mlock.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864
  1. /*
  2. * linux/mm/mlock.c
  3. *
  4. * (C) Copyright 1995 Linus Torvalds
  5. * (C) Copyright 2002 Christoph Hellwig
  6. */
  7. #include <linux/capability.h>
  8. #include <linux/mman.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/pagevec.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/syscalls.h>
  16. #include <linux/sched.h>
  17. #include <linux/export.h>
  18. #include <linux/rmap.h>
  19. #include <linux/mmzone.h>
  20. #include <linux/hugetlb.h>
  21. #include <linux/memcontrol.h>
  22. #include <linux/mm_inline.h>
  23. #include "internal.h"
  24. bool can_do_mlock(void)
  25. {
  26. if (rlimit(RLIMIT_MEMLOCK) != 0)
  27. return true;
  28. if (capable(CAP_IPC_LOCK))
  29. return true;
  30. return false;
  31. }
  32. EXPORT_SYMBOL(can_do_mlock);
  33. /*
  34. * Mlocked pages are marked with PageMlocked() flag for efficient testing
  35. * in vmscan and, possibly, the fault path; and to support semi-accurate
  36. * statistics.
  37. *
  38. * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
  39. * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  40. * The unevictable list is an LRU sibling list to the [in]active lists.
  41. * PageUnevictable is set to indicate the unevictable state.
  42. *
  43. * When lazy mlocking via vmscan, it is important to ensure that the
  44. * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  45. * may have mlocked a page that is being munlocked. So lazy mlock must take
  46. * the mmap_sem for read, and verify that the vma really is locked
  47. * (see mm/rmap.c).
  48. */
  49. /*
  50. * LRU accounting for clear_page_mlock()
  51. */
  52. void clear_page_mlock(struct page *page)
  53. {
  54. if (!TestClearPageMlocked(page))
  55. return;
  56. mod_zone_page_state(page_zone(page), NR_MLOCK,
  57. -hpage_nr_pages(page));
  58. count_vm_event(UNEVICTABLE_PGCLEARED);
  59. if (!isolate_lru_page(page)) {
  60. putback_lru_page(page);
  61. } else {
  62. /*
  63. * We lost the race. the page already moved to evictable list.
  64. */
  65. if (PageUnevictable(page))
  66. count_vm_event(UNEVICTABLE_PGSTRANDED);
  67. }
  68. }
  69. /*
  70. * Mark page as mlocked if not already.
  71. * If page on LRU, isolate and putback to move to unevictable list.
  72. */
  73. void mlock_vma_page(struct page *page)
  74. {
  75. /* Serialize with page migration */
  76. BUG_ON(!PageLocked(page));
  77. VM_BUG_ON_PAGE(PageTail(page), page);
  78. VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
  79. if (!TestSetPageMlocked(page)) {
  80. mod_zone_page_state(page_zone(page), NR_MLOCK,
  81. hpage_nr_pages(page));
  82. count_vm_event(UNEVICTABLE_PGMLOCKED);
  83. if (!isolate_lru_page(page))
  84. putback_lru_page(page);
  85. }
  86. }
  87. /*
  88. * Isolate a page from LRU with optional get_page() pin.
  89. * Assumes lru_lock already held and page already pinned.
  90. */
  91. static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
  92. {
  93. if (PageLRU(page)) {
  94. struct lruvec *lruvec;
  95. lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
  96. if (getpage)
  97. get_page(page);
  98. ClearPageLRU(page);
  99. del_page_from_lru_list(page, lruvec, page_lru(page));
  100. return true;
  101. }
  102. return false;
  103. }
  104. /*
  105. * Finish munlock after successful page isolation
  106. *
  107. * Page must be locked. This is a wrapper for try_to_munlock()
  108. * and putback_lru_page() with munlock accounting.
  109. */
  110. static void __munlock_isolated_page(struct page *page)
  111. {
  112. int ret = SWAP_AGAIN;
  113. /*
  114. * Optimization: if the page was mapped just once, that's our mapping
  115. * and we don't need to check all the other vmas.
  116. */
  117. if (page_mapcount(page) > 1)
  118. ret = try_to_munlock(page);
  119. /* Did try_to_unlock() succeed or punt? */
  120. if (ret != SWAP_MLOCK)
  121. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  122. putback_lru_page(page);
  123. }
  124. /*
  125. * Accounting for page isolation fail during munlock
  126. *
  127. * Performs accounting when page isolation fails in munlock. There is nothing
  128. * else to do because it means some other task has already removed the page
  129. * from the LRU. putback_lru_page() will take care of removing the page from
  130. * the unevictable list, if necessary. vmscan [page_referenced()] will move
  131. * the page back to the unevictable list if some other vma has it mlocked.
  132. */
  133. static void __munlock_isolation_failed(struct page *page)
  134. {
  135. if (PageUnevictable(page))
  136. __count_vm_event(UNEVICTABLE_PGSTRANDED);
  137. else
  138. __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  139. }
  140. /**
  141. * munlock_vma_page - munlock a vma page
  142. * @page - page to be unlocked, either a normal page or THP page head
  143. *
  144. * returns the size of the page as a page mask (0 for normal page,
  145. * HPAGE_PMD_NR - 1 for THP head page)
  146. *
  147. * called from munlock()/munmap() path with page supposedly on the LRU.
  148. * When we munlock a page, because the vma where we found the page is being
  149. * munlock()ed or munmap()ed, we want to check whether other vmas hold the
  150. * page locked so that we can leave it on the unevictable lru list and not
  151. * bother vmscan with it. However, to walk the page's rmap list in
  152. * try_to_munlock() we must isolate the page from the LRU. If some other
  153. * task has removed the page from the LRU, we won't be able to do that.
  154. * So we clear the PageMlocked as we might not get another chance. If we
  155. * can't isolate the page, we leave it for putback_lru_page() and vmscan
  156. * [page_referenced()/try_to_unmap()] to deal with.
  157. */
  158. unsigned int munlock_vma_page(struct page *page)
  159. {
  160. int nr_pages;
  161. struct zone *zone = page_zone(page);
  162. /* For try_to_munlock() and to serialize with page migration */
  163. BUG_ON(!PageLocked(page));
  164. VM_BUG_ON_PAGE(PageTail(page), page);
  165. /*
  166. * Serialize with any parallel __split_huge_page_refcount() which
  167. * might otherwise copy PageMlocked to part of the tail pages before
  168. * we clear it in the head page. It also stabilizes hpage_nr_pages().
  169. */
  170. spin_lock_irq(zone_lru_lock(zone));
  171. nr_pages = hpage_nr_pages(page);
  172. if (!TestClearPageMlocked(page))
  173. goto unlock_out;
  174. __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
  175. if (__munlock_isolate_lru_page(page, true)) {
  176. spin_unlock_irq(zone_lru_lock(zone));
  177. __munlock_isolated_page(page);
  178. goto out;
  179. }
  180. __munlock_isolation_failed(page);
  181. unlock_out:
  182. spin_unlock_irq(zone_lru_lock(zone));
  183. out:
  184. return nr_pages - 1;
  185. }
  186. /*
  187. * convert get_user_pages() return value to posix mlock() error
  188. */
  189. static int __mlock_posix_error_return(long retval)
  190. {
  191. if (retval == -EFAULT)
  192. retval = -ENOMEM;
  193. else if (retval == -ENOMEM)
  194. retval = -EAGAIN;
  195. return retval;
  196. }
  197. /*
  198. * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
  199. *
  200. * The fast path is available only for evictable pages with single mapping.
  201. * Then we can bypass the per-cpu pvec and get better performance.
  202. * when mapcount > 1 we need try_to_munlock() which can fail.
  203. * when !page_evictable(), we need the full redo logic of putback_lru_page to
  204. * avoid leaving evictable page in unevictable list.
  205. *
  206. * In case of success, @page is added to @pvec and @pgrescued is incremented
  207. * in case that the page was previously unevictable. @page is also unlocked.
  208. */
  209. static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
  210. int *pgrescued)
  211. {
  212. VM_BUG_ON_PAGE(PageLRU(page), page);
  213. VM_BUG_ON_PAGE(!PageLocked(page), page);
  214. if (page_mapcount(page) <= 1 && page_evictable(page)) {
  215. pagevec_add(pvec, page);
  216. if (TestClearPageUnevictable(page))
  217. (*pgrescued)++;
  218. unlock_page(page);
  219. return true;
  220. }
  221. return false;
  222. }
  223. /*
  224. * Putback multiple evictable pages to the LRU
  225. *
  226. * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
  227. * the pages might have meanwhile become unevictable but that is OK.
  228. */
  229. static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
  230. {
  231. count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
  232. /*
  233. *__pagevec_lru_add() calls release_pages() so we don't call
  234. * put_page() explicitly
  235. */
  236. __pagevec_lru_add(pvec);
  237. count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
  238. }
  239. /*
  240. * Munlock a batch of pages from the same zone
  241. *
  242. * The work is split to two main phases. First phase clears the Mlocked flag
  243. * and attempts to isolate the pages, all under a single zone lru lock.
  244. * The second phase finishes the munlock only for pages where isolation
  245. * succeeded.
  246. *
  247. * Note that the pagevec may be modified during the process.
  248. */
  249. static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
  250. {
  251. int i;
  252. int nr = pagevec_count(pvec);
  253. int delta_munlocked;
  254. struct pagevec pvec_putback;
  255. int pgrescued = 0;
  256. pagevec_init(&pvec_putback, 0);
  257. /* Phase 1: page isolation */
  258. spin_lock_irq(zone_lru_lock(zone));
  259. for (i = 0; i < nr; i++) {
  260. struct page *page = pvec->pages[i];
  261. if (TestClearPageMlocked(page)) {
  262. /*
  263. * We already have pin from follow_page_mask()
  264. * so we can spare the get_page() here.
  265. */
  266. if (__munlock_isolate_lru_page(page, false))
  267. continue;
  268. else
  269. __munlock_isolation_failed(page);
  270. }
  271. /*
  272. * We won't be munlocking this page in the next phase
  273. * but we still need to release the follow_page_mask()
  274. * pin. We cannot do it under lru_lock however. If it's
  275. * the last pin, __page_cache_release() would deadlock.
  276. */
  277. pagevec_add(&pvec_putback, pvec->pages[i]);
  278. pvec->pages[i] = NULL;
  279. }
  280. delta_munlocked = -nr + pagevec_count(&pvec_putback);
  281. __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
  282. spin_unlock_irq(zone_lru_lock(zone));
  283. /* Now we can release pins of pages that we are not munlocking */
  284. pagevec_release(&pvec_putback);
  285. /* Phase 2: page munlock */
  286. for (i = 0; i < nr; i++) {
  287. struct page *page = pvec->pages[i];
  288. if (page) {
  289. lock_page(page);
  290. if (!__putback_lru_fast_prepare(page, &pvec_putback,
  291. &pgrescued)) {
  292. /*
  293. * Slow path. We don't want to lose the last
  294. * pin before unlock_page()
  295. */
  296. get_page(page); /* for putback_lru_page() */
  297. __munlock_isolated_page(page);
  298. unlock_page(page);
  299. put_page(page); /* from follow_page_mask() */
  300. }
  301. }
  302. }
  303. /*
  304. * Phase 3: page putback for pages that qualified for the fast path
  305. * This will also call put_page() to return pin from follow_page_mask()
  306. */
  307. if (pagevec_count(&pvec_putback))
  308. __putback_lru_fast(&pvec_putback, pgrescued);
  309. }
  310. /*
  311. * Fill up pagevec for __munlock_pagevec using pte walk
  312. *
  313. * The function expects that the struct page corresponding to @start address is
  314. * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
  315. *
  316. * The rest of @pvec is filled by subsequent pages within the same pmd and same
  317. * zone, as long as the pte's are present and vm_normal_page() succeeds. These
  318. * pages also get pinned.
  319. *
  320. * Returns the address of the next page that should be scanned. This equals
  321. * @start + PAGE_SIZE when no page could be added by the pte walk.
  322. */
  323. static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
  324. struct vm_area_struct *vma, int zoneid, unsigned long start,
  325. unsigned long end)
  326. {
  327. pte_t *pte;
  328. spinlock_t *ptl;
  329. /*
  330. * Initialize pte walk starting at the already pinned page where we
  331. * are sure that there is a pte, as it was pinned under the same
  332. * mmap_sem write op.
  333. */
  334. pte = get_locked_pte(vma->vm_mm, start, &ptl);
  335. /* Make sure we do not cross the page table boundary */
  336. end = pgd_addr_end(start, end);
  337. end = pud_addr_end(start, end);
  338. end = pmd_addr_end(start, end);
  339. /* The page next to the pinned page is the first we will try to get */
  340. start += PAGE_SIZE;
  341. while (start < end) {
  342. struct page *page = NULL;
  343. pte++;
  344. if (pte_present(*pte))
  345. page = vm_normal_page(vma, start, *pte);
  346. /*
  347. * Break if page could not be obtained or the page's node+zone does not
  348. * match
  349. */
  350. if (!page || page_zone_id(page) != zoneid)
  351. break;
  352. /*
  353. * Do not use pagevec for PTE-mapped THP,
  354. * munlock_vma_pages_range() will handle them.
  355. */
  356. if (PageTransCompound(page))
  357. break;
  358. get_page(page);
  359. /*
  360. * Increase the address that will be returned *before* the
  361. * eventual break due to pvec becoming full by adding the page
  362. */
  363. start += PAGE_SIZE;
  364. if (pagevec_add(pvec, page) == 0)
  365. break;
  366. }
  367. pte_unmap_unlock(pte, ptl);
  368. return start;
  369. }
  370. /*
  371. * munlock_vma_pages_range() - munlock all pages in the vma range.'
  372. * @vma - vma containing range to be munlock()ed.
  373. * @start - start address in @vma of the range
  374. * @end - end of range in @vma.
  375. *
  376. * For mremap(), munmap() and exit().
  377. *
  378. * Called with @vma VM_LOCKED.
  379. *
  380. * Returns with VM_LOCKED cleared. Callers must be prepared to
  381. * deal with this.
  382. *
  383. * We don't save and restore VM_LOCKED here because pages are
  384. * still on lru. In unmap path, pages might be scanned by reclaim
  385. * and re-mlocked by try_to_{munlock|unmap} before we unmap and
  386. * free them. This will result in freeing mlocked pages.
  387. */
  388. void munlock_vma_pages_range(struct vm_area_struct *vma,
  389. unsigned long start, unsigned long end)
  390. {
  391. vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
  392. while (start < end) {
  393. struct page *page;
  394. unsigned int page_mask;
  395. unsigned long page_increm;
  396. struct pagevec pvec;
  397. struct zone *zone;
  398. int zoneid;
  399. pagevec_init(&pvec, 0);
  400. /*
  401. * Although FOLL_DUMP is intended for get_dump_page(),
  402. * it just so happens that its special treatment of the
  403. * ZERO_PAGE (returning an error instead of doing get_page)
  404. * suits munlock very well (and if somehow an abnormal page
  405. * has sneaked into the range, we won't oops here: great).
  406. */
  407. page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
  408. &page_mask);
  409. if (page && !IS_ERR(page)) {
  410. if (PageTransTail(page)) {
  411. VM_BUG_ON_PAGE(PageMlocked(page), page);
  412. put_page(page); /* follow_page_mask() */
  413. } else if (PageTransHuge(page)) {
  414. lock_page(page);
  415. /*
  416. * Any THP page found by follow_page_mask() may
  417. * have gotten split before reaching
  418. * munlock_vma_page(), so we need to recompute
  419. * the page_mask here.
  420. */
  421. page_mask = munlock_vma_page(page);
  422. unlock_page(page);
  423. put_page(page); /* follow_page_mask() */
  424. } else {
  425. /*
  426. * Non-huge pages are handled in batches via
  427. * pagevec. The pin from follow_page_mask()
  428. * prevents them from collapsing by THP.
  429. */
  430. pagevec_add(&pvec, page);
  431. zone = page_zone(page);
  432. zoneid = page_zone_id(page);
  433. /*
  434. * Try to fill the rest of pagevec using fast
  435. * pte walk. This will also update start to
  436. * the next page to process. Then munlock the
  437. * pagevec.
  438. */
  439. start = __munlock_pagevec_fill(&pvec, vma,
  440. zoneid, start, end);
  441. __munlock_pagevec(&pvec, zone);
  442. goto next;
  443. }
  444. }
  445. page_increm = 1 + page_mask;
  446. start += page_increm * PAGE_SIZE;
  447. next:
  448. cond_resched();
  449. }
  450. }
  451. /*
  452. * mlock_fixup - handle mlock[all]/munlock[all] requests.
  453. *
  454. * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  455. * munlock is a no-op. However, for some special vmas, we go ahead and
  456. * populate the ptes.
  457. *
  458. * For vmas that pass the filters, merge/split as appropriate.
  459. */
  460. static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  461. unsigned long start, unsigned long end, vm_flags_t newflags)
  462. {
  463. struct mm_struct *mm = vma->vm_mm;
  464. pgoff_t pgoff;
  465. int nr_pages;
  466. int ret = 0;
  467. int lock = !!(newflags & VM_LOCKED);
  468. vm_flags_t old_flags = vma->vm_flags;
  469. if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
  470. is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
  471. /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
  472. goto out;
  473. pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  474. *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  475. vma->vm_file, pgoff, vma_policy(vma),
  476. vma->vm_userfaultfd_ctx);
  477. if (*prev) {
  478. vma = *prev;
  479. goto success;
  480. }
  481. if (start != vma->vm_start) {
  482. ret = split_vma(mm, vma, start, 1);
  483. if (ret)
  484. goto out;
  485. }
  486. if (end != vma->vm_end) {
  487. ret = split_vma(mm, vma, end, 0);
  488. if (ret)
  489. goto out;
  490. }
  491. success:
  492. /*
  493. * Keep track of amount of locked VM.
  494. */
  495. nr_pages = (end - start) >> PAGE_SHIFT;
  496. if (!lock)
  497. nr_pages = -nr_pages;
  498. else if (old_flags & VM_LOCKED)
  499. nr_pages = 0;
  500. mm->locked_vm += nr_pages;
  501. /*
  502. * vm_flags is protected by the mmap_sem held in write mode.
  503. * It's okay if try_to_unmap_one unmaps a page just after we
  504. * set VM_LOCKED, populate_vma_page_range will bring it back.
  505. */
  506. if (lock)
  507. vma->vm_flags = newflags;
  508. else
  509. munlock_vma_pages_range(vma, start, end);
  510. out:
  511. *prev = vma;
  512. return ret;
  513. }
  514. static int apply_vma_lock_flags(unsigned long start, size_t len,
  515. vm_flags_t flags)
  516. {
  517. unsigned long nstart, end, tmp;
  518. struct vm_area_struct * vma, * prev;
  519. int error;
  520. VM_BUG_ON(offset_in_page(start));
  521. VM_BUG_ON(len != PAGE_ALIGN(len));
  522. end = start + len;
  523. if (end < start)
  524. return -EINVAL;
  525. if (end == start)
  526. return 0;
  527. vma = find_vma(current->mm, start);
  528. if (!vma || vma->vm_start > start)
  529. return -ENOMEM;
  530. prev = vma->vm_prev;
  531. if (start > vma->vm_start)
  532. prev = vma;
  533. for (nstart = start ; ; ) {
  534. vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
  535. newflags |= flags;
  536. /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
  537. tmp = vma->vm_end;
  538. if (tmp > end)
  539. tmp = end;
  540. error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  541. if (error)
  542. break;
  543. nstart = tmp;
  544. if (nstart < prev->vm_end)
  545. nstart = prev->vm_end;
  546. if (nstart >= end)
  547. break;
  548. vma = prev->vm_next;
  549. if (!vma || vma->vm_start != nstart) {
  550. error = -ENOMEM;
  551. break;
  552. }
  553. }
  554. return error;
  555. }
  556. /*
  557. * Go through vma areas and sum size of mlocked
  558. * vma pages, as return value.
  559. * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
  560. * is also counted.
  561. * Return value: previously mlocked page counts
  562. */
  563. static int count_mm_mlocked_page_nr(struct mm_struct *mm,
  564. unsigned long start, size_t len)
  565. {
  566. struct vm_area_struct *vma;
  567. int count = 0;
  568. if (mm == NULL)
  569. mm = current->mm;
  570. vma = find_vma(mm, start);
  571. if (vma == NULL)
  572. vma = mm->mmap;
  573. for (; vma ; vma = vma->vm_next) {
  574. if (start >= vma->vm_end)
  575. continue;
  576. if (start + len <= vma->vm_start)
  577. break;
  578. if (vma->vm_flags & VM_LOCKED) {
  579. if (start > vma->vm_start)
  580. count -= (start - vma->vm_start);
  581. if (start + len < vma->vm_end) {
  582. count += start + len - vma->vm_start;
  583. break;
  584. }
  585. count += vma->vm_end - vma->vm_start;
  586. }
  587. }
  588. return count >> PAGE_SHIFT;
  589. }
  590. static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
  591. {
  592. unsigned long locked;
  593. unsigned long lock_limit;
  594. int error = -ENOMEM;
  595. if (!can_do_mlock())
  596. return -EPERM;
  597. lru_add_drain_all(); /* flush pagevec */
  598. len = PAGE_ALIGN(len + (offset_in_page(start)));
  599. start &= PAGE_MASK;
  600. lock_limit = rlimit(RLIMIT_MEMLOCK);
  601. lock_limit >>= PAGE_SHIFT;
  602. locked = len >> PAGE_SHIFT;
  603. if (down_write_killable(&current->mm->mmap_sem))
  604. return -EINTR;
  605. locked += current->mm->locked_vm;
  606. if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
  607. /*
  608. * It is possible that the regions requested intersect with
  609. * previously mlocked areas, that part area in "mm->locked_vm"
  610. * should not be counted to new mlock increment count. So check
  611. * and adjust locked count if necessary.
  612. */
  613. locked -= count_mm_mlocked_page_nr(current->mm,
  614. start, len);
  615. }
  616. /* check against resource limits */
  617. if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  618. error = apply_vma_lock_flags(start, len, flags);
  619. up_write(&current->mm->mmap_sem);
  620. if (error)
  621. return error;
  622. error = __mm_populate(start, len, 0);
  623. if (error)
  624. return __mlock_posix_error_return(error);
  625. return 0;
  626. }
  627. SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
  628. {
  629. return do_mlock(start, len, VM_LOCKED);
  630. }
  631. SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
  632. {
  633. vm_flags_t vm_flags = VM_LOCKED;
  634. if (flags & ~MLOCK_ONFAULT)
  635. return -EINVAL;
  636. if (flags & MLOCK_ONFAULT)
  637. vm_flags |= VM_LOCKONFAULT;
  638. return do_mlock(start, len, vm_flags);
  639. }
  640. SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
  641. {
  642. int ret;
  643. len = PAGE_ALIGN(len + (offset_in_page(start)));
  644. start &= PAGE_MASK;
  645. if (down_write_killable(&current->mm->mmap_sem))
  646. return -EINTR;
  647. ret = apply_vma_lock_flags(start, len, 0);
  648. up_write(&current->mm->mmap_sem);
  649. return ret;
  650. }
  651. /*
  652. * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
  653. * and translate into the appropriate modifications to mm->def_flags and/or the
  654. * flags for all current VMAs.
  655. *
  656. * There are a couple of subtleties with this. If mlockall() is called multiple
  657. * times with different flags, the values do not necessarily stack. If mlockall
  658. * is called once including the MCL_FUTURE flag and then a second time without
  659. * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
  660. */
  661. static int apply_mlockall_flags(int flags)
  662. {
  663. struct vm_area_struct * vma, * prev = NULL;
  664. vm_flags_t to_add = 0;
  665. current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
  666. if (flags & MCL_FUTURE) {
  667. current->mm->def_flags |= VM_LOCKED;
  668. if (flags & MCL_ONFAULT)
  669. current->mm->def_flags |= VM_LOCKONFAULT;
  670. if (!(flags & MCL_CURRENT))
  671. goto out;
  672. }
  673. if (flags & MCL_CURRENT) {
  674. to_add |= VM_LOCKED;
  675. if (flags & MCL_ONFAULT)
  676. to_add |= VM_LOCKONFAULT;
  677. }
  678. for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
  679. vm_flags_t newflags;
  680. newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
  681. newflags |= to_add;
  682. /* Ignore errors */
  683. mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  684. cond_resched_rcu_qs();
  685. }
  686. out:
  687. return 0;
  688. }
  689. SYSCALL_DEFINE1(mlockall, int, flags)
  690. {
  691. unsigned long lock_limit;
  692. int ret;
  693. if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
  694. return -EINVAL;
  695. if (!can_do_mlock())
  696. return -EPERM;
  697. if (flags & MCL_CURRENT)
  698. lru_add_drain_all(); /* flush pagevec */
  699. lock_limit = rlimit(RLIMIT_MEMLOCK);
  700. lock_limit >>= PAGE_SHIFT;
  701. if (down_write_killable(&current->mm->mmap_sem))
  702. return -EINTR;
  703. ret = -ENOMEM;
  704. if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  705. capable(CAP_IPC_LOCK))
  706. ret = apply_mlockall_flags(flags);
  707. up_write(&current->mm->mmap_sem);
  708. if (!ret && (flags & MCL_CURRENT))
  709. mm_populate(0, TASK_SIZE);
  710. return ret;
  711. }
  712. SYSCALL_DEFINE0(munlockall)
  713. {
  714. int ret;
  715. if (down_write_killable(&current->mm->mmap_sem))
  716. return -EINTR;
  717. ret = apply_mlockall_flags(0);
  718. up_write(&current->mm->mmap_sem);
  719. return ret;
  720. }
  721. /*
  722. * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  723. * shm segments) get accounted against the user_struct instead.
  724. */
  725. static DEFINE_SPINLOCK(shmlock_user_lock);
  726. int user_shm_lock(size_t size, struct user_struct *user)
  727. {
  728. unsigned long lock_limit, locked;
  729. int allowed = 0;
  730. locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  731. lock_limit = rlimit(RLIMIT_MEMLOCK);
  732. if (lock_limit == RLIM_INFINITY)
  733. allowed = 1;
  734. lock_limit >>= PAGE_SHIFT;
  735. spin_lock(&shmlock_user_lock);
  736. if (!allowed &&
  737. locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
  738. goto out;
  739. get_uid(user);
  740. user->locked_shm += locked;
  741. allowed = 1;
  742. out:
  743. spin_unlock(&shmlock_user_lock);
  744. return allowed;
  745. }
  746. void user_shm_unlock(size_t size, struct user_struct *user)
  747. {
  748. spin_lock(&shmlock_user_lock);
  749. user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  750. spin_unlock(&shmlock_user_lock);
  751. free_uid(user);
  752. }