smp.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version 2
  5. * of the License, or (at your option) any later version.
  6. *
  7. * This program is distributed in the hope that it will be useful,
  8. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. * GNU General Public License for more details.
  11. *
  12. * You should have received a copy of the GNU General Public License
  13. * along with this program; if not, write to the Free Software
  14. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  15. *
  16. * Copyright (C) 2000, 2001 Kanoj Sarcar
  17. * Copyright (C) 2000, 2001 Ralf Baechle
  18. * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
  19. * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
  20. */
  21. #include <linux/cache.h>
  22. #include <linux/delay.h>
  23. #include <linux/init.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/smp.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/threads.h>
  28. #include <linux/module.h>
  29. #include <linux/time.h>
  30. #include <linux/timex.h>
  31. #include <linux/sched.h>
  32. #include <linux/cpumask.h>
  33. #include <linux/cpu.h>
  34. #include <linux/err.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/irqdomain.h>
  37. #include <linux/of.h>
  38. #include <linux/of_irq.h>
  39. #include <linux/atomic.h>
  40. #include <asm/cpu.h>
  41. #include <asm/processor.h>
  42. #include <asm/idle.h>
  43. #include <asm/r4k-timer.h>
  44. #include <asm/mips-cpc.h>
  45. #include <asm/mmu_context.h>
  46. #include <asm/time.h>
  47. #include <asm/setup.h>
  48. #include <asm/maar.h>
  49. cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
  50. int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
  51. EXPORT_SYMBOL(__cpu_number_map);
  52. int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
  53. EXPORT_SYMBOL(__cpu_logical_map);
  54. /* Number of TCs (or siblings in Intel speak) per CPU core */
  55. int smp_num_siblings = 1;
  56. EXPORT_SYMBOL(smp_num_siblings);
  57. /* representing the TCs (or siblings in Intel speak) of each logical CPU */
  58. cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
  59. EXPORT_SYMBOL(cpu_sibling_map);
  60. /* representing the core map of multi-core chips of each logical CPU */
  61. cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
  62. EXPORT_SYMBOL(cpu_core_map);
  63. /*
  64. * A logcal cpu mask containing only one VPE per core to
  65. * reduce the number of IPIs on large MT systems.
  66. */
  67. cpumask_t cpu_foreign_map __read_mostly;
  68. EXPORT_SYMBOL(cpu_foreign_map);
  69. /* representing cpus for which sibling maps can be computed */
  70. static cpumask_t cpu_sibling_setup_map;
  71. /* representing cpus for which core maps can be computed */
  72. static cpumask_t cpu_core_setup_map;
  73. cpumask_t cpu_coherent_mask;
  74. #ifdef CONFIG_GENERIC_IRQ_IPI
  75. static struct irq_desc *call_desc;
  76. static struct irq_desc *sched_desc;
  77. #endif
  78. static inline void set_cpu_sibling_map(int cpu)
  79. {
  80. int i;
  81. cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
  82. if (smp_num_siblings > 1) {
  83. for_each_cpu(i, &cpu_sibling_setup_map) {
  84. if (cpu_data[cpu].package == cpu_data[i].package &&
  85. cpu_data[cpu].core == cpu_data[i].core) {
  86. cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
  87. cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
  88. }
  89. }
  90. } else
  91. cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
  92. }
  93. static inline void set_cpu_core_map(int cpu)
  94. {
  95. int i;
  96. cpumask_set_cpu(cpu, &cpu_core_setup_map);
  97. for_each_cpu(i, &cpu_core_setup_map) {
  98. if (cpu_data[cpu].package == cpu_data[i].package) {
  99. cpumask_set_cpu(i, &cpu_core_map[cpu]);
  100. cpumask_set_cpu(cpu, &cpu_core_map[i]);
  101. }
  102. }
  103. }
  104. /*
  105. * Calculate a new cpu_foreign_map mask whenever a
  106. * new cpu appears or disappears.
  107. */
  108. static inline void calculate_cpu_foreign_map(void)
  109. {
  110. int i, k, core_present;
  111. cpumask_t temp_foreign_map;
  112. /* Re-calculate the mask */
  113. cpumask_clear(&temp_foreign_map);
  114. for_each_online_cpu(i) {
  115. core_present = 0;
  116. for_each_cpu(k, &temp_foreign_map)
  117. if (cpu_data[i].package == cpu_data[k].package &&
  118. cpu_data[i].core == cpu_data[k].core)
  119. core_present = 1;
  120. if (!core_present)
  121. cpumask_set_cpu(i, &temp_foreign_map);
  122. }
  123. cpumask_copy(&cpu_foreign_map, &temp_foreign_map);
  124. }
  125. struct plat_smp_ops *mp_ops;
  126. EXPORT_SYMBOL(mp_ops);
  127. void register_smp_ops(struct plat_smp_ops *ops)
  128. {
  129. if (mp_ops)
  130. printk(KERN_WARNING "Overriding previously set SMP ops\n");
  131. mp_ops = ops;
  132. }
  133. #ifdef CONFIG_GENERIC_IRQ_IPI
  134. void mips_smp_send_ipi_single(int cpu, unsigned int action)
  135. {
  136. mips_smp_send_ipi_mask(cpumask_of(cpu), action);
  137. }
  138. void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
  139. {
  140. unsigned long flags;
  141. unsigned int core;
  142. int cpu;
  143. local_irq_save(flags);
  144. switch (action) {
  145. case SMP_CALL_FUNCTION:
  146. __ipi_send_mask(call_desc, mask);
  147. break;
  148. case SMP_RESCHEDULE_YOURSELF:
  149. __ipi_send_mask(sched_desc, mask);
  150. break;
  151. default:
  152. BUG();
  153. }
  154. if (mips_cpc_present()) {
  155. for_each_cpu(cpu, mask) {
  156. core = cpu_data[cpu].core;
  157. if (core == current_cpu_data.core)
  158. continue;
  159. while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
  160. mips_cpc_lock_other(core);
  161. write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
  162. mips_cpc_unlock_other();
  163. }
  164. }
  165. }
  166. local_irq_restore(flags);
  167. }
  168. static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
  169. {
  170. scheduler_ipi();
  171. return IRQ_HANDLED;
  172. }
  173. static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
  174. {
  175. generic_smp_call_function_interrupt();
  176. return IRQ_HANDLED;
  177. }
  178. static struct irqaction irq_resched = {
  179. .handler = ipi_resched_interrupt,
  180. .flags = IRQF_PERCPU,
  181. .name = "IPI resched"
  182. };
  183. static struct irqaction irq_call = {
  184. .handler = ipi_call_interrupt,
  185. .flags = IRQF_PERCPU,
  186. .name = "IPI call"
  187. };
  188. static __init void smp_ipi_init_one(unsigned int virq,
  189. struct irqaction *action)
  190. {
  191. int ret;
  192. irq_set_handler(virq, handle_percpu_irq);
  193. ret = setup_irq(virq, action);
  194. BUG_ON(ret);
  195. }
  196. static int __init mips_smp_ipi_init(void)
  197. {
  198. unsigned int call_virq, sched_virq;
  199. struct irq_domain *ipidomain;
  200. struct device_node *node;
  201. /*
  202. * In some cases like qemu-malta, it is desired to try SMP with
  203. * a single core. Qemu-malta has no GIC, so an attempt to set any IPIs
  204. * would cause a BUG_ON() to be triggered since there's no ipidomain.
  205. *
  206. * Since for a single core system IPIs aren't required really, skip the
  207. * initialisation which should generally keep any such configurations
  208. * happy and only fail hard when trying to truely run SMP.
  209. */
  210. if (cpumask_weight(cpu_possible_mask) == 1)
  211. return 0;
  212. node = of_irq_find_parent(of_root);
  213. ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
  214. /*
  215. * Some platforms have half DT setup. So if we found irq node but
  216. * didn't find an ipidomain, try to search for one that is not in the
  217. * DT.
  218. */
  219. if (node && !ipidomain)
  220. ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
  221. BUG_ON(!ipidomain);
  222. call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
  223. BUG_ON(!call_virq);
  224. sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
  225. BUG_ON(!sched_virq);
  226. if (irq_domain_is_ipi_per_cpu(ipidomain)) {
  227. int cpu;
  228. for_each_cpu(cpu, cpu_possible_mask) {
  229. smp_ipi_init_one(call_virq + cpu, &irq_call);
  230. smp_ipi_init_one(sched_virq + cpu, &irq_resched);
  231. }
  232. } else {
  233. smp_ipi_init_one(call_virq, &irq_call);
  234. smp_ipi_init_one(sched_virq, &irq_resched);
  235. }
  236. call_desc = irq_to_desc(call_virq);
  237. sched_desc = irq_to_desc(sched_virq);
  238. return 0;
  239. }
  240. early_initcall(mips_smp_ipi_init);
  241. #endif
  242. /*
  243. * First C code run on the secondary CPUs after being started up by
  244. * the master.
  245. */
  246. asmlinkage void start_secondary(void)
  247. {
  248. unsigned int cpu;
  249. cpu_probe();
  250. per_cpu_trap_init(false);
  251. mips_clockevent_init();
  252. mp_ops->init_secondary();
  253. cpu_report();
  254. maar_init();
  255. /*
  256. * XXX parity protection should be folded in here when it's converted
  257. * to an option instead of something based on .cputype
  258. */
  259. calibrate_delay();
  260. preempt_disable();
  261. cpu = smp_processor_id();
  262. cpu_data[cpu].udelay_val = loops_per_jiffy;
  263. cpumask_set_cpu(cpu, &cpu_coherent_mask);
  264. notify_cpu_starting(cpu);
  265. set_cpu_online(cpu, true);
  266. set_cpu_sibling_map(cpu);
  267. set_cpu_core_map(cpu);
  268. calculate_cpu_foreign_map();
  269. cpumask_set_cpu(cpu, &cpu_callin_map);
  270. synchronise_count_slave(cpu);
  271. /*
  272. * irq will be enabled in ->smp_finish(), enabling it too early
  273. * is dangerous.
  274. */
  275. WARN_ON_ONCE(!irqs_disabled());
  276. mp_ops->smp_finish();
  277. cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
  278. }
  279. static void stop_this_cpu(void *dummy)
  280. {
  281. /*
  282. * Remove this CPU. Be a bit slow here and
  283. * set the bits for every online CPU so we don't miss
  284. * any IPI whilst taking this VPE down.
  285. */
  286. cpumask_copy(&cpu_foreign_map, cpu_online_mask);
  287. /* Make it visible to every other CPU */
  288. smp_mb();
  289. set_cpu_online(smp_processor_id(), false);
  290. calculate_cpu_foreign_map();
  291. local_irq_disable();
  292. while (1);
  293. }
  294. void smp_send_stop(void)
  295. {
  296. smp_call_function(stop_this_cpu, NULL, 0);
  297. }
  298. void __init smp_cpus_done(unsigned int max_cpus)
  299. {
  300. }
  301. /* called from main before smp_init() */
  302. void __init smp_prepare_cpus(unsigned int max_cpus)
  303. {
  304. init_new_context(current, &init_mm);
  305. current_thread_info()->cpu = 0;
  306. mp_ops->prepare_cpus(max_cpus);
  307. set_cpu_sibling_map(0);
  308. set_cpu_core_map(0);
  309. calculate_cpu_foreign_map();
  310. #ifndef CONFIG_HOTPLUG_CPU
  311. init_cpu_present(cpu_possible_mask);
  312. #endif
  313. cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
  314. }
  315. /* preload SMP state for boot cpu */
  316. void smp_prepare_boot_cpu(void)
  317. {
  318. set_cpu_possible(0, true);
  319. set_cpu_online(0, true);
  320. cpumask_set_cpu(0, &cpu_callin_map);
  321. }
  322. int __cpu_up(unsigned int cpu, struct task_struct *tidle)
  323. {
  324. mp_ops->boot_secondary(cpu, tidle);
  325. /*
  326. * Trust is futile. We should really have timeouts ...
  327. */
  328. while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
  329. udelay(100);
  330. schedule();
  331. }
  332. synchronise_count_master(cpu);
  333. return 0;
  334. }
  335. /* Not really SMP stuff ... */
  336. int setup_profiling_timer(unsigned int multiplier)
  337. {
  338. return 0;
  339. }
  340. static void flush_tlb_all_ipi(void *info)
  341. {
  342. local_flush_tlb_all();
  343. }
  344. void flush_tlb_all(void)
  345. {
  346. on_each_cpu(flush_tlb_all_ipi, NULL, 1);
  347. }
  348. static void flush_tlb_mm_ipi(void *mm)
  349. {
  350. local_flush_tlb_mm((struct mm_struct *)mm);
  351. }
  352. /*
  353. * Special Variant of smp_call_function for use by TLB functions:
  354. *
  355. * o No return value
  356. * o collapses to normal function call on UP kernels
  357. * o collapses to normal function call on systems with a single shared
  358. * primary cache.
  359. */
  360. static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
  361. {
  362. smp_call_function(func, info, 1);
  363. }
  364. static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
  365. {
  366. preempt_disable();
  367. smp_on_other_tlbs(func, info);
  368. func(info);
  369. preempt_enable();
  370. }
  371. /*
  372. * The following tlb flush calls are invoked when old translations are
  373. * being torn down, or pte attributes are changing. For single threaded
  374. * address spaces, a new context is obtained on the current cpu, and tlb
  375. * context on other cpus are invalidated to force a new context allocation
  376. * at switch_mm time, should the mm ever be used on other cpus. For
  377. * multithreaded address spaces, intercpu interrupts have to be sent.
  378. * Another case where intercpu interrupts are required is when the target
  379. * mm might be active on another cpu (eg debuggers doing the flushes on
  380. * behalf of debugees, kswapd stealing pages from another process etc).
  381. * Kanoj 07/00.
  382. */
  383. void flush_tlb_mm(struct mm_struct *mm)
  384. {
  385. preempt_disable();
  386. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  387. smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
  388. } else {
  389. unsigned int cpu;
  390. for_each_online_cpu(cpu) {
  391. if (cpu != smp_processor_id() && cpu_context(cpu, mm))
  392. cpu_context(cpu, mm) = 0;
  393. }
  394. }
  395. local_flush_tlb_mm(mm);
  396. preempt_enable();
  397. }
  398. struct flush_tlb_data {
  399. struct vm_area_struct *vma;
  400. unsigned long addr1;
  401. unsigned long addr2;
  402. };
  403. static void flush_tlb_range_ipi(void *info)
  404. {
  405. struct flush_tlb_data *fd = info;
  406. local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
  407. }
  408. void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  409. {
  410. struct mm_struct *mm = vma->vm_mm;
  411. preempt_disable();
  412. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  413. struct flush_tlb_data fd = {
  414. .vma = vma,
  415. .addr1 = start,
  416. .addr2 = end,
  417. };
  418. smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
  419. } else {
  420. unsigned int cpu;
  421. for_each_online_cpu(cpu) {
  422. if (cpu != smp_processor_id() && cpu_context(cpu, mm))
  423. cpu_context(cpu, mm) = 0;
  424. }
  425. }
  426. local_flush_tlb_range(vma, start, end);
  427. preempt_enable();
  428. }
  429. static void flush_tlb_kernel_range_ipi(void *info)
  430. {
  431. struct flush_tlb_data *fd = info;
  432. local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
  433. }
  434. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  435. {
  436. struct flush_tlb_data fd = {
  437. .addr1 = start,
  438. .addr2 = end,
  439. };
  440. on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
  441. }
  442. static void flush_tlb_page_ipi(void *info)
  443. {
  444. struct flush_tlb_data *fd = info;
  445. local_flush_tlb_page(fd->vma, fd->addr1);
  446. }
  447. void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  448. {
  449. preempt_disable();
  450. if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
  451. struct flush_tlb_data fd = {
  452. .vma = vma,
  453. .addr1 = page,
  454. };
  455. smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
  456. } else {
  457. unsigned int cpu;
  458. for_each_online_cpu(cpu) {
  459. if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
  460. cpu_context(cpu, vma->vm_mm) = 0;
  461. }
  462. }
  463. local_flush_tlb_page(vma, page);
  464. preempt_enable();
  465. }
  466. static void flush_tlb_one_ipi(void *info)
  467. {
  468. unsigned long vaddr = (unsigned long) info;
  469. local_flush_tlb_one(vaddr);
  470. }
  471. void flush_tlb_one(unsigned long vaddr)
  472. {
  473. smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
  474. }
  475. EXPORT_SYMBOL(flush_tlb_page);
  476. EXPORT_SYMBOL(flush_tlb_one);
  477. #if defined(CONFIG_KEXEC)
  478. void (*dump_ipi_function_ptr)(void *) = NULL;
  479. void dump_send_ipi(void (*dump_ipi_callback)(void *))
  480. {
  481. int i;
  482. int cpu = smp_processor_id();
  483. dump_ipi_function_ptr = dump_ipi_callback;
  484. smp_mb();
  485. for_each_online_cpu(i)
  486. if (i != cpu)
  487. mp_ops->send_ipi_single(i, SMP_DUMP);
  488. }
  489. EXPORT_SYMBOL(dump_send_ipi);
  490. #endif
  491. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  492. static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
  493. static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
  494. void tick_broadcast(const struct cpumask *mask)
  495. {
  496. atomic_t *count;
  497. struct call_single_data *csd;
  498. int cpu;
  499. for_each_cpu(cpu, mask) {
  500. count = &per_cpu(tick_broadcast_count, cpu);
  501. csd = &per_cpu(tick_broadcast_csd, cpu);
  502. if (atomic_inc_return(count) == 1)
  503. smp_call_function_single_async(cpu, csd);
  504. }
  505. }
  506. static void tick_broadcast_callee(void *info)
  507. {
  508. int cpu = smp_processor_id();
  509. tick_receive_broadcast();
  510. atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
  511. }
  512. static int __init tick_broadcast_init(void)
  513. {
  514. struct call_single_data *csd;
  515. int cpu;
  516. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  517. csd = &per_cpu(tick_broadcast_csd, cpu);
  518. csd->func = tick_broadcast_callee;
  519. }
  520. return 0;
  521. }
  522. early_initcall(tick_broadcast_init);
  523. #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */