segment.c 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include <linux/freezer.h>
  20. #include "f2fs.h"
  21. #include "segment.h"
  22. #include "node.h"
  23. #include "trace.h"
  24. #include <trace/events/f2fs.h>
  25. #define __reverse_ffz(x) __reverse_ffs(~(x))
  26. static struct kmem_cache *discard_entry_slab;
  27. static struct kmem_cache *discard_cmd_slab;
  28. static struct kmem_cache *sit_entry_set_slab;
  29. static struct kmem_cache *inmem_entry_slab;
  30. static unsigned long __reverse_ulong(unsigned char *str)
  31. {
  32. unsigned long tmp = 0;
  33. int shift = 24, idx = 0;
  34. #if BITS_PER_LONG == 64
  35. shift = 56;
  36. #endif
  37. while (shift >= 0) {
  38. tmp |= (unsigned long)str[idx++] << shift;
  39. shift -= BITS_PER_BYTE;
  40. }
  41. return tmp;
  42. }
  43. /*
  44. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  45. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  46. */
  47. static inline unsigned long __reverse_ffs(unsigned long word)
  48. {
  49. int num = 0;
  50. #if BITS_PER_LONG == 64
  51. if ((word & 0xffffffff00000000UL) == 0)
  52. num += 32;
  53. else
  54. word >>= 32;
  55. #endif
  56. if ((word & 0xffff0000) == 0)
  57. num += 16;
  58. else
  59. word >>= 16;
  60. if ((word & 0xff00) == 0)
  61. num += 8;
  62. else
  63. word >>= 8;
  64. if ((word & 0xf0) == 0)
  65. num += 4;
  66. else
  67. word >>= 4;
  68. if ((word & 0xc) == 0)
  69. num += 2;
  70. else
  71. word >>= 2;
  72. if ((word & 0x2) == 0)
  73. num += 1;
  74. return num;
  75. }
  76. /*
  77. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  78. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  79. * @size must be integral times of unsigned long.
  80. * Example:
  81. * MSB <--> LSB
  82. * f2fs_set_bit(0, bitmap) => 1000 0000
  83. * f2fs_set_bit(7, bitmap) => 0000 0001
  84. */
  85. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  86. unsigned long size, unsigned long offset)
  87. {
  88. const unsigned long *p = addr + BIT_WORD(offset);
  89. unsigned long result = size;
  90. unsigned long tmp;
  91. if (offset >= size)
  92. return size;
  93. size -= (offset & ~(BITS_PER_LONG - 1));
  94. offset %= BITS_PER_LONG;
  95. while (1) {
  96. if (*p == 0)
  97. goto pass;
  98. tmp = __reverse_ulong((unsigned char *)p);
  99. tmp &= ~0UL >> offset;
  100. if (size < BITS_PER_LONG)
  101. tmp &= (~0UL << (BITS_PER_LONG - size));
  102. if (tmp)
  103. goto found;
  104. pass:
  105. if (size <= BITS_PER_LONG)
  106. break;
  107. size -= BITS_PER_LONG;
  108. offset = 0;
  109. p++;
  110. }
  111. return result;
  112. found:
  113. return result - size + __reverse_ffs(tmp);
  114. }
  115. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  116. unsigned long size, unsigned long offset)
  117. {
  118. const unsigned long *p = addr + BIT_WORD(offset);
  119. unsigned long result = size;
  120. unsigned long tmp;
  121. if (offset >= size)
  122. return size;
  123. size -= (offset & ~(BITS_PER_LONG - 1));
  124. offset %= BITS_PER_LONG;
  125. while (1) {
  126. if (*p == ~0UL)
  127. goto pass;
  128. tmp = __reverse_ulong((unsigned char *)p);
  129. if (offset)
  130. tmp |= ~0UL << (BITS_PER_LONG - offset);
  131. if (size < BITS_PER_LONG)
  132. tmp |= ~0UL >> size;
  133. if (tmp != ~0UL)
  134. goto found;
  135. pass:
  136. if (size <= BITS_PER_LONG)
  137. break;
  138. size -= BITS_PER_LONG;
  139. offset = 0;
  140. p++;
  141. }
  142. return result;
  143. found:
  144. return result - size + __reverse_ffz(tmp);
  145. }
  146. void register_inmem_page(struct inode *inode, struct page *page)
  147. {
  148. struct f2fs_inode_info *fi = F2FS_I(inode);
  149. struct inmem_pages *new;
  150. f2fs_trace_pid(page);
  151. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  152. SetPagePrivate(page);
  153. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  154. /* add atomic page indices to the list */
  155. new->page = page;
  156. INIT_LIST_HEAD(&new->list);
  157. /* increase reference count with clean state */
  158. mutex_lock(&fi->inmem_lock);
  159. get_page(page);
  160. list_add_tail(&new->list, &fi->inmem_pages);
  161. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  162. mutex_unlock(&fi->inmem_lock);
  163. trace_f2fs_register_inmem_page(page, INMEM);
  164. }
  165. static int __revoke_inmem_pages(struct inode *inode,
  166. struct list_head *head, bool drop, bool recover)
  167. {
  168. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  169. struct inmem_pages *cur, *tmp;
  170. int err = 0;
  171. list_for_each_entry_safe(cur, tmp, head, list) {
  172. struct page *page = cur->page;
  173. if (drop)
  174. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  175. lock_page(page);
  176. if (recover) {
  177. struct dnode_of_data dn;
  178. struct node_info ni;
  179. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  180. set_new_dnode(&dn, inode, NULL, NULL, 0);
  181. if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
  182. err = -EAGAIN;
  183. goto next;
  184. }
  185. get_node_info(sbi, dn.nid, &ni);
  186. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  187. cur->old_addr, ni.version, true, true);
  188. f2fs_put_dnode(&dn);
  189. }
  190. next:
  191. /* we don't need to invalidate this in the sccessful status */
  192. if (drop || recover)
  193. ClearPageUptodate(page);
  194. set_page_private(page, 0);
  195. ClearPagePrivate(page);
  196. f2fs_put_page(page, 1);
  197. list_del(&cur->list);
  198. kmem_cache_free(inmem_entry_slab, cur);
  199. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  200. }
  201. return err;
  202. }
  203. void drop_inmem_pages(struct inode *inode)
  204. {
  205. struct f2fs_inode_info *fi = F2FS_I(inode);
  206. mutex_lock(&fi->inmem_lock);
  207. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  208. mutex_unlock(&fi->inmem_lock);
  209. clear_inode_flag(inode, FI_ATOMIC_FILE);
  210. stat_dec_atomic_write(inode);
  211. }
  212. void drop_inmem_page(struct inode *inode, struct page *page)
  213. {
  214. struct f2fs_inode_info *fi = F2FS_I(inode);
  215. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  216. struct list_head *head = &fi->inmem_pages;
  217. struct inmem_pages *cur = NULL;
  218. f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
  219. mutex_lock(&fi->inmem_lock);
  220. list_for_each_entry(cur, head, list) {
  221. if (cur->page == page)
  222. break;
  223. }
  224. f2fs_bug_on(sbi, !cur || cur->page != page);
  225. list_del(&cur->list);
  226. mutex_unlock(&fi->inmem_lock);
  227. dec_page_count(sbi, F2FS_INMEM_PAGES);
  228. kmem_cache_free(inmem_entry_slab, cur);
  229. ClearPageUptodate(page);
  230. set_page_private(page, 0);
  231. ClearPagePrivate(page);
  232. f2fs_put_page(page, 0);
  233. trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
  234. }
  235. static int __commit_inmem_pages(struct inode *inode,
  236. struct list_head *revoke_list)
  237. {
  238. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  239. struct f2fs_inode_info *fi = F2FS_I(inode);
  240. struct inmem_pages *cur, *tmp;
  241. struct f2fs_io_info fio = {
  242. .sbi = sbi,
  243. .type = DATA,
  244. .op = REQ_OP_WRITE,
  245. .op_flags = REQ_SYNC | REQ_PRIO,
  246. };
  247. pgoff_t last_idx = ULONG_MAX;
  248. int err = 0;
  249. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  250. struct page *page = cur->page;
  251. lock_page(page);
  252. if (page->mapping == inode->i_mapping) {
  253. trace_f2fs_commit_inmem_page(page, INMEM);
  254. set_page_dirty(page);
  255. f2fs_wait_on_page_writeback(page, DATA, true);
  256. if (clear_page_dirty_for_io(page)) {
  257. inode_dec_dirty_pages(inode);
  258. remove_dirty_inode(inode);
  259. }
  260. fio.page = page;
  261. fio.old_blkaddr = NULL_ADDR;
  262. fio.encrypted_page = NULL;
  263. fio.need_lock = LOCK_DONE;
  264. err = do_write_data_page(&fio);
  265. if (err) {
  266. unlock_page(page);
  267. break;
  268. }
  269. /* record old blkaddr for revoking */
  270. cur->old_addr = fio.old_blkaddr;
  271. last_idx = page->index;
  272. }
  273. unlock_page(page);
  274. list_move_tail(&cur->list, revoke_list);
  275. }
  276. if (last_idx != ULONG_MAX)
  277. f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
  278. if (!err)
  279. __revoke_inmem_pages(inode, revoke_list, false, false);
  280. return err;
  281. }
  282. int commit_inmem_pages(struct inode *inode)
  283. {
  284. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  285. struct f2fs_inode_info *fi = F2FS_I(inode);
  286. struct list_head revoke_list;
  287. int err;
  288. INIT_LIST_HEAD(&revoke_list);
  289. f2fs_balance_fs(sbi, true);
  290. f2fs_lock_op(sbi);
  291. set_inode_flag(inode, FI_ATOMIC_COMMIT);
  292. mutex_lock(&fi->inmem_lock);
  293. err = __commit_inmem_pages(inode, &revoke_list);
  294. if (err) {
  295. int ret;
  296. /*
  297. * try to revoke all committed pages, but still we could fail
  298. * due to no memory or other reason, if that happened, EAGAIN
  299. * will be returned, which means in such case, transaction is
  300. * already not integrity, caller should use journal to do the
  301. * recovery or rewrite & commit last transaction. For other
  302. * error number, revoking was done by filesystem itself.
  303. */
  304. ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
  305. if (ret)
  306. err = ret;
  307. /* drop all uncommitted pages */
  308. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  309. }
  310. mutex_unlock(&fi->inmem_lock);
  311. clear_inode_flag(inode, FI_ATOMIC_COMMIT);
  312. f2fs_unlock_op(sbi);
  313. return err;
  314. }
  315. /*
  316. * This function balances dirty node and dentry pages.
  317. * In addition, it controls garbage collection.
  318. */
  319. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  320. {
  321. #ifdef CONFIG_F2FS_FAULT_INJECTION
  322. if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
  323. f2fs_show_injection_info(FAULT_CHECKPOINT);
  324. f2fs_stop_checkpoint(sbi, false);
  325. }
  326. #endif
  327. /* balance_fs_bg is able to be pending */
  328. if (need && excess_cached_nats(sbi))
  329. f2fs_balance_fs_bg(sbi);
  330. /*
  331. * We should do GC or end up with checkpoint, if there are so many dirty
  332. * dir/node pages without enough free segments.
  333. */
  334. if (has_not_enough_free_secs(sbi, 0, 0)) {
  335. mutex_lock(&sbi->gc_mutex);
  336. f2fs_gc(sbi, false, false, NULL_SEGNO);
  337. }
  338. }
  339. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  340. {
  341. /* try to shrink extent cache when there is no enough memory */
  342. if (!available_free_memory(sbi, EXTENT_CACHE))
  343. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  344. /* check the # of cached NAT entries */
  345. if (!available_free_memory(sbi, NAT_ENTRIES))
  346. try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  347. if (!available_free_memory(sbi, FREE_NIDS))
  348. try_to_free_nids(sbi, MAX_FREE_NIDS);
  349. else
  350. build_free_nids(sbi, false, false);
  351. if (!is_idle(sbi) && !excess_dirty_nats(sbi))
  352. return;
  353. /* checkpoint is the only way to shrink partial cached entries */
  354. if (!available_free_memory(sbi, NAT_ENTRIES) ||
  355. !available_free_memory(sbi, INO_ENTRIES) ||
  356. excess_prefree_segs(sbi) ||
  357. excess_dirty_nats(sbi) ||
  358. f2fs_time_over(sbi, CP_TIME)) {
  359. if (test_opt(sbi, DATA_FLUSH)) {
  360. struct blk_plug plug;
  361. blk_start_plug(&plug);
  362. sync_dirty_inodes(sbi, FILE_INODE);
  363. blk_finish_plug(&plug);
  364. }
  365. f2fs_sync_fs(sbi->sb, true);
  366. stat_inc_bg_cp_count(sbi->stat_info);
  367. }
  368. }
  369. static int __submit_flush_wait(struct f2fs_sb_info *sbi,
  370. struct block_device *bdev)
  371. {
  372. struct bio *bio = f2fs_bio_alloc(0);
  373. int ret;
  374. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  375. bio->bi_bdev = bdev;
  376. ret = submit_bio_wait(bio);
  377. bio_put(bio);
  378. trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
  379. test_opt(sbi, FLUSH_MERGE), ret);
  380. return ret;
  381. }
  382. static int submit_flush_wait(struct f2fs_sb_info *sbi)
  383. {
  384. int ret = __submit_flush_wait(sbi, sbi->sb->s_bdev);
  385. int i;
  386. if (!sbi->s_ndevs || ret)
  387. return ret;
  388. for (i = 1; i < sbi->s_ndevs; i++) {
  389. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  390. if (ret)
  391. break;
  392. }
  393. return ret;
  394. }
  395. static int issue_flush_thread(void *data)
  396. {
  397. struct f2fs_sb_info *sbi = data;
  398. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  399. wait_queue_head_t *q = &fcc->flush_wait_queue;
  400. repeat:
  401. if (kthread_should_stop())
  402. return 0;
  403. if (!llist_empty(&fcc->issue_list)) {
  404. struct flush_cmd *cmd, *next;
  405. int ret;
  406. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  407. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  408. ret = submit_flush_wait(sbi);
  409. atomic_inc(&fcc->issued_flush);
  410. llist_for_each_entry_safe(cmd, next,
  411. fcc->dispatch_list, llnode) {
  412. cmd->ret = ret;
  413. complete(&cmd->wait);
  414. }
  415. fcc->dispatch_list = NULL;
  416. }
  417. wait_event_interruptible(*q,
  418. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  419. goto repeat;
  420. }
  421. int f2fs_issue_flush(struct f2fs_sb_info *sbi)
  422. {
  423. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  424. struct flush_cmd cmd;
  425. int ret;
  426. if (test_opt(sbi, NOBARRIER))
  427. return 0;
  428. if (!test_opt(sbi, FLUSH_MERGE)) {
  429. ret = submit_flush_wait(sbi);
  430. atomic_inc(&fcc->issued_flush);
  431. return ret;
  432. }
  433. if (!atomic_read(&fcc->issing_flush)) {
  434. atomic_inc(&fcc->issing_flush);
  435. ret = submit_flush_wait(sbi);
  436. atomic_dec(&fcc->issing_flush);
  437. atomic_inc(&fcc->issued_flush);
  438. return ret;
  439. }
  440. init_completion(&cmd.wait);
  441. atomic_inc(&fcc->issing_flush);
  442. llist_add(&cmd.llnode, &fcc->issue_list);
  443. if (!fcc->dispatch_list)
  444. wake_up(&fcc->flush_wait_queue);
  445. if (fcc->f2fs_issue_flush) {
  446. wait_for_completion(&cmd.wait);
  447. atomic_dec(&fcc->issing_flush);
  448. } else {
  449. llist_del_all(&fcc->issue_list);
  450. atomic_set(&fcc->issing_flush, 0);
  451. }
  452. return cmd.ret;
  453. }
  454. int create_flush_cmd_control(struct f2fs_sb_info *sbi)
  455. {
  456. dev_t dev = sbi->sb->s_bdev->bd_dev;
  457. struct flush_cmd_control *fcc;
  458. int err = 0;
  459. if (SM_I(sbi)->fcc_info) {
  460. fcc = SM_I(sbi)->fcc_info;
  461. goto init_thread;
  462. }
  463. fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
  464. if (!fcc)
  465. return -ENOMEM;
  466. atomic_set(&fcc->issued_flush, 0);
  467. atomic_set(&fcc->issing_flush, 0);
  468. init_waitqueue_head(&fcc->flush_wait_queue);
  469. init_llist_head(&fcc->issue_list);
  470. SM_I(sbi)->fcc_info = fcc;
  471. init_thread:
  472. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  473. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  474. if (IS_ERR(fcc->f2fs_issue_flush)) {
  475. err = PTR_ERR(fcc->f2fs_issue_flush);
  476. kfree(fcc);
  477. SM_I(sbi)->fcc_info = NULL;
  478. return err;
  479. }
  480. return err;
  481. }
  482. void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  483. {
  484. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  485. if (fcc && fcc->f2fs_issue_flush) {
  486. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  487. fcc->f2fs_issue_flush = NULL;
  488. kthread_stop(flush_thread);
  489. }
  490. if (free) {
  491. kfree(fcc);
  492. SM_I(sbi)->fcc_info = NULL;
  493. }
  494. }
  495. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  496. enum dirty_type dirty_type)
  497. {
  498. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  499. /* need not be added */
  500. if (IS_CURSEG(sbi, segno))
  501. return;
  502. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  503. dirty_i->nr_dirty[dirty_type]++;
  504. if (dirty_type == DIRTY) {
  505. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  506. enum dirty_type t = sentry->type;
  507. if (unlikely(t >= DIRTY)) {
  508. f2fs_bug_on(sbi, 1);
  509. return;
  510. }
  511. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  512. dirty_i->nr_dirty[t]++;
  513. }
  514. }
  515. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  516. enum dirty_type dirty_type)
  517. {
  518. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  519. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  520. dirty_i->nr_dirty[dirty_type]--;
  521. if (dirty_type == DIRTY) {
  522. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  523. enum dirty_type t = sentry->type;
  524. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  525. dirty_i->nr_dirty[t]--;
  526. if (get_valid_blocks(sbi, segno, true) == 0)
  527. clear_bit(GET_SEC_FROM_SEG(sbi, segno),
  528. dirty_i->victim_secmap);
  529. }
  530. }
  531. /*
  532. * Should not occur error such as -ENOMEM.
  533. * Adding dirty entry into seglist is not critical operation.
  534. * If a given segment is one of current working segments, it won't be added.
  535. */
  536. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  537. {
  538. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  539. unsigned short valid_blocks;
  540. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  541. return;
  542. mutex_lock(&dirty_i->seglist_lock);
  543. valid_blocks = get_valid_blocks(sbi, segno, false);
  544. if (valid_blocks == 0) {
  545. __locate_dirty_segment(sbi, segno, PRE);
  546. __remove_dirty_segment(sbi, segno, DIRTY);
  547. } else if (valid_blocks < sbi->blocks_per_seg) {
  548. __locate_dirty_segment(sbi, segno, DIRTY);
  549. } else {
  550. /* Recovery routine with SSR needs this */
  551. __remove_dirty_segment(sbi, segno, DIRTY);
  552. }
  553. mutex_unlock(&dirty_i->seglist_lock);
  554. }
  555. static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
  556. struct block_device *bdev, block_t lstart,
  557. block_t start, block_t len)
  558. {
  559. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  560. struct list_head *pend_list;
  561. struct discard_cmd *dc;
  562. f2fs_bug_on(sbi, !len);
  563. pend_list = &dcc->pend_list[plist_idx(len)];
  564. dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
  565. INIT_LIST_HEAD(&dc->list);
  566. dc->bdev = bdev;
  567. dc->lstart = lstart;
  568. dc->start = start;
  569. dc->len = len;
  570. dc->ref = 0;
  571. dc->state = D_PREP;
  572. dc->error = 0;
  573. init_completion(&dc->wait);
  574. list_add_tail(&dc->list, pend_list);
  575. atomic_inc(&dcc->discard_cmd_cnt);
  576. dcc->undiscard_blks += len;
  577. return dc;
  578. }
  579. static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
  580. struct block_device *bdev, block_t lstart,
  581. block_t start, block_t len,
  582. struct rb_node *parent, struct rb_node **p)
  583. {
  584. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  585. struct discard_cmd *dc;
  586. dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
  587. rb_link_node(&dc->rb_node, parent, p);
  588. rb_insert_color(&dc->rb_node, &dcc->root);
  589. return dc;
  590. }
  591. static void __detach_discard_cmd(struct discard_cmd_control *dcc,
  592. struct discard_cmd *dc)
  593. {
  594. if (dc->state == D_DONE)
  595. atomic_dec(&dcc->issing_discard);
  596. list_del(&dc->list);
  597. rb_erase(&dc->rb_node, &dcc->root);
  598. dcc->undiscard_blks -= dc->len;
  599. kmem_cache_free(discard_cmd_slab, dc);
  600. atomic_dec(&dcc->discard_cmd_cnt);
  601. }
  602. static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
  603. struct discard_cmd *dc)
  604. {
  605. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  606. if (dc->error == -EOPNOTSUPP)
  607. dc->error = 0;
  608. if (dc->error)
  609. f2fs_msg(sbi->sb, KERN_INFO,
  610. "Issue discard(%u, %u, %u) failed, ret: %d",
  611. dc->lstart, dc->start, dc->len, dc->error);
  612. __detach_discard_cmd(dcc, dc);
  613. }
  614. static void f2fs_submit_discard_endio(struct bio *bio)
  615. {
  616. struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
  617. dc->error = bio->bi_error;
  618. dc->state = D_DONE;
  619. complete_all(&dc->wait);
  620. bio_put(bio);
  621. }
  622. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  623. static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
  624. struct discard_cmd *dc)
  625. {
  626. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  627. struct bio *bio = NULL;
  628. if (dc->state != D_PREP)
  629. return;
  630. trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
  631. dc->error = __blkdev_issue_discard(dc->bdev,
  632. SECTOR_FROM_BLOCK(dc->start),
  633. SECTOR_FROM_BLOCK(dc->len),
  634. GFP_NOFS, 0, &bio);
  635. if (!dc->error) {
  636. /* should keep before submission to avoid D_DONE right away */
  637. dc->state = D_SUBMIT;
  638. atomic_inc(&dcc->issued_discard);
  639. atomic_inc(&dcc->issing_discard);
  640. if (bio) {
  641. bio->bi_private = dc;
  642. bio->bi_end_io = f2fs_submit_discard_endio;
  643. bio->bi_opf |= REQ_SYNC;
  644. submit_bio(bio);
  645. list_move_tail(&dc->list, &dcc->wait_list);
  646. }
  647. } else {
  648. __remove_discard_cmd(sbi, dc);
  649. }
  650. }
  651. static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
  652. struct block_device *bdev, block_t lstart,
  653. block_t start, block_t len,
  654. struct rb_node **insert_p,
  655. struct rb_node *insert_parent)
  656. {
  657. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  658. struct rb_node **p = &dcc->root.rb_node;
  659. struct rb_node *parent = NULL;
  660. struct discard_cmd *dc = NULL;
  661. if (insert_p && insert_parent) {
  662. parent = insert_parent;
  663. p = insert_p;
  664. goto do_insert;
  665. }
  666. p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
  667. do_insert:
  668. dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
  669. if (!dc)
  670. return NULL;
  671. return dc;
  672. }
  673. static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
  674. struct discard_cmd *dc)
  675. {
  676. list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
  677. }
  678. static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
  679. struct discard_cmd *dc, block_t blkaddr)
  680. {
  681. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  682. struct discard_info di = dc->di;
  683. bool modified = false;
  684. if (dc->state == D_DONE || dc->len == 1) {
  685. __remove_discard_cmd(sbi, dc);
  686. return;
  687. }
  688. dcc->undiscard_blks -= di.len;
  689. if (blkaddr > di.lstart) {
  690. dc->len = blkaddr - dc->lstart;
  691. dcc->undiscard_blks += dc->len;
  692. __relocate_discard_cmd(dcc, dc);
  693. modified = true;
  694. }
  695. if (blkaddr < di.lstart + di.len - 1) {
  696. if (modified) {
  697. __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
  698. di.start + blkaddr + 1 - di.lstart,
  699. di.lstart + di.len - 1 - blkaddr,
  700. NULL, NULL);
  701. } else {
  702. dc->lstart++;
  703. dc->len--;
  704. dc->start++;
  705. dcc->undiscard_blks += dc->len;
  706. __relocate_discard_cmd(dcc, dc);
  707. }
  708. }
  709. }
  710. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  711. struct block_device *bdev, block_t lstart,
  712. block_t start, block_t len)
  713. {
  714. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  715. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  716. struct discard_cmd *dc;
  717. struct discard_info di = {0};
  718. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  719. block_t end = lstart + len;
  720. mutex_lock(&dcc->cmd_lock);
  721. dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
  722. NULL, lstart,
  723. (struct rb_entry **)&prev_dc,
  724. (struct rb_entry **)&next_dc,
  725. &insert_p, &insert_parent, true);
  726. if (dc)
  727. prev_dc = dc;
  728. if (!prev_dc) {
  729. di.lstart = lstart;
  730. di.len = next_dc ? next_dc->lstart - lstart : len;
  731. di.len = min(di.len, len);
  732. di.start = start;
  733. }
  734. while (1) {
  735. struct rb_node *node;
  736. bool merged = false;
  737. struct discard_cmd *tdc = NULL;
  738. if (prev_dc) {
  739. di.lstart = prev_dc->lstart + prev_dc->len;
  740. if (di.lstart < lstart)
  741. di.lstart = lstart;
  742. if (di.lstart >= end)
  743. break;
  744. if (!next_dc || next_dc->lstart > end)
  745. di.len = end - di.lstart;
  746. else
  747. di.len = next_dc->lstart - di.lstart;
  748. di.start = start + di.lstart - lstart;
  749. }
  750. if (!di.len)
  751. goto next;
  752. if (prev_dc && prev_dc->state == D_PREP &&
  753. prev_dc->bdev == bdev &&
  754. __is_discard_back_mergeable(&di, &prev_dc->di)) {
  755. prev_dc->di.len += di.len;
  756. dcc->undiscard_blks += di.len;
  757. __relocate_discard_cmd(dcc, prev_dc);
  758. di = prev_dc->di;
  759. tdc = prev_dc;
  760. merged = true;
  761. }
  762. if (next_dc && next_dc->state == D_PREP &&
  763. next_dc->bdev == bdev &&
  764. __is_discard_front_mergeable(&di, &next_dc->di)) {
  765. next_dc->di.lstart = di.lstart;
  766. next_dc->di.len += di.len;
  767. next_dc->di.start = di.start;
  768. dcc->undiscard_blks += di.len;
  769. __relocate_discard_cmd(dcc, next_dc);
  770. if (tdc)
  771. __remove_discard_cmd(sbi, tdc);
  772. merged = true;
  773. }
  774. if (!merged) {
  775. __insert_discard_tree(sbi, bdev, di.lstart, di.start,
  776. di.len, NULL, NULL);
  777. }
  778. next:
  779. prev_dc = next_dc;
  780. if (!prev_dc)
  781. break;
  782. node = rb_next(&prev_dc->rb_node);
  783. next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  784. }
  785. mutex_unlock(&dcc->cmd_lock);
  786. }
  787. static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
  788. struct block_device *bdev, block_t blkstart, block_t blklen)
  789. {
  790. block_t lblkstart = blkstart;
  791. trace_f2fs_queue_discard(bdev, blkstart, blklen);
  792. if (sbi->s_ndevs) {
  793. int devi = f2fs_target_device_index(sbi, blkstart);
  794. blkstart -= FDEV(devi).start_blk;
  795. }
  796. __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
  797. return 0;
  798. }
  799. static void __issue_discard_cmd(struct f2fs_sb_info *sbi, bool issue_cond)
  800. {
  801. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  802. struct list_head *pend_list;
  803. struct discard_cmd *dc, *tmp;
  804. struct blk_plug plug;
  805. int i, iter = 0;
  806. mutex_lock(&dcc->cmd_lock);
  807. f2fs_bug_on(sbi,
  808. !__check_rb_tree_consistence(sbi, &dcc->root));
  809. blk_start_plug(&plug);
  810. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  811. pend_list = &dcc->pend_list[i];
  812. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  813. f2fs_bug_on(sbi, dc->state != D_PREP);
  814. if (!issue_cond || is_idle(sbi))
  815. __submit_discard_cmd(sbi, dc);
  816. if (issue_cond && iter++ > DISCARD_ISSUE_RATE)
  817. goto out;
  818. }
  819. }
  820. out:
  821. blk_finish_plug(&plug);
  822. mutex_unlock(&dcc->cmd_lock);
  823. }
  824. static void __wait_discard_cmd(struct f2fs_sb_info *sbi, bool wait_cond)
  825. {
  826. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  827. struct list_head *wait_list = &(dcc->wait_list);
  828. struct discard_cmd *dc, *tmp;
  829. bool need_wait;
  830. next:
  831. need_wait = false;
  832. mutex_lock(&dcc->cmd_lock);
  833. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  834. if (!wait_cond || (dc->state == D_DONE && !dc->ref)) {
  835. wait_for_completion_io(&dc->wait);
  836. __remove_discard_cmd(sbi, dc);
  837. } else {
  838. dc->ref++;
  839. need_wait = true;
  840. break;
  841. }
  842. }
  843. mutex_unlock(&dcc->cmd_lock);
  844. if (need_wait) {
  845. wait_for_completion_io(&dc->wait);
  846. mutex_lock(&dcc->cmd_lock);
  847. f2fs_bug_on(sbi, dc->state != D_DONE);
  848. dc->ref--;
  849. if (!dc->ref)
  850. __remove_discard_cmd(sbi, dc);
  851. mutex_unlock(&dcc->cmd_lock);
  852. goto next;
  853. }
  854. }
  855. /* This should be covered by global mutex, &sit_i->sentry_lock */
  856. void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
  857. {
  858. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  859. struct discard_cmd *dc;
  860. bool need_wait = false;
  861. mutex_lock(&dcc->cmd_lock);
  862. dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
  863. if (dc) {
  864. if (dc->state == D_PREP) {
  865. __punch_discard_cmd(sbi, dc, blkaddr);
  866. } else {
  867. dc->ref++;
  868. need_wait = true;
  869. }
  870. }
  871. mutex_unlock(&dcc->cmd_lock);
  872. if (need_wait) {
  873. wait_for_completion_io(&dc->wait);
  874. mutex_lock(&dcc->cmd_lock);
  875. f2fs_bug_on(sbi, dc->state != D_DONE);
  876. dc->ref--;
  877. if (!dc->ref)
  878. __remove_discard_cmd(sbi, dc);
  879. mutex_unlock(&dcc->cmd_lock);
  880. }
  881. }
  882. /* This comes from f2fs_put_super */
  883. void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
  884. {
  885. __issue_discard_cmd(sbi, false);
  886. __wait_discard_cmd(sbi, false);
  887. }
  888. static int issue_discard_thread(void *data)
  889. {
  890. struct f2fs_sb_info *sbi = data;
  891. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  892. wait_queue_head_t *q = &dcc->discard_wait_queue;
  893. set_freezable();
  894. do {
  895. wait_event_interruptible(*q, kthread_should_stop() ||
  896. freezing(current) ||
  897. atomic_read(&dcc->discard_cmd_cnt));
  898. if (try_to_freeze())
  899. continue;
  900. if (kthread_should_stop())
  901. return 0;
  902. __issue_discard_cmd(sbi, true);
  903. __wait_discard_cmd(sbi, true);
  904. congestion_wait(BLK_RW_SYNC, HZ/50);
  905. } while (!kthread_should_stop());
  906. return 0;
  907. }
  908. #ifdef CONFIG_BLK_DEV_ZONED
  909. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  910. struct block_device *bdev, block_t blkstart, block_t blklen)
  911. {
  912. sector_t sector, nr_sects;
  913. block_t lblkstart = blkstart;
  914. int devi = 0;
  915. if (sbi->s_ndevs) {
  916. devi = f2fs_target_device_index(sbi, blkstart);
  917. blkstart -= FDEV(devi).start_blk;
  918. }
  919. /*
  920. * We need to know the type of the zone: for conventional zones,
  921. * use regular discard if the drive supports it. For sequential
  922. * zones, reset the zone write pointer.
  923. */
  924. switch (get_blkz_type(sbi, bdev, blkstart)) {
  925. case BLK_ZONE_TYPE_CONVENTIONAL:
  926. if (!blk_queue_discard(bdev_get_queue(bdev)))
  927. return 0;
  928. return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
  929. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  930. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  931. sector = SECTOR_FROM_BLOCK(blkstart);
  932. nr_sects = SECTOR_FROM_BLOCK(blklen);
  933. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  934. nr_sects != bdev_zone_sectors(bdev)) {
  935. f2fs_msg(sbi->sb, KERN_INFO,
  936. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  937. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  938. blkstart, blklen);
  939. return -EIO;
  940. }
  941. trace_f2fs_issue_reset_zone(bdev, blkstart);
  942. return blkdev_reset_zones(bdev, sector,
  943. nr_sects, GFP_NOFS);
  944. default:
  945. /* Unknown zone type: broken device ? */
  946. return -EIO;
  947. }
  948. }
  949. #endif
  950. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  951. struct block_device *bdev, block_t blkstart, block_t blklen)
  952. {
  953. #ifdef CONFIG_BLK_DEV_ZONED
  954. if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
  955. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  956. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  957. #endif
  958. return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
  959. }
  960. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  961. block_t blkstart, block_t blklen)
  962. {
  963. sector_t start = blkstart, len = 0;
  964. struct block_device *bdev;
  965. struct seg_entry *se;
  966. unsigned int offset;
  967. block_t i;
  968. int err = 0;
  969. bdev = f2fs_target_device(sbi, blkstart, NULL);
  970. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  971. if (i != start) {
  972. struct block_device *bdev2 =
  973. f2fs_target_device(sbi, i, NULL);
  974. if (bdev2 != bdev) {
  975. err = __issue_discard_async(sbi, bdev,
  976. start, len);
  977. if (err)
  978. return err;
  979. bdev = bdev2;
  980. start = i;
  981. len = 0;
  982. }
  983. }
  984. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  985. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  986. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  987. sbi->discard_blks--;
  988. }
  989. if (len)
  990. err = __issue_discard_async(sbi, bdev, start, len);
  991. return err;
  992. }
  993. static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
  994. bool check_only)
  995. {
  996. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  997. int max_blocks = sbi->blocks_per_seg;
  998. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  999. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1000. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1001. unsigned long *discard_map = (unsigned long *)se->discard_map;
  1002. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  1003. unsigned int start = 0, end = -1;
  1004. bool force = (cpc->reason & CP_DISCARD);
  1005. struct discard_entry *de = NULL;
  1006. struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
  1007. int i;
  1008. if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
  1009. return false;
  1010. if (!force) {
  1011. if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
  1012. SM_I(sbi)->dcc_info->nr_discards >=
  1013. SM_I(sbi)->dcc_info->max_discards)
  1014. return false;
  1015. }
  1016. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  1017. for (i = 0; i < entries; i++)
  1018. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  1019. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  1020. while (force || SM_I(sbi)->dcc_info->nr_discards <=
  1021. SM_I(sbi)->dcc_info->max_discards) {
  1022. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  1023. if (start >= max_blocks)
  1024. break;
  1025. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  1026. if (force && start && end != max_blocks
  1027. && (end - start) < cpc->trim_minlen)
  1028. continue;
  1029. if (check_only)
  1030. return true;
  1031. if (!de) {
  1032. de = f2fs_kmem_cache_alloc(discard_entry_slab,
  1033. GFP_F2FS_ZERO);
  1034. de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
  1035. list_add_tail(&de->list, head);
  1036. }
  1037. for (i = start; i < end; i++)
  1038. __set_bit_le(i, (void *)de->discard_map);
  1039. SM_I(sbi)->dcc_info->nr_discards += end - start;
  1040. }
  1041. return false;
  1042. }
  1043. void release_discard_addrs(struct f2fs_sb_info *sbi)
  1044. {
  1045. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1046. struct discard_entry *entry, *this;
  1047. /* drop caches */
  1048. list_for_each_entry_safe(entry, this, head, list) {
  1049. list_del(&entry->list);
  1050. kmem_cache_free(discard_entry_slab, entry);
  1051. }
  1052. }
  1053. /*
  1054. * Should call clear_prefree_segments after checkpoint is done.
  1055. */
  1056. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  1057. {
  1058. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1059. unsigned int segno;
  1060. mutex_lock(&dirty_i->seglist_lock);
  1061. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  1062. __set_test_and_free(sbi, segno);
  1063. mutex_unlock(&dirty_i->seglist_lock);
  1064. }
  1065. void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1066. {
  1067. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1068. struct discard_entry *entry, *this;
  1069. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1070. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  1071. unsigned int start = 0, end = -1;
  1072. unsigned int secno, start_segno;
  1073. bool force = (cpc->reason & CP_DISCARD);
  1074. mutex_lock(&dirty_i->seglist_lock);
  1075. while (1) {
  1076. int i;
  1077. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  1078. if (start >= MAIN_SEGS(sbi))
  1079. break;
  1080. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  1081. start + 1);
  1082. for (i = start; i < end; i++)
  1083. clear_bit(i, prefree_map);
  1084. dirty_i->nr_dirty[PRE] -= end - start;
  1085. if (!test_opt(sbi, DISCARD))
  1086. continue;
  1087. if (force && start >= cpc->trim_start &&
  1088. (end - 1) <= cpc->trim_end)
  1089. continue;
  1090. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  1091. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  1092. (end - start) << sbi->log_blocks_per_seg);
  1093. continue;
  1094. }
  1095. next:
  1096. secno = GET_SEC_FROM_SEG(sbi, start);
  1097. start_segno = GET_SEG_FROM_SEC(sbi, secno);
  1098. if (!IS_CURSEC(sbi, secno) &&
  1099. !get_valid_blocks(sbi, start, true))
  1100. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  1101. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  1102. start = start_segno + sbi->segs_per_sec;
  1103. if (start < end)
  1104. goto next;
  1105. else
  1106. end = start - 1;
  1107. }
  1108. mutex_unlock(&dirty_i->seglist_lock);
  1109. /* send small discards */
  1110. list_for_each_entry_safe(entry, this, head, list) {
  1111. unsigned int cur_pos = 0, next_pos, len, total_len = 0;
  1112. bool is_valid = test_bit_le(0, entry->discard_map);
  1113. find_next:
  1114. if (is_valid) {
  1115. next_pos = find_next_zero_bit_le(entry->discard_map,
  1116. sbi->blocks_per_seg, cur_pos);
  1117. len = next_pos - cur_pos;
  1118. if (force && len < cpc->trim_minlen)
  1119. goto skip;
  1120. f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
  1121. len);
  1122. cpc->trimmed += len;
  1123. total_len += len;
  1124. } else {
  1125. next_pos = find_next_bit_le(entry->discard_map,
  1126. sbi->blocks_per_seg, cur_pos);
  1127. }
  1128. skip:
  1129. cur_pos = next_pos;
  1130. is_valid = !is_valid;
  1131. if (cur_pos < sbi->blocks_per_seg)
  1132. goto find_next;
  1133. list_del(&entry->list);
  1134. SM_I(sbi)->dcc_info->nr_discards -= total_len;
  1135. kmem_cache_free(discard_entry_slab, entry);
  1136. }
  1137. wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue);
  1138. }
  1139. static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
  1140. {
  1141. dev_t dev = sbi->sb->s_bdev->bd_dev;
  1142. struct discard_cmd_control *dcc;
  1143. int err = 0, i;
  1144. if (SM_I(sbi)->dcc_info) {
  1145. dcc = SM_I(sbi)->dcc_info;
  1146. goto init_thread;
  1147. }
  1148. dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
  1149. if (!dcc)
  1150. return -ENOMEM;
  1151. INIT_LIST_HEAD(&dcc->entry_list);
  1152. for (i = 0; i < MAX_PLIST_NUM; i++)
  1153. INIT_LIST_HEAD(&dcc->pend_list[i]);
  1154. INIT_LIST_HEAD(&dcc->wait_list);
  1155. mutex_init(&dcc->cmd_lock);
  1156. atomic_set(&dcc->issued_discard, 0);
  1157. atomic_set(&dcc->issing_discard, 0);
  1158. atomic_set(&dcc->discard_cmd_cnt, 0);
  1159. dcc->nr_discards = 0;
  1160. dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
  1161. dcc->undiscard_blks = 0;
  1162. dcc->root = RB_ROOT;
  1163. init_waitqueue_head(&dcc->discard_wait_queue);
  1164. SM_I(sbi)->dcc_info = dcc;
  1165. init_thread:
  1166. dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
  1167. "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
  1168. if (IS_ERR(dcc->f2fs_issue_discard)) {
  1169. err = PTR_ERR(dcc->f2fs_issue_discard);
  1170. kfree(dcc);
  1171. SM_I(sbi)->dcc_info = NULL;
  1172. return err;
  1173. }
  1174. return err;
  1175. }
  1176. static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
  1177. {
  1178. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1179. if (!dcc)
  1180. return;
  1181. if (dcc->f2fs_issue_discard) {
  1182. struct task_struct *discard_thread = dcc->f2fs_issue_discard;
  1183. dcc->f2fs_issue_discard = NULL;
  1184. kthread_stop(discard_thread);
  1185. }
  1186. kfree(dcc);
  1187. SM_I(sbi)->dcc_info = NULL;
  1188. }
  1189. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  1190. {
  1191. struct sit_info *sit_i = SIT_I(sbi);
  1192. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  1193. sit_i->dirty_sentries++;
  1194. return false;
  1195. }
  1196. return true;
  1197. }
  1198. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  1199. unsigned int segno, int modified)
  1200. {
  1201. struct seg_entry *se = get_seg_entry(sbi, segno);
  1202. se->type = type;
  1203. if (modified)
  1204. __mark_sit_entry_dirty(sbi, segno);
  1205. }
  1206. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  1207. {
  1208. struct seg_entry *se;
  1209. unsigned int segno, offset;
  1210. long int new_vblocks;
  1211. segno = GET_SEGNO(sbi, blkaddr);
  1212. se = get_seg_entry(sbi, segno);
  1213. new_vblocks = se->valid_blocks + del;
  1214. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1215. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  1216. (new_vblocks > sbi->blocks_per_seg)));
  1217. se->valid_blocks = new_vblocks;
  1218. se->mtime = get_mtime(sbi);
  1219. SIT_I(sbi)->max_mtime = se->mtime;
  1220. /* Update valid block bitmap */
  1221. if (del > 0) {
  1222. if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) {
  1223. #ifdef CONFIG_F2FS_CHECK_FS
  1224. if (f2fs_test_and_set_bit(offset,
  1225. se->cur_valid_map_mir))
  1226. f2fs_bug_on(sbi, 1);
  1227. else
  1228. WARN_ON(1);
  1229. #else
  1230. f2fs_bug_on(sbi, 1);
  1231. #endif
  1232. }
  1233. if (f2fs_discard_en(sbi) &&
  1234. !f2fs_test_and_set_bit(offset, se->discard_map))
  1235. sbi->discard_blks--;
  1236. /* don't overwrite by SSR to keep node chain */
  1237. if (se->type == CURSEG_WARM_NODE) {
  1238. if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
  1239. se->ckpt_valid_blocks++;
  1240. }
  1241. } else {
  1242. if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) {
  1243. #ifdef CONFIG_F2FS_CHECK_FS
  1244. if (!f2fs_test_and_clear_bit(offset,
  1245. se->cur_valid_map_mir))
  1246. f2fs_bug_on(sbi, 1);
  1247. else
  1248. WARN_ON(1);
  1249. #else
  1250. f2fs_bug_on(sbi, 1);
  1251. #endif
  1252. }
  1253. if (f2fs_discard_en(sbi) &&
  1254. f2fs_test_and_clear_bit(offset, se->discard_map))
  1255. sbi->discard_blks++;
  1256. }
  1257. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  1258. se->ckpt_valid_blocks += del;
  1259. __mark_sit_entry_dirty(sbi, segno);
  1260. /* update total number of valid blocks to be written in ckpt area */
  1261. SIT_I(sbi)->written_valid_blocks += del;
  1262. if (sbi->segs_per_sec > 1)
  1263. get_sec_entry(sbi, segno)->valid_blocks += del;
  1264. }
  1265. void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
  1266. {
  1267. update_sit_entry(sbi, new, 1);
  1268. if (GET_SEGNO(sbi, old) != NULL_SEGNO)
  1269. update_sit_entry(sbi, old, -1);
  1270. locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
  1271. locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
  1272. }
  1273. void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  1274. {
  1275. unsigned int segno = GET_SEGNO(sbi, addr);
  1276. struct sit_info *sit_i = SIT_I(sbi);
  1277. f2fs_bug_on(sbi, addr == NULL_ADDR);
  1278. if (addr == NEW_ADDR)
  1279. return;
  1280. /* add it into sit main buffer */
  1281. mutex_lock(&sit_i->sentry_lock);
  1282. update_sit_entry(sbi, addr, -1);
  1283. /* add it into dirty seglist */
  1284. locate_dirty_segment(sbi, segno);
  1285. mutex_unlock(&sit_i->sentry_lock);
  1286. }
  1287. bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  1288. {
  1289. struct sit_info *sit_i = SIT_I(sbi);
  1290. unsigned int segno, offset;
  1291. struct seg_entry *se;
  1292. bool is_cp = false;
  1293. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1294. return true;
  1295. mutex_lock(&sit_i->sentry_lock);
  1296. segno = GET_SEGNO(sbi, blkaddr);
  1297. se = get_seg_entry(sbi, segno);
  1298. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1299. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1300. is_cp = true;
  1301. mutex_unlock(&sit_i->sentry_lock);
  1302. return is_cp;
  1303. }
  1304. /*
  1305. * This function should be resided under the curseg_mutex lock
  1306. */
  1307. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  1308. struct f2fs_summary *sum)
  1309. {
  1310. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1311. void *addr = curseg->sum_blk;
  1312. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  1313. memcpy(addr, sum, sizeof(struct f2fs_summary));
  1314. }
  1315. /*
  1316. * Calculate the number of current summary pages for writing
  1317. */
  1318. int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  1319. {
  1320. int valid_sum_count = 0;
  1321. int i, sum_in_page;
  1322. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1323. if (sbi->ckpt->alloc_type[i] == SSR)
  1324. valid_sum_count += sbi->blocks_per_seg;
  1325. else {
  1326. if (for_ra)
  1327. valid_sum_count += le16_to_cpu(
  1328. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  1329. else
  1330. valid_sum_count += curseg_blkoff(sbi, i);
  1331. }
  1332. }
  1333. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  1334. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  1335. if (valid_sum_count <= sum_in_page)
  1336. return 1;
  1337. else if ((valid_sum_count - sum_in_page) <=
  1338. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  1339. return 2;
  1340. return 3;
  1341. }
  1342. /*
  1343. * Caller should put this summary page
  1344. */
  1345. struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  1346. {
  1347. return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
  1348. }
  1349. void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
  1350. {
  1351. struct page *page = grab_meta_page(sbi, blk_addr);
  1352. void *dst = page_address(page);
  1353. if (src)
  1354. memcpy(dst, src, PAGE_SIZE);
  1355. else
  1356. memset(dst, 0, PAGE_SIZE);
  1357. set_page_dirty(page);
  1358. f2fs_put_page(page, 1);
  1359. }
  1360. static void write_sum_page(struct f2fs_sb_info *sbi,
  1361. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  1362. {
  1363. update_meta_page(sbi, (void *)sum_blk, blk_addr);
  1364. }
  1365. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  1366. int type, block_t blk_addr)
  1367. {
  1368. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1369. struct page *page = grab_meta_page(sbi, blk_addr);
  1370. struct f2fs_summary_block *src = curseg->sum_blk;
  1371. struct f2fs_summary_block *dst;
  1372. dst = (struct f2fs_summary_block *)page_address(page);
  1373. mutex_lock(&curseg->curseg_mutex);
  1374. down_read(&curseg->journal_rwsem);
  1375. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  1376. up_read(&curseg->journal_rwsem);
  1377. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  1378. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  1379. mutex_unlock(&curseg->curseg_mutex);
  1380. set_page_dirty(page);
  1381. f2fs_put_page(page, 1);
  1382. }
  1383. static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
  1384. {
  1385. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1386. unsigned int segno = curseg->segno + 1;
  1387. struct free_segmap_info *free_i = FREE_I(sbi);
  1388. if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
  1389. return !test_bit(segno, free_i->free_segmap);
  1390. return 0;
  1391. }
  1392. /*
  1393. * Find a new segment from the free segments bitmap to right order
  1394. * This function should be returned with success, otherwise BUG
  1395. */
  1396. static void get_new_segment(struct f2fs_sb_info *sbi,
  1397. unsigned int *newseg, bool new_sec, int dir)
  1398. {
  1399. struct free_segmap_info *free_i = FREE_I(sbi);
  1400. unsigned int segno, secno, zoneno;
  1401. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  1402. unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
  1403. unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
  1404. unsigned int left_start = hint;
  1405. bool init = true;
  1406. int go_left = 0;
  1407. int i;
  1408. spin_lock(&free_i->segmap_lock);
  1409. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  1410. segno = find_next_zero_bit(free_i->free_segmap,
  1411. GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
  1412. if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
  1413. goto got_it;
  1414. }
  1415. find_other_zone:
  1416. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  1417. if (secno >= MAIN_SECS(sbi)) {
  1418. if (dir == ALLOC_RIGHT) {
  1419. secno = find_next_zero_bit(free_i->free_secmap,
  1420. MAIN_SECS(sbi), 0);
  1421. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1422. } else {
  1423. go_left = 1;
  1424. left_start = hint - 1;
  1425. }
  1426. }
  1427. if (go_left == 0)
  1428. goto skip_left;
  1429. while (test_bit(left_start, free_i->free_secmap)) {
  1430. if (left_start > 0) {
  1431. left_start--;
  1432. continue;
  1433. }
  1434. left_start = find_next_zero_bit(free_i->free_secmap,
  1435. MAIN_SECS(sbi), 0);
  1436. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1437. break;
  1438. }
  1439. secno = left_start;
  1440. skip_left:
  1441. hint = secno;
  1442. segno = GET_SEG_FROM_SEC(sbi, secno);
  1443. zoneno = GET_ZONE_FROM_SEC(sbi, secno);
  1444. /* give up on finding another zone */
  1445. if (!init)
  1446. goto got_it;
  1447. if (sbi->secs_per_zone == 1)
  1448. goto got_it;
  1449. if (zoneno == old_zoneno)
  1450. goto got_it;
  1451. if (dir == ALLOC_LEFT) {
  1452. if (!go_left && zoneno + 1 >= total_zones)
  1453. goto got_it;
  1454. if (go_left && zoneno == 0)
  1455. goto got_it;
  1456. }
  1457. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1458. if (CURSEG_I(sbi, i)->zone == zoneno)
  1459. break;
  1460. if (i < NR_CURSEG_TYPE) {
  1461. /* zone is in user, try another */
  1462. if (go_left)
  1463. hint = zoneno * sbi->secs_per_zone - 1;
  1464. else if (zoneno + 1 >= total_zones)
  1465. hint = 0;
  1466. else
  1467. hint = (zoneno + 1) * sbi->secs_per_zone;
  1468. init = false;
  1469. goto find_other_zone;
  1470. }
  1471. got_it:
  1472. /* set it as dirty segment in free segmap */
  1473. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1474. __set_inuse(sbi, segno);
  1475. *newseg = segno;
  1476. spin_unlock(&free_i->segmap_lock);
  1477. }
  1478. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  1479. {
  1480. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1481. struct summary_footer *sum_footer;
  1482. curseg->segno = curseg->next_segno;
  1483. curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
  1484. curseg->next_blkoff = 0;
  1485. curseg->next_segno = NULL_SEGNO;
  1486. sum_footer = &(curseg->sum_blk->footer);
  1487. memset(sum_footer, 0, sizeof(struct summary_footer));
  1488. if (IS_DATASEG(type))
  1489. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  1490. if (IS_NODESEG(type))
  1491. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  1492. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  1493. }
  1494. static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
  1495. {
  1496. /* if segs_per_sec is large than 1, we need to keep original policy. */
  1497. if (sbi->segs_per_sec != 1)
  1498. return CURSEG_I(sbi, type)->segno;
  1499. if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
  1500. return 0;
  1501. if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
  1502. return SIT_I(sbi)->last_victim[ALLOC_NEXT];
  1503. return CURSEG_I(sbi, type)->segno;
  1504. }
  1505. /*
  1506. * Allocate a current working segment.
  1507. * This function always allocates a free segment in LFS manner.
  1508. */
  1509. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  1510. {
  1511. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1512. unsigned int segno = curseg->segno;
  1513. int dir = ALLOC_LEFT;
  1514. write_sum_page(sbi, curseg->sum_blk,
  1515. GET_SUM_BLOCK(sbi, segno));
  1516. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  1517. dir = ALLOC_RIGHT;
  1518. if (test_opt(sbi, NOHEAP))
  1519. dir = ALLOC_RIGHT;
  1520. segno = __get_next_segno(sbi, type);
  1521. get_new_segment(sbi, &segno, new_sec, dir);
  1522. curseg->next_segno = segno;
  1523. reset_curseg(sbi, type, 1);
  1524. curseg->alloc_type = LFS;
  1525. }
  1526. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  1527. struct curseg_info *seg, block_t start)
  1528. {
  1529. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  1530. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1531. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  1532. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1533. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1534. int i, pos;
  1535. for (i = 0; i < entries; i++)
  1536. target_map[i] = ckpt_map[i] | cur_map[i];
  1537. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  1538. seg->next_blkoff = pos;
  1539. }
  1540. /*
  1541. * If a segment is written by LFS manner, next block offset is just obtained
  1542. * by increasing the current block offset. However, if a segment is written by
  1543. * SSR manner, next block offset obtained by calling __next_free_blkoff
  1544. */
  1545. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  1546. struct curseg_info *seg)
  1547. {
  1548. if (seg->alloc_type == SSR)
  1549. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  1550. else
  1551. seg->next_blkoff++;
  1552. }
  1553. /*
  1554. * This function always allocates a used segment(from dirty seglist) by SSR
  1555. * manner, so it should recover the existing segment information of valid blocks
  1556. */
  1557. static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
  1558. {
  1559. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1560. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1561. unsigned int new_segno = curseg->next_segno;
  1562. struct f2fs_summary_block *sum_node;
  1563. struct page *sum_page;
  1564. write_sum_page(sbi, curseg->sum_blk,
  1565. GET_SUM_BLOCK(sbi, curseg->segno));
  1566. __set_test_and_inuse(sbi, new_segno);
  1567. mutex_lock(&dirty_i->seglist_lock);
  1568. __remove_dirty_segment(sbi, new_segno, PRE);
  1569. __remove_dirty_segment(sbi, new_segno, DIRTY);
  1570. mutex_unlock(&dirty_i->seglist_lock);
  1571. reset_curseg(sbi, type, 1);
  1572. curseg->alloc_type = SSR;
  1573. __next_free_blkoff(sbi, curseg, 0);
  1574. if (reuse) {
  1575. sum_page = get_sum_page(sbi, new_segno);
  1576. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  1577. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  1578. f2fs_put_page(sum_page, 1);
  1579. }
  1580. }
  1581. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  1582. {
  1583. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1584. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  1585. unsigned segno = NULL_SEGNO;
  1586. int i, cnt;
  1587. bool reversed = false;
  1588. /* need_SSR() already forces to do this */
  1589. if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
  1590. curseg->next_segno = segno;
  1591. return 1;
  1592. }
  1593. /* For node segments, let's do SSR more intensively */
  1594. if (IS_NODESEG(type)) {
  1595. if (type >= CURSEG_WARM_NODE) {
  1596. reversed = true;
  1597. i = CURSEG_COLD_NODE;
  1598. } else {
  1599. i = CURSEG_HOT_NODE;
  1600. }
  1601. cnt = NR_CURSEG_NODE_TYPE;
  1602. } else {
  1603. if (type >= CURSEG_WARM_DATA) {
  1604. reversed = true;
  1605. i = CURSEG_COLD_DATA;
  1606. } else {
  1607. i = CURSEG_HOT_DATA;
  1608. }
  1609. cnt = NR_CURSEG_DATA_TYPE;
  1610. }
  1611. for (; cnt-- > 0; reversed ? i-- : i++) {
  1612. if (i == type)
  1613. continue;
  1614. if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
  1615. curseg->next_segno = segno;
  1616. return 1;
  1617. }
  1618. }
  1619. return 0;
  1620. }
  1621. /*
  1622. * flush out current segment and replace it with new segment
  1623. * This function should be returned with success, otherwise BUG
  1624. */
  1625. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  1626. int type, bool force)
  1627. {
  1628. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1629. if (force)
  1630. new_curseg(sbi, type, true);
  1631. else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
  1632. type == CURSEG_WARM_NODE)
  1633. new_curseg(sbi, type, false);
  1634. else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
  1635. new_curseg(sbi, type, false);
  1636. else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
  1637. change_curseg(sbi, type, true);
  1638. else
  1639. new_curseg(sbi, type, false);
  1640. stat_inc_seg_type(sbi, curseg);
  1641. }
  1642. void allocate_new_segments(struct f2fs_sb_info *sbi)
  1643. {
  1644. struct curseg_info *curseg;
  1645. unsigned int old_segno;
  1646. int i;
  1647. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1648. curseg = CURSEG_I(sbi, i);
  1649. old_segno = curseg->segno;
  1650. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  1651. locate_dirty_segment(sbi, old_segno);
  1652. }
  1653. }
  1654. static const struct segment_allocation default_salloc_ops = {
  1655. .allocate_segment = allocate_segment_by_default,
  1656. };
  1657. bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1658. {
  1659. __u64 trim_start = cpc->trim_start;
  1660. bool has_candidate = false;
  1661. mutex_lock(&SIT_I(sbi)->sentry_lock);
  1662. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
  1663. if (add_discard_addrs(sbi, cpc, true)) {
  1664. has_candidate = true;
  1665. break;
  1666. }
  1667. }
  1668. mutex_unlock(&SIT_I(sbi)->sentry_lock);
  1669. cpc->trim_start = trim_start;
  1670. return has_candidate;
  1671. }
  1672. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  1673. {
  1674. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  1675. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  1676. unsigned int start_segno, end_segno;
  1677. struct cp_control cpc;
  1678. int err = 0;
  1679. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  1680. return -EINVAL;
  1681. cpc.trimmed = 0;
  1682. if (end <= MAIN_BLKADDR(sbi))
  1683. goto out;
  1684. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  1685. f2fs_msg(sbi->sb, KERN_WARNING,
  1686. "Found FS corruption, run fsck to fix.");
  1687. goto out;
  1688. }
  1689. /* start/end segment number in main_area */
  1690. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  1691. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  1692. GET_SEGNO(sbi, end);
  1693. cpc.reason = CP_DISCARD;
  1694. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  1695. /* do checkpoint to issue discard commands safely */
  1696. for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
  1697. cpc.trim_start = start_segno;
  1698. if (sbi->discard_blks == 0)
  1699. break;
  1700. else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
  1701. cpc.trim_end = end_segno;
  1702. else
  1703. cpc.trim_end = min_t(unsigned int,
  1704. rounddown(start_segno +
  1705. BATCHED_TRIM_SEGMENTS(sbi),
  1706. sbi->segs_per_sec) - 1, end_segno);
  1707. mutex_lock(&sbi->gc_mutex);
  1708. err = write_checkpoint(sbi, &cpc);
  1709. mutex_unlock(&sbi->gc_mutex);
  1710. if (err)
  1711. break;
  1712. schedule();
  1713. }
  1714. out:
  1715. range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
  1716. return err;
  1717. }
  1718. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  1719. {
  1720. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1721. if (curseg->next_blkoff < sbi->blocks_per_seg)
  1722. return true;
  1723. return false;
  1724. }
  1725. static int __get_segment_type_2(struct f2fs_io_info *fio)
  1726. {
  1727. if (fio->type == DATA)
  1728. return CURSEG_HOT_DATA;
  1729. else
  1730. return CURSEG_HOT_NODE;
  1731. }
  1732. static int __get_segment_type_4(struct f2fs_io_info *fio)
  1733. {
  1734. if (fio->type == DATA) {
  1735. struct inode *inode = fio->page->mapping->host;
  1736. if (S_ISDIR(inode->i_mode))
  1737. return CURSEG_HOT_DATA;
  1738. else
  1739. return CURSEG_COLD_DATA;
  1740. } else {
  1741. if (IS_DNODE(fio->page) && is_cold_node(fio->page))
  1742. return CURSEG_WARM_NODE;
  1743. else
  1744. return CURSEG_COLD_NODE;
  1745. }
  1746. }
  1747. static int __get_segment_type_6(struct f2fs_io_info *fio)
  1748. {
  1749. if (fio->type == DATA) {
  1750. struct inode *inode = fio->page->mapping->host;
  1751. if (is_cold_data(fio->page) || file_is_cold(inode))
  1752. return CURSEG_COLD_DATA;
  1753. if (is_inode_flag_set(inode, FI_HOT_DATA))
  1754. return CURSEG_HOT_DATA;
  1755. return CURSEG_WARM_DATA;
  1756. } else {
  1757. if (IS_DNODE(fio->page))
  1758. return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
  1759. CURSEG_HOT_NODE;
  1760. return CURSEG_COLD_NODE;
  1761. }
  1762. }
  1763. static int __get_segment_type(struct f2fs_io_info *fio)
  1764. {
  1765. int type = 0;
  1766. switch (fio->sbi->active_logs) {
  1767. case 2:
  1768. type = __get_segment_type_2(fio);
  1769. break;
  1770. case 4:
  1771. type = __get_segment_type_4(fio);
  1772. break;
  1773. case 6:
  1774. type = __get_segment_type_6(fio);
  1775. break;
  1776. default:
  1777. f2fs_bug_on(fio->sbi, true);
  1778. }
  1779. if (IS_HOT(type))
  1780. fio->temp = HOT;
  1781. else if (IS_WARM(type))
  1782. fio->temp = WARM;
  1783. else
  1784. fio->temp = COLD;
  1785. return type;
  1786. }
  1787. void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  1788. block_t old_blkaddr, block_t *new_blkaddr,
  1789. struct f2fs_summary *sum, int type,
  1790. struct f2fs_io_info *fio, bool add_list)
  1791. {
  1792. struct sit_info *sit_i = SIT_I(sbi);
  1793. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1794. mutex_lock(&curseg->curseg_mutex);
  1795. mutex_lock(&sit_i->sentry_lock);
  1796. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  1797. f2fs_wait_discard_bio(sbi, *new_blkaddr);
  1798. /*
  1799. * __add_sum_entry should be resided under the curseg_mutex
  1800. * because, this function updates a summary entry in the
  1801. * current summary block.
  1802. */
  1803. __add_sum_entry(sbi, type, sum);
  1804. __refresh_next_blkoff(sbi, curseg);
  1805. stat_inc_block_count(sbi, curseg);
  1806. if (!__has_curseg_space(sbi, type))
  1807. sit_i->s_ops->allocate_segment(sbi, type, false);
  1808. /*
  1809. * SIT information should be updated after segment allocation,
  1810. * since we need to keep dirty segments precisely under SSR.
  1811. */
  1812. refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
  1813. mutex_unlock(&sit_i->sentry_lock);
  1814. if (page && IS_NODESEG(type))
  1815. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  1816. if (add_list) {
  1817. struct f2fs_bio_info *io;
  1818. INIT_LIST_HEAD(&fio->list);
  1819. fio->in_list = true;
  1820. io = sbi->write_io[fio->type] + fio->temp;
  1821. spin_lock(&io->io_lock);
  1822. list_add_tail(&fio->list, &io->io_list);
  1823. spin_unlock(&io->io_lock);
  1824. }
  1825. mutex_unlock(&curseg->curseg_mutex);
  1826. }
  1827. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  1828. {
  1829. int type = __get_segment_type(fio);
  1830. int err;
  1831. reallocate:
  1832. allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  1833. &fio->new_blkaddr, sum, type, fio, true);
  1834. /* writeout dirty page into bdev */
  1835. err = f2fs_submit_page_write(fio);
  1836. if (err == -EAGAIN) {
  1837. fio->old_blkaddr = fio->new_blkaddr;
  1838. goto reallocate;
  1839. }
  1840. }
  1841. void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
  1842. {
  1843. struct f2fs_io_info fio = {
  1844. .sbi = sbi,
  1845. .type = META,
  1846. .op = REQ_OP_WRITE,
  1847. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  1848. .old_blkaddr = page->index,
  1849. .new_blkaddr = page->index,
  1850. .page = page,
  1851. .encrypted_page = NULL,
  1852. .in_list = false,
  1853. };
  1854. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  1855. fio.op_flags &= ~REQ_META;
  1856. set_page_writeback(page);
  1857. f2fs_submit_page_write(&fio);
  1858. }
  1859. void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  1860. {
  1861. struct f2fs_summary sum;
  1862. set_summary(&sum, nid, 0, 0);
  1863. do_write_page(&sum, fio);
  1864. }
  1865. void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
  1866. {
  1867. struct f2fs_sb_info *sbi = fio->sbi;
  1868. struct f2fs_summary sum;
  1869. struct node_info ni;
  1870. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  1871. get_node_info(sbi, dn->nid, &ni);
  1872. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  1873. do_write_page(&sum, fio);
  1874. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  1875. }
  1876. int rewrite_data_page(struct f2fs_io_info *fio)
  1877. {
  1878. fio->new_blkaddr = fio->old_blkaddr;
  1879. stat_inc_inplace_blocks(fio->sbi);
  1880. return f2fs_submit_page_bio(fio);
  1881. }
  1882. void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  1883. block_t old_blkaddr, block_t new_blkaddr,
  1884. bool recover_curseg, bool recover_newaddr)
  1885. {
  1886. struct sit_info *sit_i = SIT_I(sbi);
  1887. struct curseg_info *curseg;
  1888. unsigned int segno, old_cursegno;
  1889. struct seg_entry *se;
  1890. int type;
  1891. unsigned short old_blkoff;
  1892. segno = GET_SEGNO(sbi, new_blkaddr);
  1893. se = get_seg_entry(sbi, segno);
  1894. type = se->type;
  1895. if (!recover_curseg) {
  1896. /* for recovery flow */
  1897. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  1898. if (old_blkaddr == NULL_ADDR)
  1899. type = CURSEG_COLD_DATA;
  1900. else
  1901. type = CURSEG_WARM_DATA;
  1902. }
  1903. } else {
  1904. if (!IS_CURSEG(sbi, segno))
  1905. type = CURSEG_WARM_DATA;
  1906. }
  1907. curseg = CURSEG_I(sbi, type);
  1908. mutex_lock(&curseg->curseg_mutex);
  1909. mutex_lock(&sit_i->sentry_lock);
  1910. old_cursegno = curseg->segno;
  1911. old_blkoff = curseg->next_blkoff;
  1912. /* change the current segment */
  1913. if (segno != curseg->segno) {
  1914. curseg->next_segno = segno;
  1915. change_curseg(sbi, type, true);
  1916. }
  1917. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  1918. __add_sum_entry(sbi, type, sum);
  1919. if (!recover_curseg || recover_newaddr)
  1920. update_sit_entry(sbi, new_blkaddr, 1);
  1921. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  1922. update_sit_entry(sbi, old_blkaddr, -1);
  1923. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  1924. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  1925. locate_dirty_segment(sbi, old_cursegno);
  1926. if (recover_curseg) {
  1927. if (old_cursegno != curseg->segno) {
  1928. curseg->next_segno = old_cursegno;
  1929. change_curseg(sbi, type, true);
  1930. }
  1931. curseg->next_blkoff = old_blkoff;
  1932. }
  1933. mutex_unlock(&sit_i->sentry_lock);
  1934. mutex_unlock(&curseg->curseg_mutex);
  1935. }
  1936. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  1937. block_t old_addr, block_t new_addr,
  1938. unsigned char version, bool recover_curseg,
  1939. bool recover_newaddr)
  1940. {
  1941. struct f2fs_summary sum;
  1942. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  1943. __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
  1944. recover_curseg, recover_newaddr);
  1945. f2fs_update_data_blkaddr(dn, new_addr);
  1946. }
  1947. void f2fs_wait_on_page_writeback(struct page *page,
  1948. enum page_type type, bool ordered)
  1949. {
  1950. if (PageWriteback(page)) {
  1951. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1952. f2fs_submit_merged_write_cond(sbi, page->mapping->host,
  1953. 0, page->index, type);
  1954. if (ordered)
  1955. wait_on_page_writeback(page);
  1956. else
  1957. wait_for_stable_page(page);
  1958. }
  1959. }
  1960. void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
  1961. block_t blkaddr)
  1962. {
  1963. struct page *cpage;
  1964. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1965. return;
  1966. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  1967. if (cpage) {
  1968. f2fs_wait_on_page_writeback(cpage, DATA, true);
  1969. f2fs_put_page(cpage, 1);
  1970. }
  1971. }
  1972. static int read_compacted_summaries(struct f2fs_sb_info *sbi)
  1973. {
  1974. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1975. struct curseg_info *seg_i;
  1976. unsigned char *kaddr;
  1977. struct page *page;
  1978. block_t start;
  1979. int i, j, offset;
  1980. start = start_sum_block(sbi);
  1981. page = get_meta_page(sbi, start++);
  1982. kaddr = (unsigned char *)page_address(page);
  1983. /* Step 1: restore nat cache */
  1984. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1985. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  1986. /* Step 2: restore sit cache */
  1987. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1988. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  1989. offset = 2 * SUM_JOURNAL_SIZE;
  1990. /* Step 3: restore summary entries */
  1991. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1992. unsigned short blk_off;
  1993. unsigned int segno;
  1994. seg_i = CURSEG_I(sbi, i);
  1995. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  1996. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  1997. seg_i->next_segno = segno;
  1998. reset_curseg(sbi, i, 0);
  1999. seg_i->alloc_type = ckpt->alloc_type[i];
  2000. seg_i->next_blkoff = blk_off;
  2001. if (seg_i->alloc_type == SSR)
  2002. blk_off = sbi->blocks_per_seg;
  2003. for (j = 0; j < blk_off; j++) {
  2004. struct f2fs_summary *s;
  2005. s = (struct f2fs_summary *)(kaddr + offset);
  2006. seg_i->sum_blk->entries[j] = *s;
  2007. offset += SUMMARY_SIZE;
  2008. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  2009. SUM_FOOTER_SIZE)
  2010. continue;
  2011. f2fs_put_page(page, 1);
  2012. page = NULL;
  2013. page = get_meta_page(sbi, start++);
  2014. kaddr = (unsigned char *)page_address(page);
  2015. offset = 0;
  2016. }
  2017. }
  2018. f2fs_put_page(page, 1);
  2019. return 0;
  2020. }
  2021. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  2022. {
  2023. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2024. struct f2fs_summary_block *sum;
  2025. struct curseg_info *curseg;
  2026. struct page *new;
  2027. unsigned short blk_off;
  2028. unsigned int segno = 0;
  2029. block_t blk_addr = 0;
  2030. /* get segment number and block addr */
  2031. if (IS_DATASEG(type)) {
  2032. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  2033. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  2034. CURSEG_HOT_DATA]);
  2035. if (__exist_node_summaries(sbi))
  2036. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  2037. else
  2038. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  2039. } else {
  2040. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  2041. CURSEG_HOT_NODE]);
  2042. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  2043. CURSEG_HOT_NODE]);
  2044. if (__exist_node_summaries(sbi))
  2045. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  2046. type - CURSEG_HOT_NODE);
  2047. else
  2048. blk_addr = GET_SUM_BLOCK(sbi, segno);
  2049. }
  2050. new = get_meta_page(sbi, blk_addr);
  2051. sum = (struct f2fs_summary_block *)page_address(new);
  2052. if (IS_NODESEG(type)) {
  2053. if (__exist_node_summaries(sbi)) {
  2054. struct f2fs_summary *ns = &sum->entries[0];
  2055. int i;
  2056. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  2057. ns->version = 0;
  2058. ns->ofs_in_node = 0;
  2059. }
  2060. } else {
  2061. int err;
  2062. err = restore_node_summary(sbi, segno, sum);
  2063. if (err) {
  2064. f2fs_put_page(new, 1);
  2065. return err;
  2066. }
  2067. }
  2068. }
  2069. /* set uncompleted segment to curseg */
  2070. curseg = CURSEG_I(sbi, type);
  2071. mutex_lock(&curseg->curseg_mutex);
  2072. /* update journal info */
  2073. down_write(&curseg->journal_rwsem);
  2074. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  2075. up_write(&curseg->journal_rwsem);
  2076. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  2077. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  2078. curseg->next_segno = segno;
  2079. reset_curseg(sbi, type, 0);
  2080. curseg->alloc_type = ckpt->alloc_type[type];
  2081. curseg->next_blkoff = blk_off;
  2082. mutex_unlock(&curseg->curseg_mutex);
  2083. f2fs_put_page(new, 1);
  2084. return 0;
  2085. }
  2086. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  2087. {
  2088. int type = CURSEG_HOT_DATA;
  2089. int err;
  2090. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  2091. int npages = npages_for_summary_flush(sbi, true);
  2092. if (npages >= 2)
  2093. ra_meta_pages(sbi, start_sum_block(sbi), npages,
  2094. META_CP, true);
  2095. /* restore for compacted data summary */
  2096. if (read_compacted_summaries(sbi))
  2097. return -EINVAL;
  2098. type = CURSEG_HOT_NODE;
  2099. }
  2100. if (__exist_node_summaries(sbi))
  2101. ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  2102. NR_CURSEG_TYPE - type, META_CP, true);
  2103. for (; type <= CURSEG_COLD_NODE; type++) {
  2104. err = read_normal_summaries(sbi, type);
  2105. if (err)
  2106. return err;
  2107. }
  2108. return 0;
  2109. }
  2110. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  2111. {
  2112. struct page *page;
  2113. unsigned char *kaddr;
  2114. struct f2fs_summary *summary;
  2115. struct curseg_info *seg_i;
  2116. int written_size = 0;
  2117. int i, j;
  2118. page = grab_meta_page(sbi, blkaddr++);
  2119. kaddr = (unsigned char *)page_address(page);
  2120. /* Step 1: write nat cache */
  2121. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2122. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  2123. written_size += SUM_JOURNAL_SIZE;
  2124. /* Step 2: write sit cache */
  2125. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2126. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  2127. written_size += SUM_JOURNAL_SIZE;
  2128. /* Step 3: write summary entries */
  2129. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2130. unsigned short blkoff;
  2131. seg_i = CURSEG_I(sbi, i);
  2132. if (sbi->ckpt->alloc_type[i] == SSR)
  2133. blkoff = sbi->blocks_per_seg;
  2134. else
  2135. blkoff = curseg_blkoff(sbi, i);
  2136. for (j = 0; j < blkoff; j++) {
  2137. if (!page) {
  2138. page = grab_meta_page(sbi, blkaddr++);
  2139. kaddr = (unsigned char *)page_address(page);
  2140. written_size = 0;
  2141. }
  2142. summary = (struct f2fs_summary *)(kaddr + written_size);
  2143. *summary = seg_i->sum_blk->entries[j];
  2144. written_size += SUMMARY_SIZE;
  2145. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  2146. SUM_FOOTER_SIZE)
  2147. continue;
  2148. set_page_dirty(page);
  2149. f2fs_put_page(page, 1);
  2150. page = NULL;
  2151. }
  2152. }
  2153. if (page) {
  2154. set_page_dirty(page);
  2155. f2fs_put_page(page, 1);
  2156. }
  2157. }
  2158. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  2159. block_t blkaddr, int type)
  2160. {
  2161. int i, end;
  2162. if (IS_DATASEG(type))
  2163. end = type + NR_CURSEG_DATA_TYPE;
  2164. else
  2165. end = type + NR_CURSEG_NODE_TYPE;
  2166. for (i = type; i < end; i++)
  2167. write_current_sum_page(sbi, i, blkaddr + (i - type));
  2168. }
  2169. void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2170. {
  2171. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  2172. write_compacted_summaries(sbi, start_blk);
  2173. else
  2174. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  2175. }
  2176. void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2177. {
  2178. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  2179. }
  2180. int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  2181. unsigned int val, int alloc)
  2182. {
  2183. int i;
  2184. if (type == NAT_JOURNAL) {
  2185. for (i = 0; i < nats_in_cursum(journal); i++) {
  2186. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  2187. return i;
  2188. }
  2189. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  2190. return update_nats_in_cursum(journal, 1);
  2191. } else if (type == SIT_JOURNAL) {
  2192. for (i = 0; i < sits_in_cursum(journal); i++)
  2193. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  2194. return i;
  2195. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  2196. return update_sits_in_cursum(journal, 1);
  2197. }
  2198. return -1;
  2199. }
  2200. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  2201. unsigned int segno)
  2202. {
  2203. return get_meta_page(sbi, current_sit_addr(sbi, segno));
  2204. }
  2205. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  2206. unsigned int start)
  2207. {
  2208. struct sit_info *sit_i = SIT_I(sbi);
  2209. struct page *src_page, *dst_page;
  2210. pgoff_t src_off, dst_off;
  2211. void *src_addr, *dst_addr;
  2212. src_off = current_sit_addr(sbi, start);
  2213. dst_off = next_sit_addr(sbi, src_off);
  2214. /* get current sit block page without lock */
  2215. src_page = get_meta_page(sbi, src_off);
  2216. dst_page = grab_meta_page(sbi, dst_off);
  2217. f2fs_bug_on(sbi, PageDirty(src_page));
  2218. src_addr = page_address(src_page);
  2219. dst_addr = page_address(dst_page);
  2220. memcpy(dst_addr, src_addr, PAGE_SIZE);
  2221. set_page_dirty(dst_page);
  2222. f2fs_put_page(src_page, 1);
  2223. set_to_next_sit(sit_i, start);
  2224. return dst_page;
  2225. }
  2226. static struct sit_entry_set *grab_sit_entry_set(void)
  2227. {
  2228. struct sit_entry_set *ses =
  2229. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  2230. ses->entry_cnt = 0;
  2231. INIT_LIST_HEAD(&ses->set_list);
  2232. return ses;
  2233. }
  2234. static void release_sit_entry_set(struct sit_entry_set *ses)
  2235. {
  2236. list_del(&ses->set_list);
  2237. kmem_cache_free(sit_entry_set_slab, ses);
  2238. }
  2239. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  2240. struct list_head *head)
  2241. {
  2242. struct sit_entry_set *next = ses;
  2243. if (list_is_last(&ses->set_list, head))
  2244. return;
  2245. list_for_each_entry_continue(next, head, set_list)
  2246. if (ses->entry_cnt <= next->entry_cnt)
  2247. break;
  2248. list_move_tail(&ses->set_list, &next->set_list);
  2249. }
  2250. static void add_sit_entry(unsigned int segno, struct list_head *head)
  2251. {
  2252. struct sit_entry_set *ses;
  2253. unsigned int start_segno = START_SEGNO(segno);
  2254. list_for_each_entry(ses, head, set_list) {
  2255. if (ses->start_segno == start_segno) {
  2256. ses->entry_cnt++;
  2257. adjust_sit_entry_set(ses, head);
  2258. return;
  2259. }
  2260. }
  2261. ses = grab_sit_entry_set();
  2262. ses->start_segno = start_segno;
  2263. ses->entry_cnt++;
  2264. list_add(&ses->set_list, head);
  2265. }
  2266. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  2267. {
  2268. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2269. struct list_head *set_list = &sm_info->sit_entry_set;
  2270. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  2271. unsigned int segno;
  2272. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  2273. add_sit_entry(segno, set_list);
  2274. }
  2275. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  2276. {
  2277. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2278. struct f2fs_journal *journal = curseg->journal;
  2279. int i;
  2280. down_write(&curseg->journal_rwsem);
  2281. for (i = 0; i < sits_in_cursum(journal); i++) {
  2282. unsigned int segno;
  2283. bool dirtied;
  2284. segno = le32_to_cpu(segno_in_journal(journal, i));
  2285. dirtied = __mark_sit_entry_dirty(sbi, segno);
  2286. if (!dirtied)
  2287. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  2288. }
  2289. update_sits_in_cursum(journal, -i);
  2290. up_write(&curseg->journal_rwsem);
  2291. }
  2292. /*
  2293. * CP calls this function, which flushes SIT entries including sit_journal,
  2294. * and moves prefree segs to free segs.
  2295. */
  2296. void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2297. {
  2298. struct sit_info *sit_i = SIT_I(sbi);
  2299. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  2300. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2301. struct f2fs_journal *journal = curseg->journal;
  2302. struct sit_entry_set *ses, *tmp;
  2303. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  2304. bool to_journal = true;
  2305. struct seg_entry *se;
  2306. mutex_lock(&sit_i->sentry_lock);
  2307. if (!sit_i->dirty_sentries)
  2308. goto out;
  2309. /*
  2310. * add and account sit entries of dirty bitmap in sit entry
  2311. * set temporarily
  2312. */
  2313. add_sits_in_set(sbi);
  2314. /*
  2315. * if there are no enough space in journal to store dirty sit
  2316. * entries, remove all entries from journal and add and account
  2317. * them in sit entry set.
  2318. */
  2319. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  2320. remove_sits_in_journal(sbi);
  2321. /*
  2322. * there are two steps to flush sit entries:
  2323. * #1, flush sit entries to journal in current cold data summary block.
  2324. * #2, flush sit entries to sit page.
  2325. */
  2326. list_for_each_entry_safe(ses, tmp, head, set_list) {
  2327. struct page *page = NULL;
  2328. struct f2fs_sit_block *raw_sit = NULL;
  2329. unsigned int start_segno = ses->start_segno;
  2330. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  2331. (unsigned long)MAIN_SEGS(sbi));
  2332. unsigned int segno = start_segno;
  2333. if (to_journal &&
  2334. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  2335. to_journal = false;
  2336. if (to_journal) {
  2337. down_write(&curseg->journal_rwsem);
  2338. } else {
  2339. page = get_next_sit_page(sbi, start_segno);
  2340. raw_sit = page_address(page);
  2341. }
  2342. /* flush dirty sit entries in region of current sit set */
  2343. for_each_set_bit_from(segno, bitmap, end) {
  2344. int offset, sit_offset;
  2345. se = get_seg_entry(sbi, segno);
  2346. /* add discard candidates */
  2347. if (!(cpc->reason & CP_DISCARD)) {
  2348. cpc->trim_start = segno;
  2349. add_discard_addrs(sbi, cpc, false);
  2350. }
  2351. if (to_journal) {
  2352. offset = lookup_journal_in_cursum(journal,
  2353. SIT_JOURNAL, segno, 1);
  2354. f2fs_bug_on(sbi, offset < 0);
  2355. segno_in_journal(journal, offset) =
  2356. cpu_to_le32(segno);
  2357. seg_info_to_raw_sit(se,
  2358. &sit_in_journal(journal, offset));
  2359. } else {
  2360. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  2361. seg_info_to_raw_sit(se,
  2362. &raw_sit->entries[sit_offset]);
  2363. }
  2364. __clear_bit(segno, bitmap);
  2365. sit_i->dirty_sentries--;
  2366. ses->entry_cnt--;
  2367. }
  2368. if (to_journal)
  2369. up_write(&curseg->journal_rwsem);
  2370. else
  2371. f2fs_put_page(page, 1);
  2372. f2fs_bug_on(sbi, ses->entry_cnt);
  2373. release_sit_entry_set(ses);
  2374. }
  2375. f2fs_bug_on(sbi, !list_empty(head));
  2376. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  2377. out:
  2378. if (cpc->reason & CP_DISCARD) {
  2379. __u64 trim_start = cpc->trim_start;
  2380. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  2381. add_discard_addrs(sbi, cpc, false);
  2382. cpc->trim_start = trim_start;
  2383. }
  2384. mutex_unlock(&sit_i->sentry_lock);
  2385. set_prefree_as_free_segments(sbi);
  2386. }
  2387. static int build_sit_info(struct f2fs_sb_info *sbi)
  2388. {
  2389. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2390. struct sit_info *sit_i;
  2391. unsigned int sit_segs, start;
  2392. char *src_bitmap;
  2393. unsigned int bitmap_size;
  2394. /* allocate memory for SIT information */
  2395. sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
  2396. if (!sit_i)
  2397. return -ENOMEM;
  2398. SM_I(sbi)->sit_info = sit_i;
  2399. sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
  2400. sizeof(struct seg_entry), GFP_KERNEL);
  2401. if (!sit_i->sentries)
  2402. return -ENOMEM;
  2403. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2404. sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2405. if (!sit_i->dirty_sentries_bitmap)
  2406. return -ENOMEM;
  2407. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2408. sit_i->sentries[start].cur_valid_map
  2409. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2410. sit_i->sentries[start].ckpt_valid_map
  2411. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2412. if (!sit_i->sentries[start].cur_valid_map ||
  2413. !sit_i->sentries[start].ckpt_valid_map)
  2414. return -ENOMEM;
  2415. #ifdef CONFIG_F2FS_CHECK_FS
  2416. sit_i->sentries[start].cur_valid_map_mir
  2417. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2418. if (!sit_i->sentries[start].cur_valid_map_mir)
  2419. return -ENOMEM;
  2420. #endif
  2421. if (f2fs_discard_en(sbi)) {
  2422. sit_i->sentries[start].discard_map
  2423. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2424. if (!sit_i->sentries[start].discard_map)
  2425. return -ENOMEM;
  2426. }
  2427. }
  2428. sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2429. if (!sit_i->tmp_map)
  2430. return -ENOMEM;
  2431. if (sbi->segs_per_sec > 1) {
  2432. sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
  2433. sizeof(struct sec_entry), GFP_KERNEL);
  2434. if (!sit_i->sec_entries)
  2435. return -ENOMEM;
  2436. }
  2437. /* get information related with SIT */
  2438. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  2439. /* setup SIT bitmap from ckeckpoint pack */
  2440. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  2441. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  2442. sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2443. if (!sit_i->sit_bitmap)
  2444. return -ENOMEM;
  2445. #ifdef CONFIG_F2FS_CHECK_FS
  2446. sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2447. if (!sit_i->sit_bitmap_mir)
  2448. return -ENOMEM;
  2449. #endif
  2450. /* init SIT information */
  2451. sit_i->s_ops = &default_salloc_ops;
  2452. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  2453. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  2454. sit_i->written_valid_blocks = 0;
  2455. sit_i->bitmap_size = bitmap_size;
  2456. sit_i->dirty_sentries = 0;
  2457. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  2458. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  2459. sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
  2460. mutex_init(&sit_i->sentry_lock);
  2461. return 0;
  2462. }
  2463. static int build_free_segmap(struct f2fs_sb_info *sbi)
  2464. {
  2465. struct free_segmap_info *free_i;
  2466. unsigned int bitmap_size, sec_bitmap_size;
  2467. /* allocate memory for free segmap information */
  2468. free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
  2469. if (!free_i)
  2470. return -ENOMEM;
  2471. SM_I(sbi)->free_info = free_i;
  2472. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2473. free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
  2474. if (!free_i->free_segmap)
  2475. return -ENOMEM;
  2476. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2477. free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
  2478. if (!free_i->free_secmap)
  2479. return -ENOMEM;
  2480. /* set all segments as dirty temporarily */
  2481. memset(free_i->free_segmap, 0xff, bitmap_size);
  2482. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  2483. /* init free segmap information */
  2484. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  2485. free_i->free_segments = 0;
  2486. free_i->free_sections = 0;
  2487. spin_lock_init(&free_i->segmap_lock);
  2488. return 0;
  2489. }
  2490. static int build_curseg(struct f2fs_sb_info *sbi)
  2491. {
  2492. struct curseg_info *array;
  2493. int i;
  2494. array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
  2495. if (!array)
  2496. return -ENOMEM;
  2497. SM_I(sbi)->curseg_array = array;
  2498. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2499. mutex_init(&array[i].curseg_mutex);
  2500. array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
  2501. if (!array[i].sum_blk)
  2502. return -ENOMEM;
  2503. init_rwsem(&array[i].journal_rwsem);
  2504. array[i].journal = kzalloc(sizeof(struct f2fs_journal),
  2505. GFP_KERNEL);
  2506. if (!array[i].journal)
  2507. return -ENOMEM;
  2508. array[i].segno = NULL_SEGNO;
  2509. array[i].next_blkoff = 0;
  2510. }
  2511. return restore_curseg_summaries(sbi);
  2512. }
  2513. static void build_sit_entries(struct f2fs_sb_info *sbi)
  2514. {
  2515. struct sit_info *sit_i = SIT_I(sbi);
  2516. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2517. struct f2fs_journal *journal = curseg->journal;
  2518. struct seg_entry *se;
  2519. struct f2fs_sit_entry sit;
  2520. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  2521. unsigned int i, start, end;
  2522. unsigned int readed, start_blk = 0;
  2523. do {
  2524. readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  2525. META_SIT, true);
  2526. start = start_blk * sit_i->sents_per_block;
  2527. end = (start_blk + readed) * sit_i->sents_per_block;
  2528. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  2529. struct f2fs_sit_block *sit_blk;
  2530. struct page *page;
  2531. se = &sit_i->sentries[start];
  2532. page = get_current_sit_page(sbi, start);
  2533. sit_blk = (struct f2fs_sit_block *)page_address(page);
  2534. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  2535. f2fs_put_page(page, 1);
  2536. check_block_count(sbi, start, &sit);
  2537. seg_info_from_raw_sit(se, &sit);
  2538. /* build discard map only one time */
  2539. if (f2fs_discard_en(sbi)) {
  2540. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  2541. memset(se->discard_map, 0xff,
  2542. SIT_VBLOCK_MAP_SIZE);
  2543. } else {
  2544. memcpy(se->discard_map,
  2545. se->cur_valid_map,
  2546. SIT_VBLOCK_MAP_SIZE);
  2547. sbi->discard_blks +=
  2548. sbi->blocks_per_seg -
  2549. se->valid_blocks;
  2550. }
  2551. }
  2552. if (sbi->segs_per_sec > 1)
  2553. get_sec_entry(sbi, start)->valid_blocks +=
  2554. se->valid_blocks;
  2555. }
  2556. start_blk += readed;
  2557. } while (start_blk < sit_blk_cnt);
  2558. down_read(&curseg->journal_rwsem);
  2559. for (i = 0; i < sits_in_cursum(journal); i++) {
  2560. unsigned int old_valid_blocks;
  2561. start = le32_to_cpu(segno_in_journal(journal, i));
  2562. se = &sit_i->sentries[start];
  2563. sit = sit_in_journal(journal, i);
  2564. old_valid_blocks = se->valid_blocks;
  2565. check_block_count(sbi, start, &sit);
  2566. seg_info_from_raw_sit(se, &sit);
  2567. if (f2fs_discard_en(sbi)) {
  2568. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  2569. memset(se->discard_map, 0xff,
  2570. SIT_VBLOCK_MAP_SIZE);
  2571. } else {
  2572. memcpy(se->discard_map, se->cur_valid_map,
  2573. SIT_VBLOCK_MAP_SIZE);
  2574. sbi->discard_blks += old_valid_blocks -
  2575. se->valid_blocks;
  2576. }
  2577. }
  2578. if (sbi->segs_per_sec > 1)
  2579. get_sec_entry(sbi, start)->valid_blocks +=
  2580. se->valid_blocks - old_valid_blocks;
  2581. }
  2582. up_read(&curseg->journal_rwsem);
  2583. }
  2584. static void init_free_segmap(struct f2fs_sb_info *sbi)
  2585. {
  2586. unsigned int start;
  2587. int type;
  2588. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2589. struct seg_entry *sentry = get_seg_entry(sbi, start);
  2590. if (!sentry->valid_blocks)
  2591. __set_free(sbi, start);
  2592. else
  2593. SIT_I(sbi)->written_valid_blocks +=
  2594. sentry->valid_blocks;
  2595. }
  2596. /* set use the current segments */
  2597. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  2598. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  2599. __set_test_and_inuse(sbi, curseg_t->segno);
  2600. }
  2601. }
  2602. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  2603. {
  2604. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2605. struct free_segmap_info *free_i = FREE_I(sbi);
  2606. unsigned int segno = 0, offset = 0;
  2607. unsigned short valid_blocks;
  2608. while (1) {
  2609. /* find dirty segment based on free segmap */
  2610. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  2611. if (segno >= MAIN_SEGS(sbi))
  2612. break;
  2613. offset = segno + 1;
  2614. valid_blocks = get_valid_blocks(sbi, segno, false);
  2615. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  2616. continue;
  2617. if (valid_blocks > sbi->blocks_per_seg) {
  2618. f2fs_bug_on(sbi, 1);
  2619. continue;
  2620. }
  2621. mutex_lock(&dirty_i->seglist_lock);
  2622. __locate_dirty_segment(sbi, segno, DIRTY);
  2623. mutex_unlock(&dirty_i->seglist_lock);
  2624. }
  2625. }
  2626. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  2627. {
  2628. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2629. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2630. dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2631. if (!dirty_i->victim_secmap)
  2632. return -ENOMEM;
  2633. return 0;
  2634. }
  2635. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  2636. {
  2637. struct dirty_seglist_info *dirty_i;
  2638. unsigned int bitmap_size, i;
  2639. /* allocate memory for dirty segments list information */
  2640. dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
  2641. if (!dirty_i)
  2642. return -ENOMEM;
  2643. SM_I(sbi)->dirty_info = dirty_i;
  2644. mutex_init(&dirty_i->seglist_lock);
  2645. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2646. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  2647. dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2648. if (!dirty_i->dirty_segmap[i])
  2649. return -ENOMEM;
  2650. }
  2651. init_dirty_segmap(sbi);
  2652. return init_victim_secmap(sbi);
  2653. }
  2654. /*
  2655. * Update min, max modified time for cost-benefit GC algorithm
  2656. */
  2657. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  2658. {
  2659. struct sit_info *sit_i = SIT_I(sbi);
  2660. unsigned int segno;
  2661. mutex_lock(&sit_i->sentry_lock);
  2662. sit_i->min_mtime = LLONG_MAX;
  2663. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  2664. unsigned int i;
  2665. unsigned long long mtime = 0;
  2666. for (i = 0; i < sbi->segs_per_sec; i++)
  2667. mtime += get_seg_entry(sbi, segno + i)->mtime;
  2668. mtime = div_u64(mtime, sbi->segs_per_sec);
  2669. if (sit_i->min_mtime > mtime)
  2670. sit_i->min_mtime = mtime;
  2671. }
  2672. sit_i->max_mtime = get_mtime(sbi);
  2673. mutex_unlock(&sit_i->sentry_lock);
  2674. }
  2675. int build_segment_manager(struct f2fs_sb_info *sbi)
  2676. {
  2677. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2678. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2679. struct f2fs_sm_info *sm_info;
  2680. int err;
  2681. sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
  2682. if (!sm_info)
  2683. return -ENOMEM;
  2684. /* init sm info */
  2685. sbi->sm_info = sm_info;
  2686. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  2687. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  2688. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  2689. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  2690. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  2691. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  2692. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  2693. sm_info->rec_prefree_segments = sm_info->main_segments *
  2694. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  2695. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  2696. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  2697. if (!test_opt(sbi, LFS))
  2698. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  2699. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  2700. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  2701. sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
  2702. sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
  2703. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  2704. if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
  2705. err = create_flush_cmd_control(sbi);
  2706. if (err)
  2707. return err;
  2708. }
  2709. err = create_discard_cmd_control(sbi);
  2710. if (err)
  2711. return err;
  2712. err = build_sit_info(sbi);
  2713. if (err)
  2714. return err;
  2715. err = build_free_segmap(sbi);
  2716. if (err)
  2717. return err;
  2718. err = build_curseg(sbi);
  2719. if (err)
  2720. return err;
  2721. /* reinit free segmap based on SIT */
  2722. build_sit_entries(sbi);
  2723. init_free_segmap(sbi);
  2724. err = build_dirty_segmap(sbi);
  2725. if (err)
  2726. return err;
  2727. init_min_max_mtime(sbi);
  2728. return 0;
  2729. }
  2730. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  2731. enum dirty_type dirty_type)
  2732. {
  2733. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2734. mutex_lock(&dirty_i->seglist_lock);
  2735. kvfree(dirty_i->dirty_segmap[dirty_type]);
  2736. dirty_i->nr_dirty[dirty_type] = 0;
  2737. mutex_unlock(&dirty_i->seglist_lock);
  2738. }
  2739. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  2740. {
  2741. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2742. kvfree(dirty_i->victim_secmap);
  2743. }
  2744. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  2745. {
  2746. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2747. int i;
  2748. if (!dirty_i)
  2749. return;
  2750. /* discard pre-free/dirty segments list */
  2751. for (i = 0; i < NR_DIRTY_TYPE; i++)
  2752. discard_dirty_segmap(sbi, i);
  2753. destroy_victim_secmap(sbi);
  2754. SM_I(sbi)->dirty_info = NULL;
  2755. kfree(dirty_i);
  2756. }
  2757. static void destroy_curseg(struct f2fs_sb_info *sbi)
  2758. {
  2759. struct curseg_info *array = SM_I(sbi)->curseg_array;
  2760. int i;
  2761. if (!array)
  2762. return;
  2763. SM_I(sbi)->curseg_array = NULL;
  2764. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2765. kfree(array[i].sum_blk);
  2766. kfree(array[i].journal);
  2767. }
  2768. kfree(array);
  2769. }
  2770. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  2771. {
  2772. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  2773. if (!free_i)
  2774. return;
  2775. SM_I(sbi)->free_info = NULL;
  2776. kvfree(free_i->free_segmap);
  2777. kvfree(free_i->free_secmap);
  2778. kfree(free_i);
  2779. }
  2780. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  2781. {
  2782. struct sit_info *sit_i = SIT_I(sbi);
  2783. unsigned int start;
  2784. if (!sit_i)
  2785. return;
  2786. if (sit_i->sentries) {
  2787. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2788. kfree(sit_i->sentries[start].cur_valid_map);
  2789. #ifdef CONFIG_F2FS_CHECK_FS
  2790. kfree(sit_i->sentries[start].cur_valid_map_mir);
  2791. #endif
  2792. kfree(sit_i->sentries[start].ckpt_valid_map);
  2793. kfree(sit_i->sentries[start].discard_map);
  2794. }
  2795. }
  2796. kfree(sit_i->tmp_map);
  2797. kvfree(sit_i->sentries);
  2798. kvfree(sit_i->sec_entries);
  2799. kvfree(sit_i->dirty_sentries_bitmap);
  2800. SM_I(sbi)->sit_info = NULL;
  2801. kfree(sit_i->sit_bitmap);
  2802. #ifdef CONFIG_F2FS_CHECK_FS
  2803. kfree(sit_i->sit_bitmap_mir);
  2804. #endif
  2805. kfree(sit_i);
  2806. }
  2807. void destroy_segment_manager(struct f2fs_sb_info *sbi)
  2808. {
  2809. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2810. if (!sm_info)
  2811. return;
  2812. destroy_flush_cmd_control(sbi, true);
  2813. destroy_discard_cmd_control(sbi);
  2814. destroy_dirty_segmap(sbi);
  2815. destroy_curseg(sbi);
  2816. destroy_free_segmap(sbi);
  2817. destroy_sit_info(sbi);
  2818. sbi->sm_info = NULL;
  2819. kfree(sm_info);
  2820. }
  2821. int __init create_segment_manager_caches(void)
  2822. {
  2823. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  2824. sizeof(struct discard_entry));
  2825. if (!discard_entry_slab)
  2826. goto fail;
  2827. discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
  2828. sizeof(struct discard_cmd));
  2829. if (!discard_cmd_slab)
  2830. goto destroy_discard_entry;
  2831. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  2832. sizeof(struct sit_entry_set));
  2833. if (!sit_entry_set_slab)
  2834. goto destroy_discard_cmd;
  2835. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  2836. sizeof(struct inmem_pages));
  2837. if (!inmem_entry_slab)
  2838. goto destroy_sit_entry_set;
  2839. return 0;
  2840. destroy_sit_entry_set:
  2841. kmem_cache_destroy(sit_entry_set_slab);
  2842. destroy_discard_cmd:
  2843. kmem_cache_destroy(discard_cmd_slab);
  2844. destroy_discard_entry:
  2845. kmem_cache_destroy(discard_entry_slab);
  2846. fail:
  2847. return -ENOMEM;
  2848. }
  2849. void destroy_segment_manager_caches(void)
  2850. {
  2851. kmem_cache_destroy(sit_entry_set_slab);
  2852. kmem_cache_destroy(discard_cmd_slab);
  2853. kmem_cache_destroy(discard_entry_slab);
  2854. kmem_cache_destroy(inmem_entry_slab);
  2855. }