md.c 226 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  58. static struct workqueue_struct *md_wq;
  59. static struct workqueue_struct *md_misc_wq;
  60. static int remove_and_add_spares(struct mddev *mddev,
  61. struct md_rdev *this);
  62. static void mddev_detach(struct mddev *mddev);
  63. /*
  64. * Default number of read corrections we'll attempt on an rdev
  65. * before ejecting it from the array. We divide the read error
  66. * count by 2 for every hour elapsed between read errors.
  67. */
  68. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  69. /*
  70. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  71. * is 1000 KB/sec, so the extra system load does not show up that much.
  72. * Increase it if you want to have more _guaranteed_ speed. Note that
  73. * the RAID driver will use the maximum available bandwidth if the IO
  74. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  75. * speed limit - in case reconstruction slows down your system despite
  76. * idle IO detection.
  77. *
  78. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  79. * or /sys/block/mdX/md/sync_speed_{min,max}
  80. */
  81. static int sysctl_speed_limit_min = 1000;
  82. static int sysctl_speed_limit_max = 200000;
  83. static inline int speed_min(struct mddev *mddev)
  84. {
  85. return mddev->sync_speed_min ?
  86. mddev->sync_speed_min : sysctl_speed_limit_min;
  87. }
  88. static inline int speed_max(struct mddev *mddev)
  89. {
  90. return mddev->sync_speed_max ?
  91. mddev->sync_speed_max : sysctl_speed_limit_max;
  92. }
  93. static struct ctl_table_header *raid_table_header;
  94. static struct ctl_table raid_table[] = {
  95. {
  96. .procname = "speed_limit_min",
  97. .data = &sysctl_speed_limit_min,
  98. .maxlen = sizeof(int),
  99. .mode = S_IRUGO|S_IWUSR,
  100. .proc_handler = proc_dointvec,
  101. },
  102. {
  103. .procname = "speed_limit_max",
  104. .data = &sysctl_speed_limit_max,
  105. .maxlen = sizeof(int),
  106. .mode = S_IRUGO|S_IWUSR,
  107. .proc_handler = proc_dointvec,
  108. },
  109. { }
  110. };
  111. static struct ctl_table raid_dir_table[] = {
  112. {
  113. .procname = "raid",
  114. .maxlen = 0,
  115. .mode = S_IRUGO|S_IXUGO,
  116. .child = raid_table,
  117. },
  118. { }
  119. };
  120. static struct ctl_table raid_root_table[] = {
  121. {
  122. .procname = "dev",
  123. .maxlen = 0,
  124. .mode = 0555,
  125. .child = raid_dir_table,
  126. },
  127. { }
  128. };
  129. static const struct block_device_operations md_fops;
  130. static int start_readonly;
  131. /* bio_clone_mddev
  132. * like bio_clone, but with a local bio set
  133. */
  134. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  135. struct mddev *mddev)
  136. {
  137. struct bio *b;
  138. if (!mddev || !mddev->bio_set)
  139. return bio_alloc(gfp_mask, nr_iovecs);
  140. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  141. if (!b)
  142. return NULL;
  143. return b;
  144. }
  145. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  146. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  147. struct mddev *mddev)
  148. {
  149. if (!mddev || !mddev->bio_set)
  150. return bio_clone(bio, gfp_mask);
  151. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  152. }
  153. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  154. /*
  155. * We have a system wide 'event count' that is incremented
  156. * on any 'interesting' event, and readers of /proc/mdstat
  157. * can use 'poll' or 'select' to find out when the event
  158. * count increases.
  159. *
  160. * Events are:
  161. * start array, stop array, error, add device, remove device,
  162. * start build, activate spare
  163. */
  164. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  165. static atomic_t md_event_count;
  166. void md_new_event(struct mddev *mddev)
  167. {
  168. atomic_inc(&md_event_count);
  169. wake_up(&md_event_waiters);
  170. }
  171. EXPORT_SYMBOL_GPL(md_new_event);
  172. /* Alternate version that can be called from interrupts
  173. * when calling sysfs_notify isn't needed.
  174. */
  175. static void md_new_event_inintr(struct mddev *mddev)
  176. {
  177. atomic_inc(&md_event_count);
  178. wake_up(&md_event_waiters);
  179. }
  180. /*
  181. * Enables to iterate over all existing md arrays
  182. * all_mddevs_lock protects this list.
  183. */
  184. static LIST_HEAD(all_mddevs);
  185. static DEFINE_SPINLOCK(all_mddevs_lock);
  186. /*
  187. * iterates through all used mddevs in the system.
  188. * We take care to grab the all_mddevs_lock whenever navigating
  189. * the list, and to always hold a refcount when unlocked.
  190. * Any code which breaks out of this loop while own
  191. * a reference to the current mddev and must mddev_put it.
  192. */
  193. #define for_each_mddev(_mddev,_tmp) \
  194. \
  195. for (({ spin_lock(&all_mddevs_lock); \
  196. _tmp = all_mddevs.next; \
  197. _mddev = NULL;}); \
  198. ({ if (_tmp != &all_mddevs) \
  199. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  200. spin_unlock(&all_mddevs_lock); \
  201. if (_mddev) mddev_put(_mddev); \
  202. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  203. _tmp != &all_mddevs;}); \
  204. ({ spin_lock(&all_mddevs_lock); \
  205. _tmp = _tmp->next;}) \
  206. )
  207. /* Rather than calling directly into the personality make_request function,
  208. * IO requests come here first so that we can check if the device is
  209. * being suspended pending a reconfiguration.
  210. * We hold a refcount over the call to ->make_request. By the time that
  211. * call has finished, the bio has been linked into some internal structure
  212. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  213. */
  214. static void md_make_request(struct request_queue *q, struct bio *bio)
  215. {
  216. const int rw = bio_data_dir(bio);
  217. struct mddev *mddev = q->queuedata;
  218. unsigned int sectors;
  219. int cpu;
  220. if (mddev == NULL || mddev->pers == NULL
  221. || !mddev->ready) {
  222. bio_io_error(bio);
  223. return;
  224. }
  225. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  226. bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
  227. return;
  228. }
  229. smp_rmb(); /* Ensure implications of 'active' are visible */
  230. rcu_read_lock();
  231. if (mddev->suspended) {
  232. DEFINE_WAIT(__wait);
  233. for (;;) {
  234. prepare_to_wait(&mddev->sb_wait, &__wait,
  235. TASK_UNINTERRUPTIBLE);
  236. if (!mddev->suspended)
  237. break;
  238. rcu_read_unlock();
  239. schedule();
  240. rcu_read_lock();
  241. }
  242. finish_wait(&mddev->sb_wait, &__wait);
  243. }
  244. atomic_inc(&mddev->active_io);
  245. rcu_read_unlock();
  246. /*
  247. * save the sectors now since our bio can
  248. * go away inside make_request
  249. */
  250. sectors = bio_sectors(bio);
  251. mddev->pers->make_request(mddev, bio);
  252. cpu = part_stat_lock();
  253. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  254. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  255. part_stat_unlock();
  256. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  257. wake_up(&mddev->sb_wait);
  258. }
  259. /* mddev_suspend makes sure no new requests are submitted
  260. * to the device, and that any requests that have been submitted
  261. * are completely handled.
  262. * Once mddev_detach() is called and completes, the module will be
  263. * completely unused.
  264. */
  265. void mddev_suspend(struct mddev *mddev)
  266. {
  267. BUG_ON(mddev->suspended);
  268. mddev->suspended = 1;
  269. synchronize_rcu();
  270. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  271. mddev->pers->quiesce(mddev, 1);
  272. del_timer_sync(&mddev->safemode_timer);
  273. }
  274. EXPORT_SYMBOL_GPL(mddev_suspend);
  275. void mddev_resume(struct mddev *mddev)
  276. {
  277. mddev->suspended = 0;
  278. wake_up(&mddev->sb_wait);
  279. mddev->pers->quiesce(mddev, 0);
  280. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  281. md_wakeup_thread(mddev->thread);
  282. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  283. }
  284. EXPORT_SYMBOL_GPL(mddev_resume);
  285. int mddev_congested(struct mddev *mddev, int bits)
  286. {
  287. struct md_personality *pers = mddev->pers;
  288. int ret = 0;
  289. rcu_read_lock();
  290. if (mddev->suspended)
  291. ret = 1;
  292. else if (pers && pers->congested)
  293. ret = pers->congested(mddev, bits);
  294. rcu_read_unlock();
  295. return ret;
  296. }
  297. EXPORT_SYMBOL_GPL(mddev_congested);
  298. static int md_congested(void *data, int bits)
  299. {
  300. struct mddev *mddev = data;
  301. return mddev_congested(mddev, bits);
  302. }
  303. static int md_mergeable_bvec(struct request_queue *q,
  304. struct bvec_merge_data *bvm,
  305. struct bio_vec *biovec)
  306. {
  307. struct mddev *mddev = q->queuedata;
  308. int ret;
  309. rcu_read_lock();
  310. if (mddev->suspended) {
  311. /* Must always allow one vec */
  312. if (bvm->bi_size == 0)
  313. ret = biovec->bv_len;
  314. else
  315. ret = 0;
  316. } else {
  317. struct md_personality *pers = mddev->pers;
  318. if (pers && pers->mergeable_bvec)
  319. ret = pers->mergeable_bvec(mddev, bvm, biovec);
  320. else
  321. ret = biovec->bv_len;
  322. }
  323. rcu_read_unlock();
  324. return ret;
  325. }
  326. /*
  327. * Generic flush handling for md
  328. */
  329. static void md_end_flush(struct bio *bio, int err)
  330. {
  331. struct md_rdev *rdev = bio->bi_private;
  332. struct mddev *mddev = rdev->mddev;
  333. rdev_dec_pending(rdev, mddev);
  334. if (atomic_dec_and_test(&mddev->flush_pending)) {
  335. /* The pre-request flush has finished */
  336. queue_work(md_wq, &mddev->flush_work);
  337. }
  338. bio_put(bio);
  339. }
  340. static void md_submit_flush_data(struct work_struct *ws);
  341. static void submit_flushes(struct work_struct *ws)
  342. {
  343. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  344. struct md_rdev *rdev;
  345. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  346. atomic_set(&mddev->flush_pending, 1);
  347. rcu_read_lock();
  348. rdev_for_each_rcu(rdev, mddev)
  349. if (rdev->raid_disk >= 0 &&
  350. !test_bit(Faulty, &rdev->flags)) {
  351. /* Take two references, one is dropped
  352. * when request finishes, one after
  353. * we reclaim rcu_read_lock
  354. */
  355. struct bio *bi;
  356. atomic_inc(&rdev->nr_pending);
  357. atomic_inc(&rdev->nr_pending);
  358. rcu_read_unlock();
  359. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  360. bi->bi_end_io = md_end_flush;
  361. bi->bi_private = rdev;
  362. bi->bi_bdev = rdev->bdev;
  363. atomic_inc(&mddev->flush_pending);
  364. submit_bio(WRITE_FLUSH, bi);
  365. rcu_read_lock();
  366. rdev_dec_pending(rdev, mddev);
  367. }
  368. rcu_read_unlock();
  369. if (atomic_dec_and_test(&mddev->flush_pending))
  370. queue_work(md_wq, &mddev->flush_work);
  371. }
  372. static void md_submit_flush_data(struct work_struct *ws)
  373. {
  374. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  375. struct bio *bio = mddev->flush_bio;
  376. if (bio->bi_iter.bi_size == 0)
  377. /* an empty barrier - all done */
  378. bio_endio(bio, 0);
  379. else {
  380. bio->bi_rw &= ~REQ_FLUSH;
  381. mddev->pers->make_request(mddev, bio);
  382. }
  383. mddev->flush_bio = NULL;
  384. wake_up(&mddev->sb_wait);
  385. }
  386. void md_flush_request(struct mddev *mddev, struct bio *bio)
  387. {
  388. spin_lock_irq(&mddev->lock);
  389. wait_event_lock_irq(mddev->sb_wait,
  390. !mddev->flush_bio,
  391. mddev->lock);
  392. mddev->flush_bio = bio;
  393. spin_unlock_irq(&mddev->lock);
  394. INIT_WORK(&mddev->flush_work, submit_flushes);
  395. queue_work(md_wq, &mddev->flush_work);
  396. }
  397. EXPORT_SYMBOL(md_flush_request);
  398. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  399. {
  400. struct mddev *mddev = cb->data;
  401. md_wakeup_thread(mddev->thread);
  402. kfree(cb);
  403. }
  404. EXPORT_SYMBOL(md_unplug);
  405. static inline struct mddev *mddev_get(struct mddev *mddev)
  406. {
  407. atomic_inc(&mddev->active);
  408. return mddev;
  409. }
  410. static void mddev_delayed_delete(struct work_struct *ws);
  411. static void mddev_put(struct mddev *mddev)
  412. {
  413. struct bio_set *bs = NULL;
  414. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  415. return;
  416. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  417. mddev->ctime == 0 && !mddev->hold_active) {
  418. /* Array is not configured at all, and not held active,
  419. * so destroy it */
  420. list_del_init(&mddev->all_mddevs);
  421. bs = mddev->bio_set;
  422. mddev->bio_set = NULL;
  423. if (mddev->gendisk) {
  424. /* We did a probe so need to clean up. Call
  425. * queue_work inside the spinlock so that
  426. * flush_workqueue() after mddev_find will
  427. * succeed in waiting for the work to be done.
  428. */
  429. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  430. queue_work(md_misc_wq, &mddev->del_work);
  431. } else
  432. kfree(mddev);
  433. }
  434. spin_unlock(&all_mddevs_lock);
  435. if (bs)
  436. bioset_free(bs);
  437. }
  438. void mddev_init(struct mddev *mddev)
  439. {
  440. mutex_init(&mddev->open_mutex);
  441. mutex_init(&mddev->reconfig_mutex);
  442. mutex_init(&mddev->bitmap_info.mutex);
  443. INIT_LIST_HEAD(&mddev->disks);
  444. INIT_LIST_HEAD(&mddev->all_mddevs);
  445. init_timer(&mddev->safemode_timer);
  446. atomic_set(&mddev->active, 1);
  447. atomic_set(&mddev->openers, 0);
  448. atomic_set(&mddev->active_io, 0);
  449. spin_lock_init(&mddev->lock);
  450. atomic_set(&mddev->flush_pending, 0);
  451. init_waitqueue_head(&mddev->sb_wait);
  452. init_waitqueue_head(&mddev->recovery_wait);
  453. mddev->reshape_position = MaxSector;
  454. mddev->reshape_backwards = 0;
  455. mddev->last_sync_action = "none";
  456. mddev->resync_min = 0;
  457. mddev->resync_max = MaxSector;
  458. mddev->level = LEVEL_NONE;
  459. }
  460. EXPORT_SYMBOL_GPL(mddev_init);
  461. static struct mddev *mddev_find(dev_t unit)
  462. {
  463. struct mddev *mddev, *new = NULL;
  464. if (unit && MAJOR(unit) != MD_MAJOR)
  465. unit &= ~((1<<MdpMinorShift)-1);
  466. retry:
  467. spin_lock(&all_mddevs_lock);
  468. if (unit) {
  469. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  470. if (mddev->unit == unit) {
  471. mddev_get(mddev);
  472. spin_unlock(&all_mddevs_lock);
  473. kfree(new);
  474. return mddev;
  475. }
  476. if (new) {
  477. list_add(&new->all_mddevs, &all_mddevs);
  478. spin_unlock(&all_mddevs_lock);
  479. new->hold_active = UNTIL_IOCTL;
  480. return new;
  481. }
  482. } else if (new) {
  483. /* find an unused unit number */
  484. static int next_minor = 512;
  485. int start = next_minor;
  486. int is_free = 0;
  487. int dev = 0;
  488. while (!is_free) {
  489. dev = MKDEV(MD_MAJOR, next_minor);
  490. next_minor++;
  491. if (next_minor > MINORMASK)
  492. next_minor = 0;
  493. if (next_minor == start) {
  494. /* Oh dear, all in use. */
  495. spin_unlock(&all_mddevs_lock);
  496. kfree(new);
  497. return NULL;
  498. }
  499. is_free = 1;
  500. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  501. if (mddev->unit == dev) {
  502. is_free = 0;
  503. break;
  504. }
  505. }
  506. new->unit = dev;
  507. new->md_minor = MINOR(dev);
  508. new->hold_active = UNTIL_STOP;
  509. list_add(&new->all_mddevs, &all_mddevs);
  510. spin_unlock(&all_mddevs_lock);
  511. return new;
  512. }
  513. spin_unlock(&all_mddevs_lock);
  514. new = kzalloc(sizeof(*new), GFP_KERNEL);
  515. if (!new)
  516. return NULL;
  517. new->unit = unit;
  518. if (MAJOR(unit) == MD_MAJOR)
  519. new->md_minor = MINOR(unit);
  520. else
  521. new->md_minor = MINOR(unit) >> MdpMinorShift;
  522. mddev_init(new);
  523. goto retry;
  524. }
  525. static struct attribute_group md_redundancy_group;
  526. void mddev_unlock(struct mddev *mddev)
  527. {
  528. if (mddev->to_remove) {
  529. /* These cannot be removed under reconfig_mutex as
  530. * an access to the files will try to take reconfig_mutex
  531. * while holding the file unremovable, which leads to
  532. * a deadlock.
  533. * So hold set sysfs_active while the remove in happeing,
  534. * and anything else which might set ->to_remove or my
  535. * otherwise change the sysfs namespace will fail with
  536. * -EBUSY if sysfs_active is still set.
  537. * We set sysfs_active under reconfig_mutex and elsewhere
  538. * test it under the same mutex to ensure its correct value
  539. * is seen.
  540. */
  541. struct attribute_group *to_remove = mddev->to_remove;
  542. mddev->to_remove = NULL;
  543. mddev->sysfs_active = 1;
  544. mutex_unlock(&mddev->reconfig_mutex);
  545. if (mddev->kobj.sd) {
  546. if (to_remove != &md_redundancy_group)
  547. sysfs_remove_group(&mddev->kobj, to_remove);
  548. if (mddev->pers == NULL ||
  549. mddev->pers->sync_request == NULL) {
  550. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  551. if (mddev->sysfs_action)
  552. sysfs_put(mddev->sysfs_action);
  553. mddev->sysfs_action = NULL;
  554. }
  555. }
  556. mddev->sysfs_active = 0;
  557. } else
  558. mutex_unlock(&mddev->reconfig_mutex);
  559. /* As we've dropped the mutex we need a spinlock to
  560. * make sure the thread doesn't disappear
  561. */
  562. spin_lock(&pers_lock);
  563. md_wakeup_thread(mddev->thread);
  564. spin_unlock(&pers_lock);
  565. }
  566. EXPORT_SYMBOL_GPL(mddev_unlock);
  567. static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
  568. {
  569. struct md_rdev *rdev;
  570. rdev_for_each_rcu(rdev, mddev)
  571. if (rdev->desc_nr == nr)
  572. return rdev;
  573. return NULL;
  574. }
  575. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  576. {
  577. struct md_rdev *rdev;
  578. rdev_for_each(rdev, mddev)
  579. if (rdev->bdev->bd_dev == dev)
  580. return rdev;
  581. return NULL;
  582. }
  583. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  584. {
  585. struct md_rdev *rdev;
  586. rdev_for_each_rcu(rdev, mddev)
  587. if (rdev->bdev->bd_dev == dev)
  588. return rdev;
  589. return NULL;
  590. }
  591. static struct md_personality *find_pers(int level, char *clevel)
  592. {
  593. struct md_personality *pers;
  594. list_for_each_entry(pers, &pers_list, list) {
  595. if (level != LEVEL_NONE && pers->level == level)
  596. return pers;
  597. if (strcmp(pers->name, clevel)==0)
  598. return pers;
  599. }
  600. return NULL;
  601. }
  602. /* return the offset of the super block in 512byte sectors */
  603. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  604. {
  605. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  606. return MD_NEW_SIZE_SECTORS(num_sectors);
  607. }
  608. static int alloc_disk_sb(struct md_rdev *rdev)
  609. {
  610. rdev->sb_page = alloc_page(GFP_KERNEL);
  611. if (!rdev->sb_page) {
  612. printk(KERN_ALERT "md: out of memory.\n");
  613. return -ENOMEM;
  614. }
  615. return 0;
  616. }
  617. void md_rdev_clear(struct md_rdev *rdev)
  618. {
  619. if (rdev->sb_page) {
  620. put_page(rdev->sb_page);
  621. rdev->sb_loaded = 0;
  622. rdev->sb_page = NULL;
  623. rdev->sb_start = 0;
  624. rdev->sectors = 0;
  625. }
  626. if (rdev->bb_page) {
  627. put_page(rdev->bb_page);
  628. rdev->bb_page = NULL;
  629. }
  630. kfree(rdev->badblocks.page);
  631. rdev->badblocks.page = NULL;
  632. }
  633. EXPORT_SYMBOL_GPL(md_rdev_clear);
  634. static void super_written(struct bio *bio, int error)
  635. {
  636. struct md_rdev *rdev = bio->bi_private;
  637. struct mddev *mddev = rdev->mddev;
  638. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  639. printk("md: super_written gets error=%d, uptodate=%d\n",
  640. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  641. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  642. md_error(mddev, rdev);
  643. }
  644. if (atomic_dec_and_test(&mddev->pending_writes))
  645. wake_up(&mddev->sb_wait);
  646. bio_put(bio);
  647. }
  648. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  649. sector_t sector, int size, struct page *page)
  650. {
  651. /* write first size bytes of page to sector of rdev
  652. * Increment mddev->pending_writes before returning
  653. * and decrement it on completion, waking up sb_wait
  654. * if zero is reached.
  655. * If an error occurred, call md_error
  656. */
  657. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  658. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  659. bio->bi_iter.bi_sector = sector;
  660. bio_add_page(bio, page, size, 0);
  661. bio->bi_private = rdev;
  662. bio->bi_end_io = super_written;
  663. atomic_inc(&mddev->pending_writes);
  664. submit_bio(WRITE_FLUSH_FUA, bio);
  665. }
  666. void md_super_wait(struct mddev *mddev)
  667. {
  668. /* wait for all superblock writes that were scheduled to complete */
  669. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  670. }
  671. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  672. struct page *page, int rw, bool metadata_op)
  673. {
  674. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  675. int ret;
  676. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  677. rdev->meta_bdev : rdev->bdev;
  678. if (metadata_op)
  679. bio->bi_iter.bi_sector = sector + rdev->sb_start;
  680. else if (rdev->mddev->reshape_position != MaxSector &&
  681. (rdev->mddev->reshape_backwards ==
  682. (sector >= rdev->mddev->reshape_position)))
  683. bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
  684. else
  685. bio->bi_iter.bi_sector = sector + rdev->data_offset;
  686. bio_add_page(bio, page, size, 0);
  687. submit_bio_wait(rw, bio);
  688. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  689. bio_put(bio);
  690. return ret;
  691. }
  692. EXPORT_SYMBOL_GPL(sync_page_io);
  693. static int read_disk_sb(struct md_rdev *rdev, int size)
  694. {
  695. char b[BDEVNAME_SIZE];
  696. if (rdev->sb_loaded)
  697. return 0;
  698. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  699. goto fail;
  700. rdev->sb_loaded = 1;
  701. return 0;
  702. fail:
  703. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  704. bdevname(rdev->bdev,b));
  705. return -EINVAL;
  706. }
  707. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  708. {
  709. return sb1->set_uuid0 == sb2->set_uuid0 &&
  710. sb1->set_uuid1 == sb2->set_uuid1 &&
  711. sb1->set_uuid2 == sb2->set_uuid2 &&
  712. sb1->set_uuid3 == sb2->set_uuid3;
  713. }
  714. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  715. {
  716. int ret;
  717. mdp_super_t *tmp1, *tmp2;
  718. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  719. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  720. if (!tmp1 || !tmp2) {
  721. ret = 0;
  722. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  723. goto abort;
  724. }
  725. *tmp1 = *sb1;
  726. *tmp2 = *sb2;
  727. /*
  728. * nr_disks is not constant
  729. */
  730. tmp1->nr_disks = 0;
  731. tmp2->nr_disks = 0;
  732. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  733. abort:
  734. kfree(tmp1);
  735. kfree(tmp2);
  736. return ret;
  737. }
  738. static u32 md_csum_fold(u32 csum)
  739. {
  740. csum = (csum & 0xffff) + (csum >> 16);
  741. return (csum & 0xffff) + (csum >> 16);
  742. }
  743. static unsigned int calc_sb_csum(mdp_super_t *sb)
  744. {
  745. u64 newcsum = 0;
  746. u32 *sb32 = (u32*)sb;
  747. int i;
  748. unsigned int disk_csum, csum;
  749. disk_csum = sb->sb_csum;
  750. sb->sb_csum = 0;
  751. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  752. newcsum += sb32[i];
  753. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  754. #ifdef CONFIG_ALPHA
  755. /* This used to use csum_partial, which was wrong for several
  756. * reasons including that different results are returned on
  757. * different architectures. It isn't critical that we get exactly
  758. * the same return value as before (we always csum_fold before
  759. * testing, and that removes any differences). However as we
  760. * know that csum_partial always returned a 16bit value on
  761. * alphas, do a fold to maximise conformity to previous behaviour.
  762. */
  763. sb->sb_csum = md_csum_fold(disk_csum);
  764. #else
  765. sb->sb_csum = disk_csum;
  766. #endif
  767. return csum;
  768. }
  769. /*
  770. * Handle superblock details.
  771. * We want to be able to handle multiple superblock formats
  772. * so we have a common interface to them all, and an array of
  773. * different handlers.
  774. * We rely on user-space to write the initial superblock, and support
  775. * reading and updating of superblocks.
  776. * Interface methods are:
  777. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  778. * loads and validates a superblock on dev.
  779. * if refdev != NULL, compare superblocks on both devices
  780. * Return:
  781. * 0 - dev has a superblock that is compatible with refdev
  782. * 1 - dev has a superblock that is compatible and newer than refdev
  783. * so dev should be used as the refdev in future
  784. * -EINVAL superblock incompatible or invalid
  785. * -othererror e.g. -EIO
  786. *
  787. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  788. * Verify that dev is acceptable into mddev.
  789. * The first time, mddev->raid_disks will be 0, and data from
  790. * dev should be merged in. Subsequent calls check that dev
  791. * is new enough. Return 0 or -EINVAL
  792. *
  793. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  794. * Update the superblock for rdev with data in mddev
  795. * This does not write to disc.
  796. *
  797. */
  798. struct super_type {
  799. char *name;
  800. struct module *owner;
  801. int (*load_super)(struct md_rdev *rdev,
  802. struct md_rdev *refdev,
  803. int minor_version);
  804. int (*validate_super)(struct mddev *mddev,
  805. struct md_rdev *rdev);
  806. void (*sync_super)(struct mddev *mddev,
  807. struct md_rdev *rdev);
  808. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  809. sector_t num_sectors);
  810. int (*allow_new_offset)(struct md_rdev *rdev,
  811. unsigned long long new_offset);
  812. };
  813. /*
  814. * Check that the given mddev has no bitmap.
  815. *
  816. * This function is called from the run method of all personalities that do not
  817. * support bitmaps. It prints an error message and returns non-zero if mddev
  818. * has a bitmap. Otherwise, it returns 0.
  819. *
  820. */
  821. int md_check_no_bitmap(struct mddev *mddev)
  822. {
  823. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  824. return 0;
  825. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  826. mdname(mddev), mddev->pers->name);
  827. return 1;
  828. }
  829. EXPORT_SYMBOL(md_check_no_bitmap);
  830. /*
  831. * load_super for 0.90.0
  832. */
  833. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  834. {
  835. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  836. mdp_super_t *sb;
  837. int ret;
  838. /*
  839. * Calculate the position of the superblock (512byte sectors),
  840. * it's at the end of the disk.
  841. *
  842. * It also happens to be a multiple of 4Kb.
  843. */
  844. rdev->sb_start = calc_dev_sboffset(rdev);
  845. ret = read_disk_sb(rdev, MD_SB_BYTES);
  846. if (ret) return ret;
  847. ret = -EINVAL;
  848. bdevname(rdev->bdev, b);
  849. sb = page_address(rdev->sb_page);
  850. if (sb->md_magic != MD_SB_MAGIC) {
  851. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  852. b);
  853. goto abort;
  854. }
  855. if (sb->major_version != 0 ||
  856. sb->minor_version < 90 ||
  857. sb->minor_version > 91) {
  858. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  859. sb->major_version, sb->minor_version,
  860. b);
  861. goto abort;
  862. }
  863. if (sb->raid_disks <= 0)
  864. goto abort;
  865. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  866. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  867. b);
  868. goto abort;
  869. }
  870. rdev->preferred_minor = sb->md_minor;
  871. rdev->data_offset = 0;
  872. rdev->new_data_offset = 0;
  873. rdev->sb_size = MD_SB_BYTES;
  874. rdev->badblocks.shift = -1;
  875. if (sb->level == LEVEL_MULTIPATH)
  876. rdev->desc_nr = -1;
  877. else
  878. rdev->desc_nr = sb->this_disk.number;
  879. if (!refdev) {
  880. ret = 1;
  881. } else {
  882. __u64 ev1, ev2;
  883. mdp_super_t *refsb = page_address(refdev->sb_page);
  884. if (!uuid_equal(refsb, sb)) {
  885. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  886. b, bdevname(refdev->bdev,b2));
  887. goto abort;
  888. }
  889. if (!sb_equal(refsb, sb)) {
  890. printk(KERN_WARNING "md: %s has same UUID"
  891. " but different superblock to %s\n",
  892. b, bdevname(refdev->bdev, b2));
  893. goto abort;
  894. }
  895. ev1 = md_event(sb);
  896. ev2 = md_event(refsb);
  897. if (ev1 > ev2)
  898. ret = 1;
  899. else
  900. ret = 0;
  901. }
  902. rdev->sectors = rdev->sb_start;
  903. /* Limit to 4TB as metadata cannot record more than that.
  904. * (not needed for Linear and RAID0 as metadata doesn't
  905. * record this size)
  906. */
  907. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  908. rdev->sectors = (2ULL << 32) - 2;
  909. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  910. /* "this cannot possibly happen" ... */
  911. ret = -EINVAL;
  912. abort:
  913. return ret;
  914. }
  915. /*
  916. * validate_super for 0.90.0
  917. */
  918. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  919. {
  920. mdp_disk_t *desc;
  921. mdp_super_t *sb = page_address(rdev->sb_page);
  922. __u64 ev1 = md_event(sb);
  923. rdev->raid_disk = -1;
  924. clear_bit(Faulty, &rdev->flags);
  925. clear_bit(In_sync, &rdev->flags);
  926. clear_bit(Bitmap_sync, &rdev->flags);
  927. clear_bit(WriteMostly, &rdev->flags);
  928. if (mddev->raid_disks == 0) {
  929. mddev->major_version = 0;
  930. mddev->minor_version = sb->minor_version;
  931. mddev->patch_version = sb->patch_version;
  932. mddev->external = 0;
  933. mddev->chunk_sectors = sb->chunk_size >> 9;
  934. mddev->ctime = sb->ctime;
  935. mddev->utime = sb->utime;
  936. mddev->level = sb->level;
  937. mddev->clevel[0] = 0;
  938. mddev->layout = sb->layout;
  939. mddev->raid_disks = sb->raid_disks;
  940. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  941. mddev->events = ev1;
  942. mddev->bitmap_info.offset = 0;
  943. mddev->bitmap_info.space = 0;
  944. /* bitmap can use 60 K after the 4K superblocks */
  945. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  946. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  947. mddev->reshape_backwards = 0;
  948. if (mddev->minor_version >= 91) {
  949. mddev->reshape_position = sb->reshape_position;
  950. mddev->delta_disks = sb->delta_disks;
  951. mddev->new_level = sb->new_level;
  952. mddev->new_layout = sb->new_layout;
  953. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  954. if (mddev->delta_disks < 0)
  955. mddev->reshape_backwards = 1;
  956. } else {
  957. mddev->reshape_position = MaxSector;
  958. mddev->delta_disks = 0;
  959. mddev->new_level = mddev->level;
  960. mddev->new_layout = mddev->layout;
  961. mddev->new_chunk_sectors = mddev->chunk_sectors;
  962. }
  963. if (sb->state & (1<<MD_SB_CLEAN))
  964. mddev->recovery_cp = MaxSector;
  965. else {
  966. if (sb->events_hi == sb->cp_events_hi &&
  967. sb->events_lo == sb->cp_events_lo) {
  968. mddev->recovery_cp = sb->recovery_cp;
  969. } else
  970. mddev->recovery_cp = 0;
  971. }
  972. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  973. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  974. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  975. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  976. mddev->max_disks = MD_SB_DISKS;
  977. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  978. mddev->bitmap_info.file == NULL) {
  979. mddev->bitmap_info.offset =
  980. mddev->bitmap_info.default_offset;
  981. mddev->bitmap_info.space =
  982. mddev->bitmap_info.default_space;
  983. }
  984. } else if (mddev->pers == NULL) {
  985. /* Insist on good event counter while assembling, except
  986. * for spares (which don't need an event count) */
  987. ++ev1;
  988. if (sb->disks[rdev->desc_nr].state & (
  989. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  990. if (ev1 < mddev->events)
  991. return -EINVAL;
  992. } else if (mddev->bitmap) {
  993. /* if adding to array with a bitmap, then we can accept an
  994. * older device ... but not too old.
  995. */
  996. if (ev1 < mddev->bitmap->events_cleared)
  997. return 0;
  998. if (ev1 < mddev->events)
  999. set_bit(Bitmap_sync, &rdev->flags);
  1000. } else {
  1001. if (ev1 < mddev->events)
  1002. /* just a hot-add of a new device, leave raid_disk at -1 */
  1003. return 0;
  1004. }
  1005. if (mddev->level != LEVEL_MULTIPATH) {
  1006. desc = sb->disks + rdev->desc_nr;
  1007. if (desc->state & (1<<MD_DISK_FAULTY))
  1008. set_bit(Faulty, &rdev->flags);
  1009. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1010. desc->raid_disk < mddev->raid_disks */) {
  1011. set_bit(In_sync, &rdev->flags);
  1012. rdev->raid_disk = desc->raid_disk;
  1013. rdev->saved_raid_disk = desc->raid_disk;
  1014. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1015. /* active but not in sync implies recovery up to
  1016. * reshape position. We don't know exactly where
  1017. * that is, so set to zero for now */
  1018. if (mddev->minor_version >= 91) {
  1019. rdev->recovery_offset = 0;
  1020. rdev->raid_disk = desc->raid_disk;
  1021. }
  1022. }
  1023. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1024. set_bit(WriteMostly, &rdev->flags);
  1025. } else /* MULTIPATH are always insync */
  1026. set_bit(In_sync, &rdev->flags);
  1027. return 0;
  1028. }
  1029. /*
  1030. * sync_super for 0.90.0
  1031. */
  1032. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1033. {
  1034. mdp_super_t *sb;
  1035. struct md_rdev *rdev2;
  1036. int next_spare = mddev->raid_disks;
  1037. /* make rdev->sb match mddev data..
  1038. *
  1039. * 1/ zero out disks
  1040. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1041. * 3/ any empty disks < next_spare become removed
  1042. *
  1043. * disks[0] gets initialised to REMOVED because
  1044. * we cannot be sure from other fields if it has
  1045. * been initialised or not.
  1046. */
  1047. int i;
  1048. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1049. rdev->sb_size = MD_SB_BYTES;
  1050. sb = page_address(rdev->sb_page);
  1051. memset(sb, 0, sizeof(*sb));
  1052. sb->md_magic = MD_SB_MAGIC;
  1053. sb->major_version = mddev->major_version;
  1054. sb->patch_version = mddev->patch_version;
  1055. sb->gvalid_words = 0; /* ignored */
  1056. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1057. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1058. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1059. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1060. sb->ctime = mddev->ctime;
  1061. sb->level = mddev->level;
  1062. sb->size = mddev->dev_sectors / 2;
  1063. sb->raid_disks = mddev->raid_disks;
  1064. sb->md_minor = mddev->md_minor;
  1065. sb->not_persistent = 0;
  1066. sb->utime = mddev->utime;
  1067. sb->state = 0;
  1068. sb->events_hi = (mddev->events>>32);
  1069. sb->events_lo = (u32)mddev->events;
  1070. if (mddev->reshape_position == MaxSector)
  1071. sb->minor_version = 90;
  1072. else {
  1073. sb->minor_version = 91;
  1074. sb->reshape_position = mddev->reshape_position;
  1075. sb->new_level = mddev->new_level;
  1076. sb->delta_disks = mddev->delta_disks;
  1077. sb->new_layout = mddev->new_layout;
  1078. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1079. }
  1080. mddev->minor_version = sb->minor_version;
  1081. if (mddev->in_sync)
  1082. {
  1083. sb->recovery_cp = mddev->recovery_cp;
  1084. sb->cp_events_hi = (mddev->events>>32);
  1085. sb->cp_events_lo = (u32)mddev->events;
  1086. if (mddev->recovery_cp == MaxSector)
  1087. sb->state = (1<< MD_SB_CLEAN);
  1088. } else
  1089. sb->recovery_cp = 0;
  1090. sb->layout = mddev->layout;
  1091. sb->chunk_size = mddev->chunk_sectors << 9;
  1092. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1093. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1094. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1095. rdev_for_each(rdev2, mddev) {
  1096. mdp_disk_t *d;
  1097. int desc_nr;
  1098. int is_active = test_bit(In_sync, &rdev2->flags);
  1099. if (rdev2->raid_disk >= 0 &&
  1100. sb->minor_version >= 91)
  1101. /* we have nowhere to store the recovery_offset,
  1102. * but if it is not below the reshape_position,
  1103. * we can piggy-back on that.
  1104. */
  1105. is_active = 1;
  1106. if (rdev2->raid_disk < 0 ||
  1107. test_bit(Faulty, &rdev2->flags))
  1108. is_active = 0;
  1109. if (is_active)
  1110. desc_nr = rdev2->raid_disk;
  1111. else
  1112. desc_nr = next_spare++;
  1113. rdev2->desc_nr = desc_nr;
  1114. d = &sb->disks[rdev2->desc_nr];
  1115. nr_disks++;
  1116. d->number = rdev2->desc_nr;
  1117. d->major = MAJOR(rdev2->bdev->bd_dev);
  1118. d->minor = MINOR(rdev2->bdev->bd_dev);
  1119. if (is_active)
  1120. d->raid_disk = rdev2->raid_disk;
  1121. else
  1122. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1123. if (test_bit(Faulty, &rdev2->flags))
  1124. d->state = (1<<MD_DISK_FAULTY);
  1125. else if (is_active) {
  1126. d->state = (1<<MD_DISK_ACTIVE);
  1127. if (test_bit(In_sync, &rdev2->flags))
  1128. d->state |= (1<<MD_DISK_SYNC);
  1129. active++;
  1130. working++;
  1131. } else {
  1132. d->state = 0;
  1133. spare++;
  1134. working++;
  1135. }
  1136. if (test_bit(WriteMostly, &rdev2->flags))
  1137. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1138. }
  1139. /* now set the "removed" and "faulty" bits on any missing devices */
  1140. for (i=0 ; i < mddev->raid_disks ; i++) {
  1141. mdp_disk_t *d = &sb->disks[i];
  1142. if (d->state == 0 && d->number == 0) {
  1143. d->number = i;
  1144. d->raid_disk = i;
  1145. d->state = (1<<MD_DISK_REMOVED);
  1146. d->state |= (1<<MD_DISK_FAULTY);
  1147. failed++;
  1148. }
  1149. }
  1150. sb->nr_disks = nr_disks;
  1151. sb->active_disks = active;
  1152. sb->working_disks = working;
  1153. sb->failed_disks = failed;
  1154. sb->spare_disks = spare;
  1155. sb->this_disk = sb->disks[rdev->desc_nr];
  1156. sb->sb_csum = calc_sb_csum(sb);
  1157. }
  1158. /*
  1159. * rdev_size_change for 0.90.0
  1160. */
  1161. static unsigned long long
  1162. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1163. {
  1164. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1165. return 0; /* component must fit device */
  1166. if (rdev->mddev->bitmap_info.offset)
  1167. return 0; /* can't move bitmap */
  1168. rdev->sb_start = calc_dev_sboffset(rdev);
  1169. if (!num_sectors || num_sectors > rdev->sb_start)
  1170. num_sectors = rdev->sb_start;
  1171. /* Limit to 4TB as metadata cannot record more than that.
  1172. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1173. */
  1174. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1175. num_sectors = (2ULL << 32) - 2;
  1176. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1177. rdev->sb_page);
  1178. md_super_wait(rdev->mddev);
  1179. return num_sectors;
  1180. }
  1181. static int
  1182. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1183. {
  1184. /* non-zero offset changes not possible with v0.90 */
  1185. return new_offset == 0;
  1186. }
  1187. /*
  1188. * version 1 superblock
  1189. */
  1190. static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
  1191. {
  1192. __le32 disk_csum;
  1193. u32 csum;
  1194. unsigned long long newcsum;
  1195. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1196. __le32 *isuper = (__le32*)sb;
  1197. disk_csum = sb->sb_csum;
  1198. sb->sb_csum = 0;
  1199. newcsum = 0;
  1200. for (; size >= 4; size -= 4)
  1201. newcsum += le32_to_cpu(*isuper++);
  1202. if (size == 2)
  1203. newcsum += le16_to_cpu(*(__le16*) isuper);
  1204. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1205. sb->sb_csum = disk_csum;
  1206. return cpu_to_le32(csum);
  1207. }
  1208. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1209. int acknowledged);
  1210. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1211. {
  1212. struct mdp_superblock_1 *sb;
  1213. int ret;
  1214. sector_t sb_start;
  1215. sector_t sectors;
  1216. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1217. int bmask;
  1218. /*
  1219. * Calculate the position of the superblock in 512byte sectors.
  1220. * It is always aligned to a 4K boundary and
  1221. * depeding on minor_version, it can be:
  1222. * 0: At least 8K, but less than 12K, from end of device
  1223. * 1: At start of device
  1224. * 2: 4K from start of device.
  1225. */
  1226. switch(minor_version) {
  1227. case 0:
  1228. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1229. sb_start -= 8*2;
  1230. sb_start &= ~(sector_t)(4*2-1);
  1231. break;
  1232. case 1:
  1233. sb_start = 0;
  1234. break;
  1235. case 2:
  1236. sb_start = 8;
  1237. break;
  1238. default:
  1239. return -EINVAL;
  1240. }
  1241. rdev->sb_start = sb_start;
  1242. /* superblock is rarely larger than 1K, but it can be larger,
  1243. * and it is safe to read 4k, so we do that
  1244. */
  1245. ret = read_disk_sb(rdev, 4096);
  1246. if (ret) return ret;
  1247. sb = page_address(rdev->sb_page);
  1248. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1249. sb->major_version != cpu_to_le32(1) ||
  1250. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1251. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1252. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1253. return -EINVAL;
  1254. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1255. printk("md: invalid superblock checksum on %s\n",
  1256. bdevname(rdev->bdev,b));
  1257. return -EINVAL;
  1258. }
  1259. if (le64_to_cpu(sb->data_size) < 10) {
  1260. printk("md: data_size too small on %s\n",
  1261. bdevname(rdev->bdev,b));
  1262. return -EINVAL;
  1263. }
  1264. if (sb->pad0 ||
  1265. sb->pad3[0] ||
  1266. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1267. /* Some padding is non-zero, might be a new feature */
  1268. return -EINVAL;
  1269. rdev->preferred_minor = 0xffff;
  1270. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1271. rdev->new_data_offset = rdev->data_offset;
  1272. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1273. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1274. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1275. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1276. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1277. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1278. if (rdev->sb_size & bmask)
  1279. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1280. if (minor_version
  1281. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1282. return -EINVAL;
  1283. if (minor_version
  1284. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1285. return -EINVAL;
  1286. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1287. rdev->desc_nr = -1;
  1288. else
  1289. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1290. if (!rdev->bb_page) {
  1291. rdev->bb_page = alloc_page(GFP_KERNEL);
  1292. if (!rdev->bb_page)
  1293. return -ENOMEM;
  1294. }
  1295. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1296. rdev->badblocks.count == 0) {
  1297. /* need to load the bad block list.
  1298. * Currently we limit it to one page.
  1299. */
  1300. s32 offset;
  1301. sector_t bb_sector;
  1302. u64 *bbp;
  1303. int i;
  1304. int sectors = le16_to_cpu(sb->bblog_size);
  1305. if (sectors > (PAGE_SIZE / 512))
  1306. return -EINVAL;
  1307. offset = le32_to_cpu(sb->bblog_offset);
  1308. if (offset == 0)
  1309. return -EINVAL;
  1310. bb_sector = (long long)offset;
  1311. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1312. rdev->bb_page, READ, true))
  1313. return -EIO;
  1314. bbp = (u64 *)page_address(rdev->bb_page);
  1315. rdev->badblocks.shift = sb->bblog_shift;
  1316. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1317. u64 bb = le64_to_cpu(*bbp);
  1318. int count = bb & (0x3ff);
  1319. u64 sector = bb >> 10;
  1320. sector <<= sb->bblog_shift;
  1321. count <<= sb->bblog_shift;
  1322. if (bb + 1 == 0)
  1323. break;
  1324. if (md_set_badblocks(&rdev->badblocks,
  1325. sector, count, 1) == 0)
  1326. return -EINVAL;
  1327. }
  1328. } else if (sb->bblog_offset != 0)
  1329. rdev->badblocks.shift = 0;
  1330. if (!refdev) {
  1331. ret = 1;
  1332. } else {
  1333. __u64 ev1, ev2;
  1334. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1335. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1336. sb->level != refsb->level ||
  1337. sb->layout != refsb->layout ||
  1338. sb->chunksize != refsb->chunksize) {
  1339. printk(KERN_WARNING "md: %s has strangely different"
  1340. " superblock to %s\n",
  1341. bdevname(rdev->bdev,b),
  1342. bdevname(refdev->bdev,b2));
  1343. return -EINVAL;
  1344. }
  1345. ev1 = le64_to_cpu(sb->events);
  1346. ev2 = le64_to_cpu(refsb->events);
  1347. if (ev1 > ev2)
  1348. ret = 1;
  1349. else
  1350. ret = 0;
  1351. }
  1352. if (minor_version) {
  1353. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1354. sectors -= rdev->data_offset;
  1355. } else
  1356. sectors = rdev->sb_start;
  1357. if (sectors < le64_to_cpu(sb->data_size))
  1358. return -EINVAL;
  1359. rdev->sectors = le64_to_cpu(sb->data_size);
  1360. return ret;
  1361. }
  1362. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1363. {
  1364. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1365. __u64 ev1 = le64_to_cpu(sb->events);
  1366. rdev->raid_disk = -1;
  1367. clear_bit(Faulty, &rdev->flags);
  1368. clear_bit(In_sync, &rdev->flags);
  1369. clear_bit(Bitmap_sync, &rdev->flags);
  1370. clear_bit(WriteMostly, &rdev->flags);
  1371. if (mddev->raid_disks == 0) {
  1372. mddev->major_version = 1;
  1373. mddev->patch_version = 0;
  1374. mddev->external = 0;
  1375. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1376. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1377. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1378. mddev->level = le32_to_cpu(sb->level);
  1379. mddev->clevel[0] = 0;
  1380. mddev->layout = le32_to_cpu(sb->layout);
  1381. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1382. mddev->dev_sectors = le64_to_cpu(sb->size);
  1383. mddev->events = ev1;
  1384. mddev->bitmap_info.offset = 0;
  1385. mddev->bitmap_info.space = 0;
  1386. /* Default location for bitmap is 1K after superblock
  1387. * using 3K - total of 4K
  1388. */
  1389. mddev->bitmap_info.default_offset = 1024 >> 9;
  1390. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1391. mddev->reshape_backwards = 0;
  1392. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1393. memcpy(mddev->uuid, sb->set_uuid, 16);
  1394. mddev->max_disks = (4096-256)/2;
  1395. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1396. mddev->bitmap_info.file == NULL) {
  1397. mddev->bitmap_info.offset =
  1398. (__s32)le32_to_cpu(sb->bitmap_offset);
  1399. /* Metadata doesn't record how much space is available.
  1400. * For 1.0, we assume we can use up to the superblock
  1401. * if before, else to 4K beyond superblock.
  1402. * For others, assume no change is possible.
  1403. */
  1404. if (mddev->minor_version > 0)
  1405. mddev->bitmap_info.space = 0;
  1406. else if (mddev->bitmap_info.offset > 0)
  1407. mddev->bitmap_info.space =
  1408. 8 - mddev->bitmap_info.offset;
  1409. else
  1410. mddev->bitmap_info.space =
  1411. -mddev->bitmap_info.offset;
  1412. }
  1413. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1414. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1415. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1416. mddev->new_level = le32_to_cpu(sb->new_level);
  1417. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1418. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1419. if (mddev->delta_disks < 0 ||
  1420. (mddev->delta_disks == 0 &&
  1421. (le32_to_cpu(sb->feature_map)
  1422. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1423. mddev->reshape_backwards = 1;
  1424. } else {
  1425. mddev->reshape_position = MaxSector;
  1426. mddev->delta_disks = 0;
  1427. mddev->new_level = mddev->level;
  1428. mddev->new_layout = mddev->layout;
  1429. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1430. }
  1431. } else if (mddev->pers == NULL) {
  1432. /* Insist of good event counter while assembling, except for
  1433. * spares (which don't need an event count) */
  1434. ++ev1;
  1435. if (rdev->desc_nr >= 0 &&
  1436. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1437. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1438. if (ev1 < mddev->events)
  1439. return -EINVAL;
  1440. } else if (mddev->bitmap) {
  1441. /* If adding to array with a bitmap, then we can accept an
  1442. * older device, but not too old.
  1443. */
  1444. if (ev1 < mddev->bitmap->events_cleared)
  1445. return 0;
  1446. if (ev1 < mddev->events)
  1447. set_bit(Bitmap_sync, &rdev->flags);
  1448. } else {
  1449. if (ev1 < mddev->events)
  1450. /* just a hot-add of a new device, leave raid_disk at -1 */
  1451. return 0;
  1452. }
  1453. if (mddev->level != LEVEL_MULTIPATH) {
  1454. int role;
  1455. if (rdev->desc_nr < 0 ||
  1456. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1457. role = 0xffff;
  1458. rdev->desc_nr = -1;
  1459. } else
  1460. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1461. switch(role) {
  1462. case 0xffff: /* spare */
  1463. break;
  1464. case 0xfffe: /* faulty */
  1465. set_bit(Faulty, &rdev->flags);
  1466. break;
  1467. default:
  1468. rdev->saved_raid_disk = role;
  1469. if ((le32_to_cpu(sb->feature_map) &
  1470. MD_FEATURE_RECOVERY_OFFSET)) {
  1471. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1472. if (!(le32_to_cpu(sb->feature_map) &
  1473. MD_FEATURE_RECOVERY_BITMAP))
  1474. rdev->saved_raid_disk = -1;
  1475. } else
  1476. set_bit(In_sync, &rdev->flags);
  1477. rdev->raid_disk = role;
  1478. break;
  1479. }
  1480. if (sb->devflags & WriteMostly1)
  1481. set_bit(WriteMostly, &rdev->flags);
  1482. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1483. set_bit(Replacement, &rdev->flags);
  1484. } else /* MULTIPATH are always insync */
  1485. set_bit(In_sync, &rdev->flags);
  1486. return 0;
  1487. }
  1488. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1489. {
  1490. struct mdp_superblock_1 *sb;
  1491. struct md_rdev *rdev2;
  1492. int max_dev, i;
  1493. /* make rdev->sb match mddev and rdev data. */
  1494. sb = page_address(rdev->sb_page);
  1495. sb->feature_map = 0;
  1496. sb->pad0 = 0;
  1497. sb->recovery_offset = cpu_to_le64(0);
  1498. memset(sb->pad3, 0, sizeof(sb->pad3));
  1499. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1500. sb->events = cpu_to_le64(mddev->events);
  1501. if (mddev->in_sync)
  1502. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1503. else
  1504. sb->resync_offset = cpu_to_le64(0);
  1505. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1506. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1507. sb->size = cpu_to_le64(mddev->dev_sectors);
  1508. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1509. sb->level = cpu_to_le32(mddev->level);
  1510. sb->layout = cpu_to_le32(mddev->layout);
  1511. if (test_bit(WriteMostly, &rdev->flags))
  1512. sb->devflags |= WriteMostly1;
  1513. else
  1514. sb->devflags &= ~WriteMostly1;
  1515. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1516. sb->data_size = cpu_to_le64(rdev->sectors);
  1517. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1518. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1519. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1520. }
  1521. if (rdev->raid_disk >= 0 &&
  1522. !test_bit(In_sync, &rdev->flags)) {
  1523. sb->feature_map |=
  1524. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1525. sb->recovery_offset =
  1526. cpu_to_le64(rdev->recovery_offset);
  1527. if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
  1528. sb->feature_map |=
  1529. cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
  1530. }
  1531. if (test_bit(Replacement, &rdev->flags))
  1532. sb->feature_map |=
  1533. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1534. if (mddev->reshape_position != MaxSector) {
  1535. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1536. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1537. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1538. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1539. sb->new_level = cpu_to_le32(mddev->new_level);
  1540. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1541. if (mddev->delta_disks == 0 &&
  1542. mddev->reshape_backwards)
  1543. sb->feature_map
  1544. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1545. if (rdev->new_data_offset != rdev->data_offset) {
  1546. sb->feature_map
  1547. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1548. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1549. - rdev->data_offset));
  1550. }
  1551. }
  1552. if (rdev->badblocks.count == 0)
  1553. /* Nothing to do for bad blocks*/ ;
  1554. else if (sb->bblog_offset == 0)
  1555. /* Cannot record bad blocks on this device */
  1556. md_error(mddev, rdev);
  1557. else {
  1558. struct badblocks *bb = &rdev->badblocks;
  1559. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1560. u64 *p = bb->page;
  1561. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1562. if (bb->changed) {
  1563. unsigned seq;
  1564. retry:
  1565. seq = read_seqbegin(&bb->lock);
  1566. memset(bbp, 0xff, PAGE_SIZE);
  1567. for (i = 0 ; i < bb->count ; i++) {
  1568. u64 internal_bb = p[i];
  1569. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1570. | BB_LEN(internal_bb));
  1571. bbp[i] = cpu_to_le64(store_bb);
  1572. }
  1573. bb->changed = 0;
  1574. if (read_seqretry(&bb->lock, seq))
  1575. goto retry;
  1576. bb->sector = (rdev->sb_start +
  1577. (int)le32_to_cpu(sb->bblog_offset));
  1578. bb->size = le16_to_cpu(sb->bblog_size);
  1579. }
  1580. }
  1581. max_dev = 0;
  1582. rdev_for_each(rdev2, mddev)
  1583. if (rdev2->desc_nr+1 > max_dev)
  1584. max_dev = rdev2->desc_nr+1;
  1585. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1586. int bmask;
  1587. sb->max_dev = cpu_to_le32(max_dev);
  1588. rdev->sb_size = max_dev * 2 + 256;
  1589. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1590. if (rdev->sb_size & bmask)
  1591. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1592. } else
  1593. max_dev = le32_to_cpu(sb->max_dev);
  1594. for (i=0; i<max_dev;i++)
  1595. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1596. rdev_for_each(rdev2, mddev) {
  1597. i = rdev2->desc_nr;
  1598. if (test_bit(Faulty, &rdev2->flags))
  1599. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1600. else if (test_bit(In_sync, &rdev2->flags))
  1601. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1602. else if (rdev2->raid_disk >= 0)
  1603. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1604. else
  1605. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1606. }
  1607. sb->sb_csum = calc_sb_1_csum(sb);
  1608. }
  1609. static unsigned long long
  1610. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1611. {
  1612. struct mdp_superblock_1 *sb;
  1613. sector_t max_sectors;
  1614. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1615. return 0; /* component must fit device */
  1616. if (rdev->data_offset != rdev->new_data_offset)
  1617. return 0; /* too confusing */
  1618. if (rdev->sb_start < rdev->data_offset) {
  1619. /* minor versions 1 and 2; superblock before data */
  1620. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1621. max_sectors -= rdev->data_offset;
  1622. if (!num_sectors || num_sectors > max_sectors)
  1623. num_sectors = max_sectors;
  1624. } else if (rdev->mddev->bitmap_info.offset) {
  1625. /* minor version 0 with bitmap we can't move */
  1626. return 0;
  1627. } else {
  1628. /* minor version 0; superblock after data */
  1629. sector_t sb_start;
  1630. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1631. sb_start &= ~(sector_t)(4*2 - 1);
  1632. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1633. if (!num_sectors || num_sectors > max_sectors)
  1634. num_sectors = max_sectors;
  1635. rdev->sb_start = sb_start;
  1636. }
  1637. sb = page_address(rdev->sb_page);
  1638. sb->data_size = cpu_to_le64(num_sectors);
  1639. sb->super_offset = rdev->sb_start;
  1640. sb->sb_csum = calc_sb_1_csum(sb);
  1641. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1642. rdev->sb_page);
  1643. md_super_wait(rdev->mddev);
  1644. return num_sectors;
  1645. }
  1646. static int
  1647. super_1_allow_new_offset(struct md_rdev *rdev,
  1648. unsigned long long new_offset)
  1649. {
  1650. /* All necessary checks on new >= old have been done */
  1651. struct bitmap *bitmap;
  1652. if (new_offset >= rdev->data_offset)
  1653. return 1;
  1654. /* with 1.0 metadata, there is no metadata to tread on
  1655. * so we can always move back */
  1656. if (rdev->mddev->minor_version == 0)
  1657. return 1;
  1658. /* otherwise we must be sure not to step on
  1659. * any metadata, so stay:
  1660. * 36K beyond start of superblock
  1661. * beyond end of badblocks
  1662. * beyond write-intent bitmap
  1663. */
  1664. if (rdev->sb_start + (32+4)*2 > new_offset)
  1665. return 0;
  1666. bitmap = rdev->mddev->bitmap;
  1667. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1668. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1669. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1670. return 0;
  1671. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1672. return 0;
  1673. return 1;
  1674. }
  1675. static struct super_type super_types[] = {
  1676. [0] = {
  1677. .name = "0.90.0",
  1678. .owner = THIS_MODULE,
  1679. .load_super = super_90_load,
  1680. .validate_super = super_90_validate,
  1681. .sync_super = super_90_sync,
  1682. .rdev_size_change = super_90_rdev_size_change,
  1683. .allow_new_offset = super_90_allow_new_offset,
  1684. },
  1685. [1] = {
  1686. .name = "md-1",
  1687. .owner = THIS_MODULE,
  1688. .load_super = super_1_load,
  1689. .validate_super = super_1_validate,
  1690. .sync_super = super_1_sync,
  1691. .rdev_size_change = super_1_rdev_size_change,
  1692. .allow_new_offset = super_1_allow_new_offset,
  1693. },
  1694. };
  1695. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1696. {
  1697. if (mddev->sync_super) {
  1698. mddev->sync_super(mddev, rdev);
  1699. return;
  1700. }
  1701. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1702. super_types[mddev->major_version].sync_super(mddev, rdev);
  1703. }
  1704. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1705. {
  1706. struct md_rdev *rdev, *rdev2;
  1707. rcu_read_lock();
  1708. rdev_for_each_rcu(rdev, mddev1)
  1709. rdev_for_each_rcu(rdev2, mddev2)
  1710. if (rdev->bdev->bd_contains ==
  1711. rdev2->bdev->bd_contains) {
  1712. rcu_read_unlock();
  1713. return 1;
  1714. }
  1715. rcu_read_unlock();
  1716. return 0;
  1717. }
  1718. static LIST_HEAD(pending_raid_disks);
  1719. /*
  1720. * Try to register data integrity profile for an mddev
  1721. *
  1722. * This is called when an array is started and after a disk has been kicked
  1723. * from the array. It only succeeds if all working and active component devices
  1724. * are integrity capable with matching profiles.
  1725. */
  1726. int md_integrity_register(struct mddev *mddev)
  1727. {
  1728. struct md_rdev *rdev, *reference = NULL;
  1729. if (list_empty(&mddev->disks))
  1730. return 0; /* nothing to do */
  1731. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1732. return 0; /* shouldn't register, or already is */
  1733. rdev_for_each(rdev, mddev) {
  1734. /* skip spares and non-functional disks */
  1735. if (test_bit(Faulty, &rdev->flags))
  1736. continue;
  1737. if (rdev->raid_disk < 0)
  1738. continue;
  1739. if (!reference) {
  1740. /* Use the first rdev as the reference */
  1741. reference = rdev;
  1742. continue;
  1743. }
  1744. /* does this rdev's profile match the reference profile? */
  1745. if (blk_integrity_compare(reference->bdev->bd_disk,
  1746. rdev->bdev->bd_disk) < 0)
  1747. return -EINVAL;
  1748. }
  1749. if (!reference || !bdev_get_integrity(reference->bdev))
  1750. return 0;
  1751. /*
  1752. * All component devices are integrity capable and have matching
  1753. * profiles, register the common profile for the md device.
  1754. */
  1755. if (blk_integrity_register(mddev->gendisk,
  1756. bdev_get_integrity(reference->bdev)) != 0) {
  1757. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1758. mdname(mddev));
  1759. return -EINVAL;
  1760. }
  1761. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1762. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1763. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1764. mdname(mddev));
  1765. return -EINVAL;
  1766. }
  1767. return 0;
  1768. }
  1769. EXPORT_SYMBOL(md_integrity_register);
  1770. /* Disable data integrity if non-capable/non-matching disk is being added */
  1771. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1772. {
  1773. struct blk_integrity *bi_rdev;
  1774. struct blk_integrity *bi_mddev;
  1775. if (!mddev->gendisk)
  1776. return;
  1777. bi_rdev = bdev_get_integrity(rdev->bdev);
  1778. bi_mddev = blk_get_integrity(mddev->gendisk);
  1779. if (!bi_mddev) /* nothing to do */
  1780. return;
  1781. if (rdev->raid_disk < 0) /* skip spares */
  1782. return;
  1783. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1784. rdev->bdev->bd_disk) >= 0)
  1785. return;
  1786. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1787. blk_integrity_unregister(mddev->gendisk);
  1788. }
  1789. EXPORT_SYMBOL(md_integrity_add_rdev);
  1790. static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
  1791. {
  1792. char b[BDEVNAME_SIZE];
  1793. struct kobject *ko;
  1794. char *s;
  1795. int err;
  1796. /* prevent duplicates */
  1797. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1798. return -EEXIST;
  1799. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1800. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1801. rdev->sectors < mddev->dev_sectors)) {
  1802. if (mddev->pers) {
  1803. /* Cannot change size, so fail
  1804. * If mddev->level <= 0, then we don't care
  1805. * about aligning sizes (e.g. linear)
  1806. */
  1807. if (mddev->level > 0)
  1808. return -ENOSPC;
  1809. } else
  1810. mddev->dev_sectors = rdev->sectors;
  1811. }
  1812. /* Verify rdev->desc_nr is unique.
  1813. * If it is -1, assign a free number, else
  1814. * check number is not in use
  1815. */
  1816. rcu_read_lock();
  1817. if (rdev->desc_nr < 0) {
  1818. int choice = 0;
  1819. if (mddev->pers)
  1820. choice = mddev->raid_disks;
  1821. while (find_rdev_nr_rcu(mddev, choice))
  1822. choice++;
  1823. rdev->desc_nr = choice;
  1824. } else {
  1825. if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
  1826. rcu_read_unlock();
  1827. return -EBUSY;
  1828. }
  1829. }
  1830. rcu_read_unlock();
  1831. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1832. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1833. mdname(mddev), mddev->max_disks);
  1834. return -EBUSY;
  1835. }
  1836. bdevname(rdev->bdev,b);
  1837. while ( (s=strchr(b, '/')) != NULL)
  1838. *s = '!';
  1839. rdev->mddev = mddev;
  1840. printk(KERN_INFO "md: bind<%s>\n", b);
  1841. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1842. goto fail;
  1843. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1844. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1845. /* failure here is OK */;
  1846. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1847. list_add_rcu(&rdev->same_set, &mddev->disks);
  1848. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1849. /* May as well allow recovery to be retried once */
  1850. mddev->recovery_disabled++;
  1851. return 0;
  1852. fail:
  1853. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1854. b, mdname(mddev));
  1855. return err;
  1856. }
  1857. static void md_delayed_delete(struct work_struct *ws)
  1858. {
  1859. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1860. kobject_del(&rdev->kobj);
  1861. kobject_put(&rdev->kobj);
  1862. }
  1863. static void unbind_rdev_from_array(struct md_rdev *rdev)
  1864. {
  1865. char b[BDEVNAME_SIZE];
  1866. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1867. list_del_rcu(&rdev->same_set);
  1868. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1869. rdev->mddev = NULL;
  1870. sysfs_remove_link(&rdev->kobj, "block");
  1871. sysfs_put(rdev->sysfs_state);
  1872. rdev->sysfs_state = NULL;
  1873. rdev->badblocks.count = 0;
  1874. /* We need to delay this, otherwise we can deadlock when
  1875. * writing to 'remove' to "dev/state". We also need
  1876. * to delay it due to rcu usage.
  1877. */
  1878. synchronize_rcu();
  1879. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1880. kobject_get(&rdev->kobj);
  1881. queue_work(md_misc_wq, &rdev->del_work);
  1882. }
  1883. /*
  1884. * prevent the device from being mounted, repartitioned or
  1885. * otherwise reused by a RAID array (or any other kernel
  1886. * subsystem), by bd_claiming the device.
  1887. */
  1888. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1889. {
  1890. int err = 0;
  1891. struct block_device *bdev;
  1892. char b[BDEVNAME_SIZE];
  1893. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1894. shared ? (struct md_rdev *)lock_rdev : rdev);
  1895. if (IS_ERR(bdev)) {
  1896. printk(KERN_ERR "md: could not open %s.\n",
  1897. __bdevname(dev, b));
  1898. return PTR_ERR(bdev);
  1899. }
  1900. rdev->bdev = bdev;
  1901. return err;
  1902. }
  1903. static void unlock_rdev(struct md_rdev *rdev)
  1904. {
  1905. struct block_device *bdev = rdev->bdev;
  1906. rdev->bdev = NULL;
  1907. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1908. }
  1909. void md_autodetect_dev(dev_t dev);
  1910. static void export_rdev(struct md_rdev *rdev)
  1911. {
  1912. char b[BDEVNAME_SIZE];
  1913. printk(KERN_INFO "md: export_rdev(%s)\n",
  1914. bdevname(rdev->bdev,b));
  1915. md_rdev_clear(rdev);
  1916. #ifndef MODULE
  1917. if (test_bit(AutoDetected, &rdev->flags))
  1918. md_autodetect_dev(rdev->bdev->bd_dev);
  1919. #endif
  1920. unlock_rdev(rdev);
  1921. kobject_put(&rdev->kobj);
  1922. }
  1923. static void kick_rdev_from_array(struct md_rdev *rdev)
  1924. {
  1925. unbind_rdev_from_array(rdev);
  1926. export_rdev(rdev);
  1927. }
  1928. static void export_array(struct mddev *mddev)
  1929. {
  1930. struct md_rdev *rdev;
  1931. while (!list_empty(&mddev->disks)) {
  1932. rdev = list_first_entry(&mddev->disks, struct md_rdev,
  1933. same_set);
  1934. kick_rdev_from_array(rdev);
  1935. }
  1936. mddev->raid_disks = 0;
  1937. mddev->major_version = 0;
  1938. }
  1939. static void sync_sbs(struct mddev *mddev, int nospares)
  1940. {
  1941. /* Update each superblock (in-memory image), but
  1942. * if we are allowed to, skip spares which already
  1943. * have the right event counter, or have one earlier
  1944. * (which would mean they aren't being marked as dirty
  1945. * with the rest of the array)
  1946. */
  1947. struct md_rdev *rdev;
  1948. rdev_for_each(rdev, mddev) {
  1949. if (rdev->sb_events == mddev->events ||
  1950. (nospares &&
  1951. rdev->raid_disk < 0 &&
  1952. rdev->sb_events+1 == mddev->events)) {
  1953. /* Don't update this superblock */
  1954. rdev->sb_loaded = 2;
  1955. } else {
  1956. sync_super(mddev, rdev);
  1957. rdev->sb_loaded = 1;
  1958. }
  1959. }
  1960. }
  1961. static void md_update_sb(struct mddev *mddev, int force_change)
  1962. {
  1963. struct md_rdev *rdev;
  1964. int sync_req;
  1965. int nospares = 0;
  1966. int any_badblocks_changed = 0;
  1967. if (mddev->ro) {
  1968. if (force_change)
  1969. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1970. return;
  1971. }
  1972. repeat:
  1973. /* First make sure individual recovery_offsets are correct */
  1974. rdev_for_each(rdev, mddev) {
  1975. if (rdev->raid_disk >= 0 &&
  1976. mddev->delta_disks >= 0 &&
  1977. !test_bit(In_sync, &rdev->flags) &&
  1978. mddev->curr_resync_completed > rdev->recovery_offset)
  1979. rdev->recovery_offset = mddev->curr_resync_completed;
  1980. }
  1981. if (!mddev->persistent) {
  1982. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  1983. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  1984. if (!mddev->external) {
  1985. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1986. rdev_for_each(rdev, mddev) {
  1987. if (rdev->badblocks.changed) {
  1988. rdev->badblocks.changed = 0;
  1989. md_ack_all_badblocks(&rdev->badblocks);
  1990. md_error(mddev, rdev);
  1991. }
  1992. clear_bit(Blocked, &rdev->flags);
  1993. clear_bit(BlockedBadBlocks, &rdev->flags);
  1994. wake_up(&rdev->blocked_wait);
  1995. }
  1996. }
  1997. wake_up(&mddev->sb_wait);
  1998. return;
  1999. }
  2000. spin_lock(&mddev->lock);
  2001. mddev->utime = get_seconds();
  2002. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2003. force_change = 1;
  2004. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2005. /* just a clean<-> dirty transition, possibly leave spares alone,
  2006. * though if events isn't the right even/odd, we will have to do
  2007. * spares after all
  2008. */
  2009. nospares = 1;
  2010. if (force_change)
  2011. nospares = 0;
  2012. if (mddev->degraded)
  2013. /* If the array is degraded, then skipping spares is both
  2014. * dangerous and fairly pointless.
  2015. * Dangerous because a device that was removed from the array
  2016. * might have a event_count that still looks up-to-date,
  2017. * so it can be re-added without a resync.
  2018. * Pointless because if there are any spares to skip,
  2019. * then a recovery will happen and soon that array won't
  2020. * be degraded any more and the spare can go back to sleep then.
  2021. */
  2022. nospares = 0;
  2023. sync_req = mddev->in_sync;
  2024. /* If this is just a dirty<->clean transition, and the array is clean
  2025. * and 'events' is odd, we can roll back to the previous clean state */
  2026. if (nospares
  2027. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2028. && mddev->can_decrease_events
  2029. && mddev->events != 1) {
  2030. mddev->events--;
  2031. mddev->can_decrease_events = 0;
  2032. } else {
  2033. /* otherwise we have to go forward and ... */
  2034. mddev->events ++;
  2035. mddev->can_decrease_events = nospares;
  2036. }
  2037. /*
  2038. * This 64-bit counter should never wrap.
  2039. * Either we are in around ~1 trillion A.C., assuming
  2040. * 1 reboot per second, or we have a bug...
  2041. */
  2042. WARN_ON(mddev->events == 0);
  2043. rdev_for_each(rdev, mddev) {
  2044. if (rdev->badblocks.changed)
  2045. any_badblocks_changed++;
  2046. if (test_bit(Faulty, &rdev->flags))
  2047. set_bit(FaultRecorded, &rdev->flags);
  2048. }
  2049. sync_sbs(mddev, nospares);
  2050. spin_unlock(&mddev->lock);
  2051. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2052. mdname(mddev), mddev->in_sync);
  2053. bitmap_update_sb(mddev->bitmap);
  2054. rdev_for_each(rdev, mddev) {
  2055. char b[BDEVNAME_SIZE];
  2056. if (rdev->sb_loaded != 1)
  2057. continue; /* no noise on spare devices */
  2058. if (!test_bit(Faulty, &rdev->flags)) {
  2059. md_super_write(mddev,rdev,
  2060. rdev->sb_start, rdev->sb_size,
  2061. rdev->sb_page);
  2062. pr_debug("md: (write) %s's sb offset: %llu\n",
  2063. bdevname(rdev->bdev, b),
  2064. (unsigned long long)rdev->sb_start);
  2065. rdev->sb_events = mddev->events;
  2066. if (rdev->badblocks.size) {
  2067. md_super_write(mddev, rdev,
  2068. rdev->badblocks.sector,
  2069. rdev->badblocks.size << 9,
  2070. rdev->bb_page);
  2071. rdev->badblocks.size = 0;
  2072. }
  2073. } else
  2074. pr_debug("md: %s (skipping faulty)\n",
  2075. bdevname(rdev->bdev, b));
  2076. if (mddev->level == LEVEL_MULTIPATH)
  2077. /* only need to write one superblock... */
  2078. break;
  2079. }
  2080. md_super_wait(mddev);
  2081. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2082. spin_lock(&mddev->lock);
  2083. if (mddev->in_sync != sync_req ||
  2084. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2085. /* have to write it out again */
  2086. spin_unlock(&mddev->lock);
  2087. goto repeat;
  2088. }
  2089. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2090. spin_unlock(&mddev->lock);
  2091. wake_up(&mddev->sb_wait);
  2092. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2093. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2094. rdev_for_each(rdev, mddev) {
  2095. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2096. clear_bit(Blocked, &rdev->flags);
  2097. if (any_badblocks_changed)
  2098. md_ack_all_badblocks(&rdev->badblocks);
  2099. clear_bit(BlockedBadBlocks, &rdev->flags);
  2100. wake_up(&rdev->blocked_wait);
  2101. }
  2102. }
  2103. /* words written to sysfs files may, or may not, be \n terminated.
  2104. * We want to accept with case. For this we use cmd_match.
  2105. */
  2106. static int cmd_match(const char *cmd, const char *str)
  2107. {
  2108. /* See if cmd, written into a sysfs file, matches
  2109. * str. They must either be the same, or cmd can
  2110. * have a trailing newline
  2111. */
  2112. while (*cmd && *str && *cmd == *str) {
  2113. cmd++;
  2114. str++;
  2115. }
  2116. if (*cmd == '\n')
  2117. cmd++;
  2118. if (*str || *cmd)
  2119. return 0;
  2120. return 1;
  2121. }
  2122. struct rdev_sysfs_entry {
  2123. struct attribute attr;
  2124. ssize_t (*show)(struct md_rdev *, char *);
  2125. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2126. };
  2127. static ssize_t
  2128. state_show(struct md_rdev *rdev, char *page)
  2129. {
  2130. char *sep = "";
  2131. size_t len = 0;
  2132. unsigned long flags = ACCESS_ONCE(rdev->flags);
  2133. if (test_bit(Faulty, &flags) ||
  2134. rdev->badblocks.unacked_exist) {
  2135. len+= sprintf(page+len, "%sfaulty",sep);
  2136. sep = ",";
  2137. }
  2138. if (test_bit(In_sync, &flags)) {
  2139. len += sprintf(page+len, "%sin_sync",sep);
  2140. sep = ",";
  2141. }
  2142. if (test_bit(WriteMostly, &flags)) {
  2143. len += sprintf(page+len, "%swrite_mostly",sep);
  2144. sep = ",";
  2145. }
  2146. if (test_bit(Blocked, &flags) ||
  2147. (rdev->badblocks.unacked_exist
  2148. && !test_bit(Faulty, &flags))) {
  2149. len += sprintf(page+len, "%sblocked", sep);
  2150. sep = ",";
  2151. }
  2152. if (!test_bit(Faulty, &flags) &&
  2153. !test_bit(In_sync, &flags)) {
  2154. len += sprintf(page+len, "%sspare", sep);
  2155. sep = ",";
  2156. }
  2157. if (test_bit(WriteErrorSeen, &flags)) {
  2158. len += sprintf(page+len, "%swrite_error", sep);
  2159. sep = ",";
  2160. }
  2161. if (test_bit(WantReplacement, &flags)) {
  2162. len += sprintf(page+len, "%swant_replacement", sep);
  2163. sep = ",";
  2164. }
  2165. if (test_bit(Replacement, &flags)) {
  2166. len += sprintf(page+len, "%sreplacement", sep);
  2167. sep = ",";
  2168. }
  2169. return len+sprintf(page+len, "\n");
  2170. }
  2171. static ssize_t
  2172. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2173. {
  2174. /* can write
  2175. * faulty - simulates an error
  2176. * remove - disconnects the device
  2177. * writemostly - sets write_mostly
  2178. * -writemostly - clears write_mostly
  2179. * blocked - sets the Blocked flags
  2180. * -blocked - clears the Blocked and possibly simulates an error
  2181. * insync - sets Insync providing device isn't active
  2182. * -insync - clear Insync for a device with a slot assigned,
  2183. * so that it gets rebuilt based on bitmap
  2184. * write_error - sets WriteErrorSeen
  2185. * -write_error - clears WriteErrorSeen
  2186. */
  2187. int err = -EINVAL;
  2188. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2189. md_error(rdev->mddev, rdev);
  2190. if (test_bit(Faulty, &rdev->flags))
  2191. err = 0;
  2192. else
  2193. err = -EBUSY;
  2194. } else if (cmd_match(buf, "remove")) {
  2195. if (rdev->raid_disk >= 0)
  2196. err = -EBUSY;
  2197. else {
  2198. struct mddev *mddev = rdev->mddev;
  2199. kick_rdev_from_array(rdev);
  2200. if (mddev->pers)
  2201. md_update_sb(mddev, 1);
  2202. md_new_event(mddev);
  2203. err = 0;
  2204. }
  2205. } else if (cmd_match(buf, "writemostly")) {
  2206. set_bit(WriteMostly, &rdev->flags);
  2207. err = 0;
  2208. } else if (cmd_match(buf, "-writemostly")) {
  2209. clear_bit(WriteMostly, &rdev->flags);
  2210. err = 0;
  2211. } else if (cmd_match(buf, "blocked")) {
  2212. set_bit(Blocked, &rdev->flags);
  2213. err = 0;
  2214. } else if (cmd_match(buf, "-blocked")) {
  2215. if (!test_bit(Faulty, &rdev->flags) &&
  2216. rdev->badblocks.unacked_exist) {
  2217. /* metadata handler doesn't understand badblocks,
  2218. * so we need to fail the device
  2219. */
  2220. md_error(rdev->mddev, rdev);
  2221. }
  2222. clear_bit(Blocked, &rdev->flags);
  2223. clear_bit(BlockedBadBlocks, &rdev->flags);
  2224. wake_up(&rdev->blocked_wait);
  2225. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2226. md_wakeup_thread(rdev->mddev->thread);
  2227. err = 0;
  2228. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2229. set_bit(In_sync, &rdev->flags);
  2230. err = 0;
  2231. } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
  2232. if (rdev->mddev->pers == NULL) {
  2233. clear_bit(In_sync, &rdev->flags);
  2234. rdev->saved_raid_disk = rdev->raid_disk;
  2235. rdev->raid_disk = -1;
  2236. err = 0;
  2237. }
  2238. } else if (cmd_match(buf, "write_error")) {
  2239. set_bit(WriteErrorSeen, &rdev->flags);
  2240. err = 0;
  2241. } else if (cmd_match(buf, "-write_error")) {
  2242. clear_bit(WriteErrorSeen, &rdev->flags);
  2243. err = 0;
  2244. } else if (cmd_match(buf, "want_replacement")) {
  2245. /* Any non-spare device that is not a replacement can
  2246. * become want_replacement at any time, but we then need to
  2247. * check if recovery is needed.
  2248. */
  2249. if (rdev->raid_disk >= 0 &&
  2250. !test_bit(Replacement, &rdev->flags))
  2251. set_bit(WantReplacement, &rdev->flags);
  2252. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2253. md_wakeup_thread(rdev->mddev->thread);
  2254. err = 0;
  2255. } else if (cmd_match(buf, "-want_replacement")) {
  2256. /* Clearing 'want_replacement' is always allowed.
  2257. * Once replacements starts it is too late though.
  2258. */
  2259. err = 0;
  2260. clear_bit(WantReplacement, &rdev->flags);
  2261. } else if (cmd_match(buf, "replacement")) {
  2262. /* Can only set a device as a replacement when array has not
  2263. * yet been started. Once running, replacement is automatic
  2264. * from spares, or by assigning 'slot'.
  2265. */
  2266. if (rdev->mddev->pers)
  2267. err = -EBUSY;
  2268. else {
  2269. set_bit(Replacement, &rdev->flags);
  2270. err = 0;
  2271. }
  2272. } else if (cmd_match(buf, "-replacement")) {
  2273. /* Similarly, can only clear Replacement before start */
  2274. if (rdev->mddev->pers)
  2275. err = -EBUSY;
  2276. else {
  2277. clear_bit(Replacement, &rdev->flags);
  2278. err = 0;
  2279. }
  2280. }
  2281. if (!err)
  2282. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2283. return err ? err : len;
  2284. }
  2285. static struct rdev_sysfs_entry rdev_state =
  2286. __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2287. static ssize_t
  2288. errors_show(struct md_rdev *rdev, char *page)
  2289. {
  2290. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2291. }
  2292. static ssize_t
  2293. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2294. {
  2295. char *e;
  2296. unsigned long n = simple_strtoul(buf, &e, 10);
  2297. if (*buf && (*e == 0 || *e == '\n')) {
  2298. atomic_set(&rdev->corrected_errors, n);
  2299. return len;
  2300. }
  2301. return -EINVAL;
  2302. }
  2303. static struct rdev_sysfs_entry rdev_errors =
  2304. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2305. static ssize_t
  2306. slot_show(struct md_rdev *rdev, char *page)
  2307. {
  2308. if (rdev->raid_disk < 0)
  2309. return sprintf(page, "none\n");
  2310. else
  2311. return sprintf(page, "%d\n", rdev->raid_disk);
  2312. }
  2313. static ssize_t
  2314. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2315. {
  2316. char *e;
  2317. int err;
  2318. int slot = simple_strtoul(buf, &e, 10);
  2319. if (strncmp(buf, "none", 4)==0)
  2320. slot = -1;
  2321. else if (e==buf || (*e && *e!= '\n'))
  2322. return -EINVAL;
  2323. if (rdev->mddev->pers && slot == -1) {
  2324. /* Setting 'slot' on an active array requires also
  2325. * updating the 'rd%d' link, and communicating
  2326. * with the personality with ->hot_*_disk.
  2327. * For now we only support removing
  2328. * failed/spare devices. This normally happens automatically,
  2329. * but not when the metadata is externally managed.
  2330. */
  2331. if (rdev->raid_disk == -1)
  2332. return -EEXIST;
  2333. /* personality does all needed checks */
  2334. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2335. return -EINVAL;
  2336. clear_bit(Blocked, &rdev->flags);
  2337. remove_and_add_spares(rdev->mddev, rdev);
  2338. if (rdev->raid_disk >= 0)
  2339. return -EBUSY;
  2340. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2341. md_wakeup_thread(rdev->mddev->thread);
  2342. } else if (rdev->mddev->pers) {
  2343. /* Activating a spare .. or possibly reactivating
  2344. * if we ever get bitmaps working here.
  2345. */
  2346. if (rdev->raid_disk != -1)
  2347. return -EBUSY;
  2348. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2349. return -EBUSY;
  2350. if (rdev->mddev->pers->hot_add_disk == NULL)
  2351. return -EINVAL;
  2352. if (slot >= rdev->mddev->raid_disks &&
  2353. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2354. return -ENOSPC;
  2355. rdev->raid_disk = slot;
  2356. if (test_bit(In_sync, &rdev->flags))
  2357. rdev->saved_raid_disk = slot;
  2358. else
  2359. rdev->saved_raid_disk = -1;
  2360. clear_bit(In_sync, &rdev->flags);
  2361. clear_bit(Bitmap_sync, &rdev->flags);
  2362. err = rdev->mddev->pers->
  2363. hot_add_disk(rdev->mddev, rdev);
  2364. if (err) {
  2365. rdev->raid_disk = -1;
  2366. return err;
  2367. } else
  2368. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2369. if (sysfs_link_rdev(rdev->mddev, rdev))
  2370. /* failure here is OK */;
  2371. /* don't wakeup anyone, leave that to userspace. */
  2372. } else {
  2373. if (slot >= rdev->mddev->raid_disks &&
  2374. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2375. return -ENOSPC;
  2376. rdev->raid_disk = slot;
  2377. /* assume it is working */
  2378. clear_bit(Faulty, &rdev->flags);
  2379. clear_bit(WriteMostly, &rdev->flags);
  2380. set_bit(In_sync, &rdev->flags);
  2381. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2382. }
  2383. return len;
  2384. }
  2385. static struct rdev_sysfs_entry rdev_slot =
  2386. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2387. static ssize_t
  2388. offset_show(struct md_rdev *rdev, char *page)
  2389. {
  2390. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2391. }
  2392. static ssize_t
  2393. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2394. {
  2395. unsigned long long offset;
  2396. if (kstrtoull(buf, 10, &offset) < 0)
  2397. return -EINVAL;
  2398. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2399. return -EBUSY;
  2400. if (rdev->sectors && rdev->mddev->external)
  2401. /* Must set offset before size, so overlap checks
  2402. * can be sane */
  2403. return -EBUSY;
  2404. rdev->data_offset = offset;
  2405. rdev->new_data_offset = offset;
  2406. return len;
  2407. }
  2408. static struct rdev_sysfs_entry rdev_offset =
  2409. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2410. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2411. {
  2412. return sprintf(page, "%llu\n",
  2413. (unsigned long long)rdev->new_data_offset);
  2414. }
  2415. static ssize_t new_offset_store(struct md_rdev *rdev,
  2416. const char *buf, size_t len)
  2417. {
  2418. unsigned long long new_offset;
  2419. struct mddev *mddev = rdev->mddev;
  2420. if (kstrtoull(buf, 10, &new_offset) < 0)
  2421. return -EINVAL;
  2422. if (mddev->sync_thread ||
  2423. test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
  2424. return -EBUSY;
  2425. if (new_offset == rdev->data_offset)
  2426. /* reset is always permitted */
  2427. ;
  2428. else if (new_offset > rdev->data_offset) {
  2429. /* must not push array size beyond rdev_sectors */
  2430. if (new_offset - rdev->data_offset
  2431. + mddev->dev_sectors > rdev->sectors)
  2432. return -E2BIG;
  2433. }
  2434. /* Metadata worries about other space details. */
  2435. /* decreasing the offset is inconsistent with a backwards
  2436. * reshape.
  2437. */
  2438. if (new_offset < rdev->data_offset &&
  2439. mddev->reshape_backwards)
  2440. return -EINVAL;
  2441. /* Increasing offset is inconsistent with forwards
  2442. * reshape. reshape_direction should be set to
  2443. * 'backwards' first.
  2444. */
  2445. if (new_offset > rdev->data_offset &&
  2446. !mddev->reshape_backwards)
  2447. return -EINVAL;
  2448. if (mddev->pers && mddev->persistent &&
  2449. !super_types[mddev->major_version]
  2450. .allow_new_offset(rdev, new_offset))
  2451. return -E2BIG;
  2452. rdev->new_data_offset = new_offset;
  2453. if (new_offset > rdev->data_offset)
  2454. mddev->reshape_backwards = 1;
  2455. else if (new_offset < rdev->data_offset)
  2456. mddev->reshape_backwards = 0;
  2457. return len;
  2458. }
  2459. static struct rdev_sysfs_entry rdev_new_offset =
  2460. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2461. static ssize_t
  2462. rdev_size_show(struct md_rdev *rdev, char *page)
  2463. {
  2464. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2465. }
  2466. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2467. {
  2468. /* check if two start/length pairs overlap */
  2469. if (s1+l1 <= s2)
  2470. return 0;
  2471. if (s2+l2 <= s1)
  2472. return 0;
  2473. return 1;
  2474. }
  2475. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2476. {
  2477. unsigned long long blocks;
  2478. sector_t new;
  2479. if (kstrtoull(buf, 10, &blocks) < 0)
  2480. return -EINVAL;
  2481. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2482. return -EINVAL; /* sector conversion overflow */
  2483. new = blocks * 2;
  2484. if (new != blocks * 2)
  2485. return -EINVAL; /* unsigned long long to sector_t overflow */
  2486. *sectors = new;
  2487. return 0;
  2488. }
  2489. static ssize_t
  2490. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2491. {
  2492. struct mddev *my_mddev = rdev->mddev;
  2493. sector_t oldsectors = rdev->sectors;
  2494. sector_t sectors;
  2495. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2496. return -EINVAL;
  2497. if (rdev->data_offset != rdev->new_data_offset)
  2498. return -EINVAL; /* too confusing */
  2499. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2500. if (my_mddev->persistent) {
  2501. sectors = super_types[my_mddev->major_version].
  2502. rdev_size_change(rdev, sectors);
  2503. if (!sectors)
  2504. return -EBUSY;
  2505. } else if (!sectors)
  2506. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2507. rdev->data_offset;
  2508. if (!my_mddev->pers->resize)
  2509. /* Cannot change size for RAID0 or Linear etc */
  2510. return -EINVAL;
  2511. }
  2512. if (sectors < my_mddev->dev_sectors)
  2513. return -EINVAL; /* component must fit device */
  2514. rdev->sectors = sectors;
  2515. if (sectors > oldsectors && my_mddev->external) {
  2516. /* Need to check that all other rdevs with the same
  2517. * ->bdev do not overlap. 'rcu' is sufficient to walk
  2518. * the rdev lists safely.
  2519. * This check does not provide a hard guarantee, it
  2520. * just helps avoid dangerous mistakes.
  2521. */
  2522. struct mddev *mddev;
  2523. int overlap = 0;
  2524. struct list_head *tmp;
  2525. rcu_read_lock();
  2526. for_each_mddev(mddev, tmp) {
  2527. struct md_rdev *rdev2;
  2528. rdev_for_each(rdev2, mddev)
  2529. if (rdev->bdev == rdev2->bdev &&
  2530. rdev != rdev2 &&
  2531. overlaps(rdev->data_offset, rdev->sectors,
  2532. rdev2->data_offset,
  2533. rdev2->sectors)) {
  2534. overlap = 1;
  2535. break;
  2536. }
  2537. if (overlap) {
  2538. mddev_put(mddev);
  2539. break;
  2540. }
  2541. }
  2542. rcu_read_unlock();
  2543. if (overlap) {
  2544. /* Someone else could have slipped in a size
  2545. * change here, but doing so is just silly.
  2546. * We put oldsectors back because we *know* it is
  2547. * safe, and trust userspace not to race with
  2548. * itself
  2549. */
  2550. rdev->sectors = oldsectors;
  2551. return -EBUSY;
  2552. }
  2553. }
  2554. return len;
  2555. }
  2556. static struct rdev_sysfs_entry rdev_size =
  2557. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2558. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2559. {
  2560. unsigned long long recovery_start = rdev->recovery_offset;
  2561. if (test_bit(In_sync, &rdev->flags) ||
  2562. recovery_start == MaxSector)
  2563. return sprintf(page, "none\n");
  2564. return sprintf(page, "%llu\n", recovery_start);
  2565. }
  2566. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2567. {
  2568. unsigned long long recovery_start;
  2569. if (cmd_match(buf, "none"))
  2570. recovery_start = MaxSector;
  2571. else if (kstrtoull(buf, 10, &recovery_start))
  2572. return -EINVAL;
  2573. if (rdev->mddev->pers &&
  2574. rdev->raid_disk >= 0)
  2575. return -EBUSY;
  2576. rdev->recovery_offset = recovery_start;
  2577. if (recovery_start == MaxSector)
  2578. set_bit(In_sync, &rdev->flags);
  2579. else
  2580. clear_bit(In_sync, &rdev->flags);
  2581. return len;
  2582. }
  2583. static struct rdev_sysfs_entry rdev_recovery_start =
  2584. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2585. static ssize_t
  2586. badblocks_show(struct badblocks *bb, char *page, int unack);
  2587. static ssize_t
  2588. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2589. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2590. {
  2591. return badblocks_show(&rdev->badblocks, page, 0);
  2592. }
  2593. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2594. {
  2595. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2596. /* Maybe that ack was all we needed */
  2597. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2598. wake_up(&rdev->blocked_wait);
  2599. return rv;
  2600. }
  2601. static struct rdev_sysfs_entry rdev_bad_blocks =
  2602. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2603. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2604. {
  2605. return badblocks_show(&rdev->badblocks, page, 1);
  2606. }
  2607. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2608. {
  2609. return badblocks_store(&rdev->badblocks, page, len, 1);
  2610. }
  2611. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2612. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2613. static struct attribute *rdev_default_attrs[] = {
  2614. &rdev_state.attr,
  2615. &rdev_errors.attr,
  2616. &rdev_slot.attr,
  2617. &rdev_offset.attr,
  2618. &rdev_new_offset.attr,
  2619. &rdev_size.attr,
  2620. &rdev_recovery_start.attr,
  2621. &rdev_bad_blocks.attr,
  2622. &rdev_unack_bad_blocks.attr,
  2623. NULL,
  2624. };
  2625. static ssize_t
  2626. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2627. {
  2628. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2629. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2630. if (!entry->show)
  2631. return -EIO;
  2632. if (!rdev->mddev)
  2633. return -EBUSY;
  2634. return entry->show(rdev, page);
  2635. }
  2636. static ssize_t
  2637. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2638. const char *page, size_t length)
  2639. {
  2640. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2641. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2642. ssize_t rv;
  2643. struct mddev *mddev = rdev->mddev;
  2644. if (!entry->store)
  2645. return -EIO;
  2646. if (!capable(CAP_SYS_ADMIN))
  2647. return -EACCES;
  2648. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2649. if (!rv) {
  2650. if (rdev->mddev == NULL)
  2651. rv = -EBUSY;
  2652. else
  2653. rv = entry->store(rdev, page, length);
  2654. mddev_unlock(mddev);
  2655. }
  2656. return rv;
  2657. }
  2658. static void rdev_free(struct kobject *ko)
  2659. {
  2660. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2661. kfree(rdev);
  2662. }
  2663. static const struct sysfs_ops rdev_sysfs_ops = {
  2664. .show = rdev_attr_show,
  2665. .store = rdev_attr_store,
  2666. };
  2667. static struct kobj_type rdev_ktype = {
  2668. .release = rdev_free,
  2669. .sysfs_ops = &rdev_sysfs_ops,
  2670. .default_attrs = rdev_default_attrs,
  2671. };
  2672. int md_rdev_init(struct md_rdev *rdev)
  2673. {
  2674. rdev->desc_nr = -1;
  2675. rdev->saved_raid_disk = -1;
  2676. rdev->raid_disk = -1;
  2677. rdev->flags = 0;
  2678. rdev->data_offset = 0;
  2679. rdev->new_data_offset = 0;
  2680. rdev->sb_events = 0;
  2681. rdev->last_read_error.tv_sec = 0;
  2682. rdev->last_read_error.tv_nsec = 0;
  2683. rdev->sb_loaded = 0;
  2684. rdev->bb_page = NULL;
  2685. atomic_set(&rdev->nr_pending, 0);
  2686. atomic_set(&rdev->read_errors, 0);
  2687. atomic_set(&rdev->corrected_errors, 0);
  2688. INIT_LIST_HEAD(&rdev->same_set);
  2689. init_waitqueue_head(&rdev->blocked_wait);
  2690. /* Add space to store bad block list.
  2691. * This reserves the space even on arrays where it cannot
  2692. * be used - I wonder if that matters
  2693. */
  2694. rdev->badblocks.count = 0;
  2695. rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
  2696. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2697. seqlock_init(&rdev->badblocks.lock);
  2698. if (rdev->badblocks.page == NULL)
  2699. return -ENOMEM;
  2700. return 0;
  2701. }
  2702. EXPORT_SYMBOL_GPL(md_rdev_init);
  2703. /*
  2704. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2705. *
  2706. * mark the device faulty if:
  2707. *
  2708. * - the device is nonexistent (zero size)
  2709. * - the device has no valid superblock
  2710. *
  2711. * a faulty rdev _never_ has rdev->sb set.
  2712. */
  2713. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2714. {
  2715. char b[BDEVNAME_SIZE];
  2716. int err;
  2717. struct md_rdev *rdev;
  2718. sector_t size;
  2719. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2720. if (!rdev) {
  2721. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2722. return ERR_PTR(-ENOMEM);
  2723. }
  2724. err = md_rdev_init(rdev);
  2725. if (err)
  2726. goto abort_free;
  2727. err = alloc_disk_sb(rdev);
  2728. if (err)
  2729. goto abort_free;
  2730. err = lock_rdev(rdev, newdev, super_format == -2);
  2731. if (err)
  2732. goto abort_free;
  2733. kobject_init(&rdev->kobj, &rdev_ktype);
  2734. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2735. if (!size) {
  2736. printk(KERN_WARNING
  2737. "md: %s has zero or unknown size, marking faulty!\n",
  2738. bdevname(rdev->bdev,b));
  2739. err = -EINVAL;
  2740. goto abort_free;
  2741. }
  2742. if (super_format >= 0) {
  2743. err = super_types[super_format].
  2744. load_super(rdev, NULL, super_minor);
  2745. if (err == -EINVAL) {
  2746. printk(KERN_WARNING
  2747. "md: %s does not have a valid v%d.%d "
  2748. "superblock, not importing!\n",
  2749. bdevname(rdev->bdev,b),
  2750. super_format, super_minor);
  2751. goto abort_free;
  2752. }
  2753. if (err < 0) {
  2754. printk(KERN_WARNING
  2755. "md: could not read %s's sb, not importing!\n",
  2756. bdevname(rdev->bdev,b));
  2757. goto abort_free;
  2758. }
  2759. }
  2760. return rdev;
  2761. abort_free:
  2762. if (rdev->bdev)
  2763. unlock_rdev(rdev);
  2764. md_rdev_clear(rdev);
  2765. kfree(rdev);
  2766. return ERR_PTR(err);
  2767. }
  2768. /*
  2769. * Check a full RAID array for plausibility
  2770. */
  2771. static void analyze_sbs(struct mddev *mddev)
  2772. {
  2773. int i;
  2774. struct md_rdev *rdev, *freshest, *tmp;
  2775. char b[BDEVNAME_SIZE];
  2776. freshest = NULL;
  2777. rdev_for_each_safe(rdev, tmp, mddev)
  2778. switch (super_types[mddev->major_version].
  2779. load_super(rdev, freshest, mddev->minor_version)) {
  2780. case 1:
  2781. freshest = rdev;
  2782. break;
  2783. case 0:
  2784. break;
  2785. default:
  2786. printk( KERN_ERR \
  2787. "md: fatal superblock inconsistency in %s"
  2788. " -- removing from array\n",
  2789. bdevname(rdev->bdev,b));
  2790. kick_rdev_from_array(rdev);
  2791. }
  2792. super_types[mddev->major_version].
  2793. validate_super(mddev, freshest);
  2794. i = 0;
  2795. rdev_for_each_safe(rdev, tmp, mddev) {
  2796. if (mddev->max_disks &&
  2797. (rdev->desc_nr >= mddev->max_disks ||
  2798. i > mddev->max_disks)) {
  2799. printk(KERN_WARNING
  2800. "md: %s: %s: only %d devices permitted\n",
  2801. mdname(mddev), bdevname(rdev->bdev, b),
  2802. mddev->max_disks);
  2803. kick_rdev_from_array(rdev);
  2804. continue;
  2805. }
  2806. if (rdev != freshest)
  2807. if (super_types[mddev->major_version].
  2808. validate_super(mddev, rdev)) {
  2809. printk(KERN_WARNING "md: kicking non-fresh %s"
  2810. " from array!\n",
  2811. bdevname(rdev->bdev,b));
  2812. kick_rdev_from_array(rdev);
  2813. continue;
  2814. }
  2815. if (mddev->level == LEVEL_MULTIPATH) {
  2816. rdev->desc_nr = i++;
  2817. rdev->raid_disk = rdev->desc_nr;
  2818. set_bit(In_sync, &rdev->flags);
  2819. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2820. rdev->raid_disk = -1;
  2821. clear_bit(In_sync, &rdev->flags);
  2822. }
  2823. }
  2824. }
  2825. /* Read a fixed-point number.
  2826. * Numbers in sysfs attributes should be in "standard" units where
  2827. * possible, so time should be in seconds.
  2828. * However we internally use a a much smaller unit such as
  2829. * milliseconds or jiffies.
  2830. * This function takes a decimal number with a possible fractional
  2831. * component, and produces an integer which is the result of
  2832. * multiplying that number by 10^'scale'.
  2833. * all without any floating-point arithmetic.
  2834. */
  2835. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2836. {
  2837. unsigned long result = 0;
  2838. long decimals = -1;
  2839. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2840. if (*cp == '.')
  2841. decimals = 0;
  2842. else if (decimals < scale) {
  2843. unsigned int value;
  2844. value = *cp - '0';
  2845. result = result * 10 + value;
  2846. if (decimals >= 0)
  2847. decimals++;
  2848. }
  2849. cp++;
  2850. }
  2851. if (*cp == '\n')
  2852. cp++;
  2853. if (*cp)
  2854. return -EINVAL;
  2855. if (decimals < 0)
  2856. decimals = 0;
  2857. while (decimals < scale) {
  2858. result *= 10;
  2859. decimals ++;
  2860. }
  2861. *res = result;
  2862. return 0;
  2863. }
  2864. static void md_safemode_timeout(unsigned long data);
  2865. static ssize_t
  2866. safe_delay_show(struct mddev *mddev, char *page)
  2867. {
  2868. int msec = (mddev->safemode_delay*1000)/HZ;
  2869. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2870. }
  2871. static ssize_t
  2872. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  2873. {
  2874. unsigned long msec;
  2875. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2876. return -EINVAL;
  2877. if (msec == 0)
  2878. mddev->safemode_delay = 0;
  2879. else {
  2880. unsigned long old_delay = mddev->safemode_delay;
  2881. unsigned long new_delay = (msec*HZ)/1000;
  2882. if (new_delay == 0)
  2883. new_delay = 1;
  2884. mddev->safemode_delay = new_delay;
  2885. if (new_delay < old_delay || old_delay == 0)
  2886. mod_timer(&mddev->safemode_timer, jiffies+1);
  2887. }
  2888. return len;
  2889. }
  2890. static struct md_sysfs_entry md_safe_delay =
  2891. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2892. static ssize_t
  2893. level_show(struct mddev *mddev, char *page)
  2894. {
  2895. struct md_personality *p;
  2896. int ret;
  2897. spin_lock(&mddev->lock);
  2898. p = mddev->pers;
  2899. if (p)
  2900. ret = sprintf(page, "%s\n", p->name);
  2901. else if (mddev->clevel[0])
  2902. ret = sprintf(page, "%s\n", mddev->clevel);
  2903. else if (mddev->level != LEVEL_NONE)
  2904. ret = sprintf(page, "%d\n", mddev->level);
  2905. else
  2906. ret = 0;
  2907. spin_unlock(&mddev->lock);
  2908. return ret;
  2909. }
  2910. static ssize_t
  2911. level_store(struct mddev *mddev, const char *buf, size_t len)
  2912. {
  2913. char clevel[16];
  2914. ssize_t rv;
  2915. size_t slen = len;
  2916. struct md_personality *pers, *oldpers;
  2917. long level;
  2918. void *priv, *oldpriv;
  2919. struct md_rdev *rdev;
  2920. if (slen == 0 || slen >= sizeof(clevel))
  2921. return -EINVAL;
  2922. rv = mddev_lock(mddev);
  2923. if (rv)
  2924. return rv;
  2925. if (mddev->pers == NULL) {
  2926. strncpy(mddev->clevel, buf, slen);
  2927. if (mddev->clevel[slen-1] == '\n')
  2928. slen--;
  2929. mddev->clevel[slen] = 0;
  2930. mddev->level = LEVEL_NONE;
  2931. rv = len;
  2932. goto out_unlock;
  2933. }
  2934. rv = -EROFS;
  2935. if (mddev->ro)
  2936. goto out_unlock;
  2937. /* request to change the personality. Need to ensure:
  2938. * - array is not engaged in resync/recovery/reshape
  2939. * - old personality can be suspended
  2940. * - new personality will access other array.
  2941. */
  2942. rv = -EBUSY;
  2943. if (mddev->sync_thread ||
  2944. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2945. mddev->reshape_position != MaxSector ||
  2946. mddev->sysfs_active)
  2947. goto out_unlock;
  2948. rv = -EINVAL;
  2949. if (!mddev->pers->quiesce) {
  2950. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2951. mdname(mddev), mddev->pers->name);
  2952. goto out_unlock;
  2953. }
  2954. /* Now find the new personality */
  2955. strncpy(clevel, buf, slen);
  2956. if (clevel[slen-1] == '\n')
  2957. slen--;
  2958. clevel[slen] = 0;
  2959. if (kstrtol(clevel, 10, &level))
  2960. level = LEVEL_NONE;
  2961. if (request_module("md-%s", clevel) != 0)
  2962. request_module("md-level-%s", clevel);
  2963. spin_lock(&pers_lock);
  2964. pers = find_pers(level, clevel);
  2965. if (!pers || !try_module_get(pers->owner)) {
  2966. spin_unlock(&pers_lock);
  2967. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  2968. rv = -EINVAL;
  2969. goto out_unlock;
  2970. }
  2971. spin_unlock(&pers_lock);
  2972. if (pers == mddev->pers) {
  2973. /* Nothing to do! */
  2974. module_put(pers->owner);
  2975. rv = len;
  2976. goto out_unlock;
  2977. }
  2978. if (!pers->takeover) {
  2979. module_put(pers->owner);
  2980. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2981. mdname(mddev), clevel);
  2982. rv = -EINVAL;
  2983. goto out_unlock;
  2984. }
  2985. rdev_for_each(rdev, mddev)
  2986. rdev->new_raid_disk = rdev->raid_disk;
  2987. /* ->takeover must set new_* and/or delta_disks
  2988. * if it succeeds, and may set them when it fails.
  2989. */
  2990. priv = pers->takeover(mddev);
  2991. if (IS_ERR(priv)) {
  2992. mddev->new_level = mddev->level;
  2993. mddev->new_layout = mddev->layout;
  2994. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2995. mddev->raid_disks -= mddev->delta_disks;
  2996. mddev->delta_disks = 0;
  2997. mddev->reshape_backwards = 0;
  2998. module_put(pers->owner);
  2999. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3000. mdname(mddev), clevel);
  3001. rv = PTR_ERR(priv);
  3002. goto out_unlock;
  3003. }
  3004. /* Looks like we have a winner */
  3005. mddev_suspend(mddev);
  3006. mddev_detach(mddev);
  3007. spin_lock(&mddev->lock);
  3008. oldpers = mddev->pers;
  3009. oldpriv = mddev->private;
  3010. mddev->pers = pers;
  3011. mddev->private = priv;
  3012. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3013. mddev->level = mddev->new_level;
  3014. mddev->layout = mddev->new_layout;
  3015. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3016. mddev->delta_disks = 0;
  3017. mddev->reshape_backwards = 0;
  3018. mddev->degraded = 0;
  3019. spin_unlock(&mddev->lock);
  3020. if (oldpers->sync_request == NULL &&
  3021. mddev->external) {
  3022. /* We are converting from a no-redundancy array
  3023. * to a redundancy array and metadata is managed
  3024. * externally so we need to be sure that writes
  3025. * won't block due to a need to transition
  3026. * clean->dirty
  3027. * until external management is started.
  3028. */
  3029. mddev->in_sync = 0;
  3030. mddev->safemode_delay = 0;
  3031. mddev->safemode = 0;
  3032. }
  3033. oldpers->free(mddev, oldpriv);
  3034. if (oldpers->sync_request == NULL &&
  3035. pers->sync_request != NULL) {
  3036. /* need to add the md_redundancy_group */
  3037. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3038. printk(KERN_WARNING
  3039. "md: cannot register extra attributes for %s\n",
  3040. mdname(mddev));
  3041. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3042. }
  3043. if (oldpers->sync_request != NULL &&
  3044. pers->sync_request == NULL) {
  3045. /* need to remove the md_redundancy_group */
  3046. if (mddev->to_remove == NULL)
  3047. mddev->to_remove = &md_redundancy_group;
  3048. }
  3049. rdev_for_each(rdev, mddev) {
  3050. if (rdev->raid_disk < 0)
  3051. continue;
  3052. if (rdev->new_raid_disk >= mddev->raid_disks)
  3053. rdev->new_raid_disk = -1;
  3054. if (rdev->new_raid_disk == rdev->raid_disk)
  3055. continue;
  3056. sysfs_unlink_rdev(mddev, rdev);
  3057. }
  3058. rdev_for_each(rdev, mddev) {
  3059. if (rdev->raid_disk < 0)
  3060. continue;
  3061. if (rdev->new_raid_disk == rdev->raid_disk)
  3062. continue;
  3063. rdev->raid_disk = rdev->new_raid_disk;
  3064. if (rdev->raid_disk < 0)
  3065. clear_bit(In_sync, &rdev->flags);
  3066. else {
  3067. if (sysfs_link_rdev(mddev, rdev))
  3068. printk(KERN_WARNING "md: cannot register rd%d"
  3069. " for %s after level change\n",
  3070. rdev->raid_disk, mdname(mddev));
  3071. }
  3072. }
  3073. if (pers->sync_request == NULL) {
  3074. /* this is now an array without redundancy, so
  3075. * it must always be in_sync
  3076. */
  3077. mddev->in_sync = 1;
  3078. del_timer_sync(&mddev->safemode_timer);
  3079. }
  3080. blk_set_stacking_limits(&mddev->queue->limits);
  3081. pers->run(mddev);
  3082. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3083. mddev_resume(mddev);
  3084. if (!mddev->thread)
  3085. md_update_sb(mddev, 1);
  3086. sysfs_notify(&mddev->kobj, NULL, "level");
  3087. md_new_event(mddev);
  3088. rv = len;
  3089. out_unlock:
  3090. mddev_unlock(mddev);
  3091. return rv;
  3092. }
  3093. static struct md_sysfs_entry md_level =
  3094. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3095. static ssize_t
  3096. layout_show(struct mddev *mddev, char *page)
  3097. {
  3098. /* just a number, not meaningful for all levels */
  3099. if (mddev->reshape_position != MaxSector &&
  3100. mddev->layout != mddev->new_layout)
  3101. return sprintf(page, "%d (%d)\n",
  3102. mddev->new_layout, mddev->layout);
  3103. return sprintf(page, "%d\n", mddev->layout);
  3104. }
  3105. static ssize_t
  3106. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3107. {
  3108. char *e;
  3109. unsigned long n = simple_strtoul(buf, &e, 10);
  3110. int err;
  3111. if (!*buf || (*e && *e != '\n'))
  3112. return -EINVAL;
  3113. err = mddev_lock(mddev);
  3114. if (err)
  3115. return err;
  3116. if (mddev->pers) {
  3117. if (mddev->pers->check_reshape == NULL)
  3118. err = -EBUSY;
  3119. else if (mddev->ro)
  3120. err = -EROFS;
  3121. else {
  3122. mddev->new_layout = n;
  3123. err = mddev->pers->check_reshape(mddev);
  3124. if (err)
  3125. mddev->new_layout = mddev->layout;
  3126. }
  3127. } else {
  3128. mddev->new_layout = n;
  3129. if (mddev->reshape_position == MaxSector)
  3130. mddev->layout = n;
  3131. }
  3132. mddev_unlock(mddev);
  3133. return err ?: len;
  3134. }
  3135. static struct md_sysfs_entry md_layout =
  3136. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3137. static ssize_t
  3138. raid_disks_show(struct mddev *mddev, char *page)
  3139. {
  3140. if (mddev->raid_disks == 0)
  3141. return 0;
  3142. if (mddev->reshape_position != MaxSector &&
  3143. mddev->delta_disks != 0)
  3144. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3145. mddev->raid_disks - mddev->delta_disks);
  3146. return sprintf(page, "%d\n", mddev->raid_disks);
  3147. }
  3148. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3149. static ssize_t
  3150. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3151. {
  3152. char *e;
  3153. int err;
  3154. unsigned long n = simple_strtoul(buf, &e, 10);
  3155. if (!*buf || (*e && *e != '\n'))
  3156. return -EINVAL;
  3157. err = mddev_lock(mddev);
  3158. if (err)
  3159. return err;
  3160. if (mddev->pers)
  3161. err = update_raid_disks(mddev, n);
  3162. else if (mddev->reshape_position != MaxSector) {
  3163. struct md_rdev *rdev;
  3164. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3165. err = -EINVAL;
  3166. rdev_for_each(rdev, mddev) {
  3167. if (olddisks < n &&
  3168. rdev->data_offset < rdev->new_data_offset)
  3169. goto out_unlock;
  3170. if (olddisks > n &&
  3171. rdev->data_offset > rdev->new_data_offset)
  3172. goto out_unlock;
  3173. }
  3174. err = 0;
  3175. mddev->delta_disks = n - olddisks;
  3176. mddev->raid_disks = n;
  3177. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3178. } else
  3179. mddev->raid_disks = n;
  3180. out_unlock:
  3181. mddev_unlock(mddev);
  3182. return err ? err : len;
  3183. }
  3184. static struct md_sysfs_entry md_raid_disks =
  3185. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3186. static ssize_t
  3187. chunk_size_show(struct mddev *mddev, char *page)
  3188. {
  3189. if (mddev->reshape_position != MaxSector &&
  3190. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3191. return sprintf(page, "%d (%d)\n",
  3192. mddev->new_chunk_sectors << 9,
  3193. mddev->chunk_sectors << 9);
  3194. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3195. }
  3196. static ssize_t
  3197. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3198. {
  3199. int err;
  3200. char *e;
  3201. unsigned long n = simple_strtoul(buf, &e, 10);
  3202. if (!*buf || (*e && *e != '\n'))
  3203. return -EINVAL;
  3204. err = mddev_lock(mddev);
  3205. if (err)
  3206. return err;
  3207. if (mddev->pers) {
  3208. if (mddev->pers->check_reshape == NULL)
  3209. err = -EBUSY;
  3210. else if (mddev->ro)
  3211. err = -EROFS;
  3212. else {
  3213. mddev->new_chunk_sectors = n >> 9;
  3214. err = mddev->pers->check_reshape(mddev);
  3215. if (err)
  3216. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3217. }
  3218. } else {
  3219. mddev->new_chunk_sectors = n >> 9;
  3220. if (mddev->reshape_position == MaxSector)
  3221. mddev->chunk_sectors = n >> 9;
  3222. }
  3223. mddev_unlock(mddev);
  3224. return err ?: len;
  3225. }
  3226. static struct md_sysfs_entry md_chunk_size =
  3227. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3228. static ssize_t
  3229. resync_start_show(struct mddev *mddev, char *page)
  3230. {
  3231. if (mddev->recovery_cp == MaxSector)
  3232. return sprintf(page, "none\n");
  3233. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3234. }
  3235. static ssize_t
  3236. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3237. {
  3238. int err;
  3239. char *e;
  3240. unsigned long long n = simple_strtoull(buf, &e, 10);
  3241. err = mddev_lock(mddev);
  3242. if (err)
  3243. return err;
  3244. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3245. err = -EBUSY;
  3246. else if (cmd_match(buf, "none"))
  3247. n = MaxSector;
  3248. else if (!*buf || (*e && *e != '\n'))
  3249. err = -EINVAL;
  3250. if (!err) {
  3251. mddev->recovery_cp = n;
  3252. if (mddev->pers)
  3253. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3254. }
  3255. mddev_unlock(mddev);
  3256. return err ?: len;
  3257. }
  3258. static struct md_sysfs_entry md_resync_start =
  3259. __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
  3260. resync_start_show, resync_start_store);
  3261. /*
  3262. * The array state can be:
  3263. *
  3264. * clear
  3265. * No devices, no size, no level
  3266. * Equivalent to STOP_ARRAY ioctl
  3267. * inactive
  3268. * May have some settings, but array is not active
  3269. * all IO results in error
  3270. * When written, doesn't tear down array, but just stops it
  3271. * suspended (not supported yet)
  3272. * All IO requests will block. The array can be reconfigured.
  3273. * Writing this, if accepted, will block until array is quiescent
  3274. * readonly
  3275. * no resync can happen. no superblocks get written.
  3276. * write requests fail
  3277. * read-auto
  3278. * like readonly, but behaves like 'clean' on a write request.
  3279. *
  3280. * clean - no pending writes, but otherwise active.
  3281. * When written to inactive array, starts without resync
  3282. * If a write request arrives then
  3283. * if metadata is known, mark 'dirty' and switch to 'active'.
  3284. * if not known, block and switch to write-pending
  3285. * If written to an active array that has pending writes, then fails.
  3286. * active
  3287. * fully active: IO and resync can be happening.
  3288. * When written to inactive array, starts with resync
  3289. *
  3290. * write-pending
  3291. * clean, but writes are blocked waiting for 'active' to be written.
  3292. *
  3293. * active-idle
  3294. * like active, but no writes have been seen for a while (100msec).
  3295. *
  3296. */
  3297. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3298. write_pending, active_idle, bad_word};
  3299. static char *array_states[] = {
  3300. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3301. "write-pending", "active-idle", NULL };
  3302. static int match_word(const char *word, char **list)
  3303. {
  3304. int n;
  3305. for (n=0; list[n]; n++)
  3306. if (cmd_match(word, list[n]))
  3307. break;
  3308. return n;
  3309. }
  3310. static ssize_t
  3311. array_state_show(struct mddev *mddev, char *page)
  3312. {
  3313. enum array_state st = inactive;
  3314. if (mddev->pers)
  3315. switch(mddev->ro) {
  3316. case 1:
  3317. st = readonly;
  3318. break;
  3319. case 2:
  3320. st = read_auto;
  3321. break;
  3322. case 0:
  3323. if (mddev->in_sync)
  3324. st = clean;
  3325. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3326. st = write_pending;
  3327. else if (mddev->safemode)
  3328. st = active_idle;
  3329. else
  3330. st = active;
  3331. }
  3332. else {
  3333. if (list_empty(&mddev->disks) &&
  3334. mddev->raid_disks == 0 &&
  3335. mddev->dev_sectors == 0)
  3336. st = clear;
  3337. else
  3338. st = inactive;
  3339. }
  3340. return sprintf(page, "%s\n", array_states[st]);
  3341. }
  3342. static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
  3343. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
  3344. static int do_md_run(struct mddev *mddev);
  3345. static int restart_array(struct mddev *mddev);
  3346. static ssize_t
  3347. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3348. {
  3349. int err;
  3350. enum array_state st = match_word(buf, array_states);
  3351. if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
  3352. /* don't take reconfig_mutex when toggling between
  3353. * clean and active
  3354. */
  3355. spin_lock(&mddev->lock);
  3356. if (st == active) {
  3357. restart_array(mddev);
  3358. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3359. wake_up(&mddev->sb_wait);
  3360. err = 0;
  3361. } else /* st == clean */ {
  3362. restart_array(mddev);
  3363. if (atomic_read(&mddev->writes_pending) == 0) {
  3364. if (mddev->in_sync == 0) {
  3365. mddev->in_sync = 1;
  3366. if (mddev->safemode == 1)
  3367. mddev->safemode = 0;
  3368. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3369. }
  3370. err = 0;
  3371. } else
  3372. err = -EBUSY;
  3373. }
  3374. spin_unlock(&mddev->lock);
  3375. return err;
  3376. }
  3377. err = mddev_lock(mddev);
  3378. if (err)
  3379. return err;
  3380. err = -EINVAL;
  3381. switch(st) {
  3382. case bad_word:
  3383. break;
  3384. case clear:
  3385. /* stopping an active array */
  3386. err = do_md_stop(mddev, 0, NULL);
  3387. break;
  3388. case inactive:
  3389. /* stopping an active array */
  3390. if (mddev->pers)
  3391. err = do_md_stop(mddev, 2, NULL);
  3392. else
  3393. err = 0; /* already inactive */
  3394. break;
  3395. case suspended:
  3396. break; /* not supported yet */
  3397. case readonly:
  3398. if (mddev->pers)
  3399. err = md_set_readonly(mddev, NULL);
  3400. else {
  3401. mddev->ro = 1;
  3402. set_disk_ro(mddev->gendisk, 1);
  3403. err = do_md_run(mddev);
  3404. }
  3405. break;
  3406. case read_auto:
  3407. if (mddev->pers) {
  3408. if (mddev->ro == 0)
  3409. err = md_set_readonly(mddev, NULL);
  3410. else if (mddev->ro == 1)
  3411. err = restart_array(mddev);
  3412. if (err == 0) {
  3413. mddev->ro = 2;
  3414. set_disk_ro(mddev->gendisk, 0);
  3415. }
  3416. } else {
  3417. mddev->ro = 2;
  3418. err = do_md_run(mddev);
  3419. }
  3420. break;
  3421. case clean:
  3422. if (mddev->pers) {
  3423. restart_array(mddev);
  3424. spin_lock(&mddev->lock);
  3425. if (atomic_read(&mddev->writes_pending) == 0) {
  3426. if (mddev->in_sync == 0) {
  3427. mddev->in_sync = 1;
  3428. if (mddev->safemode == 1)
  3429. mddev->safemode = 0;
  3430. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3431. }
  3432. err = 0;
  3433. } else
  3434. err = -EBUSY;
  3435. spin_unlock(&mddev->lock);
  3436. } else
  3437. err = -EINVAL;
  3438. break;
  3439. case active:
  3440. if (mddev->pers) {
  3441. restart_array(mddev);
  3442. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3443. wake_up(&mddev->sb_wait);
  3444. err = 0;
  3445. } else {
  3446. mddev->ro = 0;
  3447. set_disk_ro(mddev->gendisk, 0);
  3448. err = do_md_run(mddev);
  3449. }
  3450. break;
  3451. case write_pending:
  3452. case active_idle:
  3453. /* these cannot be set */
  3454. break;
  3455. }
  3456. if (!err) {
  3457. if (mddev->hold_active == UNTIL_IOCTL)
  3458. mddev->hold_active = 0;
  3459. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3460. }
  3461. mddev_unlock(mddev);
  3462. return err ?: len;
  3463. }
  3464. static struct md_sysfs_entry md_array_state =
  3465. __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3466. static ssize_t
  3467. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3468. return sprintf(page, "%d\n",
  3469. atomic_read(&mddev->max_corr_read_errors));
  3470. }
  3471. static ssize_t
  3472. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3473. {
  3474. char *e;
  3475. unsigned long n = simple_strtoul(buf, &e, 10);
  3476. if (*buf && (*e == 0 || *e == '\n')) {
  3477. atomic_set(&mddev->max_corr_read_errors, n);
  3478. return len;
  3479. }
  3480. return -EINVAL;
  3481. }
  3482. static struct md_sysfs_entry max_corr_read_errors =
  3483. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3484. max_corrected_read_errors_store);
  3485. static ssize_t
  3486. null_show(struct mddev *mddev, char *page)
  3487. {
  3488. return -EINVAL;
  3489. }
  3490. static ssize_t
  3491. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3492. {
  3493. /* buf must be %d:%d\n? giving major and minor numbers */
  3494. /* The new device is added to the array.
  3495. * If the array has a persistent superblock, we read the
  3496. * superblock to initialise info and check validity.
  3497. * Otherwise, only checking done is that in bind_rdev_to_array,
  3498. * which mainly checks size.
  3499. */
  3500. char *e;
  3501. int major = simple_strtoul(buf, &e, 10);
  3502. int minor;
  3503. dev_t dev;
  3504. struct md_rdev *rdev;
  3505. int err;
  3506. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3507. return -EINVAL;
  3508. minor = simple_strtoul(e+1, &e, 10);
  3509. if (*e && *e != '\n')
  3510. return -EINVAL;
  3511. dev = MKDEV(major, minor);
  3512. if (major != MAJOR(dev) ||
  3513. minor != MINOR(dev))
  3514. return -EOVERFLOW;
  3515. flush_workqueue(md_misc_wq);
  3516. err = mddev_lock(mddev);
  3517. if (err)
  3518. return err;
  3519. if (mddev->persistent) {
  3520. rdev = md_import_device(dev, mddev->major_version,
  3521. mddev->minor_version);
  3522. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3523. struct md_rdev *rdev0
  3524. = list_entry(mddev->disks.next,
  3525. struct md_rdev, same_set);
  3526. err = super_types[mddev->major_version]
  3527. .load_super(rdev, rdev0, mddev->minor_version);
  3528. if (err < 0)
  3529. goto out;
  3530. }
  3531. } else if (mddev->external)
  3532. rdev = md_import_device(dev, -2, -1);
  3533. else
  3534. rdev = md_import_device(dev, -1, -1);
  3535. if (IS_ERR(rdev))
  3536. return PTR_ERR(rdev);
  3537. err = bind_rdev_to_array(rdev, mddev);
  3538. out:
  3539. if (err)
  3540. export_rdev(rdev);
  3541. mddev_unlock(mddev);
  3542. return err ? err : len;
  3543. }
  3544. static struct md_sysfs_entry md_new_device =
  3545. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3546. static ssize_t
  3547. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3548. {
  3549. char *end;
  3550. unsigned long chunk, end_chunk;
  3551. int err;
  3552. err = mddev_lock(mddev);
  3553. if (err)
  3554. return err;
  3555. if (!mddev->bitmap)
  3556. goto out;
  3557. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3558. while (*buf) {
  3559. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3560. if (buf == end) break;
  3561. if (*end == '-') { /* range */
  3562. buf = end + 1;
  3563. end_chunk = simple_strtoul(buf, &end, 0);
  3564. if (buf == end) break;
  3565. }
  3566. if (*end && !isspace(*end)) break;
  3567. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3568. buf = skip_spaces(end);
  3569. }
  3570. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3571. out:
  3572. mddev_unlock(mddev);
  3573. return len;
  3574. }
  3575. static struct md_sysfs_entry md_bitmap =
  3576. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3577. static ssize_t
  3578. size_show(struct mddev *mddev, char *page)
  3579. {
  3580. return sprintf(page, "%llu\n",
  3581. (unsigned long long)mddev->dev_sectors / 2);
  3582. }
  3583. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3584. static ssize_t
  3585. size_store(struct mddev *mddev, const char *buf, size_t len)
  3586. {
  3587. /* If array is inactive, we can reduce the component size, but
  3588. * not increase it (except from 0).
  3589. * If array is active, we can try an on-line resize
  3590. */
  3591. sector_t sectors;
  3592. int err = strict_blocks_to_sectors(buf, &sectors);
  3593. if (err < 0)
  3594. return err;
  3595. err = mddev_lock(mddev);
  3596. if (err)
  3597. return err;
  3598. if (mddev->pers) {
  3599. err = update_size(mddev, sectors);
  3600. md_update_sb(mddev, 1);
  3601. } else {
  3602. if (mddev->dev_sectors == 0 ||
  3603. mddev->dev_sectors > sectors)
  3604. mddev->dev_sectors = sectors;
  3605. else
  3606. err = -ENOSPC;
  3607. }
  3608. mddev_unlock(mddev);
  3609. return err ? err : len;
  3610. }
  3611. static struct md_sysfs_entry md_size =
  3612. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3613. /* Metadata version.
  3614. * This is one of
  3615. * 'none' for arrays with no metadata (good luck...)
  3616. * 'external' for arrays with externally managed metadata,
  3617. * or N.M for internally known formats
  3618. */
  3619. static ssize_t
  3620. metadata_show(struct mddev *mddev, char *page)
  3621. {
  3622. if (mddev->persistent)
  3623. return sprintf(page, "%d.%d\n",
  3624. mddev->major_version, mddev->minor_version);
  3625. else if (mddev->external)
  3626. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3627. else
  3628. return sprintf(page, "none\n");
  3629. }
  3630. static ssize_t
  3631. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3632. {
  3633. int major, minor;
  3634. char *e;
  3635. int err;
  3636. /* Changing the details of 'external' metadata is
  3637. * always permitted. Otherwise there must be
  3638. * no devices attached to the array.
  3639. */
  3640. err = mddev_lock(mddev);
  3641. if (err)
  3642. return err;
  3643. err = -EBUSY;
  3644. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3645. ;
  3646. else if (!list_empty(&mddev->disks))
  3647. goto out_unlock;
  3648. err = 0;
  3649. if (cmd_match(buf, "none")) {
  3650. mddev->persistent = 0;
  3651. mddev->external = 0;
  3652. mddev->major_version = 0;
  3653. mddev->minor_version = 90;
  3654. goto out_unlock;
  3655. }
  3656. if (strncmp(buf, "external:", 9) == 0) {
  3657. size_t namelen = len-9;
  3658. if (namelen >= sizeof(mddev->metadata_type))
  3659. namelen = sizeof(mddev->metadata_type)-1;
  3660. strncpy(mddev->metadata_type, buf+9, namelen);
  3661. mddev->metadata_type[namelen] = 0;
  3662. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3663. mddev->metadata_type[--namelen] = 0;
  3664. mddev->persistent = 0;
  3665. mddev->external = 1;
  3666. mddev->major_version = 0;
  3667. mddev->minor_version = 90;
  3668. goto out_unlock;
  3669. }
  3670. major = simple_strtoul(buf, &e, 10);
  3671. err = -EINVAL;
  3672. if (e==buf || *e != '.')
  3673. goto out_unlock;
  3674. buf = e+1;
  3675. minor = simple_strtoul(buf, &e, 10);
  3676. if (e==buf || (*e && *e != '\n') )
  3677. goto out_unlock;
  3678. err = -ENOENT;
  3679. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3680. goto out_unlock;
  3681. mddev->major_version = major;
  3682. mddev->minor_version = minor;
  3683. mddev->persistent = 1;
  3684. mddev->external = 0;
  3685. err = 0;
  3686. out_unlock:
  3687. mddev_unlock(mddev);
  3688. return err ?: len;
  3689. }
  3690. static struct md_sysfs_entry md_metadata =
  3691. __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3692. static ssize_t
  3693. action_show(struct mddev *mddev, char *page)
  3694. {
  3695. char *type = "idle";
  3696. unsigned long recovery = mddev->recovery;
  3697. if (test_bit(MD_RECOVERY_FROZEN, &recovery))
  3698. type = "frozen";
  3699. else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
  3700. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
  3701. if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
  3702. type = "reshape";
  3703. else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
  3704. if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
  3705. type = "resync";
  3706. else if (test_bit(MD_RECOVERY_CHECK, &recovery))
  3707. type = "check";
  3708. else
  3709. type = "repair";
  3710. } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
  3711. type = "recover";
  3712. }
  3713. return sprintf(page, "%s\n", type);
  3714. }
  3715. static ssize_t
  3716. action_store(struct mddev *mddev, const char *page, size_t len)
  3717. {
  3718. if (!mddev->pers || !mddev->pers->sync_request)
  3719. return -EINVAL;
  3720. if (cmd_match(page, "frozen"))
  3721. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3722. else
  3723. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3724. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3725. flush_workqueue(md_misc_wq);
  3726. if (mddev->sync_thread) {
  3727. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3728. if (mddev_lock(mddev) == 0) {
  3729. md_reap_sync_thread(mddev);
  3730. mddev_unlock(mddev);
  3731. }
  3732. }
  3733. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3734. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3735. return -EBUSY;
  3736. else if (cmd_match(page, "resync"))
  3737. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3738. else if (cmd_match(page, "recover")) {
  3739. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3740. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3741. } else if (cmd_match(page, "reshape")) {
  3742. int err;
  3743. if (mddev->pers->start_reshape == NULL)
  3744. return -EINVAL;
  3745. err = mddev_lock(mddev);
  3746. if (!err) {
  3747. err = mddev->pers->start_reshape(mddev);
  3748. mddev_unlock(mddev);
  3749. }
  3750. if (err)
  3751. return err;
  3752. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3753. } else {
  3754. if (cmd_match(page, "check"))
  3755. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3756. else if (!cmd_match(page, "repair"))
  3757. return -EINVAL;
  3758. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3759. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3760. }
  3761. if (mddev->ro == 2) {
  3762. /* A write to sync_action is enough to justify
  3763. * canceling read-auto mode
  3764. */
  3765. mddev->ro = 0;
  3766. md_wakeup_thread(mddev->sync_thread);
  3767. }
  3768. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3769. md_wakeup_thread(mddev->thread);
  3770. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3771. return len;
  3772. }
  3773. static struct md_sysfs_entry md_scan_mode =
  3774. __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3775. static ssize_t
  3776. last_sync_action_show(struct mddev *mddev, char *page)
  3777. {
  3778. return sprintf(page, "%s\n", mddev->last_sync_action);
  3779. }
  3780. static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
  3781. static ssize_t
  3782. mismatch_cnt_show(struct mddev *mddev, char *page)
  3783. {
  3784. return sprintf(page, "%llu\n",
  3785. (unsigned long long)
  3786. atomic64_read(&mddev->resync_mismatches));
  3787. }
  3788. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3789. static ssize_t
  3790. sync_min_show(struct mddev *mddev, char *page)
  3791. {
  3792. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3793. mddev->sync_speed_min ? "local": "system");
  3794. }
  3795. static ssize_t
  3796. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3797. {
  3798. int min;
  3799. char *e;
  3800. if (strncmp(buf, "system", 6)==0) {
  3801. mddev->sync_speed_min = 0;
  3802. return len;
  3803. }
  3804. min = simple_strtoul(buf, &e, 10);
  3805. if (buf == e || (*e && *e != '\n') || min <= 0)
  3806. return -EINVAL;
  3807. mddev->sync_speed_min = min;
  3808. return len;
  3809. }
  3810. static struct md_sysfs_entry md_sync_min =
  3811. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3812. static ssize_t
  3813. sync_max_show(struct mddev *mddev, char *page)
  3814. {
  3815. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3816. mddev->sync_speed_max ? "local": "system");
  3817. }
  3818. static ssize_t
  3819. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3820. {
  3821. int max;
  3822. char *e;
  3823. if (strncmp(buf, "system", 6)==0) {
  3824. mddev->sync_speed_max = 0;
  3825. return len;
  3826. }
  3827. max = simple_strtoul(buf, &e, 10);
  3828. if (buf == e || (*e && *e != '\n') || max <= 0)
  3829. return -EINVAL;
  3830. mddev->sync_speed_max = max;
  3831. return len;
  3832. }
  3833. static struct md_sysfs_entry md_sync_max =
  3834. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3835. static ssize_t
  3836. degraded_show(struct mddev *mddev, char *page)
  3837. {
  3838. return sprintf(page, "%d\n", mddev->degraded);
  3839. }
  3840. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3841. static ssize_t
  3842. sync_force_parallel_show(struct mddev *mddev, char *page)
  3843. {
  3844. return sprintf(page, "%d\n", mddev->parallel_resync);
  3845. }
  3846. static ssize_t
  3847. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3848. {
  3849. long n;
  3850. if (kstrtol(buf, 10, &n))
  3851. return -EINVAL;
  3852. if (n != 0 && n != 1)
  3853. return -EINVAL;
  3854. mddev->parallel_resync = n;
  3855. if (mddev->sync_thread)
  3856. wake_up(&resync_wait);
  3857. return len;
  3858. }
  3859. /* force parallel resync, even with shared block devices */
  3860. static struct md_sysfs_entry md_sync_force_parallel =
  3861. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3862. sync_force_parallel_show, sync_force_parallel_store);
  3863. static ssize_t
  3864. sync_speed_show(struct mddev *mddev, char *page)
  3865. {
  3866. unsigned long resync, dt, db;
  3867. if (mddev->curr_resync == 0)
  3868. return sprintf(page, "none\n");
  3869. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3870. dt = (jiffies - mddev->resync_mark) / HZ;
  3871. if (!dt) dt++;
  3872. db = resync - mddev->resync_mark_cnt;
  3873. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3874. }
  3875. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3876. static ssize_t
  3877. sync_completed_show(struct mddev *mddev, char *page)
  3878. {
  3879. unsigned long long max_sectors, resync;
  3880. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3881. return sprintf(page, "none\n");
  3882. if (mddev->curr_resync == 1 ||
  3883. mddev->curr_resync == 2)
  3884. return sprintf(page, "delayed\n");
  3885. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3886. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3887. max_sectors = mddev->resync_max_sectors;
  3888. else
  3889. max_sectors = mddev->dev_sectors;
  3890. resync = mddev->curr_resync_completed;
  3891. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3892. }
  3893. static struct md_sysfs_entry md_sync_completed =
  3894. __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
  3895. static ssize_t
  3896. min_sync_show(struct mddev *mddev, char *page)
  3897. {
  3898. return sprintf(page, "%llu\n",
  3899. (unsigned long long)mddev->resync_min);
  3900. }
  3901. static ssize_t
  3902. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3903. {
  3904. unsigned long long min;
  3905. int err;
  3906. int chunk;
  3907. if (kstrtoull(buf, 10, &min))
  3908. return -EINVAL;
  3909. spin_lock(&mddev->lock);
  3910. err = -EINVAL;
  3911. if (min > mddev->resync_max)
  3912. goto out_unlock;
  3913. err = -EBUSY;
  3914. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3915. goto out_unlock;
  3916. /* Must be a multiple of chunk_size */
  3917. chunk = mddev->chunk_sectors;
  3918. if (chunk) {
  3919. sector_t temp = min;
  3920. err = -EINVAL;
  3921. if (sector_div(temp, chunk))
  3922. goto out_unlock;
  3923. }
  3924. mddev->resync_min = min;
  3925. err = 0;
  3926. out_unlock:
  3927. spin_unlock(&mddev->lock);
  3928. return err ?: len;
  3929. }
  3930. static struct md_sysfs_entry md_min_sync =
  3931. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3932. static ssize_t
  3933. max_sync_show(struct mddev *mddev, char *page)
  3934. {
  3935. if (mddev->resync_max == MaxSector)
  3936. return sprintf(page, "max\n");
  3937. else
  3938. return sprintf(page, "%llu\n",
  3939. (unsigned long long)mddev->resync_max);
  3940. }
  3941. static ssize_t
  3942. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3943. {
  3944. int err;
  3945. spin_lock(&mddev->lock);
  3946. if (strncmp(buf, "max", 3) == 0)
  3947. mddev->resync_max = MaxSector;
  3948. else {
  3949. unsigned long long max;
  3950. int chunk;
  3951. err = -EINVAL;
  3952. if (kstrtoull(buf, 10, &max))
  3953. goto out_unlock;
  3954. if (max < mddev->resync_min)
  3955. goto out_unlock;
  3956. err = -EBUSY;
  3957. if (max < mddev->resync_max &&
  3958. mddev->ro == 0 &&
  3959. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3960. goto out_unlock;
  3961. /* Must be a multiple of chunk_size */
  3962. chunk = mddev->chunk_sectors;
  3963. if (chunk) {
  3964. sector_t temp = max;
  3965. err = -EINVAL;
  3966. if (sector_div(temp, chunk))
  3967. goto out_unlock;
  3968. }
  3969. mddev->resync_max = max;
  3970. }
  3971. wake_up(&mddev->recovery_wait);
  3972. err = 0;
  3973. out_unlock:
  3974. spin_unlock(&mddev->lock);
  3975. return err ?: len;
  3976. }
  3977. static struct md_sysfs_entry md_max_sync =
  3978. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3979. static ssize_t
  3980. suspend_lo_show(struct mddev *mddev, char *page)
  3981. {
  3982. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3983. }
  3984. static ssize_t
  3985. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  3986. {
  3987. char *e;
  3988. unsigned long long new = simple_strtoull(buf, &e, 10);
  3989. unsigned long long old;
  3990. int err;
  3991. if (buf == e || (*e && *e != '\n'))
  3992. return -EINVAL;
  3993. err = mddev_lock(mddev);
  3994. if (err)
  3995. return err;
  3996. err = -EINVAL;
  3997. if (mddev->pers == NULL ||
  3998. mddev->pers->quiesce == NULL)
  3999. goto unlock;
  4000. old = mddev->suspend_lo;
  4001. mddev->suspend_lo = new;
  4002. if (new >= old)
  4003. /* Shrinking suspended region */
  4004. mddev->pers->quiesce(mddev, 2);
  4005. else {
  4006. /* Expanding suspended region - need to wait */
  4007. mddev->pers->quiesce(mddev, 1);
  4008. mddev->pers->quiesce(mddev, 0);
  4009. }
  4010. err = 0;
  4011. unlock:
  4012. mddev_unlock(mddev);
  4013. return err ?: len;
  4014. }
  4015. static struct md_sysfs_entry md_suspend_lo =
  4016. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4017. static ssize_t
  4018. suspend_hi_show(struct mddev *mddev, char *page)
  4019. {
  4020. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4021. }
  4022. static ssize_t
  4023. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4024. {
  4025. char *e;
  4026. unsigned long long new = simple_strtoull(buf, &e, 10);
  4027. unsigned long long old;
  4028. int err;
  4029. if (buf == e || (*e && *e != '\n'))
  4030. return -EINVAL;
  4031. err = mddev_lock(mddev);
  4032. if (err)
  4033. return err;
  4034. err = -EINVAL;
  4035. if (mddev->pers == NULL ||
  4036. mddev->pers->quiesce == NULL)
  4037. goto unlock;
  4038. old = mddev->suspend_hi;
  4039. mddev->suspend_hi = new;
  4040. if (new <= old)
  4041. /* Shrinking suspended region */
  4042. mddev->pers->quiesce(mddev, 2);
  4043. else {
  4044. /* Expanding suspended region - need to wait */
  4045. mddev->pers->quiesce(mddev, 1);
  4046. mddev->pers->quiesce(mddev, 0);
  4047. }
  4048. err = 0;
  4049. unlock:
  4050. mddev_unlock(mddev);
  4051. return err ?: len;
  4052. }
  4053. static struct md_sysfs_entry md_suspend_hi =
  4054. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4055. static ssize_t
  4056. reshape_position_show(struct mddev *mddev, char *page)
  4057. {
  4058. if (mddev->reshape_position != MaxSector)
  4059. return sprintf(page, "%llu\n",
  4060. (unsigned long long)mddev->reshape_position);
  4061. strcpy(page, "none\n");
  4062. return 5;
  4063. }
  4064. static ssize_t
  4065. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4066. {
  4067. struct md_rdev *rdev;
  4068. char *e;
  4069. int err;
  4070. unsigned long long new = simple_strtoull(buf, &e, 10);
  4071. if (buf == e || (*e && *e != '\n'))
  4072. return -EINVAL;
  4073. err = mddev_lock(mddev);
  4074. if (err)
  4075. return err;
  4076. err = -EBUSY;
  4077. if (mddev->pers)
  4078. goto unlock;
  4079. mddev->reshape_position = new;
  4080. mddev->delta_disks = 0;
  4081. mddev->reshape_backwards = 0;
  4082. mddev->new_level = mddev->level;
  4083. mddev->new_layout = mddev->layout;
  4084. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4085. rdev_for_each(rdev, mddev)
  4086. rdev->new_data_offset = rdev->data_offset;
  4087. err = 0;
  4088. unlock:
  4089. mddev_unlock(mddev);
  4090. return err ?: len;
  4091. }
  4092. static struct md_sysfs_entry md_reshape_position =
  4093. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4094. reshape_position_store);
  4095. static ssize_t
  4096. reshape_direction_show(struct mddev *mddev, char *page)
  4097. {
  4098. return sprintf(page, "%s\n",
  4099. mddev->reshape_backwards ? "backwards" : "forwards");
  4100. }
  4101. static ssize_t
  4102. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4103. {
  4104. int backwards = 0;
  4105. int err;
  4106. if (cmd_match(buf, "forwards"))
  4107. backwards = 0;
  4108. else if (cmd_match(buf, "backwards"))
  4109. backwards = 1;
  4110. else
  4111. return -EINVAL;
  4112. if (mddev->reshape_backwards == backwards)
  4113. return len;
  4114. err = mddev_lock(mddev);
  4115. if (err)
  4116. return err;
  4117. /* check if we are allowed to change */
  4118. if (mddev->delta_disks)
  4119. err = -EBUSY;
  4120. else if (mddev->persistent &&
  4121. mddev->major_version == 0)
  4122. err = -EINVAL;
  4123. else
  4124. mddev->reshape_backwards = backwards;
  4125. mddev_unlock(mddev);
  4126. return err ?: len;
  4127. }
  4128. static struct md_sysfs_entry md_reshape_direction =
  4129. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4130. reshape_direction_store);
  4131. static ssize_t
  4132. array_size_show(struct mddev *mddev, char *page)
  4133. {
  4134. if (mddev->external_size)
  4135. return sprintf(page, "%llu\n",
  4136. (unsigned long long)mddev->array_sectors/2);
  4137. else
  4138. return sprintf(page, "default\n");
  4139. }
  4140. static ssize_t
  4141. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4142. {
  4143. sector_t sectors;
  4144. int err;
  4145. err = mddev_lock(mddev);
  4146. if (err)
  4147. return err;
  4148. if (strncmp(buf, "default", 7) == 0) {
  4149. if (mddev->pers)
  4150. sectors = mddev->pers->size(mddev, 0, 0);
  4151. else
  4152. sectors = mddev->array_sectors;
  4153. mddev->external_size = 0;
  4154. } else {
  4155. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4156. err = -EINVAL;
  4157. else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4158. err = -E2BIG;
  4159. else
  4160. mddev->external_size = 1;
  4161. }
  4162. if (!err) {
  4163. mddev->array_sectors = sectors;
  4164. if (mddev->pers) {
  4165. set_capacity(mddev->gendisk, mddev->array_sectors);
  4166. revalidate_disk(mddev->gendisk);
  4167. }
  4168. }
  4169. mddev_unlock(mddev);
  4170. return err ?: len;
  4171. }
  4172. static struct md_sysfs_entry md_array_size =
  4173. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4174. array_size_store);
  4175. static struct attribute *md_default_attrs[] = {
  4176. &md_level.attr,
  4177. &md_layout.attr,
  4178. &md_raid_disks.attr,
  4179. &md_chunk_size.attr,
  4180. &md_size.attr,
  4181. &md_resync_start.attr,
  4182. &md_metadata.attr,
  4183. &md_new_device.attr,
  4184. &md_safe_delay.attr,
  4185. &md_array_state.attr,
  4186. &md_reshape_position.attr,
  4187. &md_reshape_direction.attr,
  4188. &md_array_size.attr,
  4189. &max_corr_read_errors.attr,
  4190. NULL,
  4191. };
  4192. static struct attribute *md_redundancy_attrs[] = {
  4193. &md_scan_mode.attr,
  4194. &md_last_scan_mode.attr,
  4195. &md_mismatches.attr,
  4196. &md_sync_min.attr,
  4197. &md_sync_max.attr,
  4198. &md_sync_speed.attr,
  4199. &md_sync_force_parallel.attr,
  4200. &md_sync_completed.attr,
  4201. &md_min_sync.attr,
  4202. &md_max_sync.attr,
  4203. &md_suspend_lo.attr,
  4204. &md_suspend_hi.attr,
  4205. &md_bitmap.attr,
  4206. &md_degraded.attr,
  4207. NULL,
  4208. };
  4209. static struct attribute_group md_redundancy_group = {
  4210. .name = NULL,
  4211. .attrs = md_redundancy_attrs,
  4212. };
  4213. static ssize_t
  4214. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4215. {
  4216. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4217. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4218. ssize_t rv;
  4219. if (!entry->show)
  4220. return -EIO;
  4221. spin_lock(&all_mddevs_lock);
  4222. if (list_empty(&mddev->all_mddevs)) {
  4223. spin_unlock(&all_mddevs_lock);
  4224. return -EBUSY;
  4225. }
  4226. mddev_get(mddev);
  4227. spin_unlock(&all_mddevs_lock);
  4228. rv = entry->show(mddev, page);
  4229. mddev_put(mddev);
  4230. return rv;
  4231. }
  4232. static ssize_t
  4233. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4234. const char *page, size_t length)
  4235. {
  4236. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4237. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4238. ssize_t rv;
  4239. if (!entry->store)
  4240. return -EIO;
  4241. if (!capable(CAP_SYS_ADMIN))
  4242. return -EACCES;
  4243. spin_lock(&all_mddevs_lock);
  4244. if (list_empty(&mddev->all_mddevs)) {
  4245. spin_unlock(&all_mddevs_lock);
  4246. return -EBUSY;
  4247. }
  4248. mddev_get(mddev);
  4249. spin_unlock(&all_mddevs_lock);
  4250. rv = entry->store(mddev, page, length);
  4251. mddev_put(mddev);
  4252. return rv;
  4253. }
  4254. static void md_free(struct kobject *ko)
  4255. {
  4256. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4257. if (mddev->sysfs_state)
  4258. sysfs_put(mddev->sysfs_state);
  4259. if (mddev->queue)
  4260. blk_cleanup_queue(mddev->queue);
  4261. if (mddev->gendisk) {
  4262. del_gendisk(mddev->gendisk);
  4263. put_disk(mddev->gendisk);
  4264. }
  4265. kfree(mddev);
  4266. }
  4267. static const struct sysfs_ops md_sysfs_ops = {
  4268. .show = md_attr_show,
  4269. .store = md_attr_store,
  4270. };
  4271. static struct kobj_type md_ktype = {
  4272. .release = md_free,
  4273. .sysfs_ops = &md_sysfs_ops,
  4274. .default_attrs = md_default_attrs,
  4275. };
  4276. int mdp_major = 0;
  4277. static void mddev_delayed_delete(struct work_struct *ws)
  4278. {
  4279. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4280. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4281. kobject_del(&mddev->kobj);
  4282. kobject_put(&mddev->kobj);
  4283. }
  4284. static int md_alloc(dev_t dev, char *name)
  4285. {
  4286. static DEFINE_MUTEX(disks_mutex);
  4287. struct mddev *mddev = mddev_find(dev);
  4288. struct gendisk *disk;
  4289. int partitioned;
  4290. int shift;
  4291. int unit;
  4292. int error;
  4293. if (!mddev)
  4294. return -ENODEV;
  4295. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4296. shift = partitioned ? MdpMinorShift : 0;
  4297. unit = MINOR(mddev->unit) >> shift;
  4298. /* wait for any previous instance of this device to be
  4299. * completely removed (mddev_delayed_delete).
  4300. */
  4301. flush_workqueue(md_misc_wq);
  4302. mutex_lock(&disks_mutex);
  4303. error = -EEXIST;
  4304. if (mddev->gendisk)
  4305. goto abort;
  4306. if (name) {
  4307. /* Need to ensure that 'name' is not a duplicate.
  4308. */
  4309. struct mddev *mddev2;
  4310. spin_lock(&all_mddevs_lock);
  4311. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4312. if (mddev2->gendisk &&
  4313. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4314. spin_unlock(&all_mddevs_lock);
  4315. goto abort;
  4316. }
  4317. spin_unlock(&all_mddevs_lock);
  4318. }
  4319. error = -ENOMEM;
  4320. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4321. if (!mddev->queue)
  4322. goto abort;
  4323. mddev->queue->queuedata = mddev;
  4324. blk_queue_make_request(mddev->queue, md_make_request);
  4325. blk_set_stacking_limits(&mddev->queue->limits);
  4326. disk = alloc_disk(1 << shift);
  4327. if (!disk) {
  4328. blk_cleanup_queue(mddev->queue);
  4329. mddev->queue = NULL;
  4330. goto abort;
  4331. }
  4332. disk->major = MAJOR(mddev->unit);
  4333. disk->first_minor = unit << shift;
  4334. if (name)
  4335. strcpy(disk->disk_name, name);
  4336. else if (partitioned)
  4337. sprintf(disk->disk_name, "md_d%d", unit);
  4338. else
  4339. sprintf(disk->disk_name, "md%d", unit);
  4340. disk->fops = &md_fops;
  4341. disk->private_data = mddev;
  4342. disk->queue = mddev->queue;
  4343. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4344. /* Allow extended partitions. This makes the
  4345. * 'mdp' device redundant, but we can't really
  4346. * remove it now.
  4347. */
  4348. disk->flags |= GENHD_FL_EXT_DEVT;
  4349. mddev->gendisk = disk;
  4350. /* As soon as we call add_disk(), another thread could get
  4351. * through to md_open, so make sure it doesn't get too far
  4352. */
  4353. mutex_lock(&mddev->open_mutex);
  4354. add_disk(disk);
  4355. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4356. &disk_to_dev(disk)->kobj, "%s", "md");
  4357. if (error) {
  4358. /* This isn't possible, but as kobject_init_and_add is marked
  4359. * __must_check, we must do something with the result
  4360. */
  4361. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4362. disk->disk_name);
  4363. error = 0;
  4364. }
  4365. if (mddev->kobj.sd &&
  4366. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4367. printk(KERN_DEBUG "pointless warning\n");
  4368. mutex_unlock(&mddev->open_mutex);
  4369. abort:
  4370. mutex_unlock(&disks_mutex);
  4371. if (!error && mddev->kobj.sd) {
  4372. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4373. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4374. }
  4375. mddev_put(mddev);
  4376. return error;
  4377. }
  4378. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4379. {
  4380. md_alloc(dev, NULL);
  4381. return NULL;
  4382. }
  4383. static int add_named_array(const char *val, struct kernel_param *kp)
  4384. {
  4385. /* val must be "md_*" where * is not all digits.
  4386. * We allocate an array with a large free minor number, and
  4387. * set the name to val. val must not already be an active name.
  4388. */
  4389. int len = strlen(val);
  4390. char buf[DISK_NAME_LEN];
  4391. while (len && val[len-1] == '\n')
  4392. len--;
  4393. if (len >= DISK_NAME_LEN)
  4394. return -E2BIG;
  4395. strlcpy(buf, val, len+1);
  4396. if (strncmp(buf, "md_", 3) != 0)
  4397. return -EINVAL;
  4398. return md_alloc(0, buf);
  4399. }
  4400. static void md_safemode_timeout(unsigned long data)
  4401. {
  4402. struct mddev *mddev = (struct mddev *) data;
  4403. if (!atomic_read(&mddev->writes_pending)) {
  4404. mddev->safemode = 1;
  4405. if (mddev->external)
  4406. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4407. }
  4408. md_wakeup_thread(mddev->thread);
  4409. }
  4410. static int start_dirty_degraded;
  4411. int md_run(struct mddev *mddev)
  4412. {
  4413. int err;
  4414. struct md_rdev *rdev;
  4415. struct md_personality *pers;
  4416. if (list_empty(&mddev->disks))
  4417. /* cannot run an array with no devices.. */
  4418. return -EINVAL;
  4419. if (mddev->pers)
  4420. return -EBUSY;
  4421. /* Cannot run until previous stop completes properly */
  4422. if (mddev->sysfs_active)
  4423. return -EBUSY;
  4424. /*
  4425. * Analyze all RAID superblock(s)
  4426. */
  4427. if (!mddev->raid_disks) {
  4428. if (!mddev->persistent)
  4429. return -EINVAL;
  4430. analyze_sbs(mddev);
  4431. }
  4432. if (mddev->level != LEVEL_NONE)
  4433. request_module("md-level-%d", mddev->level);
  4434. else if (mddev->clevel[0])
  4435. request_module("md-%s", mddev->clevel);
  4436. /*
  4437. * Drop all container device buffers, from now on
  4438. * the only valid external interface is through the md
  4439. * device.
  4440. */
  4441. rdev_for_each(rdev, mddev) {
  4442. if (test_bit(Faulty, &rdev->flags))
  4443. continue;
  4444. sync_blockdev(rdev->bdev);
  4445. invalidate_bdev(rdev->bdev);
  4446. /* perform some consistency tests on the device.
  4447. * We don't want the data to overlap the metadata,
  4448. * Internal Bitmap issues have been handled elsewhere.
  4449. */
  4450. if (rdev->meta_bdev) {
  4451. /* Nothing to check */;
  4452. } else if (rdev->data_offset < rdev->sb_start) {
  4453. if (mddev->dev_sectors &&
  4454. rdev->data_offset + mddev->dev_sectors
  4455. > rdev->sb_start) {
  4456. printk("md: %s: data overlaps metadata\n",
  4457. mdname(mddev));
  4458. return -EINVAL;
  4459. }
  4460. } else {
  4461. if (rdev->sb_start + rdev->sb_size/512
  4462. > rdev->data_offset) {
  4463. printk("md: %s: metadata overlaps data\n",
  4464. mdname(mddev));
  4465. return -EINVAL;
  4466. }
  4467. }
  4468. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4469. }
  4470. if (mddev->bio_set == NULL)
  4471. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4472. spin_lock(&pers_lock);
  4473. pers = find_pers(mddev->level, mddev->clevel);
  4474. if (!pers || !try_module_get(pers->owner)) {
  4475. spin_unlock(&pers_lock);
  4476. if (mddev->level != LEVEL_NONE)
  4477. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4478. mddev->level);
  4479. else
  4480. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4481. mddev->clevel);
  4482. return -EINVAL;
  4483. }
  4484. spin_unlock(&pers_lock);
  4485. if (mddev->level != pers->level) {
  4486. mddev->level = pers->level;
  4487. mddev->new_level = pers->level;
  4488. }
  4489. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4490. if (mddev->reshape_position != MaxSector &&
  4491. pers->start_reshape == NULL) {
  4492. /* This personality cannot handle reshaping... */
  4493. module_put(pers->owner);
  4494. return -EINVAL;
  4495. }
  4496. if (pers->sync_request) {
  4497. /* Warn if this is a potentially silly
  4498. * configuration.
  4499. */
  4500. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4501. struct md_rdev *rdev2;
  4502. int warned = 0;
  4503. rdev_for_each(rdev, mddev)
  4504. rdev_for_each(rdev2, mddev) {
  4505. if (rdev < rdev2 &&
  4506. rdev->bdev->bd_contains ==
  4507. rdev2->bdev->bd_contains) {
  4508. printk(KERN_WARNING
  4509. "%s: WARNING: %s appears to be"
  4510. " on the same physical disk as"
  4511. " %s.\n",
  4512. mdname(mddev),
  4513. bdevname(rdev->bdev,b),
  4514. bdevname(rdev2->bdev,b2));
  4515. warned = 1;
  4516. }
  4517. }
  4518. if (warned)
  4519. printk(KERN_WARNING
  4520. "True protection against single-disk"
  4521. " failure might be compromised.\n");
  4522. }
  4523. mddev->recovery = 0;
  4524. /* may be over-ridden by personality */
  4525. mddev->resync_max_sectors = mddev->dev_sectors;
  4526. mddev->ok_start_degraded = start_dirty_degraded;
  4527. if (start_readonly && mddev->ro == 0)
  4528. mddev->ro = 2; /* read-only, but switch on first write */
  4529. err = pers->run(mddev);
  4530. if (err)
  4531. printk(KERN_ERR "md: pers->run() failed ...\n");
  4532. else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4533. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4534. " but 'external_size' not in effect?\n", __func__);
  4535. printk(KERN_ERR
  4536. "md: invalid array_size %llu > default size %llu\n",
  4537. (unsigned long long)mddev->array_sectors / 2,
  4538. (unsigned long long)pers->size(mddev, 0, 0) / 2);
  4539. err = -EINVAL;
  4540. }
  4541. if (err == 0 && pers->sync_request &&
  4542. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4543. err = bitmap_create(mddev);
  4544. if (err)
  4545. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4546. mdname(mddev), err);
  4547. }
  4548. if (err) {
  4549. mddev_detach(mddev);
  4550. if (mddev->private)
  4551. pers->free(mddev, mddev->private);
  4552. module_put(pers->owner);
  4553. bitmap_destroy(mddev);
  4554. return err;
  4555. }
  4556. if (mddev->queue) {
  4557. mddev->queue->backing_dev_info.congested_data = mddev;
  4558. mddev->queue->backing_dev_info.congested_fn = md_congested;
  4559. blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
  4560. }
  4561. if (pers->sync_request) {
  4562. if (mddev->kobj.sd &&
  4563. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4564. printk(KERN_WARNING
  4565. "md: cannot register extra attributes for %s\n",
  4566. mdname(mddev));
  4567. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4568. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4569. mddev->ro = 0;
  4570. atomic_set(&mddev->writes_pending,0);
  4571. atomic_set(&mddev->max_corr_read_errors,
  4572. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4573. mddev->safemode = 0;
  4574. mddev->safemode_timer.function = md_safemode_timeout;
  4575. mddev->safemode_timer.data = (unsigned long) mddev;
  4576. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4577. mddev->in_sync = 1;
  4578. smp_wmb();
  4579. spin_lock(&mddev->lock);
  4580. mddev->pers = pers;
  4581. mddev->ready = 1;
  4582. spin_unlock(&mddev->lock);
  4583. rdev_for_each(rdev, mddev)
  4584. if (rdev->raid_disk >= 0)
  4585. if (sysfs_link_rdev(mddev, rdev))
  4586. /* failure here is OK */;
  4587. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4588. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  4589. md_update_sb(mddev, 0);
  4590. md_new_event(mddev);
  4591. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4592. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4593. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4594. return 0;
  4595. }
  4596. EXPORT_SYMBOL_GPL(md_run);
  4597. static int do_md_run(struct mddev *mddev)
  4598. {
  4599. int err;
  4600. err = md_run(mddev);
  4601. if (err)
  4602. goto out;
  4603. err = bitmap_load(mddev);
  4604. if (err) {
  4605. bitmap_destroy(mddev);
  4606. goto out;
  4607. }
  4608. md_wakeup_thread(mddev->thread);
  4609. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4610. set_capacity(mddev->gendisk, mddev->array_sectors);
  4611. revalidate_disk(mddev->gendisk);
  4612. mddev->changed = 1;
  4613. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4614. out:
  4615. return err;
  4616. }
  4617. static int restart_array(struct mddev *mddev)
  4618. {
  4619. struct gendisk *disk = mddev->gendisk;
  4620. /* Complain if it has no devices */
  4621. if (list_empty(&mddev->disks))
  4622. return -ENXIO;
  4623. if (!mddev->pers)
  4624. return -EINVAL;
  4625. if (!mddev->ro)
  4626. return -EBUSY;
  4627. mddev->safemode = 0;
  4628. mddev->ro = 0;
  4629. set_disk_ro(disk, 0);
  4630. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4631. mdname(mddev));
  4632. /* Kick recovery or resync if necessary */
  4633. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4634. md_wakeup_thread(mddev->thread);
  4635. md_wakeup_thread(mddev->sync_thread);
  4636. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4637. return 0;
  4638. }
  4639. static void md_clean(struct mddev *mddev)
  4640. {
  4641. mddev->array_sectors = 0;
  4642. mddev->external_size = 0;
  4643. mddev->dev_sectors = 0;
  4644. mddev->raid_disks = 0;
  4645. mddev->recovery_cp = 0;
  4646. mddev->resync_min = 0;
  4647. mddev->resync_max = MaxSector;
  4648. mddev->reshape_position = MaxSector;
  4649. mddev->external = 0;
  4650. mddev->persistent = 0;
  4651. mddev->level = LEVEL_NONE;
  4652. mddev->clevel[0] = 0;
  4653. mddev->flags = 0;
  4654. mddev->ro = 0;
  4655. mddev->metadata_type[0] = 0;
  4656. mddev->chunk_sectors = 0;
  4657. mddev->ctime = mddev->utime = 0;
  4658. mddev->layout = 0;
  4659. mddev->max_disks = 0;
  4660. mddev->events = 0;
  4661. mddev->can_decrease_events = 0;
  4662. mddev->delta_disks = 0;
  4663. mddev->reshape_backwards = 0;
  4664. mddev->new_level = LEVEL_NONE;
  4665. mddev->new_layout = 0;
  4666. mddev->new_chunk_sectors = 0;
  4667. mddev->curr_resync = 0;
  4668. atomic64_set(&mddev->resync_mismatches, 0);
  4669. mddev->suspend_lo = mddev->suspend_hi = 0;
  4670. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4671. mddev->recovery = 0;
  4672. mddev->in_sync = 0;
  4673. mddev->changed = 0;
  4674. mddev->degraded = 0;
  4675. mddev->safemode = 0;
  4676. mddev->merge_check_needed = 0;
  4677. mddev->bitmap_info.offset = 0;
  4678. mddev->bitmap_info.default_offset = 0;
  4679. mddev->bitmap_info.default_space = 0;
  4680. mddev->bitmap_info.chunksize = 0;
  4681. mddev->bitmap_info.daemon_sleep = 0;
  4682. mddev->bitmap_info.max_write_behind = 0;
  4683. }
  4684. static void __md_stop_writes(struct mddev *mddev)
  4685. {
  4686. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4687. flush_workqueue(md_misc_wq);
  4688. if (mddev->sync_thread) {
  4689. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4690. md_reap_sync_thread(mddev);
  4691. }
  4692. del_timer_sync(&mddev->safemode_timer);
  4693. bitmap_flush(mddev);
  4694. md_super_wait(mddev);
  4695. if (mddev->ro == 0 &&
  4696. (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
  4697. /* mark array as shutdown cleanly */
  4698. mddev->in_sync = 1;
  4699. md_update_sb(mddev, 1);
  4700. }
  4701. }
  4702. void md_stop_writes(struct mddev *mddev)
  4703. {
  4704. mddev_lock_nointr(mddev);
  4705. __md_stop_writes(mddev);
  4706. mddev_unlock(mddev);
  4707. }
  4708. EXPORT_SYMBOL_GPL(md_stop_writes);
  4709. static void mddev_detach(struct mddev *mddev)
  4710. {
  4711. struct bitmap *bitmap = mddev->bitmap;
  4712. /* wait for behind writes to complete */
  4713. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  4714. printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
  4715. mdname(mddev));
  4716. /* need to kick something here to make sure I/O goes? */
  4717. wait_event(bitmap->behind_wait,
  4718. atomic_read(&bitmap->behind_writes) == 0);
  4719. }
  4720. if (mddev->pers && mddev->pers->quiesce) {
  4721. mddev->pers->quiesce(mddev, 1);
  4722. mddev->pers->quiesce(mddev, 0);
  4723. }
  4724. md_unregister_thread(&mddev->thread);
  4725. if (mddev->queue)
  4726. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  4727. }
  4728. static void __md_stop(struct mddev *mddev)
  4729. {
  4730. struct md_personality *pers = mddev->pers;
  4731. mddev_detach(mddev);
  4732. spin_lock(&mddev->lock);
  4733. mddev->ready = 0;
  4734. mddev->pers = NULL;
  4735. spin_unlock(&mddev->lock);
  4736. pers->free(mddev, mddev->private);
  4737. if (pers->sync_request && mddev->to_remove == NULL)
  4738. mddev->to_remove = &md_redundancy_group;
  4739. module_put(pers->owner);
  4740. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4741. }
  4742. void md_stop(struct mddev *mddev)
  4743. {
  4744. /* stop the array and free an attached data structures.
  4745. * This is called from dm-raid
  4746. */
  4747. __md_stop(mddev);
  4748. bitmap_destroy(mddev);
  4749. if (mddev->bio_set)
  4750. bioset_free(mddev->bio_set);
  4751. }
  4752. EXPORT_SYMBOL_GPL(md_stop);
  4753. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4754. {
  4755. int err = 0;
  4756. int did_freeze = 0;
  4757. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4758. did_freeze = 1;
  4759. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4760. md_wakeup_thread(mddev->thread);
  4761. }
  4762. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4763. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4764. if (mddev->sync_thread)
  4765. /* Thread might be blocked waiting for metadata update
  4766. * which will now never happen */
  4767. wake_up_process(mddev->sync_thread->tsk);
  4768. mddev_unlock(mddev);
  4769. wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
  4770. &mddev->recovery));
  4771. mddev_lock_nointr(mddev);
  4772. mutex_lock(&mddev->open_mutex);
  4773. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4774. mddev->sync_thread ||
  4775. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4776. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4777. printk("md: %s still in use.\n",mdname(mddev));
  4778. if (did_freeze) {
  4779. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4780. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4781. md_wakeup_thread(mddev->thread);
  4782. }
  4783. err = -EBUSY;
  4784. goto out;
  4785. }
  4786. if (mddev->pers) {
  4787. __md_stop_writes(mddev);
  4788. err = -ENXIO;
  4789. if (mddev->ro==1)
  4790. goto out;
  4791. mddev->ro = 1;
  4792. set_disk_ro(mddev->gendisk, 1);
  4793. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4794. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4795. md_wakeup_thread(mddev->thread);
  4796. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4797. err = 0;
  4798. }
  4799. out:
  4800. mutex_unlock(&mddev->open_mutex);
  4801. return err;
  4802. }
  4803. /* mode:
  4804. * 0 - completely stop and dis-assemble array
  4805. * 2 - stop but do not disassemble array
  4806. */
  4807. static int do_md_stop(struct mddev *mddev, int mode,
  4808. struct block_device *bdev)
  4809. {
  4810. struct gendisk *disk = mddev->gendisk;
  4811. struct md_rdev *rdev;
  4812. int did_freeze = 0;
  4813. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4814. did_freeze = 1;
  4815. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4816. md_wakeup_thread(mddev->thread);
  4817. }
  4818. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4819. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4820. if (mddev->sync_thread)
  4821. /* Thread might be blocked waiting for metadata update
  4822. * which will now never happen */
  4823. wake_up_process(mddev->sync_thread->tsk);
  4824. mddev_unlock(mddev);
  4825. wait_event(resync_wait, (mddev->sync_thread == NULL &&
  4826. !test_bit(MD_RECOVERY_RUNNING,
  4827. &mddev->recovery)));
  4828. mddev_lock_nointr(mddev);
  4829. mutex_lock(&mddev->open_mutex);
  4830. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4831. mddev->sysfs_active ||
  4832. mddev->sync_thread ||
  4833. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4834. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4835. printk("md: %s still in use.\n",mdname(mddev));
  4836. mutex_unlock(&mddev->open_mutex);
  4837. if (did_freeze) {
  4838. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4839. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4840. md_wakeup_thread(mddev->thread);
  4841. }
  4842. return -EBUSY;
  4843. }
  4844. if (mddev->pers) {
  4845. if (mddev->ro)
  4846. set_disk_ro(disk, 0);
  4847. __md_stop_writes(mddev);
  4848. __md_stop(mddev);
  4849. mddev->queue->merge_bvec_fn = NULL;
  4850. mddev->queue->backing_dev_info.congested_fn = NULL;
  4851. /* tell userspace to handle 'inactive' */
  4852. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4853. rdev_for_each(rdev, mddev)
  4854. if (rdev->raid_disk >= 0)
  4855. sysfs_unlink_rdev(mddev, rdev);
  4856. set_capacity(disk, 0);
  4857. mutex_unlock(&mddev->open_mutex);
  4858. mddev->changed = 1;
  4859. revalidate_disk(disk);
  4860. if (mddev->ro)
  4861. mddev->ro = 0;
  4862. } else
  4863. mutex_unlock(&mddev->open_mutex);
  4864. /*
  4865. * Free resources if final stop
  4866. */
  4867. if (mode == 0) {
  4868. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4869. bitmap_destroy(mddev);
  4870. if (mddev->bitmap_info.file) {
  4871. struct file *f = mddev->bitmap_info.file;
  4872. spin_lock(&mddev->lock);
  4873. mddev->bitmap_info.file = NULL;
  4874. spin_unlock(&mddev->lock);
  4875. fput(f);
  4876. }
  4877. mddev->bitmap_info.offset = 0;
  4878. export_array(mddev);
  4879. md_clean(mddev);
  4880. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4881. if (mddev->hold_active == UNTIL_STOP)
  4882. mddev->hold_active = 0;
  4883. }
  4884. blk_integrity_unregister(disk);
  4885. md_new_event(mddev);
  4886. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4887. return 0;
  4888. }
  4889. #ifndef MODULE
  4890. static void autorun_array(struct mddev *mddev)
  4891. {
  4892. struct md_rdev *rdev;
  4893. int err;
  4894. if (list_empty(&mddev->disks))
  4895. return;
  4896. printk(KERN_INFO "md: running: ");
  4897. rdev_for_each(rdev, mddev) {
  4898. char b[BDEVNAME_SIZE];
  4899. printk("<%s>", bdevname(rdev->bdev,b));
  4900. }
  4901. printk("\n");
  4902. err = do_md_run(mddev);
  4903. if (err) {
  4904. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4905. do_md_stop(mddev, 0, NULL);
  4906. }
  4907. }
  4908. /*
  4909. * lets try to run arrays based on all disks that have arrived
  4910. * until now. (those are in pending_raid_disks)
  4911. *
  4912. * the method: pick the first pending disk, collect all disks with
  4913. * the same UUID, remove all from the pending list and put them into
  4914. * the 'same_array' list. Then order this list based on superblock
  4915. * update time (freshest comes first), kick out 'old' disks and
  4916. * compare superblocks. If everything's fine then run it.
  4917. *
  4918. * If "unit" is allocated, then bump its reference count
  4919. */
  4920. static void autorun_devices(int part)
  4921. {
  4922. struct md_rdev *rdev0, *rdev, *tmp;
  4923. struct mddev *mddev;
  4924. char b[BDEVNAME_SIZE];
  4925. printk(KERN_INFO "md: autorun ...\n");
  4926. while (!list_empty(&pending_raid_disks)) {
  4927. int unit;
  4928. dev_t dev;
  4929. LIST_HEAD(candidates);
  4930. rdev0 = list_entry(pending_raid_disks.next,
  4931. struct md_rdev, same_set);
  4932. printk(KERN_INFO "md: considering %s ...\n",
  4933. bdevname(rdev0->bdev,b));
  4934. INIT_LIST_HEAD(&candidates);
  4935. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4936. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4937. printk(KERN_INFO "md: adding %s ...\n",
  4938. bdevname(rdev->bdev,b));
  4939. list_move(&rdev->same_set, &candidates);
  4940. }
  4941. /*
  4942. * now we have a set of devices, with all of them having
  4943. * mostly sane superblocks. It's time to allocate the
  4944. * mddev.
  4945. */
  4946. if (part) {
  4947. dev = MKDEV(mdp_major,
  4948. rdev0->preferred_minor << MdpMinorShift);
  4949. unit = MINOR(dev) >> MdpMinorShift;
  4950. } else {
  4951. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4952. unit = MINOR(dev);
  4953. }
  4954. if (rdev0->preferred_minor != unit) {
  4955. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4956. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4957. break;
  4958. }
  4959. md_probe(dev, NULL, NULL);
  4960. mddev = mddev_find(dev);
  4961. if (!mddev || !mddev->gendisk) {
  4962. if (mddev)
  4963. mddev_put(mddev);
  4964. printk(KERN_ERR
  4965. "md: cannot allocate memory for md drive.\n");
  4966. break;
  4967. }
  4968. if (mddev_lock(mddev))
  4969. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4970. mdname(mddev));
  4971. else if (mddev->raid_disks || mddev->major_version
  4972. || !list_empty(&mddev->disks)) {
  4973. printk(KERN_WARNING
  4974. "md: %s already running, cannot run %s\n",
  4975. mdname(mddev), bdevname(rdev0->bdev,b));
  4976. mddev_unlock(mddev);
  4977. } else {
  4978. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4979. mddev->persistent = 1;
  4980. rdev_for_each_list(rdev, tmp, &candidates) {
  4981. list_del_init(&rdev->same_set);
  4982. if (bind_rdev_to_array(rdev, mddev))
  4983. export_rdev(rdev);
  4984. }
  4985. autorun_array(mddev);
  4986. mddev_unlock(mddev);
  4987. }
  4988. /* on success, candidates will be empty, on error
  4989. * it won't...
  4990. */
  4991. rdev_for_each_list(rdev, tmp, &candidates) {
  4992. list_del_init(&rdev->same_set);
  4993. export_rdev(rdev);
  4994. }
  4995. mddev_put(mddev);
  4996. }
  4997. printk(KERN_INFO "md: ... autorun DONE.\n");
  4998. }
  4999. #endif /* !MODULE */
  5000. static int get_version(void __user *arg)
  5001. {
  5002. mdu_version_t ver;
  5003. ver.major = MD_MAJOR_VERSION;
  5004. ver.minor = MD_MINOR_VERSION;
  5005. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  5006. if (copy_to_user(arg, &ver, sizeof(ver)))
  5007. return -EFAULT;
  5008. return 0;
  5009. }
  5010. static int get_array_info(struct mddev *mddev, void __user *arg)
  5011. {
  5012. mdu_array_info_t info;
  5013. int nr,working,insync,failed,spare;
  5014. struct md_rdev *rdev;
  5015. nr = working = insync = failed = spare = 0;
  5016. rcu_read_lock();
  5017. rdev_for_each_rcu(rdev, mddev) {
  5018. nr++;
  5019. if (test_bit(Faulty, &rdev->flags))
  5020. failed++;
  5021. else {
  5022. working++;
  5023. if (test_bit(In_sync, &rdev->flags))
  5024. insync++;
  5025. else
  5026. spare++;
  5027. }
  5028. }
  5029. rcu_read_unlock();
  5030. info.major_version = mddev->major_version;
  5031. info.minor_version = mddev->minor_version;
  5032. info.patch_version = MD_PATCHLEVEL_VERSION;
  5033. info.ctime = mddev->ctime;
  5034. info.level = mddev->level;
  5035. info.size = mddev->dev_sectors / 2;
  5036. if (info.size != mddev->dev_sectors / 2) /* overflow */
  5037. info.size = -1;
  5038. info.nr_disks = nr;
  5039. info.raid_disks = mddev->raid_disks;
  5040. info.md_minor = mddev->md_minor;
  5041. info.not_persistent= !mddev->persistent;
  5042. info.utime = mddev->utime;
  5043. info.state = 0;
  5044. if (mddev->in_sync)
  5045. info.state = (1<<MD_SB_CLEAN);
  5046. if (mddev->bitmap && mddev->bitmap_info.offset)
  5047. info.state |= (1<<MD_SB_BITMAP_PRESENT);
  5048. info.active_disks = insync;
  5049. info.working_disks = working;
  5050. info.failed_disks = failed;
  5051. info.spare_disks = spare;
  5052. info.layout = mddev->layout;
  5053. info.chunk_size = mddev->chunk_sectors << 9;
  5054. if (copy_to_user(arg, &info, sizeof(info)))
  5055. return -EFAULT;
  5056. return 0;
  5057. }
  5058. static int get_bitmap_file(struct mddev *mddev, void __user * arg)
  5059. {
  5060. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  5061. char *ptr;
  5062. int err;
  5063. file = kmalloc(sizeof(*file), GFP_NOIO);
  5064. if (!file)
  5065. return -ENOMEM;
  5066. err = 0;
  5067. spin_lock(&mddev->lock);
  5068. /* bitmap disabled, zero the first byte and copy out */
  5069. if (!mddev->bitmap_info.file)
  5070. file->pathname[0] = '\0';
  5071. else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
  5072. file->pathname, sizeof(file->pathname))),
  5073. IS_ERR(ptr))
  5074. err = PTR_ERR(ptr);
  5075. else
  5076. memmove(file->pathname, ptr,
  5077. sizeof(file->pathname)-(ptr-file->pathname));
  5078. spin_unlock(&mddev->lock);
  5079. if (err == 0 &&
  5080. copy_to_user(arg, file, sizeof(*file)))
  5081. err = -EFAULT;
  5082. kfree(file);
  5083. return err;
  5084. }
  5085. static int get_disk_info(struct mddev *mddev, void __user * arg)
  5086. {
  5087. mdu_disk_info_t info;
  5088. struct md_rdev *rdev;
  5089. if (copy_from_user(&info, arg, sizeof(info)))
  5090. return -EFAULT;
  5091. rcu_read_lock();
  5092. rdev = find_rdev_nr_rcu(mddev, info.number);
  5093. if (rdev) {
  5094. info.major = MAJOR(rdev->bdev->bd_dev);
  5095. info.minor = MINOR(rdev->bdev->bd_dev);
  5096. info.raid_disk = rdev->raid_disk;
  5097. info.state = 0;
  5098. if (test_bit(Faulty, &rdev->flags))
  5099. info.state |= (1<<MD_DISK_FAULTY);
  5100. else if (test_bit(In_sync, &rdev->flags)) {
  5101. info.state |= (1<<MD_DISK_ACTIVE);
  5102. info.state |= (1<<MD_DISK_SYNC);
  5103. }
  5104. if (test_bit(WriteMostly, &rdev->flags))
  5105. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5106. } else {
  5107. info.major = info.minor = 0;
  5108. info.raid_disk = -1;
  5109. info.state = (1<<MD_DISK_REMOVED);
  5110. }
  5111. rcu_read_unlock();
  5112. if (copy_to_user(arg, &info, sizeof(info)))
  5113. return -EFAULT;
  5114. return 0;
  5115. }
  5116. static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
  5117. {
  5118. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5119. struct md_rdev *rdev;
  5120. dev_t dev = MKDEV(info->major,info->minor);
  5121. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5122. return -EOVERFLOW;
  5123. if (!mddev->raid_disks) {
  5124. int err;
  5125. /* expecting a device which has a superblock */
  5126. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5127. if (IS_ERR(rdev)) {
  5128. printk(KERN_WARNING
  5129. "md: md_import_device returned %ld\n",
  5130. PTR_ERR(rdev));
  5131. return PTR_ERR(rdev);
  5132. }
  5133. if (!list_empty(&mddev->disks)) {
  5134. struct md_rdev *rdev0
  5135. = list_entry(mddev->disks.next,
  5136. struct md_rdev, same_set);
  5137. err = super_types[mddev->major_version]
  5138. .load_super(rdev, rdev0, mddev->minor_version);
  5139. if (err < 0) {
  5140. printk(KERN_WARNING
  5141. "md: %s has different UUID to %s\n",
  5142. bdevname(rdev->bdev,b),
  5143. bdevname(rdev0->bdev,b2));
  5144. export_rdev(rdev);
  5145. return -EINVAL;
  5146. }
  5147. }
  5148. err = bind_rdev_to_array(rdev, mddev);
  5149. if (err)
  5150. export_rdev(rdev);
  5151. return err;
  5152. }
  5153. /*
  5154. * add_new_disk can be used once the array is assembled
  5155. * to add "hot spares". They must already have a superblock
  5156. * written
  5157. */
  5158. if (mddev->pers) {
  5159. int err;
  5160. if (!mddev->pers->hot_add_disk) {
  5161. printk(KERN_WARNING
  5162. "%s: personality does not support diskops!\n",
  5163. mdname(mddev));
  5164. return -EINVAL;
  5165. }
  5166. if (mddev->persistent)
  5167. rdev = md_import_device(dev, mddev->major_version,
  5168. mddev->minor_version);
  5169. else
  5170. rdev = md_import_device(dev, -1, -1);
  5171. if (IS_ERR(rdev)) {
  5172. printk(KERN_WARNING
  5173. "md: md_import_device returned %ld\n",
  5174. PTR_ERR(rdev));
  5175. return PTR_ERR(rdev);
  5176. }
  5177. /* set saved_raid_disk if appropriate */
  5178. if (!mddev->persistent) {
  5179. if (info->state & (1<<MD_DISK_SYNC) &&
  5180. info->raid_disk < mddev->raid_disks) {
  5181. rdev->raid_disk = info->raid_disk;
  5182. set_bit(In_sync, &rdev->flags);
  5183. clear_bit(Bitmap_sync, &rdev->flags);
  5184. } else
  5185. rdev->raid_disk = -1;
  5186. rdev->saved_raid_disk = rdev->raid_disk;
  5187. } else
  5188. super_types[mddev->major_version].
  5189. validate_super(mddev, rdev);
  5190. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5191. rdev->raid_disk != info->raid_disk) {
  5192. /* This was a hot-add request, but events doesn't
  5193. * match, so reject it.
  5194. */
  5195. export_rdev(rdev);
  5196. return -EINVAL;
  5197. }
  5198. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5199. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5200. set_bit(WriteMostly, &rdev->flags);
  5201. else
  5202. clear_bit(WriteMostly, &rdev->flags);
  5203. rdev->raid_disk = -1;
  5204. err = bind_rdev_to_array(rdev, mddev);
  5205. if (!err && !mddev->pers->hot_remove_disk) {
  5206. /* If there is hot_add_disk but no hot_remove_disk
  5207. * then added disks for geometry changes,
  5208. * and should be added immediately.
  5209. */
  5210. super_types[mddev->major_version].
  5211. validate_super(mddev, rdev);
  5212. err = mddev->pers->hot_add_disk(mddev, rdev);
  5213. if (err)
  5214. unbind_rdev_from_array(rdev);
  5215. }
  5216. if (err)
  5217. export_rdev(rdev);
  5218. else
  5219. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5220. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5221. if (mddev->degraded)
  5222. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5223. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5224. if (!err)
  5225. md_new_event(mddev);
  5226. md_wakeup_thread(mddev->thread);
  5227. return err;
  5228. }
  5229. /* otherwise, add_new_disk is only allowed
  5230. * for major_version==0 superblocks
  5231. */
  5232. if (mddev->major_version != 0) {
  5233. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5234. mdname(mddev));
  5235. return -EINVAL;
  5236. }
  5237. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5238. int err;
  5239. rdev = md_import_device(dev, -1, 0);
  5240. if (IS_ERR(rdev)) {
  5241. printk(KERN_WARNING
  5242. "md: error, md_import_device() returned %ld\n",
  5243. PTR_ERR(rdev));
  5244. return PTR_ERR(rdev);
  5245. }
  5246. rdev->desc_nr = info->number;
  5247. if (info->raid_disk < mddev->raid_disks)
  5248. rdev->raid_disk = info->raid_disk;
  5249. else
  5250. rdev->raid_disk = -1;
  5251. if (rdev->raid_disk < mddev->raid_disks)
  5252. if (info->state & (1<<MD_DISK_SYNC))
  5253. set_bit(In_sync, &rdev->flags);
  5254. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5255. set_bit(WriteMostly, &rdev->flags);
  5256. if (!mddev->persistent) {
  5257. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5258. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5259. } else
  5260. rdev->sb_start = calc_dev_sboffset(rdev);
  5261. rdev->sectors = rdev->sb_start;
  5262. err = bind_rdev_to_array(rdev, mddev);
  5263. if (err) {
  5264. export_rdev(rdev);
  5265. return err;
  5266. }
  5267. }
  5268. return 0;
  5269. }
  5270. static int hot_remove_disk(struct mddev *mddev, dev_t dev)
  5271. {
  5272. char b[BDEVNAME_SIZE];
  5273. struct md_rdev *rdev;
  5274. rdev = find_rdev(mddev, dev);
  5275. if (!rdev)
  5276. return -ENXIO;
  5277. clear_bit(Blocked, &rdev->flags);
  5278. remove_and_add_spares(mddev, rdev);
  5279. if (rdev->raid_disk >= 0)
  5280. goto busy;
  5281. kick_rdev_from_array(rdev);
  5282. md_update_sb(mddev, 1);
  5283. md_new_event(mddev);
  5284. return 0;
  5285. busy:
  5286. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5287. bdevname(rdev->bdev,b), mdname(mddev));
  5288. return -EBUSY;
  5289. }
  5290. static int hot_add_disk(struct mddev *mddev, dev_t dev)
  5291. {
  5292. char b[BDEVNAME_SIZE];
  5293. int err;
  5294. struct md_rdev *rdev;
  5295. if (!mddev->pers)
  5296. return -ENODEV;
  5297. if (mddev->major_version != 0) {
  5298. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5299. " version-0 superblocks.\n",
  5300. mdname(mddev));
  5301. return -EINVAL;
  5302. }
  5303. if (!mddev->pers->hot_add_disk) {
  5304. printk(KERN_WARNING
  5305. "%s: personality does not support diskops!\n",
  5306. mdname(mddev));
  5307. return -EINVAL;
  5308. }
  5309. rdev = md_import_device(dev, -1, 0);
  5310. if (IS_ERR(rdev)) {
  5311. printk(KERN_WARNING
  5312. "md: error, md_import_device() returned %ld\n",
  5313. PTR_ERR(rdev));
  5314. return -EINVAL;
  5315. }
  5316. if (mddev->persistent)
  5317. rdev->sb_start = calc_dev_sboffset(rdev);
  5318. else
  5319. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5320. rdev->sectors = rdev->sb_start;
  5321. if (test_bit(Faulty, &rdev->flags)) {
  5322. printk(KERN_WARNING
  5323. "md: can not hot-add faulty %s disk to %s!\n",
  5324. bdevname(rdev->bdev,b), mdname(mddev));
  5325. err = -EINVAL;
  5326. goto abort_export;
  5327. }
  5328. clear_bit(In_sync, &rdev->flags);
  5329. rdev->desc_nr = -1;
  5330. rdev->saved_raid_disk = -1;
  5331. err = bind_rdev_to_array(rdev, mddev);
  5332. if (err)
  5333. goto abort_export;
  5334. /*
  5335. * The rest should better be atomic, we can have disk failures
  5336. * noticed in interrupt contexts ...
  5337. */
  5338. rdev->raid_disk = -1;
  5339. md_update_sb(mddev, 1);
  5340. /*
  5341. * Kick recovery, maybe this spare has to be added to the
  5342. * array immediately.
  5343. */
  5344. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5345. md_wakeup_thread(mddev->thread);
  5346. md_new_event(mddev);
  5347. return 0;
  5348. abort_export:
  5349. export_rdev(rdev);
  5350. return err;
  5351. }
  5352. static int set_bitmap_file(struct mddev *mddev, int fd)
  5353. {
  5354. int err = 0;
  5355. if (mddev->pers) {
  5356. if (!mddev->pers->quiesce || !mddev->thread)
  5357. return -EBUSY;
  5358. if (mddev->recovery || mddev->sync_thread)
  5359. return -EBUSY;
  5360. /* we should be able to change the bitmap.. */
  5361. }
  5362. if (fd >= 0) {
  5363. struct inode *inode;
  5364. struct file *f;
  5365. if (mddev->bitmap || mddev->bitmap_info.file)
  5366. return -EEXIST; /* cannot add when bitmap is present */
  5367. f = fget(fd);
  5368. if (f == NULL) {
  5369. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5370. mdname(mddev));
  5371. return -EBADF;
  5372. }
  5373. inode = f->f_mapping->host;
  5374. if (!S_ISREG(inode->i_mode)) {
  5375. printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
  5376. mdname(mddev));
  5377. err = -EBADF;
  5378. } else if (!(f->f_mode & FMODE_WRITE)) {
  5379. printk(KERN_ERR "%s: error: bitmap file must open for write\n",
  5380. mdname(mddev));
  5381. err = -EBADF;
  5382. } else if (atomic_read(&inode->i_writecount) != 1) {
  5383. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5384. mdname(mddev));
  5385. err = -EBUSY;
  5386. }
  5387. if (err) {
  5388. fput(f);
  5389. return err;
  5390. }
  5391. mddev->bitmap_info.file = f;
  5392. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5393. } else if (mddev->bitmap == NULL)
  5394. return -ENOENT; /* cannot remove what isn't there */
  5395. err = 0;
  5396. if (mddev->pers) {
  5397. mddev->pers->quiesce(mddev, 1);
  5398. if (fd >= 0) {
  5399. err = bitmap_create(mddev);
  5400. if (!err)
  5401. err = bitmap_load(mddev);
  5402. }
  5403. if (fd < 0 || err) {
  5404. bitmap_destroy(mddev);
  5405. fd = -1; /* make sure to put the file */
  5406. }
  5407. mddev->pers->quiesce(mddev, 0);
  5408. }
  5409. if (fd < 0) {
  5410. struct file *f = mddev->bitmap_info.file;
  5411. if (f) {
  5412. spin_lock(&mddev->lock);
  5413. mddev->bitmap_info.file = NULL;
  5414. spin_unlock(&mddev->lock);
  5415. fput(f);
  5416. }
  5417. }
  5418. return err;
  5419. }
  5420. /*
  5421. * set_array_info is used two different ways
  5422. * The original usage is when creating a new array.
  5423. * In this usage, raid_disks is > 0 and it together with
  5424. * level, size, not_persistent,layout,chunksize determine the
  5425. * shape of the array.
  5426. * This will always create an array with a type-0.90.0 superblock.
  5427. * The newer usage is when assembling an array.
  5428. * In this case raid_disks will be 0, and the major_version field is
  5429. * use to determine which style super-blocks are to be found on the devices.
  5430. * The minor and patch _version numbers are also kept incase the
  5431. * super_block handler wishes to interpret them.
  5432. */
  5433. static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5434. {
  5435. if (info->raid_disks == 0) {
  5436. /* just setting version number for superblock loading */
  5437. if (info->major_version < 0 ||
  5438. info->major_version >= ARRAY_SIZE(super_types) ||
  5439. super_types[info->major_version].name == NULL) {
  5440. /* maybe try to auto-load a module? */
  5441. printk(KERN_INFO
  5442. "md: superblock version %d not known\n",
  5443. info->major_version);
  5444. return -EINVAL;
  5445. }
  5446. mddev->major_version = info->major_version;
  5447. mddev->minor_version = info->minor_version;
  5448. mddev->patch_version = info->patch_version;
  5449. mddev->persistent = !info->not_persistent;
  5450. /* ensure mddev_put doesn't delete this now that there
  5451. * is some minimal configuration.
  5452. */
  5453. mddev->ctime = get_seconds();
  5454. return 0;
  5455. }
  5456. mddev->major_version = MD_MAJOR_VERSION;
  5457. mddev->minor_version = MD_MINOR_VERSION;
  5458. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5459. mddev->ctime = get_seconds();
  5460. mddev->level = info->level;
  5461. mddev->clevel[0] = 0;
  5462. mddev->dev_sectors = 2 * (sector_t)info->size;
  5463. mddev->raid_disks = info->raid_disks;
  5464. /* don't set md_minor, it is determined by which /dev/md* was
  5465. * openned
  5466. */
  5467. if (info->state & (1<<MD_SB_CLEAN))
  5468. mddev->recovery_cp = MaxSector;
  5469. else
  5470. mddev->recovery_cp = 0;
  5471. mddev->persistent = ! info->not_persistent;
  5472. mddev->external = 0;
  5473. mddev->layout = info->layout;
  5474. mddev->chunk_sectors = info->chunk_size >> 9;
  5475. mddev->max_disks = MD_SB_DISKS;
  5476. if (mddev->persistent)
  5477. mddev->flags = 0;
  5478. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5479. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5480. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5481. mddev->bitmap_info.offset = 0;
  5482. mddev->reshape_position = MaxSector;
  5483. /*
  5484. * Generate a 128 bit UUID
  5485. */
  5486. get_random_bytes(mddev->uuid, 16);
  5487. mddev->new_level = mddev->level;
  5488. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5489. mddev->new_layout = mddev->layout;
  5490. mddev->delta_disks = 0;
  5491. mddev->reshape_backwards = 0;
  5492. return 0;
  5493. }
  5494. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5495. {
  5496. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5497. if (mddev->external_size)
  5498. return;
  5499. mddev->array_sectors = array_sectors;
  5500. }
  5501. EXPORT_SYMBOL(md_set_array_sectors);
  5502. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5503. {
  5504. struct md_rdev *rdev;
  5505. int rv;
  5506. int fit = (num_sectors == 0);
  5507. if (mddev->pers->resize == NULL)
  5508. return -EINVAL;
  5509. /* The "num_sectors" is the number of sectors of each device that
  5510. * is used. This can only make sense for arrays with redundancy.
  5511. * linear and raid0 always use whatever space is available. We can only
  5512. * consider changing this number if no resync or reconstruction is
  5513. * happening, and if the new size is acceptable. It must fit before the
  5514. * sb_start or, if that is <data_offset, it must fit before the size
  5515. * of each device. If num_sectors is zero, we find the largest size
  5516. * that fits.
  5517. */
  5518. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5519. mddev->sync_thread)
  5520. return -EBUSY;
  5521. if (mddev->ro)
  5522. return -EROFS;
  5523. rdev_for_each(rdev, mddev) {
  5524. sector_t avail = rdev->sectors;
  5525. if (fit && (num_sectors == 0 || num_sectors > avail))
  5526. num_sectors = avail;
  5527. if (avail < num_sectors)
  5528. return -ENOSPC;
  5529. }
  5530. rv = mddev->pers->resize(mddev, num_sectors);
  5531. if (!rv)
  5532. revalidate_disk(mddev->gendisk);
  5533. return rv;
  5534. }
  5535. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5536. {
  5537. int rv;
  5538. struct md_rdev *rdev;
  5539. /* change the number of raid disks */
  5540. if (mddev->pers->check_reshape == NULL)
  5541. return -EINVAL;
  5542. if (mddev->ro)
  5543. return -EROFS;
  5544. if (raid_disks <= 0 ||
  5545. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5546. return -EINVAL;
  5547. if (mddev->sync_thread ||
  5548. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5549. mddev->reshape_position != MaxSector)
  5550. return -EBUSY;
  5551. rdev_for_each(rdev, mddev) {
  5552. if (mddev->raid_disks < raid_disks &&
  5553. rdev->data_offset < rdev->new_data_offset)
  5554. return -EINVAL;
  5555. if (mddev->raid_disks > raid_disks &&
  5556. rdev->data_offset > rdev->new_data_offset)
  5557. return -EINVAL;
  5558. }
  5559. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5560. if (mddev->delta_disks < 0)
  5561. mddev->reshape_backwards = 1;
  5562. else if (mddev->delta_disks > 0)
  5563. mddev->reshape_backwards = 0;
  5564. rv = mddev->pers->check_reshape(mddev);
  5565. if (rv < 0) {
  5566. mddev->delta_disks = 0;
  5567. mddev->reshape_backwards = 0;
  5568. }
  5569. return rv;
  5570. }
  5571. /*
  5572. * update_array_info is used to change the configuration of an
  5573. * on-line array.
  5574. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5575. * fields in the info are checked against the array.
  5576. * Any differences that cannot be handled will cause an error.
  5577. * Normally, only one change can be managed at a time.
  5578. */
  5579. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5580. {
  5581. int rv = 0;
  5582. int cnt = 0;
  5583. int state = 0;
  5584. /* calculate expected state,ignoring low bits */
  5585. if (mddev->bitmap && mddev->bitmap_info.offset)
  5586. state |= (1 << MD_SB_BITMAP_PRESENT);
  5587. if (mddev->major_version != info->major_version ||
  5588. mddev->minor_version != info->minor_version ||
  5589. /* mddev->patch_version != info->patch_version || */
  5590. mddev->ctime != info->ctime ||
  5591. mddev->level != info->level ||
  5592. /* mddev->layout != info->layout || */
  5593. !mddev->persistent != info->not_persistent||
  5594. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5595. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5596. ((state^info->state) & 0xfffffe00)
  5597. )
  5598. return -EINVAL;
  5599. /* Check there is only one change */
  5600. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5601. cnt++;
  5602. if (mddev->raid_disks != info->raid_disks)
  5603. cnt++;
  5604. if (mddev->layout != info->layout)
  5605. cnt++;
  5606. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5607. cnt++;
  5608. if (cnt == 0)
  5609. return 0;
  5610. if (cnt > 1)
  5611. return -EINVAL;
  5612. if (mddev->layout != info->layout) {
  5613. /* Change layout
  5614. * we don't need to do anything at the md level, the
  5615. * personality will take care of it all.
  5616. */
  5617. if (mddev->pers->check_reshape == NULL)
  5618. return -EINVAL;
  5619. else {
  5620. mddev->new_layout = info->layout;
  5621. rv = mddev->pers->check_reshape(mddev);
  5622. if (rv)
  5623. mddev->new_layout = mddev->layout;
  5624. return rv;
  5625. }
  5626. }
  5627. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5628. rv = update_size(mddev, (sector_t)info->size * 2);
  5629. if (mddev->raid_disks != info->raid_disks)
  5630. rv = update_raid_disks(mddev, info->raid_disks);
  5631. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5632. if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
  5633. return -EINVAL;
  5634. if (mddev->recovery || mddev->sync_thread)
  5635. return -EBUSY;
  5636. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5637. /* add the bitmap */
  5638. if (mddev->bitmap)
  5639. return -EEXIST;
  5640. if (mddev->bitmap_info.default_offset == 0)
  5641. return -EINVAL;
  5642. mddev->bitmap_info.offset =
  5643. mddev->bitmap_info.default_offset;
  5644. mddev->bitmap_info.space =
  5645. mddev->bitmap_info.default_space;
  5646. mddev->pers->quiesce(mddev, 1);
  5647. rv = bitmap_create(mddev);
  5648. if (!rv)
  5649. rv = bitmap_load(mddev);
  5650. if (rv)
  5651. bitmap_destroy(mddev);
  5652. mddev->pers->quiesce(mddev, 0);
  5653. } else {
  5654. /* remove the bitmap */
  5655. if (!mddev->bitmap)
  5656. return -ENOENT;
  5657. if (mddev->bitmap->storage.file)
  5658. return -EINVAL;
  5659. mddev->pers->quiesce(mddev, 1);
  5660. bitmap_destroy(mddev);
  5661. mddev->pers->quiesce(mddev, 0);
  5662. mddev->bitmap_info.offset = 0;
  5663. }
  5664. }
  5665. md_update_sb(mddev, 1);
  5666. return rv;
  5667. }
  5668. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5669. {
  5670. struct md_rdev *rdev;
  5671. int err = 0;
  5672. if (mddev->pers == NULL)
  5673. return -ENODEV;
  5674. rcu_read_lock();
  5675. rdev = find_rdev_rcu(mddev, dev);
  5676. if (!rdev)
  5677. err = -ENODEV;
  5678. else {
  5679. md_error(mddev, rdev);
  5680. if (!test_bit(Faulty, &rdev->flags))
  5681. err = -EBUSY;
  5682. }
  5683. rcu_read_unlock();
  5684. return err;
  5685. }
  5686. /*
  5687. * We have a problem here : there is no easy way to give a CHS
  5688. * virtual geometry. We currently pretend that we have a 2 heads
  5689. * 4 sectors (with a BIG number of cylinders...). This drives
  5690. * dosfs just mad... ;-)
  5691. */
  5692. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5693. {
  5694. struct mddev *mddev = bdev->bd_disk->private_data;
  5695. geo->heads = 2;
  5696. geo->sectors = 4;
  5697. geo->cylinders = mddev->array_sectors / 8;
  5698. return 0;
  5699. }
  5700. static inline bool md_ioctl_valid(unsigned int cmd)
  5701. {
  5702. switch (cmd) {
  5703. case ADD_NEW_DISK:
  5704. case BLKROSET:
  5705. case GET_ARRAY_INFO:
  5706. case GET_BITMAP_FILE:
  5707. case GET_DISK_INFO:
  5708. case HOT_ADD_DISK:
  5709. case HOT_REMOVE_DISK:
  5710. case RAID_AUTORUN:
  5711. case RAID_VERSION:
  5712. case RESTART_ARRAY_RW:
  5713. case RUN_ARRAY:
  5714. case SET_ARRAY_INFO:
  5715. case SET_BITMAP_FILE:
  5716. case SET_DISK_FAULTY:
  5717. case STOP_ARRAY:
  5718. case STOP_ARRAY_RO:
  5719. return true;
  5720. default:
  5721. return false;
  5722. }
  5723. }
  5724. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5725. unsigned int cmd, unsigned long arg)
  5726. {
  5727. int err = 0;
  5728. void __user *argp = (void __user *)arg;
  5729. struct mddev *mddev = NULL;
  5730. int ro;
  5731. if (!md_ioctl_valid(cmd))
  5732. return -ENOTTY;
  5733. switch (cmd) {
  5734. case RAID_VERSION:
  5735. case GET_ARRAY_INFO:
  5736. case GET_DISK_INFO:
  5737. break;
  5738. default:
  5739. if (!capable(CAP_SYS_ADMIN))
  5740. return -EACCES;
  5741. }
  5742. /*
  5743. * Commands dealing with the RAID driver but not any
  5744. * particular array:
  5745. */
  5746. switch (cmd) {
  5747. case RAID_VERSION:
  5748. err = get_version(argp);
  5749. goto out;
  5750. #ifndef MODULE
  5751. case RAID_AUTORUN:
  5752. err = 0;
  5753. autostart_arrays(arg);
  5754. goto out;
  5755. #endif
  5756. default:;
  5757. }
  5758. /*
  5759. * Commands creating/starting a new array:
  5760. */
  5761. mddev = bdev->bd_disk->private_data;
  5762. if (!mddev) {
  5763. BUG();
  5764. goto out;
  5765. }
  5766. /* Some actions do not requires the mutex */
  5767. switch (cmd) {
  5768. case GET_ARRAY_INFO:
  5769. if (!mddev->raid_disks && !mddev->external)
  5770. err = -ENODEV;
  5771. else
  5772. err = get_array_info(mddev, argp);
  5773. goto out;
  5774. case GET_DISK_INFO:
  5775. if (!mddev->raid_disks && !mddev->external)
  5776. err = -ENODEV;
  5777. else
  5778. err = get_disk_info(mddev, argp);
  5779. goto out;
  5780. case SET_DISK_FAULTY:
  5781. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5782. goto out;
  5783. case GET_BITMAP_FILE:
  5784. err = get_bitmap_file(mddev, argp);
  5785. goto out;
  5786. }
  5787. if (cmd == ADD_NEW_DISK)
  5788. /* need to ensure md_delayed_delete() has completed */
  5789. flush_workqueue(md_misc_wq);
  5790. if (cmd == HOT_REMOVE_DISK)
  5791. /* need to ensure recovery thread has run */
  5792. wait_event_interruptible_timeout(mddev->sb_wait,
  5793. !test_bit(MD_RECOVERY_NEEDED,
  5794. &mddev->flags),
  5795. msecs_to_jiffies(5000));
  5796. if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
  5797. /* Need to flush page cache, and ensure no-one else opens
  5798. * and writes
  5799. */
  5800. mutex_lock(&mddev->open_mutex);
  5801. if (mddev->pers && atomic_read(&mddev->openers) > 1) {
  5802. mutex_unlock(&mddev->open_mutex);
  5803. err = -EBUSY;
  5804. goto out;
  5805. }
  5806. set_bit(MD_STILL_CLOSED, &mddev->flags);
  5807. mutex_unlock(&mddev->open_mutex);
  5808. sync_blockdev(bdev);
  5809. }
  5810. err = mddev_lock(mddev);
  5811. if (err) {
  5812. printk(KERN_INFO
  5813. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5814. err, cmd);
  5815. goto out;
  5816. }
  5817. if (cmd == SET_ARRAY_INFO) {
  5818. mdu_array_info_t info;
  5819. if (!arg)
  5820. memset(&info, 0, sizeof(info));
  5821. else if (copy_from_user(&info, argp, sizeof(info))) {
  5822. err = -EFAULT;
  5823. goto unlock;
  5824. }
  5825. if (mddev->pers) {
  5826. err = update_array_info(mddev, &info);
  5827. if (err) {
  5828. printk(KERN_WARNING "md: couldn't update"
  5829. " array info. %d\n", err);
  5830. goto unlock;
  5831. }
  5832. goto unlock;
  5833. }
  5834. if (!list_empty(&mddev->disks)) {
  5835. printk(KERN_WARNING
  5836. "md: array %s already has disks!\n",
  5837. mdname(mddev));
  5838. err = -EBUSY;
  5839. goto unlock;
  5840. }
  5841. if (mddev->raid_disks) {
  5842. printk(KERN_WARNING
  5843. "md: array %s already initialised!\n",
  5844. mdname(mddev));
  5845. err = -EBUSY;
  5846. goto unlock;
  5847. }
  5848. err = set_array_info(mddev, &info);
  5849. if (err) {
  5850. printk(KERN_WARNING "md: couldn't set"
  5851. " array info. %d\n", err);
  5852. goto unlock;
  5853. }
  5854. goto unlock;
  5855. }
  5856. /*
  5857. * Commands querying/configuring an existing array:
  5858. */
  5859. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5860. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5861. if ((!mddev->raid_disks && !mddev->external)
  5862. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5863. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5864. && cmd != GET_BITMAP_FILE) {
  5865. err = -ENODEV;
  5866. goto unlock;
  5867. }
  5868. /*
  5869. * Commands even a read-only array can execute:
  5870. */
  5871. switch (cmd) {
  5872. case RESTART_ARRAY_RW:
  5873. err = restart_array(mddev);
  5874. goto unlock;
  5875. case STOP_ARRAY:
  5876. err = do_md_stop(mddev, 0, bdev);
  5877. goto unlock;
  5878. case STOP_ARRAY_RO:
  5879. err = md_set_readonly(mddev, bdev);
  5880. goto unlock;
  5881. case HOT_REMOVE_DISK:
  5882. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5883. goto unlock;
  5884. case ADD_NEW_DISK:
  5885. /* We can support ADD_NEW_DISK on read-only arrays
  5886. * on if we are re-adding a preexisting device.
  5887. * So require mddev->pers and MD_DISK_SYNC.
  5888. */
  5889. if (mddev->pers) {
  5890. mdu_disk_info_t info;
  5891. if (copy_from_user(&info, argp, sizeof(info)))
  5892. err = -EFAULT;
  5893. else if (!(info.state & (1<<MD_DISK_SYNC)))
  5894. /* Need to clear read-only for this */
  5895. break;
  5896. else
  5897. err = add_new_disk(mddev, &info);
  5898. goto unlock;
  5899. }
  5900. break;
  5901. case BLKROSET:
  5902. if (get_user(ro, (int __user *)(arg))) {
  5903. err = -EFAULT;
  5904. goto unlock;
  5905. }
  5906. err = -EINVAL;
  5907. /* if the bdev is going readonly the value of mddev->ro
  5908. * does not matter, no writes are coming
  5909. */
  5910. if (ro)
  5911. goto unlock;
  5912. /* are we are already prepared for writes? */
  5913. if (mddev->ro != 1)
  5914. goto unlock;
  5915. /* transitioning to readauto need only happen for
  5916. * arrays that call md_write_start
  5917. */
  5918. if (mddev->pers) {
  5919. err = restart_array(mddev);
  5920. if (err == 0) {
  5921. mddev->ro = 2;
  5922. set_disk_ro(mddev->gendisk, 0);
  5923. }
  5924. }
  5925. goto unlock;
  5926. }
  5927. /*
  5928. * The remaining ioctls are changing the state of the
  5929. * superblock, so we do not allow them on read-only arrays.
  5930. */
  5931. if (mddev->ro && mddev->pers) {
  5932. if (mddev->ro == 2) {
  5933. mddev->ro = 0;
  5934. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5935. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5936. /* mddev_unlock will wake thread */
  5937. /* If a device failed while we were read-only, we
  5938. * need to make sure the metadata is updated now.
  5939. */
  5940. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  5941. mddev_unlock(mddev);
  5942. wait_event(mddev->sb_wait,
  5943. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  5944. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  5945. mddev_lock_nointr(mddev);
  5946. }
  5947. } else {
  5948. err = -EROFS;
  5949. goto unlock;
  5950. }
  5951. }
  5952. switch (cmd) {
  5953. case ADD_NEW_DISK:
  5954. {
  5955. mdu_disk_info_t info;
  5956. if (copy_from_user(&info, argp, sizeof(info)))
  5957. err = -EFAULT;
  5958. else
  5959. err = add_new_disk(mddev, &info);
  5960. goto unlock;
  5961. }
  5962. case HOT_ADD_DISK:
  5963. err = hot_add_disk(mddev, new_decode_dev(arg));
  5964. goto unlock;
  5965. case RUN_ARRAY:
  5966. err = do_md_run(mddev);
  5967. goto unlock;
  5968. case SET_BITMAP_FILE:
  5969. err = set_bitmap_file(mddev, (int)arg);
  5970. goto unlock;
  5971. default:
  5972. err = -EINVAL;
  5973. goto unlock;
  5974. }
  5975. unlock:
  5976. if (mddev->hold_active == UNTIL_IOCTL &&
  5977. err != -EINVAL)
  5978. mddev->hold_active = 0;
  5979. mddev_unlock(mddev);
  5980. out:
  5981. return err;
  5982. }
  5983. #ifdef CONFIG_COMPAT
  5984. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5985. unsigned int cmd, unsigned long arg)
  5986. {
  5987. switch (cmd) {
  5988. case HOT_REMOVE_DISK:
  5989. case HOT_ADD_DISK:
  5990. case SET_DISK_FAULTY:
  5991. case SET_BITMAP_FILE:
  5992. /* These take in integer arg, do not convert */
  5993. break;
  5994. default:
  5995. arg = (unsigned long)compat_ptr(arg);
  5996. break;
  5997. }
  5998. return md_ioctl(bdev, mode, cmd, arg);
  5999. }
  6000. #endif /* CONFIG_COMPAT */
  6001. static int md_open(struct block_device *bdev, fmode_t mode)
  6002. {
  6003. /*
  6004. * Succeed if we can lock the mddev, which confirms that
  6005. * it isn't being stopped right now.
  6006. */
  6007. struct mddev *mddev = mddev_find(bdev->bd_dev);
  6008. int err;
  6009. if (!mddev)
  6010. return -ENODEV;
  6011. if (mddev->gendisk != bdev->bd_disk) {
  6012. /* we are racing with mddev_put which is discarding this
  6013. * bd_disk.
  6014. */
  6015. mddev_put(mddev);
  6016. /* Wait until bdev->bd_disk is definitely gone */
  6017. flush_workqueue(md_misc_wq);
  6018. /* Then retry the open from the top */
  6019. return -ERESTARTSYS;
  6020. }
  6021. BUG_ON(mddev != bdev->bd_disk->private_data);
  6022. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  6023. goto out;
  6024. err = 0;
  6025. atomic_inc(&mddev->openers);
  6026. clear_bit(MD_STILL_CLOSED, &mddev->flags);
  6027. mutex_unlock(&mddev->open_mutex);
  6028. check_disk_change(bdev);
  6029. out:
  6030. return err;
  6031. }
  6032. static void md_release(struct gendisk *disk, fmode_t mode)
  6033. {
  6034. struct mddev *mddev = disk->private_data;
  6035. BUG_ON(!mddev);
  6036. atomic_dec(&mddev->openers);
  6037. mddev_put(mddev);
  6038. }
  6039. static int md_media_changed(struct gendisk *disk)
  6040. {
  6041. struct mddev *mddev = disk->private_data;
  6042. return mddev->changed;
  6043. }
  6044. static int md_revalidate(struct gendisk *disk)
  6045. {
  6046. struct mddev *mddev = disk->private_data;
  6047. mddev->changed = 0;
  6048. return 0;
  6049. }
  6050. static const struct block_device_operations md_fops =
  6051. {
  6052. .owner = THIS_MODULE,
  6053. .open = md_open,
  6054. .release = md_release,
  6055. .ioctl = md_ioctl,
  6056. #ifdef CONFIG_COMPAT
  6057. .compat_ioctl = md_compat_ioctl,
  6058. #endif
  6059. .getgeo = md_getgeo,
  6060. .media_changed = md_media_changed,
  6061. .revalidate_disk= md_revalidate,
  6062. };
  6063. static int md_thread(void *arg)
  6064. {
  6065. struct md_thread *thread = arg;
  6066. /*
  6067. * md_thread is a 'system-thread', it's priority should be very
  6068. * high. We avoid resource deadlocks individually in each
  6069. * raid personality. (RAID5 does preallocation) We also use RR and
  6070. * the very same RT priority as kswapd, thus we will never get
  6071. * into a priority inversion deadlock.
  6072. *
  6073. * we definitely have to have equal or higher priority than
  6074. * bdflush, otherwise bdflush will deadlock if there are too
  6075. * many dirty RAID5 blocks.
  6076. */
  6077. allow_signal(SIGKILL);
  6078. while (!kthread_should_stop()) {
  6079. /* We need to wait INTERRUPTIBLE so that
  6080. * we don't add to the load-average.
  6081. * That means we need to be sure no signals are
  6082. * pending
  6083. */
  6084. if (signal_pending(current))
  6085. flush_signals(current);
  6086. wait_event_interruptible_timeout
  6087. (thread->wqueue,
  6088. test_bit(THREAD_WAKEUP, &thread->flags)
  6089. || kthread_should_stop(),
  6090. thread->timeout);
  6091. clear_bit(THREAD_WAKEUP, &thread->flags);
  6092. if (!kthread_should_stop())
  6093. thread->run(thread);
  6094. }
  6095. return 0;
  6096. }
  6097. void md_wakeup_thread(struct md_thread *thread)
  6098. {
  6099. if (thread) {
  6100. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  6101. set_bit(THREAD_WAKEUP, &thread->flags);
  6102. wake_up(&thread->wqueue);
  6103. }
  6104. }
  6105. EXPORT_SYMBOL(md_wakeup_thread);
  6106. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  6107. struct mddev *mddev, const char *name)
  6108. {
  6109. struct md_thread *thread;
  6110. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  6111. if (!thread)
  6112. return NULL;
  6113. init_waitqueue_head(&thread->wqueue);
  6114. thread->run = run;
  6115. thread->mddev = mddev;
  6116. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  6117. thread->tsk = kthread_run(md_thread, thread,
  6118. "%s_%s",
  6119. mdname(thread->mddev),
  6120. name);
  6121. if (IS_ERR(thread->tsk)) {
  6122. kfree(thread);
  6123. return NULL;
  6124. }
  6125. return thread;
  6126. }
  6127. EXPORT_SYMBOL(md_register_thread);
  6128. void md_unregister_thread(struct md_thread **threadp)
  6129. {
  6130. struct md_thread *thread = *threadp;
  6131. if (!thread)
  6132. return;
  6133. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  6134. /* Locking ensures that mddev_unlock does not wake_up a
  6135. * non-existent thread
  6136. */
  6137. spin_lock(&pers_lock);
  6138. *threadp = NULL;
  6139. spin_unlock(&pers_lock);
  6140. kthread_stop(thread->tsk);
  6141. kfree(thread);
  6142. }
  6143. EXPORT_SYMBOL(md_unregister_thread);
  6144. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6145. {
  6146. if (!rdev || test_bit(Faulty, &rdev->flags))
  6147. return;
  6148. if (!mddev->pers || !mddev->pers->error_handler)
  6149. return;
  6150. mddev->pers->error_handler(mddev,rdev);
  6151. if (mddev->degraded)
  6152. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6153. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6154. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6155. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6156. md_wakeup_thread(mddev->thread);
  6157. if (mddev->event_work.func)
  6158. queue_work(md_misc_wq, &mddev->event_work);
  6159. md_new_event_inintr(mddev);
  6160. }
  6161. EXPORT_SYMBOL(md_error);
  6162. /* seq_file implementation /proc/mdstat */
  6163. static void status_unused(struct seq_file *seq)
  6164. {
  6165. int i = 0;
  6166. struct md_rdev *rdev;
  6167. seq_printf(seq, "unused devices: ");
  6168. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6169. char b[BDEVNAME_SIZE];
  6170. i++;
  6171. seq_printf(seq, "%s ",
  6172. bdevname(rdev->bdev,b));
  6173. }
  6174. if (!i)
  6175. seq_printf(seq, "<none>");
  6176. seq_printf(seq, "\n");
  6177. }
  6178. static void status_resync(struct seq_file *seq, struct mddev *mddev)
  6179. {
  6180. sector_t max_sectors, resync, res;
  6181. unsigned long dt, db;
  6182. sector_t rt;
  6183. int scale;
  6184. unsigned int per_milli;
  6185. if (mddev->curr_resync <= 3)
  6186. resync = 0;
  6187. else
  6188. resync = mddev->curr_resync
  6189. - atomic_read(&mddev->recovery_active);
  6190. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6191. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6192. max_sectors = mddev->resync_max_sectors;
  6193. else
  6194. max_sectors = mddev->dev_sectors;
  6195. WARN_ON(max_sectors == 0);
  6196. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6197. * in a sector_t, and (max_sectors>>scale) will fit in a
  6198. * u32, as those are the requirements for sector_div.
  6199. * Thus 'scale' must be at least 10
  6200. */
  6201. scale = 10;
  6202. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6203. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6204. scale++;
  6205. }
  6206. res = (resync>>scale)*1000;
  6207. sector_div(res, (u32)((max_sectors>>scale)+1));
  6208. per_milli = res;
  6209. {
  6210. int i, x = per_milli/50, y = 20-x;
  6211. seq_printf(seq, "[");
  6212. for (i = 0; i < x; i++)
  6213. seq_printf(seq, "=");
  6214. seq_printf(seq, ">");
  6215. for (i = 0; i < y; i++)
  6216. seq_printf(seq, ".");
  6217. seq_printf(seq, "] ");
  6218. }
  6219. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6220. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6221. "reshape" :
  6222. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6223. "check" :
  6224. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6225. "resync" : "recovery"))),
  6226. per_milli/10, per_milli % 10,
  6227. (unsigned long long) resync/2,
  6228. (unsigned long long) max_sectors/2);
  6229. /*
  6230. * dt: time from mark until now
  6231. * db: blocks written from mark until now
  6232. * rt: remaining time
  6233. *
  6234. * rt is a sector_t, so could be 32bit or 64bit.
  6235. * So we divide before multiply in case it is 32bit and close
  6236. * to the limit.
  6237. * We scale the divisor (db) by 32 to avoid losing precision
  6238. * near the end of resync when the number of remaining sectors
  6239. * is close to 'db'.
  6240. * We then divide rt by 32 after multiplying by db to compensate.
  6241. * The '+1' avoids division by zero if db is very small.
  6242. */
  6243. dt = ((jiffies - mddev->resync_mark) / HZ);
  6244. if (!dt) dt++;
  6245. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6246. - mddev->resync_mark_cnt;
  6247. rt = max_sectors - resync; /* number of remaining sectors */
  6248. sector_div(rt, db/32+1);
  6249. rt *= dt;
  6250. rt >>= 5;
  6251. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6252. ((unsigned long)rt % 60)/6);
  6253. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6254. }
  6255. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6256. {
  6257. struct list_head *tmp;
  6258. loff_t l = *pos;
  6259. struct mddev *mddev;
  6260. if (l >= 0x10000)
  6261. return NULL;
  6262. if (!l--)
  6263. /* header */
  6264. return (void*)1;
  6265. spin_lock(&all_mddevs_lock);
  6266. list_for_each(tmp,&all_mddevs)
  6267. if (!l--) {
  6268. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6269. mddev_get(mddev);
  6270. spin_unlock(&all_mddevs_lock);
  6271. return mddev;
  6272. }
  6273. spin_unlock(&all_mddevs_lock);
  6274. if (!l--)
  6275. return (void*)2;/* tail */
  6276. return NULL;
  6277. }
  6278. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6279. {
  6280. struct list_head *tmp;
  6281. struct mddev *next_mddev, *mddev = v;
  6282. ++*pos;
  6283. if (v == (void*)2)
  6284. return NULL;
  6285. spin_lock(&all_mddevs_lock);
  6286. if (v == (void*)1)
  6287. tmp = all_mddevs.next;
  6288. else
  6289. tmp = mddev->all_mddevs.next;
  6290. if (tmp != &all_mddevs)
  6291. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6292. else {
  6293. next_mddev = (void*)2;
  6294. *pos = 0x10000;
  6295. }
  6296. spin_unlock(&all_mddevs_lock);
  6297. if (v != (void*)1)
  6298. mddev_put(mddev);
  6299. return next_mddev;
  6300. }
  6301. static void md_seq_stop(struct seq_file *seq, void *v)
  6302. {
  6303. struct mddev *mddev = v;
  6304. if (mddev && v != (void*)1 && v != (void*)2)
  6305. mddev_put(mddev);
  6306. }
  6307. static int md_seq_show(struct seq_file *seq, void *v)
  6308. {
  6309. struct mddev *mddev = v;
  6310. sector_t sectors;
  6311. struct md_rdev *rdev;
  6312. if (v == (void*)1) {
  6313. struct md_personality *pers;
  6314. seq_printf(seq, "Personalities : ");
  6315. spin_lock(&pers_lock);
  6316. list_for_each_entry(pers, &pers_list, list)
  6317. seq_printf(seq, "[%s] ", pers->name);
  6318. spin_unlock(&pers_lock);
  6319. seq_printf(seq, "\n");
  6320. seq->poll_event = atomic_read(&md_event_count);
  6321. return 0;
  6322. }
  6323. if (v == (void*)2) {
  6324. status_unused(seq);
  6325. return 0;
  6326. }
  6327. spin_lock(&mddev->lock);
  6328. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6329. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6330. mddev->pers ? "" : "in");
  6331. if (mddev->pers) {
  6332. if (mddev->ro==1)
  6333. seq_printf(seq, " (read-only)");
  6334. if (mddev->ro==2)
  6335. seq_printf(seq, " (auto-read-only)");
  6336. seq_printf(seq, " %s", mddev->pers->name);
  6337. }
  6338. sectors = 0;
  6339. rcu_read_lock();
  6340. rdev_for_each_rcu(rdev, mddev) {
  6341. char b[BDEVNAME_SIZE];
  6342. seq_printf(seq, " %s[%d]",
  6343. bdevname(rdev->bdev,b), rdev->desc_nr);
  6344. if (test_bit(WriteMostly, &rdev->flags))
  6345. seq_printf(seq, "(W)");
  6346. if (test_bit(Faulty, &rdev->flags)) {
  6347. seq_printf(seq, "(F)");
  6348. continue;
  6349. }
  6350. if (rdev->raid_disk < 0)
  6351. seq_printf(seq, "(S)"); /* spare */
  6352. if (test_bit(Replacement, &rdev->flags))
  6353. seq_printf(seq, "(R)");
  6354. sectors += rdev->sectors;
  6355. }
  6356. rcu_read_unlock();
  6357. if (!list_empty(&mddev->disks)) {
  6358. if (mddev->pers)
  6359. seq_printf(seq, "\n %llu blocks",
  6360. (unsigned long long)
  6361. mddev->array_sectors / 2);
  6362. else
  6363. seq_printf(seq, "\n %llu blocks",
  6364. (unsigned long long)sectors / 2);
  6365. }
  6366. if (mddev->persistent) {
  6367. if (mddev->major_version != 0 ||
  6368. mddev->minor_version != 90) {
  6369. seq_printf(seq," super %d.%d",
  6370. mddev->major_version,
  6371. mddev->minor_version);
  6372. }
  6373. } else if (mddev->external)
  6374. seq_printf(seq, " super external:%s",
  6375. mddev->metadata_type);
  6376. else
  6377. seq_printf(seq, " super non-persistent");
  6378. if (mddev->pers) {
  6379. mddev->pers->status(seq, mddev);
  6380. seq_printf(seq, "\n ");
  6381. if (mddev->pers->sync_request) {
  6382. if (mddev->curr_resync > 2) {
  6383. status_resync(seq, mddev);
  6384. seq_printf(seq, "\n ");
  6385. } else if (mddev->curr_resync >= 1)
  6386. seq_printf(seq, "\tresync=DELAYED\n ");
  6387. else if (mddev->recovery_cp < MaxSector)
  6388. seq_printf(seq, "\tresync=PENDING\n ");
  6389. }
  6390. } else
  6391. seq_printf(seq, "\n ");
  6392. bitmap_status(seq, mddev->bitmap);
  6393. seq_printf(seq, "\n");
  6394. }
  6395. spin_unlock(&mddev->lock);
  6396. return 0;
  6397. }
  6398. static const struct seq_operations md_seq_ops = {
  6399. .start = md_seq_start,
  6400. .next = md_seq_next,
  6401. .stop = md_seq_stop,
  6402. .show = md_seq_show,
  6403. };
  6404. static int md_seq_open(struct inode *inode, struct file *file)
  6405. {
  6406. struct seq_file *seq;
  6407. int error;
  6408. error = seq_open(file, &md_seq_ops);
  6409. if (error)
  6410. return error;
  6411. seq = file->private_data;
  6412. seq->poll_event = atomic_read(&md_event_count);
  6413. return error;
  6414. }
  6415. static int md_unloading;
  6416. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6417. {
  6418. struct seq_file *seq = filp->private_data;
  6419. int mask;
  6420. if (md_unloading)
  6421. return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
  6422. poll_wait(filp, &md_event_waiters, wait);
  6423. /* always allow read */
  6424. mask = POLLIN | POLLRDNORM;
  6425. if (seq->poll_event != atomic_read(&md_event_count))
  6426. mask |= POLLERR | POLLPRI;
  6427. return mask;
  6428. }
  6429. static const struct file_operations md_seq_fops = {
  6430. .owner = THIS_MODULE,
  6431. .open = md_seq_open,
  6432. .read = seq_read,
  6433. .llseek = seq_lseek,
  6434. .release = seq_release_private,
  6435. .poll = mdstat_poll,
  6436. };
  6437. int register_md_personality(struct md_personality *p)
  6438. {
  6439. printk(KERN_INFO "md: %s personality registered for level %d\n",
  6440. p->name, p->level);
  6441. spin_lock(&pers_lock);
  6442. list_add_tail(&p->list, &pers_list);
  6443. spin_unlock(&pers_lock);
  6444. return 0;
  6445. }
  6446. EXPORT_SYMBOL(register_md_personality);
  6447. int unregister_md_personality(struct md_personality *p)
  6448. {
  6449. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6450. spin_lock(&pers_lock);
  6451. list_del_init(&p->list);
  6452. spin_unlock(&pers_lock);
  6453. return 0;
  6454. }
  6455. EXPORT_SYMBOL(unregister_md_personality);
  6456. static int is_mddev_idle(struct mddev *mddev, int init)
  6457. {
  6458. struct md_rdev *rdev;
  6459. int idle;
  6460. int curr_events;
  6461. idle = 1;
  6462. rcu_read_lock();
  6463. rdev_for_each_rcu(rdev, mddev) {
  6464. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6465. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6466. (int)part_stat_read(&disk->part0, sectors[1]) -
  6467. atomic_read(&disk->sync_io);
  6468. /* sync IO will cause sync_io to increase before the disk_stats
  6469. * as sync_io is counted when a request starts, and
  6470. * disk_stats is counted when it completes.
  6471. * So resync activity will cause curr_events to be smaller than
  6472. * when there was no such activity.
  6473. * non-sync IO will cause disk_stat to increase without
  6474. * increasing sync_io so curr_events will (eventually)
  6475. * be larger than it was before. Once it becomes
  6476. * substantially larger, the test below will cause
  6477. * the array to appear non-idle, and resync will slow
  6478. * down.
  6479. * If there is a lot of outstanding resync activity when
  6480. * we set last_event to curr_events, then all that activity
  6481. * completing might cause the array to appear non-idle
  6482. * and resync will be slowed down even though there might
  6483. * not have been non-resync activity. This will only
  6484. * happen once though. 'last_events' will soon reflect
  6485. * the state where there is little or no outstanding
  6486. * resync requests, and further resync activity will
  6487. * always make curr_events less than last_events.
  6488. *
  6489. */
  6490. if (init || curr_events - rdev->last_events > 64) {
  6491. rdev->last_events = curr_events;
  6492. idle = 0;
  6493. }
  6494. }
  6495. rcu_read_unlock();
  6496. return idle;
  6497. }
  6498. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6499. {
  6500. /* another "blocks" (512byte) blocks have been synced */
  6501. atomic_sub(blocks, &mddev->recovery_active);
  6502. wake_up(&mddev->recovery_wait);
  6503. if (!ok) {
  6504. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6505. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6506. md_wakeup_thread(mddev->thread);
  6507. // stop recovery, signal do_sync ....
  6508. }
  6509. }
  6510. EXPORT_SYMBOL(md_done_sync);
  6511. /* md_write_start(mddev, bi)
  6512. * If we need to update some array metadata (e.g. 'active' flag
  6513. * in superblock) before writing, schedule a superblock update
  6514. * and wait for it to complete.
  6515. */
  6516. void md_write_start(struct mddev *mddev, struct bio *bi)
  6517. {
  6518. int did_change = 0;
  6519. if (bio_data_dir(bi) != WRITE)
  6520. return;
  6521. BUG_ON(mddev->ro == 1);
  6522. if (mddev->ro == 2) {
  6523. /* need to switch to read/write */
  6524. mddev->ro = 0;
  6525. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6526. md_wakeup_thread(mddev->thread);
  6527. md_wakeup_thread(mddev->sync_thread);
  6528. did_change = 1;
  6529. }
  6530. atomic_inc(&mddev->writes_pending);
  6531. if (mddev->safemode == 1)
  6532. mddev->safemode = 0;
  6533. if (mddev->in_sync) {
  6534. spin_lock(&mddev->lock);
  6535. if (mddev->in_sync) {
  6536. mddev->in_sync = 0;
  6537. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6538. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6539. md_wakeup_thread(mddev->thread);
  6540. did_change = 1;
  6541. }
  6542. spin_unlock(&mddev->lock);
  6543. }
  6544. if (did_change)
  6545. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6546. wait_event(mddev->sb_wait,
  6547. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6548. }
  6549. EXPORT_SYMBOL(md_write_start);
  6550. void md_write_end(struct mddev *mddev)
  6551. {
  6552. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6553. if (mddev->safemode == 2)
  6554. md_wakeup_thread(mddev->thread);
  6555. else if (mddev->safemode_delay)
  6556. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6557. }
  6558. }
  6559. EXPORT_SYMBOL(md_write_end);
  6560. /* md_allow_write(mddev)
  6561. * Calling this ensures that the array is marked 'active' so that writes
  6562. * may proceed without blocking. It is important to call this before
  6563. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6564. * Must be called with mddev_lock held.
  6565. *
  6566. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6567. * is dropped, so return -EAGAIN after notifying userspace.
  6568. */
  6569. int md_allow_write(struct mddev *mddev)
  6570. {
  6571. if (!mddev->pers)
  6572. return 0;
  6573. if (mddev->ro)
  6574. return 0;
  6575. if (!mddev->pers->sync_request)
  6576. return 0;
  6577. spin_lock(&mddev->lock);
  6578. if (mddev->in_sync) {
  6579. mddev->in_sync = 0;
  6580. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6581. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6582. if (mddev->safemode_delay &&
  6583. mddev->safemode == 0)
  6584. mddev->safemode = 1;
  6585. spin_unlock(&mddev->lock);
  6586. md_update_sb(mddev, 0);
  6587. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6588. } else
  6589. spin_unlock(&mddev->lock);
  6590. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6591. return -EAGAIN;
  6592. else
  6593. return 0;
  6594. }
  6595. EXPORT_SYMBOL_GPL(md_allow_write);
  6596. #define SYNC_MARKS 10
  6597. #define SYNC_MARK_STEP (3*HZ)
  6598. #define UPDATE_FREQUENCY (5*60*HZ)
  6599. void md_do_sync(struct md_thread *thread)
  6600. {
  6601. struct mddev *mddev = thread->mddev;
  6602. struct mddev *mddev2;
  6603. unsigned int currspeed = 0,
  6604. window;
  6605. sector_t max_sectors,j, io_sectors, recovery_done;
  6606. unsigned long mark[SYNC_MARKS];
  6607. unsigned long update_time;
  6608. sector_t mark_cnt[SYNC_MARKS];
  6609. int last_mark,m;
  6610. struct list_head *tmp;
  6611. sector_t last_check;
  6612. int skipped = 0;
  6613. struct md_rdev *rdev;
  6614. char *desc, *action = NULL;
  6615. struct blk_plug plug;
  6616. /* just incase thread restarts... */
  6617. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6618. return;
  6619. if (mddev->ro) {/* never try to sync a read-only array */
  6620. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6621. return;
  6622. }
  6623. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6624. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  6625. desc = "data-check";
  6626. action = "check";
  6627. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6628. desc = "requested-resync";
  6629. action = "repair";
  6630. } else
  6631. desc = "resync";
  6632. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6633. desc = "reshape";
  6634. else
  6635. desc = "recovery";
  6636. mddev->last_sync_action = action ?: desc;
  6637. /* we overload curr_resync somewhat here.
  6638. * 0 == not engaged in resync at all
  6639. * 2 == checking that there is no conflict with another sync
  6640. * 1 == like 2, but have yielded to allow conflicting resync to
  6641. * commense
  6642. * other == active in resync - this many blocks
  6643. *
  6644. * Before starting a resync we must have set curr_resync to
  6645. * 2, and then checked that every "conflicting" array has curr_resync
  6646. * less than ours. When we find one that is the same or higher
  6647. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6648. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6649. * This will mean we have to start checking from the beginning again.
  6650. *
  6651. */
  6652. do {
  6653. mddev->curr_resync = 2;
  6654. try_again:
  6655. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6656. goto skip;
  6657. for_each_mddev(mddev2, tmp) {
  6658. if (mddev2 == mddev)
  6659. continue;
  6660. if (!mddev->parallel_resync
  6661. && mddev2->curr_resync
  6662. && match_mddev_units(mddev, mddev2)) {
  6663. DEFINE_WAIT(wq);
  6664. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6665. /* arbitrarily yield */
  6666. mddev->curr_resync = 1;
  6667. wake_up(&resync_wait);
  6668. }
  6669. if (mddev > mddev2 && mddev->curr_resync == 1)
  6670. /* no need to wait here, we can wait the next
  6671. * time 'round when curr_resync == 2
  6672. */
  6673. continue;
  6674. /* We need to wait 'interruptible' so as not to
  6675. * contribute to the load average, and not to
  6676. * be caught by 'softlockup'
  6677. */
  6678. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6679. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6680. mddev2->curr_resync >= mddev->curr_resync) {
  6681. printk(KERN_INFO "md: delaying %s of %s"
  6682. " until %s has finished (they"
  6683. " share one or more physical units)\n",
  6684. desc, mdname(mddev), mdname(mddev2));
  6685. mddev_put(mddev2);
  6686. if (signal_pending(current))
  6687. flush_signals(current);
  6688. schedule();
  6689. finish_wait(&resync_wait, &wq);
  6690. goto try_again;
  6691. }
  6692. finish_wait(&resync_wait, &wq);
  6693. }
  6694. }
  6695. } while (mddev->curr_resync < 2);
  6696. j = 0;
  6697. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6698. /* resync follows the size requested by the personality,
  6699. * which defaults to physical size, but can be virtual size
  6700. */
  6701. max_sectors = mddev->resync_max_sectors;
  6702. atomic64_set(&mddev->resync_mismatches, 0);
  6703. /* we don't use the checkpoint if there's a bitmap */
  6704. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6705. j = mddev->resync_min;
  6706. else if (!mddev->bitmap)
  6707. j = mddev->recovery_cp;
  6708. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6709. max_sectors = mddev->resync_max_sectors;
  6710. else {
  6711. /* recovery follows the physical size of devices */
  6712. max_sectors = mddev->dev_sectors;
  6713. j = MaxSector;
  6714. rcu_read_lock();
  6715. rdev_for_each_rcu(rdev, mddev)
  6716. if (rdev->raid_disk >= 0 &&
  6717. !test_bit(Faulty, &rdev->flags) &&
  6718. !test_bit(In_sync, &rdev->flags) &&
  6719. rdev->recovery_offset < j)
  6720. j = rdev->recovery_offset;
  6721. rcu_read_unlock();
  6722. /* If there is a bitmap, we need to make sure all
  6723. * writes that started before we added a spare
  6724. * complete before we start doing a recovery.
  6725. * Otherwise the write might complete and (via
  6726. * bitmap_endwrite) set a bit in the bitmap after the
  6727. * recovery has checked that bit and skipped that
  6728. * region.
  6729. */
  6730. if (mddev->bitmap) {
  6731. mddev->pers->quiesce(mddev, 1);
  6732. mddev->pers->quiesce(mddev, 0);
  6733. }
  6734. }
  6735. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6736. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6737. " %d KB/sec/disk.\n", speed_min(mddev));
  6738. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6739. "(but not more than %d KB/sec) for %s.\n",
  6740. speed_max(mddev), desc);
  6741. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6742. io_sectors = 0;
  6743. for (m = 0; m < SYNC_MARKS; m++) {
  6744. mark[m] = jiffies;
  6745. mark_cnt[m] = io_sectors;
  6746. }
  6747. last_mark = 0;
  6748. mddev->resync_mark = mark[last_mark];
  6749. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6750. /*
  6751. * Tune reconstruction:
  6752. */
  6753. window = 32*(PAGE_SIZE/512);
  6754. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6755. window/2, (unsigned long long)max_sectors/2);
  6756. atomic_set(&mddev->recovery_active, 0);
  6757. last_check = 0;
  6758. if (j>2) {
  6759. printk(KERN_INFO
  6760. "md: resuming %s of %s from checkpoint.\n",
  6761. desc, mdname(mddev));
  6762. mddev->curr_resync = j;
  6763. } else
  6764. mddev->curr_resync = 3; /* no longer delayed */
  6765. mddev->curr_resync_completed = j;
  6766. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6767. md_new_event(mddev);
  6768. update_time = jiffies;
  6769. blk_start_plug(&plug);
  6770. while (j < max_sectors) {
  6771. sector_t sectors;
  6772. skipped = 0;
  6773. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6774. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6775. (mddev->curr_resync - mddev->curr_resync_completed)
  6776. > (max_sectors >> 4)) ||
  6777. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  6778. (j - mddev->curr_resync_completed)*2
  6779. >= mddev->resync_max - mddev->curr_resync_completed
  6780. )) {
  6781. /* time to update curr_resync_completed */
  6782. wait_event(mddev->recovery_wait,
  6783. atomic_read(&mddev->recovery_active) == 0);
  6784. mddev->curr_resync_completed = j;
  6785. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  6786. j > mddev->recovery_cp)
  6787. mddev->recovery_cp = j;
  6788. update_time = jiffies;
  6789. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6790. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6791. }
  6792. while (j >= mddev->resync_max &&
  6793. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6794. /* As this condition is controlled by user-space,
  6795. * we can block indefinitely, so use '_interruptible'
  6796. * to avoid triggering warnings.
  6797. */
  6798. flush_signals(current); /* just in case */
  6799. wait_event_interruptible(mddev->recovery_wait,
  6800. mddev->resync_max > j
  6801. || test_bit(MD_RECOVERY_INTR,
  6802. &mddev->recovery));
  6803. }
  6804. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6805. break;
  6806. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6807. currspeed < speed_min(mddev));
  6808. if (sectors == 0) {
  6809. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6810. break;
  6811. }
  6812. if (!skipped) { /* actual IO requested */
  6813. io_sectors += sectors;
  6814. atomic_add(sectors, &mddev->recovery_active);
  6815. }
  6816. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6817. break;
  6818. j += sectors;
  6819. if (j > 2)
  6820. mddev->curr_resync = j;
  6821. mddev->curr_mark_cnt = io_sectors;
  6822. if (last_check == 0)
  6823. /* this is the earliest that rebuild will be
  6824. * visible in /proc/mdstat
  6825. */
  6826. md_new_event(mddev);
  6827. if (last_check + window > io_sectors || j == max_sectors)
  6828. continue;
  6829. last_check = io_sectors;
  6830. repeat:
  6831. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6832. /* step marks */
  6833. int next = (last_mark+1) % SYNC_MARKS;
  6834. mddev->resync_mark = mark[next];
  6835. mddev->resync_mark_cnt = mark_cnt[next];
  6836. mark[next] = jiffies;
  6837. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6838. last_mark = next;
  6839. }
  6840. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6841. break;
  6842. /*
  6843. * this loop exits only if either when we are slower than
  6844. * the 'hard' speed limit, or the system was IO-idle for
  6845. * a jiffy.
  6846. * the system might be non-idle CPU-wise, but we only care
  6847. * about not overloading the IO subsystem. (things like an
  6848. * e2fsck being done on the RAID array should execute fast)
  6849. */
  6850. cond_resched();
  6851. recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
  6852. currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
  6853. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6854. if (currspeed > speed_min(mddev)) {
  6855. if ((currspeed > speed_max(mddev)) ||
  6856. !is_mddev_idle(mddev, 0)) {
  6857. msleep(500);
  6858. goto repeat;
  6859. }
  6860. }
  6861. }
  6862. printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
  6863. test_bit(MD_RECOVERY_INTR, &mddev->recovery)
  6864. ? "interrupted" : "done");
  6865. /*
  6866. * this also signals 'finished resyncing' to md_stop
  6867. */
  6868. blk_finish_plug(&plug);
  6869. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6870. /* tell personality that we are finished */
  6871. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6872. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6873. mddev->curr_resync > 2) {
  6874. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6875. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6876. if (mddev->curr_resync >= mddev->recovery_cp) {
  6877. printk(KERN_INFO
  6878. "md: checkpointing %s of %s.\n",
  6879. desc, mdname(mddev));
  6880. if (test_bit(MD_RECOVERY_ERROR,
  6881. &mddev->recovery))
  6882. mddev->recovery_cp =
  6883. mddev->curr_resync_completed;
  6884. else
  6885. mddev->recovery_cp =
  6886. mddev->curr_resync;
  6887. }
  6888. } else
  6889. mddev->recovery_cp = MaxSector;
  6890. } else {
  6891. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6892. mddev->curr_resync = MaxSector;
  6893. rcu_read_lock();
  6894. rdev_for_each_rcu(rdev, mddev)
  6895. if (rdev->raid_disk >= 0 &&
  6896. mddev->delta_disks >= 0 &&
  6897. !test_bit(Faulty, &rdev->flags) &&
  6898. !test_bit(In_sync, &rdev->flags) &&
  6899. rdev->recovery_offset < mddev->curr_resync)
  6900. rdev->recovery_offset = mddev->curr_resync;
  6901. rcu_read_unlock();
  6902. }
  6903. }
  6904. skip:
  6905. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6906. spin_lock(&mddev->lock);
  6907. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6908. /* We completed so min/max setting can be forgotten if used. */
  6909. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6910. mddev->resync_min = 0;
  6911. mddev->resync_max = MaxSector;
  6912. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6913. mddev->resync_min = mddev->curr_resync_completed;
  6914. mddev->curr_resync = 0;
  6915. spin_unlock(&mddev->lock);
  6916. wake_up(&resync_wait);
  6917. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6918. md_wakeup_thread(mddev->thread);
  6919. return;
  6920. }
  6921. EXPORT_SYMBOL_GPL(md_do_sync);
  6922. static int remove_and_add_spares(struct mddev *mddev,
  6923. struct md_rdev *this)
  6924. {
  6925. struct md_rdev *rdev;
  6926. int spares = 0;
  6927. int removed = 0;
  6928. rdev_for_each(rdev, mddev)
  6929. if ((this == NULL || rdev == this) &&
  6930. rdev->raid_disk >= 0 &&
  6931. !test_bit(Blocked, &rdev->flags) &&
  6932. (test_bit(Faulty, &rdev->flags) ||
  6933. ! test_bit(In_sync, &rdev->flags)) &&
  6934. atomic_read(&rdev->nr_pending)==0) {
  6935. if (mddev->pers->hot_remove_disk(
  6936. mddev, rdev) == 0) {
  6937. sysfs_unlink_rdev(mddev, rdev);
  6938. rdev->raid_disk = -1;
  6939. removed++;
  6940. }
  6941. }
  6942. if (removed && mddev->kobj.sd)
  6943. sysfs_notify(&mddev->kobj, NULL, "degraded");
  6944. if (this)
  6945. goto no_add;
  6946. rdev_for_each(rdev, mddev) {
  6947. if (rdev->raid_disk >= 0 &&
  6948. !test_bit(In_sync, &rdev->flags) &&
  6949. !test_bit(Faulty, &rdev->flags))
  6950. spares++;
  6951. if (rdev->raid_disk >= 0)
  6952. continue;
  6953. if (test_bit(Faulty, &rdev->flags))
  6954. continue;
  6955. if (mddev->ro &&
  6956. ! (rdev->saved_raid_disk >= 0 &&
  6957. !test_bit(Bitmap_sync, &rdev->flags)))
  6958. continue;
  6959. if (rdev->saved_raid_disk < 0)
  6960. rdev->recovery_offset = 0;
  6961. if (mddev->pers->
  6962. hot_add_disk(mddev, rdev) == 0) {
  6963. if (sysfs_link_rdev(mddev, rdev))
  6964. /* failure here is OK */;
  6965. spares++;
  6966. md_new_event(mddev);
  6967. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6968. }
  6969. }
  6970. no_add:
  6971. if (removed)
  6972. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6973. return spares;
  6974. }
  6975. static void md_start_sync(struct work_struct *ws)
  6976. {
  6977. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  6978. mddev->sync_thread = md_register_thread(md_do_sync,
  6979. mddev,
  6980. "resync");
  6981. if (!mddev->sync_thread) {
  6982. printk(KERN_ERR "%s: could not start resync"
  6983. " thread...\n",
  6984. mdname(mddev));
  6985. /* leave the spares where they are, it shouldn't hurt */
  6986. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6987. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6988. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6989. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6990. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6991. wake_up(&resync_wait);
  6992. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6993. &mddev->recovery))
  6994. if (mddev->sysfs_action)
  6995. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6996. } else
  6997. md_wakeup_thread(mddev->sync_thread);
  6998. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6999. md_new_event(mddev);
  7000. }
  7001. /*
  7002. * This routine is regularly called by all per-raid-array threads to
  7003. * deal with generic issues like resync and super-block update.
  7004. * Raid personalities that don't have a thread (linear/raid0) do not
  7005. * need this as they never do any recovery or update the superblock.
  7006. *
  7007. * It does not do any resync itself, but rather "forks" off other threads
  7008. * to do that as needed.
  7009. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  7010. * "->recovery" and create a thread at ->sync_thread.
  7011. * When the thread finishes it sets MD_RECOVERY_DONE
  7012. * and wakeups up this thread which will reap the thread and finish up.
  7013. * This thread also removes any faulty devices (with nr_pending == 0).
  7014. *
  7015. * The overall approach is:
  7016. * 1/ if the superblock needs updating, update it.
  7017. * 2/ If a recovery thread is running, don't do anything else.
  7018. * 3/ If recovery has finished, clean up, possibly marking spares active.
  7019. * 4/ If there are any faulty devices, remove them.
  7020. * 5/ If array is degraded, try to add spares devices
  7021. * 6/ If array has spares or is not in-sync, start a resync thread.
  7022. */
  7023. void md_check_recovery(struct mddev *mddev)
  7024. {
  7025. if (mddev->suspended)
  7026. return;
  7027. if (mddev->bitmap)
  7028. bitmap_daemon_work(mddev);
  7029. if (signal_pending(current)) {
  7030. if (mddev->pers->sync_request && !mddev->external) {
  7031. printk(KERN_INFO "md: %s in immediate safe mode\n",
  7032. mdname(mddev));
  7033. mddev->safemode = 2;
  7034. }
  7035. flush_signals(current);
  7036. }
  7037. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  7038. return;
  7039. if ( ! (
  7040. (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
  7041. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7042. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  7043. (mddev->external == 0 && mddev->safemode == 1) ||
  7044. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  7045. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  7046. ))
  7047. return;
  7048. if (mddev_trylock(mddev)) {
  7049. int spares = 0;
  7050. if (mddev->ro) {
  7051. /* On a read-only array we can:
  7052. * - remove failed devices
  7053. * - add already-in_sync devices if the array itself
  7054. * is in-sync.
  7055. * As we only add devices that are already in-sync,
  7056. * we can activate the spares immediately.
  7057. */
  7058. remove_and_add_spares(mddev, NULL);
  7059. /* There is no thread, but we need to call
  7060. * ->spare_active and clear saved_raid_disk
  7061. */
  7062. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7063. md_reap_sync_thread(mddev);
  7064. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7065. goto unlock;
  7066. }
  7067. if (!mddev->external) {
  7068. int did_change = 0;
  7069. spin_lock(&mddev->lock);
  7070. if (mddev->safemode &&
  7071. !atomic_read(&mddev->writes_pending) &&
  7072. !mddev->in_sync &&
  7073. mddev->recovery_cp == MaxSector) {
  7074. mddev->in_sync = 1;
  7075. did_change = 1;
  7076. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  7077. }
  7078. if (mddev->safemode == 1)
  7079. mddev->safemode = 0;
  7080. spin_unlock(&mddev->lock);
  7081. if (did_change)
  7082. sysfs_notify_dirent_safe(mddev->sysfs_state);
  7083. }
  7084. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  7085. md_update_sb(mddev, 0);
  7086. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  7087. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  7088. /* resync/recovery still happening */
  7089. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7090. goto unlock;
  7091. }
  7092. if (mddev->sync_thread) {
  7093. md_reap_sync_thread(mddev);
  7094. goto unlock;
  7095. }
  7096. /* Set RUNNING before clearing NEEDED to avoid
  7097. * any transients in the value of "sync_action".
  7098. */
  7099. mddev->curr_resync_completed = 0;
  7100. spin_lock(&mddev->lock);
  7101. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7102. spin_unlock(&mddev->lock);
  7103. /* Clear some bits that don't mean anything, but
  7104. * might be left set
  7105. */
  7106. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7107. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7108. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7109. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  7110. goto not_running;
  7111. /* no recovery is running.
  7112. * remove any failed drives, then
  7113. * add spares if possible.
  7114. * Spares are also removed and re-added, to allow
  7115. * the personality to fail the re-add.
  7116. */
  7117. if (mddev->reshape_position != MaxSector) {
  7118. if (mddev->pers->check_reshape == NULL ||
  7119. mddev->pers->check_reshape(mddev) != 0)
  7120. /* Cannot proceed */
  7121. goto not_running;
  7122. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7123. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7124. } else if ((spares = remove_and_add_spares(mddev, NULL))) {
  7125. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7126. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7127. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7128. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7129. } else if (mddev->recovery_cp < MaxSector) {
  7130. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7131. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7132. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  7133. /* nothing to be done ... */
  7134. goto not_running;
  7135. if (mddev->pers->sync_request) {
  7136. if (spares) {
  7137. /* We are adding a device or devices to an array
  7138. * which has the bitmap stored on all devices.
  7139. * So make sure all bitmap pages get written
  7140. */
  7141. bitmap_write_all(mddev->bitmap);
  7142. }
  7143. INIT_WORK(&mddev->del_work, md_start_sync);
  7144. queue_work(md_misc_wq, &mddev->del_work);
  7145. goto unlock;
  7146. }
  7147. not_running:
  7148. if (!mddev->sync_thread) {
  7149. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7150. wake_up(&resync_wait);
  7151. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7152. &mddev->recovery))
  7153. if (mddev->sysfs_action)
  7154. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7155. }
  7156. unlock:
  7157. wake_up(&mddev->sb_wait);
  7158. mddev_unlock(mddev);
  7159. }
  7160. }
  7161. EXPORT_SYMBOL(md_check_recovery);
  7162. void md_reap_sync_thread(struct mddev *mddev)
  7163. {
  7164. struct md_rdev *rdev;
  7165. /* resync has finished, collect result */
  7166. md_unregister_thread(&mddev->sync_thread);
  7167. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7168. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  7169. /* success...*/
  7170. /* activate any spares */
  7171. if (mddev->pers->spare_active(mddev)) {
  7172. sysfs_notify(&mddev->kobj, NULL,
  7173. "degraded");
  7174. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7175. }
  7176. }
  7177. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7178. mddev->pers->finish_reshape)
  7179. mddev->pers->finish_reshape(mddev);
  7180. /* If array is no-longer degraded, then any saved_raid_disk
  7181. * information must be scrapped.
  7182. */
  7183. if (!mddev->degraded)
  7184. rdev_for_each(rdev, mddev)
  7185. rdev->saved_raid_disk = -1;
  7186. md_update_sb(mddev, 1);
  7187. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7188. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7189. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7190. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7191. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7192. wake_up(&resync_wait);
  7193. /* flag recovery needed just to double check */
  7194. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7195. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7196. md_new_event(mddev);
  7197. if (mddev->event_work.func)
  7198. queue_work(md_misc_wq, &mddev->event_work);
  7199. }
  7200. EXPORT_SYMBOL(md_reap_sync_thread);
  7201. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7202. {
  7203. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7204. wait_event_timeout(rdev->blocked_wait,
  7205. !test_bit(Blocked, &rdev->flags) &&
  7206. !test_bit(BlockedBadBlocks, &rdev->flags),
  7207. msecs_to_jiffies(5000));
  7208. rdev_dec_pending(rdev, mddev);
  7209. }
  7210. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7211. void md_finish_reshape(struct mddev *mddev)
  7212. {
  7213. /* called be personality module when reshape completes. */
  7214. struct md_rdev *rdev;
  7215. rdev_for_each(rdev, mddev) {
  7216. if (rdev->data_offset > rdev->new_data_offset)
  7217. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7218. else
  7219. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7220. rdev->data_offset = rdev->new_data_offset;
  7221. }
  7222. }
  7223. EXPORT_SYMBOL(md_finish_reshape);
  7224. /* Bad block management.
  7225. * We can record which blocks on each device are 'bad' and so just
  7226. * fail those blocks, or that stripe, rather than the whole device.
  7227. * Entries in the bad-block table are 64bits wide. This comprises:
  7228. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7229. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7230. * A 'shift' can be set so that larger blocks are tracked and
  7231. * consequently larger devices can be covered.
  7232. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7233. *
  7234. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7235. * might need to retry if it is very unlucky.
  7236. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7237. * so we use the write_seqlock_irq variant.
  7238. *
  7239. * When looking for a bad block we specify a range and want to
  7240. * know if any block in the range is bad. So we binary-search
  7241. * to the last range that starts at-or-before the given endpoint,
  7242. * (or "before the sector after the target range")
  7243. * then see if it ends after the given start.
  7244. * We return
  7245. * 0 if there are no known bad blocks in the range
  7246. * 1 if there are known bad block which are all acknowledged
  7247. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7248. * plus the start/length of the first bad section we overlap.
  7249. */
  7250. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7251. sector_t *first_bad, int *bad_sectors)
  7252. {
  7253. int hi;
  7254. int lo;
  7255. u64 *p = bb->page;
  7256. int rv;
  7257. sector_t target = s + sectors;
  7258. unsigned seq;
  7259. if (bb->shift > 0) {
  7260. /* round the start down, and the end up */
  7261. s >>= bb->shift;
  7262. target += (1<<bb->shift) - 1;
  7263. target >>= bb->shift;
  7264. sectors = target - s;
  7265. }
  7266. /* 'target' is now the first block after the bad range */
  7267. retry:
  7268. seq = read_seqbegin(&bb->lock);
  7269. lo = 0;
  7270. rv = 0;
  7271. hi = bb->count;
  7272. /* Binary search between lo and hi for 'target'
  7273. * i.e. for the last range that starts before 'target'
  7274. */
  7275. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7276. * are known not to be the last range before target.
  7277. * VARIANT: hi-lo is the number of possible
  7278. * ranges, and decreases until it reaches 1
  7279. */
  7280. while (hi - lo > 1) {
  7281. int mid = (lo + hi) / 2;
  7282. sector_t a = BB_OFFSET(p[mid]);
  7283. if (a < target)
  7284. /* This could still be the one, earlier ranges
  7285. * could not. */
  7286. lo = mid;
  7287. else
  7288. /* This and later ranges are definitely out. */
  7289. hi = mid;
  7290. }
  7291. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7292. if (hi > lo) {
  7293. /* need to check all range that end after 's' to see if
  7294. * any are unacknowledged.
  7295. */
  7296. while (lo >= 0 &&
  7297. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7298. if (BB_OFFSET(p[lo]) < target) {
  7299. /* starts before the end, and finishes after
  7300. * the start, so they must overlap
  7301. */
  7302. if (rv != -1 && BB_ACK(p[lo]))
  7303. rv = 1;
  7304. else
  7305. rv = -1;
  7306. *first_bad = BB_OFFSET(p[lo]);
  7307. *bad_sectors = BB_LEN(p[lo]);
  7308. }
  7309. lo--;
  7310. }
  7311. }
  7312. if (read_seqretry(&bb->lock, seq))
  7313. goto retry;
  7314. return rv;
  7315. }
  7316. EXPORT_SYMBOL_GPL(md_is_badblock);
  7317. /*
  7318. * Add a range of bad blocks to the table.
  7319. * This might extend the table, or might contract it
  7320. * if two adjacent ranges can be merged.
  7321. * We binary-search to find the 'insertion' point, then
  7322. * decide how best to handle it.
  7323. */
  7324. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7325. int acknowledged)
  7326. {
  7327. u64 *p;
  7328. int lo, hi;
  7329. int rv = 1;
  7330. unsigned long flags;
  7331. if (bb->shift < 0)
  7332. /* badblocks are disabled */
  7333. return 0;
  7334. if (bb->shift) {
  7335. /* round the start down, and the end up */
  7336. sector_t next = s + sectors;
  7337. s >>= bb->shift;
  7338. next += (1<<bb->shift) - 1;
  7339. next >>= bb->shift;
  7340. sectors = next - s;
  7341. }
  7342. write_seqlock_irqsave(&bb->lock, flags);
  7343. p = bb->page;
  7344. lo = 0;
  7345. hi = bb->count;
  7346. /* Find the last range that starts at-or-before 's' */
  7347. while (hi - lo > 1) {
  7348. int mid = (lo + hi) / 2;
  7349. sector_t a = BB_OFFSET(p[mid]);
  7350. if (a <= s)
  7351. lo = mid;
  7352. else
  7353. hi = mid;
  7354. }
  7355. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7356. hi = lo;
  7357. if (hi > lo) {
  7358. /* we found a range that might merge with the start
  7359. * of our new range
  7360. */
  7361. sector_t a = BB_OFFSET(p[lo]);
  7362. sector_t e = a + BB_LEN(p[lo]);
  7363. int ack = BB_ACK(p[lo]);
  7364. if (e >= s) {
  7365. /* Yes, we can merge with a previous range */
  7366. if (s == a && s + sectors >= e)
  7367. /* new range covers old */
  7368. ack = acknowledged;
  7369. else
  7370. ack = ack && acknowledged;
  7371. if (e < s + sectors)
  7372. e = s + sectors;
  7373. if (e - a <= BB_MAX_LEN) {
  7374. p[lo] = BB_MAKE(a, e-a, ack);
  7375. s = e;
  7376. } else {
  7377. /* does not all fit in one range,
  7378. * make p[lo] maximal
  7379. */
  7380. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7381. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7382. s = a + BB_MAX_LEN;
  7383. }
  7384. sectors = e - s;
  7385. }
  7386. }
  7387. if (sectors && hi < bb->count) {
  7388. /* 'hi' points to the first range that starts after 's'.
  7389. * Maybe we can merge with the start of that range */
  7390. sector_t a = BB_OFFSET(p[hi]);
  7391. sector_t e = a + BB_LEN(p[hi]);
  7392. int ack = BB_ACK(p[hi]);
  7393. if (a <= s + sectors) {
  7394. /* merging is possible */
  7395. if (e <= s + sectors) {
  7396. /* full overlap */
  7397. e = s + sectors;
  7398. ack = acknowledged;
  7399. } else
  7400. ack = ack && acknowledged;
  7401. a = s;
  7402. if (e - a <= BB_MAX_LEN) {
  7403. p[hi] = BB_MAKE(a, e-a, ack);
  7404. s = e;
  7405. } else {
  7406. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7407. s = a + BB_MAX_LEN;
  7408. }
  7409. sectors = e - s;
  7410. lo = hi;
  7411. hi++;
  7412. }
  7413. }
  7414. if (sectors == 0 && hi < bb->count) {
  7415. /* we might be able to combine lo and hi */
  7416. /* Note: 's' is at the end of 'lo' */
  7417. sector_t a = BB_OFFSET(p[hi]);
  7418. int lolen = BB_LEN(p[lo]);
  7419. int hilen = BB_LEN(p[hi]);
  7420. int newlen = lolen + hilen - (s - a);
  7421. if (s >= a && newlen < BB_MAX_LEN) {
  7422. /* yes, we can combine them */
  7423. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7424. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7425. memmove(p + hi, p + hi + 1,
  7426. (bb->count - hi - 1) * 8);
  7427. bb->count--;
  7428. }
  7429. }
  7430. while (sectors) {
  7431. /* didn't merge (it all).
  7432. * Need to add a range just before 'hi' */
  7433. if (bb->count >= MD_MAX_BADBLOCKS) {
  7434. /* No room for more */
  7435. rv = 0;
  7436. break;
  7437. } else {
  7438. int this_sectors = sectors;
  7439. memmove(p + hi + 1, p + hi,
  7440. (bb->count - hi) * 8);
  7441. bb->count++;
  7442. if (this_sectors > BB_MAX_LEN)
  7443. this_sectors = BB_MAX_LEN;
  7444. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7445. sectors -= this_sectors;
  7446. s += this_sectors;
  7447. }
  7448. }
  7449. bb->changed = 1;
  7450. if (!acknowledged)
  7451. bb->unacked_exist = 1;
  7452. write_sequnlock_irqrestore(&bb->lock, flags);
  7453. return rv;
  7454. }
  7455. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7456. int is_new)
  7457. {
  7458. int rv;
  7459. if (is_new)
  7460. s += rdev->new_data_offset;
  7461. else
  7462. s += rdev->data_offset;
  7463. rv = md_set_badblocks(&rdev->badblocks,
  7464. s, sectors, 0);
  7465. if (rv) {
  7466. /* Make sure they get written out promptly */
  7467. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7468. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7469. md_wakeup_thread(rdev->mddev->thread);
  7470. }
  7471. return rv;
  7472. }
  7473. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7474. /*
  7475. * Remove a range of bad blocks from the table.
  7476. * This may involve extending the table if we spilt a region,
  7477. * but it must not fail. So if the table becomes full, we just
  7478. * drop the remove request.
  7479. */
  7480. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7481. {
  7482. u64 *p;
  7483. int lo, hi;
  7484. sector_t target = s + sectors;
  7485. int rv = 0;
  7486. if (bb->shift > 0) {
  7487. /* When clearing we round the start up and the end down.
  7488. * This should not matter as the shift should align with
  7489. * the block size and no rounding should ever be needed.
  7490. * However it is better the think a block is bad when it
  7491. * isn't than to think a block is not bad when it is.
  7492. */
  7493. s += (1<<bb->shift) - 1;
  7494. s >>= bb->shift;
  7495. target >>= bb->shift;
  7496. sectors = target - s;
  7497. }
  7498. write_seqlock_irq(&bb->lock);
  7499. p = bb->page;
  7500. lo = 0;
  7501. hi = bb->count;
  7502. /* Find the last range that starts before 'target' */
  7503. while (hi - lo > 1) {
  7504. int mid = (lo + hi) / 2;
  7505. sector_t a = BB_OFFSET(p[mid]);
  7506. if (a < target)
  7507. lo = mid;
  7508. else
  7509. hi = mid;
  7510. }
  7511. if (hi > lo) {
  7512. /* p[lo] is the last range that could overlap the
  7513. * current range. Earlier ranges could also overlap,
  7514. * but only this one can overlap the end of the range.
  7515. */
  7516. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7517. /* Partial overlap, leave the tail of this range */
  7518. int ack = BB_ACK(p[lo]);
  7519. sector_t a = BB_OFFSET(p[lo]);
  7520. sector_t end = a + BB_LEN(p[lo]);
  7521. if (a < s) {
  7522. /* we need to split this range */
  7523. if (bb->count >= MD_MAX_BADBLOCKS) {
  7524. rv = -ENOSPC;
  7525. goto out;
  7526. }
  7527. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7528. bb->count++;
  7529. p[lo] = BB_MAKE(a, s-a, ack);
  7530. lo++;
  7531. }
  7532. p[lo] = BB_MAKE(target, end - target, ack);
  7533. /* there is no longer an overlap */
  7534. hi = lo;
  7535. lo--;
  7536. }
  7537. while (lo >= 0 &&
  7538. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7539. /* This range does overlap */
  7540. if (BB_OFFSET(p[lo]) < s) {
  7541. /* Keep the early parts of this range. */
  7542. int ack = BB_ACK(p[lo]);
  7543. sector_t start = BB_OFFSET(p[lo]);
  7544. p[lo] = BB_MAKE(start, s - start, ack);
  7545. /* now low doesn't overlap, so.. */
  7546. break;
  7547. }
  7548. lo--;
  7549. }
  7550. /* 'lo' is strictly before, 'hi' is strictly after,
  7551. * anything between needs to be discarded
  7552. */
  7553. if (hi - lo > 1) {
  7554. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7555. bb->count -= (hi - lo - 1);
  7556. }
  7557. }
  7558. bb->changed = 1;
  7559. out:
  7560. write_sequnlock_irq(&bb->lock);
  7561. return rv;
  7562. }
  7563. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7564. int is_new)
  7565. {
  7566. if (is_new)
  7567. s += rdev->new_data_offset;
  7568. else
  7569. s += rdev->data_offset;
  7570. return md_clear_badblocks(&rdev->badblocks,
  7571. s, sectors);
  7572. }
  7573. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7574. /*
  7575. * Acknowledge all bad blocks in a list.
  7576. * This only succeeds if ->changed is clear. It is used by
  7577. * in-kernel metadata updates
  7578. */
  7579. void md_ack_all_badblocks(struct badblocks *bb)
  7580. {
  7581. if (bb->page == NULL || bb->changed)
  7582. /* no point even trying */
  7583. return;
  7584. write_seqlock_irq(&bb->lock);
  7585. if (bb->changed == 0 && bb->unacked_exist) {
  7586. u64 *p = bb->page;
  7587. int i;
  7588. for (i = 0; i < bb->count ; i++) {
  7589. if (!BB_ACK(p[i])) {
  7590. sector_t start = BB_OFFSET(p[i]);
  7591. int len = BB_LEN(p[i]);
  7592. p[i] = BB_MAKE(start, len, 1);
  7593. }
  7594. }
  7595. bb->unacked_exist = 0;
  7596. }
  7597. write_sequnlock_irq(&bb->lock);
  7598. }
  7599. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7600. /* sysfs access to bad-blocks list.
  7601. * We present two files.
  7602. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7603. * are recorded as bad. The list is truncated to fit within
  7604. * the one-page limit of sysfs.
  7605. * Writing "sector length" to this file adds an acknowledged
  7606. * bad block list.
  7607. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7608. * been acknowledged. Writing to this file adds bad blocks
  7609. * without acknowledging them. This is largely for testing.
  7610. */
  7611. static ssize_t
  7612. badblocks_show(struct badblocks *bb, char *page, int unack)
  7613. {
  7614. size_t len;
  7615. int i;
  7616. u64 *p = bb->page;
  7617. unsigned seq;
  7618. if (bb->shift < 0)
  7619. return 0;
  7620. retry:
  7621. seq = read_seqbegin(&bb->lock);
  7622. len = 0;
  7623. i = 0;
  7624. while (len < PAGE_SIZE && i < bb->count) {
  7625. sector_t s = BB_OFFSET(p[i]);
  7626. unsigned int length = BB_LEN(p[i]);
  7627. int ack = BB_ACK(p[i]);
  7628. i++;
  7629. if (unack && ack)
  7630. continue;
  7631. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7632. (unsigned long long)s << bb->shift,
  7633. length << bb->shift);
  7634. }
  7635. if (unack && len == 0)
  7636. bb->unacked_exist = 0;
  7637. if (read_seqretry(&bb->lock, seq))
  7638. goto retry;
  7639. return len;
  7640. }
  7641. #define DO_DEBUG 1
  7642. static ssize_t
  7643. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7644. {
  7645. unsigned long long sector;
  7646. int length;
  7647. char newline;
  7648. #ifdef DO_DEBUG
  7649. /* Allow clearing via sysfs *only* for testing/debugging.
  7650. * Normally only a successful write may clear a badblock
  7651. */
  7652. int clear = 0;
  7653. if (page[0] == '-') {
  7654. clear = 1;
  7655. page++;
  7656. }
  7657. #endif /* DO_DEBUG */
  7658. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7659. case 3:
  7660. if (newline != '\n')
  7661. return -EINVAL;
  7662. case 2:
  7663. if (length <= 0)
  7664. return -EINVAL;
  7665. break;
  7666. default:
  7667. return -EINVAL;
  7668. }
  7669. #ifdef DO_DEBUG
  7670. if (clear) {
  7671. md_clear_badblocks(bb, sector, length);
  7672. return len;
  7673. }
  7674. #endif /* DO_DEBUG */
  7675. if (md_set_badblocks(bb, sector, length, !unack))
  7676. return len;
  7677. else
  7678. return -ENOSPC;
  7679. }
  7680. static int md_notify_reboot(struct notifier_block *this,
  7681. unsigned long code, void *x)
  7682. {
  7683. struct list_head *tmp;
  7684. struct mddev *mddev;
  7685. int need_delay = 0;
  7686. for_each_mddev(mddev, tmp) {
  7687. if (mddev_trylock(mddev)) {
  7688. if (mddev->pers)
  7689. __md_stop_writes(mddev);
  7690. if (mddev->persistent)
  7691. mddev->safemode = 2;
  7692. mddev_unlock(mddev);
  7693. }
  7694. need_delay = 1;
  7695. }
  7696. /*
  7697. * certain more exotic SCSI devices are known to be
  7698. * volatile wrt too early system reboots. While the
  7699. * right place to handle this issue is the given
  7700. * driver, we do want to have a safe RAID driver ...
  7701. */
  7702. if (need_delay)
  7703. mdelay(1000*1);
  7704. return NOTIFY_DONE;
  7705. }
  7706. static struct notifier_block md_notifier = {
  7707. .notifier_call = md_notify_reboot,
  7708. .next = NULL,
  7709. .priority = INT_MAX, /* before any real devices */
  7710. };
  7711. static void md_geninit(void)
  7712. {
  7713. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7714. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7715. }
  7716. static int __init md_init(void)
  7717. {
  7718. int ret = -ENOMEM;
  7719. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7720. if (!md_wq)
  7721. goto err_wq;
  7722. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7723. if (!md_misc_wq)
  7724. goto err_misc_wq;
  7725. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7726. goto err_md;
  7727. if ((ret = register_blkdev(0, "mdp")) < 0)
  7728. goto err_mdp;
  7729. mdp_major = ret;
  7730. blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
  7731. md_probe, NULL, NULL);
  7732. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7733. md_probe, NULL, NULL);
  7734. register_reboot_notifier(&md_notifier);
  7735. raid_table_header = register_sysctl_table(raid_root_table);
  7736. md_geninit();
  7737. return 0;
  7738. err_mdp:
  7739. unregister_blkdev(MD_MAJOR, "md");
  7740. err_md:
  7741. destroy_workqueue(md_misc_wq);
  7742. err_misc_wq:
  7743. destroy_workqueue(md_wq);
  7744. err_wq:
  7745. return ret;
  7746. }
  7747. #ifndef MODULE
  7748. /*
  7749. * Searches all registered partitions for autorun RAID arrays
  7750. * at boot time.
  7751. */
  7752. static LIST_HEAD(all_detected_devices);
  7753. struct detected_devices_node {
  7754. struct list_head list;
  7755. dev_t dev;
  7756. };
  7757. void md_autodetect_dev(dev_t dev)
  7758. {
  7759. struct detected_devices_node *node_detected_dev;
  7760. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7761. if (node_detected_dev) {
  7762. node_detected_dev->dev = dev;
  7763. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7764. } else {
  7765. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7766. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7767. }
  7768. }
  7769. static void autostart_arrays(int part)
  7770. {
  7771. struct md_rdev *rdev;
  7772. struct detected_devices_node *node_detected_dev;
  7773. dev_t dev;
  7774. int i_scanned, i_passed;
  7775. i_scanned = 0;
  7776. i_passed = 0;
  7777. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7778. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7779. i_scanned++;
  7780. node_detected_dev = list_entry(all_detected_devices.next,
  7781. struct detected_devices_node, list);
  7782. list_del(&node_detected_dev->list);
  7783. dev = node_detected_dev->dev;
  7784. kfree(node_detected_dev);
  7785. rdev = md_import_device(dev,0, 90);
  7786. if (IS_ERR(rdev))
  7787. continue;
  7788. if (test_bit(Faulty, &rdev->flags))
  7789. continue;
  7790. set_bit(AutoDetected, &rdev->flags);
  7791. list_add(&rdev->same_set, &pending_raid_disks);
  7792. i_passed++;
  7793. }
  7794. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7795. i_scanned, i_passed);
  7796. autorun_devices(part);
  7797. }
  7798. #endif /* !MODULE */
  7799. static __exit void md_exit(void)
  7800. {
  7801. struct mddev *mddev;
  7802. struct list_head *tmp;
  7803. int delay = 1;
  7804. blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
  7805. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7806. unregister_blkdev(MD_MAJOR,"md");
  7807. unregister_blkdev(mdp_major, "mdp");
  7808. unregister_reboot_notifier(&md_notifier);
  7809. unregister_sysctl_table(raid_table_header);
  7810. /* We cannot unload the modules while some process is
  7811. * waiting for us in select() or poll() - wake them up
  7812. */
  7813. md_unloading = 1;
  7814. while (waitqueue_active(&md_event_waiters)) {
  7815. /* not safe to leave yet */
  7816. wake_up(&md_event_waiters);
  7817. msleep(delay);
  7818. delay += delay;
  7819. }
  7820. remove_proc_entry("mdstat", NULL);
  7821. for_each_mddev(mddev, tmp) {
  7822. export_array(mddev);
  7823. mddev->hold_active = 0;
  7824. }
  7825. destroy_workqueue(md_misc_wq);
  7826. destroy_workqueue(md_wq);
  7827. }
  7828. subsys_initcall(md_init);
  7829. module_exit(md_exit)
  7830. static int get_ro(char *buffer, struct kernel_param *kp)
  7831. {
  7832. return sprintf(buffer, "%d", start_readonly);
  7833. }
  7834. static int set_ro(const char *val, struct kernel_param *kp)
  7835. {
  7836. char *e;
  7837. int num = simple_strtoul(val, &e, 10);
  7838. if (*val && (*e == '\0' || *e == '\n')) {
  7839. start_readonly = num;
  7840. return 0;
  7841. }
  7842. return -EINVAL;
  7843. }
  7844. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7845. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7846. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7847. MODULE_LICENSE("GPL");
  7848. MODULE_DESCRIPTION("MD RAID framework");
  7849. MODULE_ALIAS("md");
  7850. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);