009. */
  1010. build_virtual_key(tc->td, block, &key);
  1011. if (bio_detain(pool, &key, bio, &cell))
  1012. return;
  1013. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  1014. switch (r) {
  1015. case 0:
  1016. if (lookup_result.shared) {
  1017. process_shared_bio(tc, bio, block, &lookup_result);
  1018. cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
  1019. } else {
  1020. inc_all_io_entry(pool, bio);
  1021. cell_defer_no_holder(tc, cell);
  1022. remap_and_issue(tc, bio, lookup_result.block);
  1023. }
  1024. break;
  1025. case -ENODATA:
  1026. if (bio_data_dir(bio) == READ && tc->origin_dev) {
  1027. inc_all_io_entry(pool, bio);
  1028. cell_defer_no_holder(tc, cell);
  1029. remap_to_origin_and_issue(tc, bio);
  1030. } else
  1031. provision_block(tc, bio, block, cell);
  1032. break;
  1033. default:
  1034. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  1035. __func__, r);
  1036. cell_defer_no_holder(tc, cell);
  1037. bio_io_error(bio);
  1038. break;
  1039. }
  1040. }
  1041. static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
  1042. {
  1043. int r;
  1044. int rw = bio_data_dir(bio);
  1045. dm_block_t block = get_bio_block(tc, bio);
  1046. struct dm_thin_lookup_result lookup_result;
  1047. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  1048. switch (r) {
  1049. case 0:
  1050. if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
  1051. handle_unserviceable_bio(tc->pool, bio);
  1052. else {
  1053. inc_all_io_entry(tc->pool, bio);
  1054. remap_and_issue(tc, bio, lookup_result.block);
  1055. }
  1056. break;
  1057. case -ENODATA:
  1058. if (rw != READ) {
  1059. handle_unserviceable_bio(tc->pool, bio);
  1060. break;
  1061. }
  1062. if (tc->origin_dev) {
  1063. inc_all_io_entry(tc->pool, bio);
  1064. remap_to_origin_and_issue(tc, bio);
  1065. break;
  1066. }
  1067. zero_fill_bio(bio);
  1068. bio_endio(bio, 0);
  1069. break;
  1070. default:
  1071. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  1072. __func__, r);
  1073. bio_io_error(bio);
  1074. break;
  1075. }
  1076. }
  1077. static void process_bio_fail(struct thin_c *tc, struct bio *bio)
  1078. {
  1079. bio_io_error(bio);
  1080. }
  1081. /*
  1082. * FIXME: should we also commit due to size of transaction, measured in
  1083. * metadata blocks?
  1084. */
  1085. static int need_commit_due_to_time(struct pool *pool)
  1086. {
  1087. return jiffies < pool->last_commit_jiffies ||
  1088. jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
  1089. }
  1090. static void process_deferred_bios(struct pool *pool)
  1091. {
  1092. unsigned long flags;
  1093. struct bio *bio;
  1094. struct bio_list bios;
  1095. bio_list_init(&bios);
  1096. spin_lock_irqsave(&pool->lock, flags);
  1097. bio_list_merge(&bios, &pool->deferred_bios);
  1098. bio_list_init(&pool->deferred_bios);
  1099. spin_unlock_irqrestore(&pool->lock, flags);
  1100. while ((bio = bio_list_pop(&bios))) {
  1101. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  1102. struct thin_c *tc = h->tc;
  1103. /*
  1104. * If we've got no free new_mapping structs, and processing
  1105. * this bio might require one, we pause until there are some
  1106. * prepared mappings to process.
  1107. */
  1108. if (ensure_next_mapping(pool)) {
  1109. spin_lock_irqsave(&pool->lock, flags);
  1110. bio_list_merge(&pool->deferred_bios, &bios);
  1111. spin_unlock_irqrestore(&pool->lock, flags);
  1112. break;
  1113. }
  1114. if (bio->bi_rw & REQ_DISCARD)
  1115. pool->process_discard(tc, bio);
  1116. else
  1117. pool->process_bio(tc, bio);
  1118. }
  1119. /*
  1120. * If there are any deferred flush bios, we must commit
  1121. * the metadata before issuing them.
  1122. */
  1123. bio_list_init(&bios);
  1124. spin_lock_irqsave(&pool->lock, flags);
  1125. bio_list_merge(&bios, &pool->deferred_flush_bios);
  1126. bio_list_init(&pool->deferred_flush_bios);
  1127. spin_unlock_irqrestore(&pool->lock, flags);
  1128. if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
  1129. return;
  1130. if (commit(pool)) {
  1131. while ((bio = bio_list_pop(&bios)))
  1132. bio_io_error(bio);
  1133. return;
  1134. }
  1135. pool->last_commit_jiffies = jiffies;
  1136. while ((bio = bio_list_pop(&bios)))
  1137. generic_make_request(bio);
  1138. }
  1139. static void do_worker(struct work_struct *ws)
  1140. {
  1141. struct pool *pool = container_of(ws, struct pool, worker);
  1142. process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
  1143. process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
  1144. process_deferred_bios(pool);
  1145. }
  1146. /*
  1147. * We want to commit periodically so that not too much
  1148. * unwritten data builds up.
  1149. */
  1150. static void do_waker(struct work_struct *ws)
  1151. {
  1152. struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
  1153. wake_worker(pool);
  1154. queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
  1155. }
  1156. /*----------------------------------------------------------------*/
  1157. static enum pool_mode get_pool_mode(struct pool *pool)
  1158. {
  1159. return pool->pf.mode;
  1160. }
  1161. static void set_pool_mode(struct pool *pool, enum pool_mode mode)
  1162. {
  1163. int r;
  1164. pool->pf.mode = mode;
  1165. switch (mode) {
  1166. case PM_FAIL:
  1167. DMERR("%s: switching pool to failure mode",
  1168. dm_device_name(pool->pool_md));
  1169. dm_pool_metadata_read_only(pool->pmd);
  1170. pool->process_bio = process_bio_fail;
  1171. pool->process_discard = process_bio_fail;
  1172. pool->process_prepared_mapping = process_prepared_mapping_fail;
  1173. pool->process_prepared_discard = process_prepared_discard_fail;
  1174. break;
  1175. case PM_READ_ONLY:
  1176. DMERR("%s: switching pool to read-only mode",
  1177. dm_device_name(pool->pool_md));
  1178. r = dm_pool_abort_metadata(pool->pmd);
  1179. if (r) {
  1180. DMERR("%s: aborting transaction failed",
  1181. dm_device_name(pool->pool_md));
  1182. set_pool_mode(pool, PM_FAIL);
  1183. } else {
  1184. dm_pool_metadata_read_only(pool->pmd);
  1185. pool->process_bio = process_bio_read_only;
  1186. pool->process_discard = process_discard;
  1187. pool->process_prepared_mapping = process_prepared_mapping_fail;
  1188. pool->process_prepared_discard = process_prepared_discard_passdown;
  1189. }
  1190. break;
  1191. case PM_WRITE:
  1192. dm_pool_metadata_read_write(pool->pmd);
  1193. pool->process_bio = process_bio;
  1194. pool->process_discard = process_discard;
  1195. pool->process_prepared_mapping = process_prepared_mapping;
  1196. pool->process_prepared_discard = process_prepared_discard;
  1197. break;
  1198. }
  1199. }
  1200. /*
  1201. * Rather than calling set_pool_mode directly, use these which describe the
  1202. * reason for mode degradation.
  1203. */
  1204. static void out_of_data_space(struct pool *pool)
  1205. {
  1206. DMERR_LIMIT("%s: no free data space available.",
  1207. dm_device_name(pool->pool_md));
  1208. set_pool_mode(pool, PM_READ_ONLY);
  1209. }
  1210. static void metadata_operation_failed(struct pool *pool, const char *op, int r)
  1211. {
  1212. dm_block_t free_blocks;
  1213. DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
  1214. dm_device_name(pool->pool_md), op, r);
  1215. if (r == -ENOSPC &&
  1216. !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
  1217. !free_blocks)
  1218. DMERR_LIMIT("%s: no free metadata space available.",
  1219. dm_device_name(pool->pool_md));
  1220. set_pool_mode(pool, PM_READ_ONLY);
  1221. }
  1222. /*----------------------------------------------------------------*/
  1223. /*
  1224. * Mapping functions.
  1225. */
  1226. /*
  1227. * Called only while mapping a thin bio to hand it over to the workqueue.
  1228. */
  1229. static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
  1230. {
  1231. unsigned long flags;
  1232. struct pool *pool = tc->pool;
  1233. spin_lock_irqsave(&pool->lock, flags);
  1234. bio_list_add(&pool->deferred_bios, bio);
  1235. spin_unlock_irqrestore(&pool->lock, flags);
  1236. wake_worker(pool);
  1237. }
  1238. static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
  1239. {
  1240. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  1241. h->tc = tc;
  1242. h->shared_read_entry = NULL;
  1243. h->all_io_entry = NULL;
  1244. h->overwrite_mapping = NULL;
  1245. }
  1246. /*
  1247. * Non-blocking function called from the thin target's map function.
  1248. */
  1249. static int thin_bio_map(struct dm_target *ti, struct bio *bio)
  1250. {
  1251. int r;
  1252. struct thin_c *tc = ti->private;
  1253. dm_block_t block = get_bio_block(tc, bio);
  1254. struct dm_thin_device *td = tc->td;
  1255. struct dm_thin_lookup_result result;
  1256. struct dm_bio_prison_cell cell1, cell2;
  1257. struct dm_bio_prison_cell *cell_result;
  1258. struct dm_cell_key key;
  1259. thin_hook_bio(tc, bio);
  1260. if (get_pool_mode(tc->pool) == PM_FAIL) {
  1261. bio_io_error(bio);
  1262. return DM_MAPIO_SUBMITTED;
  1263. }
  1264. if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
  1265. thin_defer_bio(tc, bio);
  1266. return DM_MAPIO_SUBMITTED;
  1267. }
  1268. r = dm_thin_find_block(td, block, 0, &result);
  1269. /*
  1270. * Note that we defer readahead too.
  1271. */
  1272. switch (r) {
  1273. case 0:
  1274. if (unlikely(result.shared)) {
  1275. /*
  1276. * We have a race condition here between the
  1277. * result.shared value returned by the lookup and
  1278. * snapshot creation, which may cause new
  1279. * sharing.
  1280. *
  1281. * To avoid this always quiesce the origin before
  1282. * taking the snap. You want to do this anyway to
  1283. * ensure a consistent application view
  1284. * (i.e. lockfs).
  1285. *
  1286. * More distant ancestors are irrelevant. The
  1287. * shared flag will be set in their case.
  1288. */
  1289. thin_defer_bio(tc, bio);
  1290. return DM_MAPIO_SUBMITTED;
  1291. }
  1292. build_virtual_key(tc->td, block, &key);
  1293. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
  1294. return DM_MAPIO_SUBMITTED;
  1295. build_data_key(tc->td, result.block, &key);
  1296. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
  1297. cell_defer_no_holder_no_free(tc, &cell1);
  1298. return DM_MAPIO_SUBMITTED;
  1299. }
  1300. inc_all_io_entry(tc->pool, bio);
  1301. cell_defer_no_holder_no_free(tc, &cell2);
  1302. cell_defer_no_holder_no_free(tc, &cell1);
  1303. remap(tc, bio, result.block);
  1304. return DM_MAPIO_REMAPPED;
  1305. case -ENODATA:
  1306. if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
  1307. /*
  1308. * This block isn't provisioned, and we have no way
  1309. * of doing so.
  1310. */
  1311. handle_unserviceable_bio(tc->pool, bio);
  1312. return DM_MAPIO_SUBMITTED;
  1313. }
  1314. /* fall through */
  1315. case -EWOULDBLOCK:
  1316. /*
  1317. * In future, the failed dm_thin_find_block above could
  1318. * provide the hint to load the metadata into cache.
  1319. */
  1320. thin_defer_bio(tc, bio);
  1321. return DM_MAPIO_SUBMITTED;
  1322. default:
  1323. /*
  1324. * Must always call bio_io_error on failure.
  1325. * dm_thin_find_block can fail with -EINVAL if the
  1326. * pool is switched to fail-io mode.
  1327. */
  1328. bio_io_error(bio);
  1329. return DM_MAPIO_SUBMITTED;
  1330. }
  1331. }
  1332. static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
  1333. {
  1334. int r;
  1335. unsigned long flags;
  1336. struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
  1337. spin_lock_irqsave(&pt->pool->lock, flags);
  1338. r = !bio_list_empty(&pt->pool->retry_on_resume_list);
  1339. spin_unlock_irqrestore(&pt->pool->lock, flags);
  1340. if (!r) {
  1341. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1342. r = bdi_congested(&q->backing_dev_info, bdi_bits);
  1343. }
  1344. return r;
  1345. }
  1346. static void __requeue_bios(struct pool *pool)
  1347. {
  1348. bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
  1349. bio_list_init(&pool->retry_on_resume_list);
  1350. }
  1351. /*----------------------------------------------------------------
  1352. * Binding of control targets to a pool object
  1353. *--------------------------------------------------------------*/
  1354. static bool data_dev_supports_discard(struct pool_c *pt)
  1355. {
  1356. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1357. return q && blk_queue_discard(q);
  1358. }
  1359. static bool is_factor(sector_t block_size, uint32_t n)
  1360. {
  1361. return !sector_div(block_size, n);
  1362. }
  1363. /*
  1364. * If discard_passdown was enabled verify that the data device
  1365. * supports discards. Disable discard_passdown if not.
  1366. */
  1367. static void disable_passdown_if_not_supported(struct pool_c *pt)
  1368. {
  1369. struct pool *pool = pt->pool;
  1370. struct block_device *data_bdev = pt->data_dev->bdev;
  1371. struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
  1372. sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
  1373. const char *reason = NULL;
  1374. char buf[BDEVNAME_SIZE];
  1375. if (!pt->adjusted_pf.discard_passdown)
  1376. return;
  1377. if (!data_dev_supports_discard(pt))
  1378. reason = "discard unsupported";
  1379. else if (data_limits->max_discard_sectors < pool->sectors_per_block)
  1380. reason = "max discard sectors smaller than a block";
  1381. else if (data_limits->discard_granularity > block_size)
  1382. reason = "discard granularity larger than a block";
  1383. else if (!is_factor(block_size, data_limits->discard_granularity))
  1384. reason = "discard granularity not a factor of block size";
  1385. if (reason) {
  1386. DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
  1387. pt->adjusted_pf.discard_passdown = false;
  1388. }
  1389. }
  1390. static int bind_control_target(struct pool *pool, struct dm_target *ti)
  1391. {
  1392. struct pool_c *pt = ti->private;
  1393. /*
  1394. * We want to make sure that a pool in PM_FAIL mode is never upgraded.
  1395. */
  1396. enum pool_mode old_mode = pool->pf.mode;
  1397. enum pool_mode new_mode = pt->adjusted_pf.mode;
  1398. /*
  1399. * If we were in PM_FAIL mode, rollback of metadata failed. We're
  1400. * not going to recover without a thin_repair. So we never let the
  1401. * pool move out of the old mode. On the other hand a PM_READ_ONLY
  1402. * may have been due to a lack of metadata or data space, and may
  1403. * now work (ie. if the underlying devices have been resized).
  1404. */
  1405. if (old_mode == PM_FAIL)
  1406. new_mode = old_mode;
  1407. pool->ti = ti;
  1408. pool->low_water_blocks = pt->low_water_blocks;
  1409. pool->pf = pt->adjusted_pf;
  1410. set_pool_mode(pool, new_mode);
  1411. return 0;
  1412. }
  1413. static void unbind_control_target(struct pool *pool, struct dm_target *ti)
  1414. {
  1415. if (pool->ti == ti)
  1416. pool->ti = NULL;
  1417. }
  1418. /*----------------------------------------------------------------
  1419. * Pool creation
  1420. *--------------------------------------------------------------*/
  1421. /* Initialize pool features. */
  1422. static void pool_features_init(struct pool_features *pf)
  1423. {
  1424. pf->mode = PM_WRITE;
  1425. pf->zero_new_blocks = true;
  1426. pf->discard_enabled = true;
  1427. pf->discard_passdown = true;
  1428. pf->error_if_no_space = false;
  1429. }
  1430. static void __pool_destroy(struct pool *pool)
  1431. {
  1432. __pool_table_remove(pool);
  1433. if (dm_pool_metadata_close(pool->pmd) < 0)
  1434. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1435. dm_bio_prison_destroy(pool->prison);
  1436. dm_kcopyd_client_destroy(pool->copier);
  1437. if (pool->wq)
  1438. destroy_workqueue(pool->wq);
  1439. if (pool->next_mapping)
  1440. mempool_free(pool->next_mapping, pool->mapping_pool);
  1441. mempool_destroy(pool->mapping_pool);
  1442. dm_deferred_set_destroy(pool->shared_read_ds);
  1443. dm_deferred_set_destroy(pool->all_io_ds);
  1444. kfree(pool);
  1445. }
  1446. static struct kmem_cache *_new_mapping_cache;
  1447. static struct pool *pool_create(struct mapped_device *pool_md,
  1448. struct block_device *metadata_dev,
  1449. unsigned long block_size,
  1450. int read_only, char **error)
  1451. {
  1452. int r;
  1453. void *err_p;
  1454. struct pool *pool;
  1455. struct dm_pool_metadata *pmd;
  1456. bool format_device = read_only ? false : true;
  1457. pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
  1458. if (IS_ERR(pmd)) {
  1459. *error = "Error creating metadata object";
  1460. return (struct pool *)pmd;
  1461. }
  1462. pool = kmalloc(sizeof(*pool), GFP_KERNEL);
  1463. if (!pool) {
  1464. *error = "Error allocating memory for pool";
  1465. err_p = ERR_PTR(-ENOMEM);
  1466. goto bad_pool;
  1467. }
  1468. pool->pmd = pmd;
  1469. pool->sectors_per_block = block_size;
  1470. if (block_size & (block_size - 1))
  1471. pool->sectors_per_block_shift = -1;
  1472. else
  1473. pool->sectors_per_block_shift = __ffs(block_size);
  1474. pool->low_water_blocks = 0;
  1475. pool_features_init(&pool->pf);
  1476. pool->prison = dm_bio_prison_create(PRISON_CELLS);
  1477. if (!pool->prison) {
  1478. *error = "Error creating pool's bio prison";
  1479. err_p = ERR_PTR(-ENOMEM);
  1480. goto bad_prison;
  1481. }
  1482. pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
  1483. if (IS_ERR(pool->copier)) {
  1484. r = PTR_ERR(pool->copier);
  1485. *error = "Error creating pool's kcopyd client";
  1486. err_p = ERR_PTR(r);
  1487. goto bad_kcopyd_client;
  1488. }
  1489. /*
  1490. * Create singlethreaded workqueue that will service all devices
  1491. * that use this metadata.
  1492. */
  1493. pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
  1494. if (!pool->wq) {
  1495. *error = "Error creating pool's workqueue";
  1496. err_p = ERR_PTR(-ENOMEM);
  1497. goto bad_wq;
  1498. }
  1499. INIT_WORK(&pool->worker, do_worker);
  1500. INIT_DELAYED_WORK(&pool->waker, do_waker);
  1501. spin_lock_init(&pool->lock);
  1502. bio_list_init(&pool->deferred_bios);
  1503. bio_list_init(&pool->deferred_flush_bios);
  1504. INIT_LIST_HEAD(&pool->prepared_mappings);
  1505. INIT_LIST_HEAD(&pool->prepared_discards);
  1506. pool->low_water_triggered = false;
  1507. bio_list_init(&pool->retry_on_resume_list);
  1508. pool->shared_read_ds = dm_deferred_set_create();
  1509. if (!pool->shared_read_ds) {
  1510. *error = "Error creating pool's shared read deferred set";
  1511. err_p = ERR_PTR(-ENOMEM);
  1512. goto bad_shared_read_ds;
  1513. }
  1514. pool->all_io_ds = dm_deferred_set_create();
  1515. if (!pool->all_io_ds) {
  1516. *error = "Error creating pool's all io deferred set";
  1517. err_p = ERR_PTR(-ENOMEM);
  1518. goto bad_all_io_ds;
  1519. }
  1520. pool->next_mapping = NULL;
  1521. pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
  1522. _new_mapping_cache);
  1523. if (!pool->mapping_pool) {
  1524. *error = "Error creating pool's mapping mempool";
  1525. err_p = ERR_PTR(-ENOMEM);
  1526. goto bad_mapping_pool;
  1527. }
  1528. pool->ref_count = 1;
  1529. pool->last_commit_jiffies = jiffies;
  1530. pool->pool_md = pool_md;
  1531. pool->md_dev = metadata_dev;
  1532. __pool_table_insert(pool);
  1533. return pool;
  1534. bad_mapping_pool:
  1535. dm_deferred_set_destroy(pool->all_io_ds);
  1536. bad_all_io_ds:
  1537. dm_deferred_set_destroy(pool->shared_read_ds);
  1538. bad_shared_read_ds:
  1539. destroy_workqueue(pool->wq);
  1540. bad_wq:
  1541. dm_kcopyd_client_destroy(pool->copier);
  1542. bad_kcopyd_client:
  1543. dm_bio_prison_destroy(pool->prison);
  1544. bad_prison:
  1545. kfree(pool);
  1546. bad_pool:
  1547. if (dm_pool_metadata_close(pmd))
  1548. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1549. return err_p;
  1550. }
  1551. static void __pool_inc(struct pool *pool)
  1552. {
  1553. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1554. pool->ref_count++;
  1555. }
  1556. static void __pool_dec(struct pool *pool)
  1557. {
  1558. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1559. BUG_ON(!pool->ref_count);
  1560. if (!--pool->ref_count)
  1561. __pool_destroy(pool);
  1562. }
  1563. static struct pool *__pool_find(struct mapped_device *pool_md,
  1564. struct block_device *metadata_dev,
  1565. unsigned long block_size, int read_only,
  1566. char **error, int *created)
  1567. {
  1568. struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
  1569. if (pool) {
  1570. if (pool->pool_md != pool_md) {
  1571. *error = "metadata device already in use by a pool";
  1572. return ERR_PTR(-EBUSY);
  1573. }
  1574. __pool_inc(pool);
  1575. } else {
  1576. pool = __pool_table_lookup(pool_md);
  1577. if (pool) {
  1578. if (pool->md_dev != metadata_dev) {
  1579. *error = "different pool cannot replace a pool";
  1580. return ERR_PTR(-EINVAL);
  1581. }
  1582. __pool_inc(pool);
  1583. } else {
  1584. pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
  1585. *created = 1;
  1586. }
  1587. }
  1588. return pool;
  1589. }
  1590. /*----------------------------------------------------------------
  1591. * Pool target methods
  1592. *--------------------------------------------------------------*/
  1593. static void pool_dtr(struct dm_target *ti)
  1594. {
  1595. struct pool_c *pt = ti->private;
  1596. mutex_lock(&dm_thin_pool_table.mutex);
  1597. unbind_control_target(pt->pool, ti);
  1598. __pool_dec(pt->pool);
  1599. dm_put_device(ti, pt->metadata_dev);
  1600. dm_put_device(ti, pt->data_dev);
  1601. kfree(pt);
  1602. mutex_unlock(&dm_thin_pool_table.mutex);
  1603. }
  1604. static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
  1605. struct dm_target *ti)
  1606. {
  1607. int r;
  1608. unsigned argc;
  1609. const char *arg_name;
  1610. static struct dm_arg _args[] = {
  1611. {0, 3, "Invalid number of pool feature arguments"},
  1612. };
  1613. /*
  1614. * No feature arguments supplied.
  1615. */
  1616. if (!as->argc)
  1617. return 0;
  1618. r = dm_read_arg_group(_args, as, &argc, &ti->error);
  1619. if (r)
  1620. return -EINVAL;
  1621. while (argc && !r) {
  1622. arg_name = dm_shift_arg(as);
  1623. argc--;
  1624. if (!strcasecmp(arg_name, "skip_block_zeroing"))
  1625. pf->zero_new_blocks = false;
  1626. else if (!strcasecmp(arg_name, "ignore_discard"))
  1627. pf->discard_enabled = false;
  1628. else if (!strcasecmp(arg_name, "no_discard_passdown"))
  1629. pf->discard_passdown = false;
  1630. else if (!strcasecmp(arg_name, "read_only"))
  1631. pf->mode = PM_READ_ONLY;
  1632. else if (!strcasecmp(arg_name, "error_if_no_space"))
  1633. pf->error_if_no_space = true;
  1634. else {
  1635. ti->error = "Unrecognised pool feature requested";
  1636. r = -EINVAL;
  1637. break;
  1638. }
  1639. }
  1640. return r;
  1641. }
  1642. static void metadata_low_callback(void *context)
  1643. {
  1644. struct pool *pool = context;
  1645. DMWARN("%s: reached low water mark for metadata device: sending event.",
  1646. dm_device_name(pool->pool_md));
  1647. dm_table_event(pool->ti->table);
  1648. }
  1649. static sector_t get_metadata_dev_size(struct block_device *bdev)
  1650. {
  1651. sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
  1652. char buffer[BDEVNAME_SIZE];
  1653. if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
  1654. DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
  1655. bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
  1656. metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
  1657. }
  1658. return metadata_dev_size;
  1659. }
  1660. static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
  1661. {
  1662. sector_t metadata_dev_size = get_metadata_dev_size(bdev);
  1663. sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
  1664. return metadata_dev_size;
  1665. }
  1666. /*
  1667. * When a metadata threshold is crossed a dm event is triggered, and
  1668. * userland should respond by growing the metadata device. We could let
  1669. * userland set the threshold, like we do with the data threshold, but I'm
  1670. * not sure they know enough to do this well.
  1671. */
  1672. static dm_block_t calc_metadata_threshold(struct pool_c *pt)
  1673. {
  1674. /*
  1675. * 4M is ample for all ops with the possible exception of thin
  1676. * device deletion which is harmless if it fails (just retry the
  1677. * delete after you've grown the device).
  1678. */
  1679. dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
  1680. return min((dm_block_t)1024ULL /* 4M */, quarter);
  1681. }
  1682. /*
  1683. * thin-pool <metadata dev> <data dev>
  1684. * <data block size (sectors)>
  1685. * <low water mark (blocks)>
  1686. * [<#feature args> [<arg>]*]
  1687. *
  1688. * Optional feature arguments are:
  1689. * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
  1690. * ignore_discard: disable discard
  1691. * no_discard_passdown: don't pass discards down to the data device
  1692. * read_only: Don't allow any changes to be made to the pool metadata.
  1693. * error_if_no_space: error IOs, instead of queueing, if no space.
  1694. */
  1695. static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
  1696. {
  1697. int r, pool_created = 0;
  1698. struct pool_c *pt;
  1699. struct pool *pool;
  1700. struct pool_features pf;
  1701. struct dm_arg_set as;
  1702. struct dm_dev *data_dev;
  1703. unsigned long block_size;
  1704. dm_block_t low_water_blocks;
  1705. struct dm_dev *metadata_dev;
  1706. fmode_t metadata_mode;
  1707. /*
  1708. * FIXME Remove validation from scope of lock.
  1709. */
  1710. mutex_lock(&dm_thin_pool_table.mutex);
  1711. if (argc < 4) {
  1712. ti->error = "Invalid argument count";
  1713. r = -EINVAL;
  1714. goto out_unlock;
  1715. }
  1716. as.argc = argc;
  1717. as.argv = argv;
  1718. /*
  1719. * Set default pool features.
  1720. */
  1721. pool_features_init(&pf);
  1722. dm_consume_args(&as, 4);
  1723. r = parse_pool_features(&as, &pf, ti);
  1724. if (r)
  1725. goto out_unlock;
  1726. metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
  1727. r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
  1728. if (r) {
  1729. ti->error = "Error opening metadata block device";
  1730. goto out_unlock;
  1731. }
  1732. /*
  1733. * Run for the side-effect of possibly issuing a warning if the
  1734. * device is too big.
  1735. */
  1736. (void) get_metadata_dev_size(metadata_dev->bdev);
  1737. r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
  1738. if (r) {
  1739. ti->error = "Error getting data device";
  1740. goto out_metadata;
  1741. }
  1742. if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
  1743. block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
  1744. block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
  1745. block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
  1746. ti->error = "Invalid block size";
  1747. r = -EINVAL;
  1748. goto out;
  1749. }
  1750. if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
  1751. ti->error = "Invalid low water mark";
  1752. r = -EINVAL;
  1753. goto out;
  1754. }
  1755. pt = kzalloc(sizeof(*pt), GFP_KERNEL);
  1756. if (!pt) {
  1757. r = -ENOMEM;
  1758. goto out;
  1759. }
  1760. pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
  1761. block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
  1762. if (IS_ERR(pool)) {
  1763. r = PTR_ERR(pool);
  1764. goto out_free_pt;
  1765. }
  1766. /*
  1767. * 'pool_created' reflects whether this is the first table load.
  1768. * Top level discard support is not allowed to be changed after
  1769. * initial load. This would require a pool reload to trigger thin
  1770. * device changes.
  1771. */
  1772. if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
  1773. ti->error = "Discard support cannot be disabled once enabled";
  1774. r = -EINVAL;
  1775. goto out_flags_changed;
  1776. }
  1777. pt->pool = pool;
  1778. pt->ti = ti;
  1779. pt->metadata_dev = metadata_dev;
  1780. pt->data_dev = data_dev;
  1781. pt->low_water_blocks = low_water_blocks;
  1782. pt->adjusted_pf = pt->requested_pf = pf;
  1783. ti->num_flush_bios = 1;
  1784. /*
  1785. * Only need to enable discards if the pool should pass
  1786. * them down to the data device. The thin device's discard
  1787. * processing will cause mappings to be removed from the btree.
  1788. */
  1789. ti->discard_zeroes_data_unsupported = true;
  1790. if (pf.discard_enabled && pf.discard_passdown) {
  1791. ti->num_discard_bios = 1;
  1792. /*
  1793. * Setting 'discards_supported' circumvents the normal
  1794. * stacking of discard limits (this keeps the pool and
  1795. * thin devices' discard limits consistent).
  1796. */
  1797. ti->discards_supported = true;
  1798. }
  1799. ti->private = pt;
  1800. r = dm_pool_register_metadata_threshold(pt->pool->pmd,
  1801. calc_metadata_threshold(pt),
  1802. metadata_low_callback,
  1803. pool);
  1804. if (r)
  1805. goto out_free_pt;
  1806. pt->callbacks.congested_fn = pool_is_congested;
  1807. dm_table_add_target_callbacks(ti->table, &pt->callbacks);
  1808. mutex_unlock(&dm_thin_pool_table.mutex);
  1809. return 0;
  1810. out_flags_changed:
  1811. __pool_dec(pool);
  1812. out_free_pt:
  1813. kfree(pt);
  1814. out:
  1815. dm_put_device(ti, data_dev);
  1816. out_metadata:
  1817. dm_put_device(ti, metadata_dev);
  1818. out_unlock:
  1819. mutex_unlock(&dm_thin_pool_table.mutex);
  1820. return r;
  1821. }
  1822. static int pool_map(struct dm_target *ti, struct bio *bio)
  1823. {
  1824. int r;
  1825. struct pool_c *pt = ti->private;
  1826. struct pool *pool = pt->pool;
  1827. unsigned long flags;
  1828. /*
  1829. * As this is a singleton target, ti->begin is always zero.
  1830. */
  1831. spin_lock_irqsave(&pool->lock, flags);
  1832. bio->bi_bdev = pt->data_dev->bdev;
  1833. r = DM_MAPIO_REMAPPED;
  1834. spin_unlock_irqrestore(&pool->lock, flags);
  1835. return r;
  1836. }
  1837. static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
  1838. {
  1839. int r;
  1840. struct pool_c *pt = ti->private;
  1841. struct pool *pool = pt->pool;
  1842. sector_t data_size = ti->len;
  1843. dm_block_t sb_data_size;
  1844. *need_commit = false;
  1845. (void) sector_div(data_size, pool->sectors_per_block);
  1846. r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
  1847. if (r) {
  1848. DMERR("%s: failed to retrieve data device size",
  1849. dm_device_name(pool->pool_md));
  1850. return r;
  1851. }
  1852. if (data_size < sb_data_size) {
  1853. DMERR("%s: pool target (%llu blocks) too small: expected %llu",
  1854. dm_device_name(pool->pool_md),
  1855. (unsigned long long)data_size, sb_data_size);
  1856. return -EINVAL;
  1857. } else if (data_size > sb_data_size) {
  1858. if (sb_data_size)
  1859. DMINFO("%s: growing the data device from %llu to %llu blocks",
  1860. dm_device_name(pool->pool_md),
  1861. sb_data_size, (unsigned long long)data_size);
  1862. r = dm_pool_resize_data_dev(pool->pmd, data_size);
  1863. if (r) {
  1864. metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
  1865. return r;
  1866. }
  1867. *need_commit = true;
  1868. }
  1869. return 0;
  1870. }
  1871. static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
  1872. {
  1873. int r;
  1874. struct pool_c *pt = ti->private;
  1875. struct pool *pool = pt->pool;
  1876. dm_block_t metadata_dev_size, sb_metadata_dev_size;
  1877. *need_commit = false;
  1878. metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
  1879. r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
  1880. if (r) {
  1881. DMERR("%s: failed to retrieve metadata device size",
  1882. dm_device_name(pool->pool_md));
  1883. return r;
  1884. }
  1885. if (metadata_dev_size < sb_metadata_dev_size) {
  1886. DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
  1887. dm_device_name(pool->pool_md),
  1888. metadata_dev_size, sb_metadata_dev_size);
  1889. return -EINVAL;
  1890. } else if (metadata_dev_size > sb_metadata_dev_size) {
  1891. DMINFO("%s: growing the metadata device from %llu to %llu blocks",
  1892. dm_device_name(pool->pool_md),
  1893. sb_metadata_dev_size, metadata_dev_size);
  1894. r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
  1895. if (r) {
  1896. metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
  1897. return r;
  1898. }
  1899. *need_commit = true;
  1900. }
  1901. return 0;
  1902. }
  1903. /*
  1904. * Retrieves the number of blocks of the data device from
  1905. * the superblock and compares it to the actual device size,
  1906. * thus resizing the data device in case it has grown.
  1907. *
  1908. * This both copes with opening preallocated data devices in the ctr
  1909. * being followed by a resume
  1910. * -and-
  1911. * calling the resume method individually after userspace has
  1912. * grown the data device in reaction to a table event.
  1913. */
  1914. static int pool_preresume(struct dm_target *ti)
  1915. {
  1916. int r;
  1917. bool need_commit1, need_commit2;
  1918. struct pool_c *pt = ti->private;
  1919. struct pool *pool = pt->pool;
  1920. /*
  1921. * Take control of the pool object.
  1922. */
  1923. r = bind_control_target(pool, ti);
  1924. if (r)
  1925. return r;
  1926. r = maybe_resize_data_dev(ti, &need_commit1);
  1927. if (r)
  1928. return r;
  1929. r = maybe_resize_metadata_dev(ti, &need_commit2);
  1930. if (r)
  1931. return r;
  1932. if (need_commit1 || need_commit2)
  1933. (void) commit(pool);
  1934. return 0;
  1935. }
  1936. static void pool_resume(struct dm_target *ti)
  1937. {
  1938. struct pool_c *pt = ti->private;
  1939. struct pool *pool = pt->pool;
  1940. unsigned long flags;
  1941. spin_lock_irqsave(&pool->lock, flags);
  1942. pool->low_water_triggered = false;
  1943. __requeue_bios(pool);
  1944. spin_unlock_irqrestore(&pool->lock, flags);
  1945. do_waker(&pool->waker.work);
  1946. }
  1947. static void pool_postsuspend(struct dm_target *ti)
  1948. {
  1949. struct pool_c *pt = ti->private;
  1950. struct pool *pool = pt->pool;
  1951. cancel_delayed_work(&pool->waker);
  1952. flush_workqueue(pool->wq);
  1953. (void) commit(pool);
  1954. }
  1955. static int check_arg_count(unsigned argc, unsigned args_required)
  1956. {
  1957. if (argc != args_required) {
  1958. DMWARN("Message received with %u arguments instead of %u.",
  1959. argc, args_required);
  1960. return -EINVAL;
  1961. }
  1962. return 0;
  1963. }
  1964. static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
  1965. {
  1966. if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
  1967. *dev_id <= MAX_DEV_ID)
  1968. return 0;
  1969. if (warning)
  1970. DMWARN("Message received with invalid device id: %s", arg);
  1971. return -EINVAL;
  1972. }
  1973. static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
  1974. {
  1975. dm_thin_id dev_id;
  1976. int r;
  1977. r = check_arg_count(argc, 2);
  1978. if (r)
  1979. return r;
  1980. r = read_dev_id(argv[1], &dev_id, 1);
  1981. if (r)
  1982. return r;
  1983. r = dm_pool_create_thin(pool->pmd, dev_id);
  1984. if (r) {
  1985. DMWARN("Creation of new thinly-provisioned device with id %s failed.",
  1986. argv[1]);
  1987. return r;
  1988. }
  1989. return 0;
  1990. }
  1991. static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1992. {
  1993. dm_thin_id dev_id;
  1994. dm_thin_id origin_dev_id;
  1995. int r;
  1996. r = check_arg_count(argc, 3);
  1997. if (r)
  1998. return r;
  1999. r = read_dev_id(argv[1], &dev_id, 1);
  2000. if (r)
  2001. return r;
  2002. r = read_dev_id(argv[2], &origin_dev_id, 1);
  2003. if (r)
  2004. return r;
  2005. r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
  2006. if (r) {
  2007. DMWARN("Creation of new snapshot %s of device %s failed.",
  2008. argv[1], argv[2]);
  2009. return r;
  2010. }
  2011. return 0;
  2012. }
  2013. static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
  2014. {
  2015. dm_thin_id dev_id;
  2016. int r;
  2017. r = check_arg_count(argc, 2);
  2018. if (r)
  2019. return r;
  2020. r = read_dev_id(argv[1], &dev_id, 1);
  2021. if (r)
  2022. return r;
  2023. r = dm_pool_delete_thin_device(pool->pmd, dev_id);
  2024. if (r)
  2025. DMWARN("Deletion of thin device %s failed.", argv[1]);
  2026. return r;
  2027. }
  2028. static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
  2029. {
  2030. dm_thin_id old_id, new_id;
  2031. int r;
  2032. r = check_arg_count(argc, 3);
  2033. if (r)
  2034. return r;
  2035. if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
  2036. DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
  2037. return -EINVAL;
  2038. }
  2039. if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
  2040. DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
  2041. return -EINVAL;
  2042. }
  2043. r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
  2044. if (r) {
  2045. DMWARN("Failed to change transaction id from %s to %s.",
  2046. argv[1], argv[2]);
  2047. return r;
  2048. }
  2049. return 0;
  2050. }
  2051. static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  2052. {
  2053. int r;
  2054. r = check_arg_count(argc, 1);
  2055. if (r)
  2056. return r;
  2057. (void) commit(pool);
  2058. r = dm_pool_reserve_metadata_snap(pool->pmd);
  2059. if (r)
  2060. DMWARN("reserve_metadata_snap message failed.");
  2061. return r;
  2062. }
  2063. static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  2064. {
  2065. int r;
  2066. r = check_arg_count(argc, 1);
  2067. if (r)
  2068. return r;
  2069. r = dm_pool_release_metadata_snap(pool->pmd);
  2070. if (r)
  2071. DMWARN("release_metadata_snap message failed.");
  2072. return r;
  2073. }
  2074. /*
  2075. * Messages supported:
  2076. * create_thin <dev_id>
  2077. * create_snap <dev_id> <origin_id>
  2078. * delete <dev_id>
  2079. * trim <dev_id> <new_size_in_sectors>
  2080. * set_transaction_id <current_trans_id> <new_trans_id>
  2081. * reserve_metadata_snap
  2082. * release_metadata_snap
  2083. */
  2084. static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
  2085. {
  2086. int r = -EINVAL;
  2087. struct pool_c *pt = ti->private;
  2088. struct pool *pool = pt->pool;
  2089. if (!strcasecmp(argv[0], "create_thin"))
  2090. r = process_create_thin_mesg(argc, argv, pool);
  2091. else if (!strcasecmp(argv[0], "create_snap"))
  2092. r = process_create_snap_mesg(argc, argv, pool);
  2093. else if (!strcasecmp(argv[0], "delete"))
  2094. r = process_delete_mesg(argc, argv, pool);
  2095. else if (!strcasecmp(argv[0], "set_transaction_id"))
  2096. r = process_set_transaction_id_mesg(argc, argv, pool);
  2097. else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
  2098. r = process_reserve_metadata_snap_mesg(argc, argv, pool);
  2099. else if (!strcasecmp(argv[0], "release_metadata_snap"))
  2100. r = process_release_metadata_snap_mesg(argc, argv, pool);
  2101. else
  2102. DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
  2103. if (!r)
  2104. (void) commit(pool);
  2105. return r;
  2106. }
  2107. static void emit_flags(struct pool_features *pf, char *result,
  2108. unsigned sz, unsigned maxlen)
  2109. {
  2110. unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
  2111. !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
  2112. pf->error_if_no_space;
  2113. DMEMIT("%u ", count);
  2114. if (!pf->zero_new_blocks)
  2115. DMEMIT("skip_block_zeroing ");
  2116. if (!pf->discard_enabled)
  2117. DMEMIT("ignore_discard ");
  2118. if (!pf->discard_passdown)
  2119. DMEMIT("no_discard_passdown ");
  2120. if (pf->mode == PM_READ_ONLY)
  2121. DMEMIT("read_only ");
  2122. if (pf->error_if_no_space)
  2123. DMEMIT("error_if_no_space ");
  2124. }
  2125. /*
  2126. * Status line is:
  2127. * <transaction id> <used metadata sectors>/<total metadata sectors>
  2128. * <used data sectors>/<total data sectors> <held metadata root>
  2129. */
  2130. static void pool_status(struct dm_target *ti, status_type_t type,
  2131. unsigned status_flags, char *result, unsigned maxlen)
  2132. {
  2133. int r;
  2134. unsigned sz = 0;
  2135. uint64_t transaction_id;
  2136. dm_block_t nr_free_blocks_data;
  2137. dm_block_t nr_free_blocks_metadata;
  2138. dm_block_t nr_blocks_data;
  2139. dm_block_t nr_blocks_metadata;
  2140. dm_block_t held_root;
  2141. char buf[BDEVNAME_SIZE];
  2142. char buf2[BDEVNAME_SIZE];
  2143. struct pool_c *pt = ti->private;
  2144. struct pool *pool = pt->pool;
  2145. switch (type) {
  2146. case STATUSTYPE_INFO:
  2147. if (get_pool_mode(pool) == PM_FAIL) {
  2148. DMEMIT("Fail");
  2149. break;
  2150. }
  2151. /* Commit to ensure statistics aren't out-of-date */
  2152. if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
  2153. (void) commit(pool);
  2154. r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
  2155. if (r) {
  2156. DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
  2157. dm_device_name(pool->pool_md), r);
  2158. goto err;
  2159. }
  2160. r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
  2161. if (r) {
  2162. DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
  2163. dm_device_name(pool->pool_md), r);
  2164. goto err;
  2165. }
  2166. r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
  2167. if (r) {
  2168. DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
  2169. dm_device_name(pool->pool_md), r);
  2170. goto err;
  2171. }
  2172. r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
  2173. if (r) {
  2174. DMERR("%s: dm_pool_get_free_block_count returned %d",
  2175. dm_device_name(pool->pool_md), r);
  2176. goto err;
  2177. }
  2178. r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
  2179. if (r) {
  2180. DMERR("%s: dm_pool_get_data_dev_size returned %d",
  2181. dm_device_name(pool->pool_md), r);
  2182. goto err;
  2183. }
  2184. r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
  2185. if (r) {
  2186. DMERR("%s: dm_pool_get_metadata_snap returned %d",
  2187. dm_device_name(pool->pool_md), r);
  2188. goto err;
  2189. }
  2190. DMEMIT("%llu %llu/%llu %llu/%llu ",
  2191. (unsigned long long)transaction_id,
  2192. (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
  2193. (unsigned long long)nr_blocks_metadata,
  2194. (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
  2195. (unsigned long long)nr_blocks_data);
  2196. if (held_root)
  2197. DMEMIT("%llu ", held_root);
  2198. else
  2199. DMEMIT("- ");
  2200. if (pool->pf.mode == PM_READ_ONLY)
  2201. DMEMIT("ro ");
  2202. else
  2203. DMEMIT("rw ");
  2204. if (!pool->pf.discard_enabled)
  2205. DMEMIT("ignore_discard ");
  2206. else if (pool->pf.discard_passdown)
  2207. DMEMIT("discard_passdown ");
  2208. else
  2209. DMEMIT("no_discard_passdown ");
  2210. if (pool->pf.error_if_no_space)
  2211. DMEMIT("error_if_no_space ");
  2212. else
  2213. DMEMIT("queue_if_no_space ");
  2214. break;
  2215. case STATUSTYPE_TABLE:
  2216. DMEMIT("%s %s %lu %llu ",
  2217. format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
  2218. format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
  2219. (unsigned long)pool->sectors_per_block,
  2220. (unsigned long long)pt->low_water_blocks);
  2221. emit_flags(&pt->requested_pf, result, sz, maxlen);
  2222. break;
  2223. }
  2224. return;
  2225. err:
  2226. DMEMIT("Error");
  2227. }
  2228. static int pool_iterate_devices(struct dm_target *ti,
  2229. iterate_devices_callout_fn fn, void *data)
  2230. {
  2231. struct pool_c *pt = ti->private;
  2232. return fn(ti, pt->data_dev, 0, ti->len, data);
  2233. }
  2234. static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
  2235. struct bio_vec *biovec, int max_size)
  2236. {
  2237. struct pool_c *pt = ti->private;
  2238. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  2239. if (!q->merge_bvec_fn)
  2240. return max_size;
  2241. bvm->bi_bdev = pt->data_dev->bdev;
  2242. return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
  2243. }
  2244. static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
  2245. {
  2246. struct pool *pool = pt->pool;
  2247. struct queue_limits *data_limits;
  2248. limits->max_discard_sectors = pool->sectors_per_block;
  2249. /*
  2250. * discard_granularity is just a hint, and not enforced.
  2251. */
  2252. if (pt->adjusted_pf.discard_passdown) {
  2253. data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
  2254. limits->discard_granularity = data_limits->discard_granularity;
  2255. } else
  2256. limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
  2257. }
  2258. static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2259. {
  2260. struct pool_c *pt = ti->private;
  2261. struct pool *pool = pt->pool;
  2262. uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
  2263. /*
  2264. * If the system-determined stacked limits are compatible with the
  2265. * pool's blocksize (io_opt is a factor) do not override them.
  2266. */
  2267. if (io_opt_sectors < pool->sectors_per_block ||
  2268. do_div(io_opt_sectors, pool->sectors_per_block)) {
  2269. blk_limits_io_min(limits, 0);
  2270. blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
  2271. }
  2272. /*
  2273. * pt->adjusted_pf is a staging area for the actual features to use.
  2274. * They get transferred to the live pool in bind_control_target()
  2275. * called from pool_preresume().
  2276. */
  2277. if (!pt->adjusted_pf.discard_enabled) {
  2278. /*
  2279. * Must explicitly disallow stacking discard limits otherwise the
  2280. * block layer will stack them if pool's data device has support.
  2281. * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
  2282. * user to see that, so make sure to set all discard limits to 0.
  2283. */
  2284. limits->discard_granularity = 0;
  2285. return;
  2286. }
  2287. disable_passdown_if_not_supported(pt);
  2288. set_discard_limits(pt, limits);
  2289. }
  2290. static struct target_type pool_target = {
  2291. .name = "thin-pool",
  2292. .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
  2293. DM_TARGET_IMMUTABLE,
  2294. .version = {1, 10, 0},
  2295. .module = THIS_MODULE,
  2296. .ctr = pool_ctr,
  2297. .dtr = pool_dtr,
  2298. .map = pool_map,
  2299. .postsuspend = pool_postsuspend,
  2300. .preresume = pool_preresume,
  2301. .resume = pool_resume,
  2302. .message = pool_message,
  2303. .status = pool_status,
  2304. .merge = pool_merge,
  2305. .iterate_devices = pool_iterate_devices,
  2306. .io_hints = pool_io_hints,
  2307. };
  2308. /*----------------------------------------------------------------
  2309. * Thin target methods
  2310. *--------------------------------------------------------------*/
  2311. static void thin_dtr(struct dm_target *ti)
  2312. {
  2313. struct thin_c *tc = ti->private;
  2314. mutex_lock(&dm_thin_pool_table.mutex);
  2315. __pool_dec(tc->pool);
  2316. dm_pool_close_thin_device(tc->td);
  2317. dm_put_device(ti, tc->pool_dev);
  2318. if (tc->origin_dev)
  2319. dm_put_device(ti, tc->origin_dev);
  2320. kfree(tc);
  2321. mutex_unlock(&dm_thin_pool_table.mutex);
  2322. }
  2323. /*
  2324. * Thin target parameters:
  2325. *
  2326. * <pool_dev> <dev_id> [origin_dev]
  2327. *
  2328. * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
  2329. * dev_id: the internal device identifier
  2330. * origin_dev: a device external to the pool that should act as the origin
  2331. *
  2332. * If the pool device has discards disabled, they get disabled for the thin
  2333. * device as well.
  2334. */
  2335. static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
  2336. {
  2337. int r;
  2338. struct thin_c *tc;
  2339. struct dm_dev *pool_dev, *origin_dev;
  2340. struct mapped_device *pool_md;
  2341. mutex_lock(&dm_thin_pool_table.mutex);
  2342. if (argc != 2 && argc != 3) {
  2343. ti->error = "Invalid argument count";
  2344. r = -EINVAL;
  2345. goto out_unlock;
  2346. }
  2347. tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
  2348. if (!tc) {
  2349. ti->error = "Out of memory";
  2350. r = -ENOMEM;
  2351. goto out_unlock;
  2352. }
  2353. if (argc == 3) {
  2354. r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
  2355. if (r) {
  2356. ti->error = "Error opening origin device";
  2357. goto bad_origin_dev;
  2358. }
  2359. tc->origin_dev = origin_dev;
  2360. }
  2361. r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
  2362. if (r) {
  2363. ti->error = "Error opening pool device";
  2364. goto bad_pool_dev;
  2365. }
  2366. tc->pool_dev = pool_dev;
  2367. if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
  2368. ti->error = "Invalid device id";
  2369. r = -EINVAL;
  2370. goto bad_common;
  2371. }
  2372. pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
  2373. if (!pool_md) {
  2374. ti->error = "Couldn't get pool mapped device";
  2375. r = -EINVAL;
  2376. goto bad_common;
  2377. }
  2378. tc->pool = __pool_table_lookup(pool_md);
  2379. if (!tc->pool) {
  2380. ti->error = "Couldn't find pool object";
  2381. r = -EINVAL;
  2382. goto bad_pool_lookup;
  2383. }
  2384. __pool_inc(tc->pool);
  2385. if (get_pool_mode(tc->pool) == PM_FAIL) {
  2386. ti->error = "Couldn't open thin device, Pool is in fail mode";
  2387. goto bad_thin_open;
  2388. }
  2389. r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
  2390. if (r) {
  2391. ti->error = "Couldn't open thin internal device";
  2392. goto bad_thin_open;
  2393. }
  2394. r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
  2395. if (r)
  2396. goto bad_thin_open;
  2397. ti->num_flush_bios = 1;
  2398. ti->flush_supported = true;
  2399. ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
  2400. /* In case the pool supports discards, pass them on. */
  2401. ti->discard_zeroes_data_unsupported = true;
  2402. if (tc->pool->pf.discard_enabled) {
  2403. ti->discards_supported = true;
  2404. ti->num_discard_bios = 1;
  2405. /* Discard bios must be split on a block boundary */
  2406. ti->split_discard_bios = true;
  2407. }
  2408. dm_put(pool_md);
  2409. mutex_unlock(&dm_thin_pool_table.mutex);
  2410. return 0;
  2411. bad_thin_open:
  2412. __pool_dec(tc->pool);
  2413. bad_pool_lookup:
  2414. dm_put(pool_md);
  2415. bad_common:
  2416. dm_put_device(ti, tc->pool_dev);
  2417. bad_pool_dev:
  2418. if (tc->origin_dev)
  2419. dm_put_device(ti, tc->origin_dev);
  2420. bad_origin_dev:
  2421. kfree(tc);
  2422. out_unlock:
  2423. mutex_unlock(&dm_thin_pool_table.mutex);
  2424. return r;
  2425. }
  2426. static int thin_map(struct dm_target *ti, struct bio *bio)
  2427. {
  2428. bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
  2429. return thin_bio_map(ti, bio);
  2430. }
  2431. static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
  2432. {
  2433. unsigned long flags;
  2434. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  2435. struct list_head work;
  2436. struct dm_thin_new_mapping *m, *tmp;
  2437. struct pool *pool = h->tc->pool;
  2438. if (h->shared_read_entry) {
  2439. INIT_LIST_HEAD(&work);
  2440. dm_deferred_entry_dec(h->shared_read_entry, &work);
  2441. spin_lock_irqsave(&pool->lock, flags);
  2442. list_for_each_entry_safe(m, tmp, &work, list) {
  2443. list_del(&m->list);
  2444. m->quiesced = true;
  2445. __maybe_add_mapping(m);
  2446. }
  2447. spin_unlock_irqrestore(&pool->lock, flags);
  2448. }
  2449. if (h->all_io_entry) {
  2450. INIT_LIST_HEAD(&work);
  2451. dm_deferred_entry_dec(h->all_io_entry, &work);
  2452. if (!list_empty(&work)) {
  2453. spin_lock_irqsave(&pool->lock, flags);
  2454. list_for_each_entry_safe(m, tmp, &work, list)
  2455. list_add_tail(&m->list, &pool->prepared_discards);
  2456. spin_unlock_irqrestore(&pool->lock, flags);
  2457. wake_worker(pool);
  2458. }
  2459. }
  2460. return 0;
  2461. }
  2462. static void thin_postsuspend(struct dm_target *ti)
  2463. {
  2464. if (dm_noflush_suspending(ti))
  2465. requeue_io((struct thin_c *)ti->private);
  2466. }
  2467. /*
  2468. * <nr mapped sectors> <highest mapped sector>
  2469. */
  2470. static void thin_status(struct dm_target *ti, status_type_t type,
  2471. unsigned status_flags, char *result, unsigned maxlen)
  2472. {
  2473. int r;
  2474. ssize_t sz = 0;
  2475. dm_block_t mapped, highest;
  2476. char buf[BDEVNAME_SIZE];
  2477. struct thin_c *tc = ti->private;
  2478. if (get_pool_mode(tc->pool) == PM_FAIL) {
  2479. DMEMIT("Fail");
  2480. return;
  2481. }
  2482. if (!tc->td)
  2483. DMEMIT("-");
  2484. else {
  2485. switch (type) {
  2486. case STATUSTYPE_INFO:
  2487. r = dm_thin_get_mapped_count(tc->td, &mapped);
  2488. if (r) {
  2489. DMERR("dm_thin_get_mapped_count returned %d", r);
  2490. goto err;
  2491. }
  2492. r = dm_thin_get_highest_mapped_block(tc->td, &highest);
  2493. if (r < 0) {
  2494. DMERR("dm_thin_get_highest_mapped_block returned %d", r);
  2495. goto err;
  2496. }
  2497. DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
  2498. if (r)
  2499. DMEMIT("%llu", ((highest + 1) *
  2500. tc->pool->sectors_per_block) - 1);
  2501. else
  2502. DMEMIT("-");
  2503. break;
  2504. case STATUSTYPE_TABLE:
  2505. DMEMIT("%s %lu",
  2506. format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
  2507. (unsigned long) tc->dev_id);
  2508. if (tc->origin_dev)
  2509. DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
  2510. break;
  2511. }
  2512. }
  2513. return;
  2514. err:
  2515. DMEMIT("Error");
  2516. }
  2517. static int thin_iterate_devices(struct dm_target *ti,
  2518. iterate_devices_callout_fn fn, void *data)
  2519. {
  2520. sector_t blocks;
  2521. struct thin_c *tc = ti->private;
  2522. struct pool *pool = tc->pool;
  2523. /*
  2524. * We can't call dm_pool_get_data_dev_size() since that blocks. So
  2525. * we follow a more convoluted path through to the pool's target.
  2526. */
  2527. if (!pool->ti)
  2528. return 0; /* nothing is bound */
  2529. blocks = pool->ti->len;
  2530. (void) sector_div(blocks, pool->sectors_per_block);
  2531. if (blocks)
  2532. return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
  2533. return 0;
  2534. }
  2535. static struct target_type thin_target = {
  2536. .name = "thin",
  2537. .version = {1, 10, 0},
  2538. .module = THIS_MODULE,
  2539. .ctr = thin_ctr,
  2540. .dtr = thin_dtr,
  2541. .map = thin_map,
  2542. .end_io = thin_endio,
  2543. .postsuspend = thin_postsuspend,
  2544. .status = thin_status,
  2545. .iterate_devices = thin_iterate_devices,
  2546. };
  2547. /*----------------------------------------------------------------*/
  2548. static int __init dm_thin_init(void)
  2549. {
  2550. int r;
  2551. pool_table_init();
  2552. r = dm_register_target(&thin_target);
  2553. if (r)
  2554. return r;
  2555. r = dm_register_target(&pool_target);
  2556. if (r)
  2557. goto bad_pool_target;
  2558. r = -ENOMEM;
  2559. _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
  2560. if (!_new_mapping_cache)
  2561. goto bad_new_mapping_cache;
  2562. return 0;
  2563. bad_new_mapping_cache:
  2564. dm_unregister_target(&pool_target);
  2565. bad_pool_target:
  2566. dm_unregister_target(&thin_target);
  2567. return r;
  2568. }
  2569. static void dm_thin_exit(void)
  2570. {
  2571. dm_unregister_target(&thin_target);
  2572. dm_unregister_target(&pool_target);
  2573. kmem_cache_destroy(_new_mapping_cache);
  2574. }
  2575. module_init(dm_thin_init);
  2576. module_exit(dm_thin_exit);
  2577. MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
  2578. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  2579. MODULE_LICENSE("GPL");