adutux.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * adutux - driver for ADU devices from Ontrak Control Systems
  4. * This is an experimental driver. Use at your own risk.
  5. * This driver is not supported by Ontrak Control Systems.
  6. *
  7. * Copyright (c) 2003 John Homppi (SCO, leave this notice here)
  8. *
  9. * derived from the Lego USB Tower driver 0.56:
  10. * Copyright (c) 2003 David Glance <davidgsf@sourceforge.net>
  11. * 2001 Juergen Stuber <stuber@loria.fr>
  12. * that was derived from USB Skeleton driver - 0.5
  13. * Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com)
  14. *
  15. */
  16. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17. #include <linux/kernel.h>
  18. #include <linux/sched/signal.h>
  19. #include <linux/errno.h>
  20. #include <linux/slab.h>
  21. #include <linux/module.h>
  22. #include <linux/usb.h>
  23. #include <linux/mutex.h>
  24. #include <linux/uaccess.h>
  25. #define DRIVER_AUTHOR "John Homppi"
  26. #define DRIVER_DESC "adutux (see www.ontrak.net)"
  27. /* Define these values to match your device */
  28. #define ADU_VENDOR_ID 0x0a07
  29. #define ADU_PRODUCT_ID 0x0064
  30. /* table of devices that work with this driver */
  31. static const struct usb_device_id device_table[] = {
  32. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID) }, /* ADU100 */
  33. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+20) }, /* ADU120 */
  34. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+30) }, /* ADU130 */
  35. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+100) }, /* ADU200 */
  36. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+108) }, /* ADU208 */
  37. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+118) }, /* ADU218 */
  38. { } /* Terminating entry */
  39. };
  40. MODULE_DEVICE_TABLE(usb, device_table);
  41. #ifdef CONFIG_USB_DYNAMIC_MINORS
  42. #define ADU_MINOR_BASE 0
  43. #else
  44. #define ADU_MINOR_BASE 67
  45. #endif
  46. /* we can have up to this number of device plugged in at once */
  47. #define MAX_DEVICES 16
  48. #define COMMAND_TIMEOUT (2*HZ)
  49. /*
  50. * The locking scheme is a vanilla 3-lock:
  51. * adu_device.buflock: A spinlock, covers what IRQs touch.
  52. * adutux_mutex: A Static lock to cover open_count. It would also cover
  53. * any globals, but we don't have them in 2.6.
  54. * adu_device.mtx: A mutex to hold across sleepers like copy_from_user.
  55. * It covers all of adu_device, except the open_count
  56. * and what .buflock covers.
  57. */
  58. /* Structure to hold all of our device specific stuff */
  59. struct adu_device {
  60. struct mutex mtx;
  61. struct usb_device *udev; /* save off the usb device pointer */
  62. struct usb_interface *interface;
  63. unsigned int minor; /* the starting minor number for this device */
  64. char serial_number[8];
  65. int open_count; /* number of times this port has been opened */
  66. char *read_buffer_primary;
  67. int read_buffer_length;
  68. char *read_buffer_secondary;
  69. int secondary_head;
  70. int secondary_tail;
  71. spinlock_t buflock;
  72. wait_queue_head_t read_wait;
  73. wait_queue_head_t write_wait;
  74. char *interrupt_in_buffer;
  75. struct usb_endpoint_descriptor *interrupt_in_endpoint;
  76. struct urb *interrupt_in_urb;
  77. int read_urb_finished;
  78. char *interrupt_out_buffer;
  79. struct usb_endpoint_descriptor *interrupt_out_endpoint;
  80. struct urb *interrupt_out_urb;
  81. int out_urb_finished;
  82. };
  83. static DEFINE_MUTEX(adutux_mutex);
  84. static struct usb_driver adu_driver;
  85. static inline void adu_debug_data(struct device *dev, const char *function,
  86. int size, const unsigned char *data)
  87. {
  88. dev_dbg(dev, "%s - length = %d, data = %*ph\n",
  89. function, size, size, data);
  90. }
  91. /**
  92. * adu_abort_transfers
  93. * aborts transfers and frees associated data structures
  94. */
  95. static void adu_abort_transfers(struct adu_device *dev)
  96. {
  97. unsigned long flags;
  98. if (dev->udev == NULL)
  99. return;
  100. /* shutdown transfer */
  101. /* XXX Anchor these instead */
  102. spin_lock_irqsave(&dev->buflock, flags);
  103. if (!dev->read_urb_finished) {
  104. spin_unlock_irqrestore(&dev->buflock, flags);
  105. usb_kill_urb(dev->interrupt_in_urb);
  106. } else
  107. spin_unlock_irqrestore(&dev->buflock, flags);
  108. spin_lock_irqsave(&dev->buflock, flags);
  109. if (!dev->out_urb_finished) {
  110. spin_unlock_irqrestore(&dev->buflock, flags);
  111. wait_event_timeout(dev->write_wait, dev->out_urb_finished,
  112. COMMAND_TIMEOUT);
  113. usb_kill_urb(dev->interrupt_out_urb);
  114. } else
  115. spin_unlock_irqrestore(&dev->buflock, flags);
  116. }
  117. static void adu_delete(struct adu_device *dev)
  118. {
  119. /* free data structures */
  120. usb_free_urb(dev->interrupt_in_urb);
  121. usb_free_urb(dev->interrupt_out_urb);
  122. kfree(dev->read_buffer_primary);
  123. kfree(dev->read_buffer_secondary);
  124. kfree(dev->interrupt_in_buffer);
  125. kfree(dev->interrupt_out_buffer);
  126. kfree(dev);
  127. }
  128. static void adu_interrupt_in_callback(struct urb *urb)
  129. {
  130. struct adu_device *dev = urb->context;
  131. int status = urb->status;
  132. adu_debug_data(&dev->udev->dev, __func__,
  133. urb->actual_length, urb->transfer_buffer);
  134. spin_lock(&dev->buflock);
  135. if (status != 0) {
  136. if ((status != -ENOENT) && (status != -ECONNRESET) &&
  137. (status != -ESHUTDOWN)) {
  138. dev_dbg(&dev->udev->dev,
  139. "%s : nonzero status received: %d\n",
  140. __func__, status);
  141. }
  142. goto exit;
  143. }
  144. if (urb->actual_length > 0 && dev->interrupt_in_buffer[0] != 0x00) {
  145. if (dev->read_buffer_length <
  146. (4 * usb_endpoint_maxp(dev->interrupt_in_endpoint)) -
  147. (urb->actual_length)) {
  148. memcpy (dev->read_buffer_primary +
  149. dev->read_buffer_length,
  150. dev->interrupt_in_buffer, urb->actual_length);
  151. dev->read_buffer_length += urb->actual_length;
  152. dev_dbg(&dev->udev->dev,"%s reading %d\n", __func__,
  153. urb->actual_length);
  154. } else {
  155. dev_dbg(&dev->udev->dev,"%s : read_buffer overflow\n",
  156. __func__);
  157. }
  158. }
  159. exit:
  160. dev->read_urb_finished = 1;
  161. spin_unlock(&dev->buflock);
  162. /* always wake up so we recover from errors */
  163. wake_up_interruptible(&dev->read_wait);
  164. }
  165. static void adu_interrupt_out_callback(struct urb *urb)
  166. {
  167. struct adu_device *dev = urb->context;
  168. int status = urb->status;
  169. adu_debug_data(&dev->udev->dev, __func__,
  170. urb->actual_length, urb->transfer_buffer);
  171. if (status != 0) {
  172. if ((status != -ENOENT) &&
  173. (status != -ECONNRESET)) {
  174. dev_dbg(&dev->udev->dev,
  175. "%s :nonzero status received: %d\n", __func__,
  176. status);
  177. }
  178. return;
  179. }
  180. spin_lock(&dev->buflock);
  181. dev->out_urb_finished = 1;
  182. wake_up(&dev->write_wait);
  183. spin_unlock(&dev->buflock);
  184. }
  185. static int adu_open(struct inode *inode, struct file *file)
  186. {
  187. struct adu_device *dev = NULL;
  188. struct usb_interface *interface;
  189. int subminor;
  190. int retval;
  191. subminor = iminor(inode);
  192. retval = mutex_lock_interruptible(&adutux_mutex);
  193. if (retval)
  194. goto exit_no_lock;
  195. interface = usb_find_interface(&adu_driver, subminor);
  196. if (!interface) {
  197. pr_err("%s - error, can't find device for minor %d\n",
  198. __func__, subminor);
  199. retval = -ENODEV;
  200. goto exit_no_device;
  201. }
  202. dev = usb_get_intfdata(interface);
  203. if (!dev || !dev->udev) {
  204. retval = -ENODEV;
  205. goto exit_no_device;
  206. }
  207. /* check that nobody else is using the device */
  208. if (dev->open_count) {
  209. retval = -EBUSY;
  210. goto exit_no_device;
  211. }
  212. ++dev->open_count;
  213. dev_dbg(&dev->udev->dev, "%s: open count %d\n", __func__,
  214. dev->open_count);
  215. /* save device in the file's private structure */
  216. file->private_data = dev;
  217. /* initialize in direction */
  218. dev->read_buffer_length = 0;
  219. /* fixup first read by having urb waiting for it */
  220. usb_fill_int_urb(dev->interrupt_in_urb, dev->udev,
  221. usb_rcvintpipe(dev->udev,
  222. dev->interrupt_in_endpoint->bEndpointAddress),
  223. dev->interrupt_in_buffer,
  224. usb_endpoint_maxp(dev->interrupt_in_endpoint),
  225. adu_interrupt_in_callback, dev,
  226. dev->interrupt_in_endpoint->bInterval);
  227. dev->read_urb_finished = 0;
  228. if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL))
  229. dev->read_urb_finished = 1;
  230. /* we ignore failure */
  231. /* end of fixup for first read */
  232. /* initialize out direction */
  233. dev->out_urb_finished = 1;
  234. retval = 0;
  235. exit_no_device:
  236. mutex_unlock(&adutux_mutex);
  237. exit_no_lock:
  238. return retval;
  239. }
  240. static void adu_release_internal(struct adu_device *dev)
  241. {
  242. /* decrement our usage count for the device */
  243. --dev->open_count;
  244. dev_dbg(&dev->udev->dev, "%s : open count %d\n", __func__,
  245. dev->open_count);
  246. if (dev->open_count <= 0) {
  247. adu_abort_transfers(dev);
  248. dev->open_count = 0;
  249. }
  250. }
  251. static int adu_release(struct inode *inode, struct file *file)
  252. {
  253. struct adu_device *dev;
  254. int retval = 0;
  255. if (file == NULL) {
  256. retval = -ENODEV;
  257. goto exit;
  258. }
  259. dev = file->private_data;
  260. if (dev == NULL) {
  261. retval = -ENODEV;
  262. goto exit;
  263. }
  264. mutex_lock(&adutux_mutex); /* not interruptible */
  265. if (dev->open_count <= 0) {
  266. dev_dbg(&dev->udev->dev, "%s : device not opened\n", __func__);
  267. retval = -ENODEV;
  268. goto unlock;
  269. }
  270. adu_release_internal(dev);
  271. if (dev->udev == NULL) {
  272. /* the device was unplugged before the file was released */
  273. if (!dev->open_count) /* ... and we're the last user */
  274. adu_delete(dev);
  275. }
  276. unlock:
  277. mutex_unlock(&adutux_mutex);
  278. exit:
  279. return retval;
  280. }
  281. static ssize_t adu_read(struct file *file, __user char *buffer, size_t count,
  282. loff_t *ppos)
  283. {
  284. struct adu_device *dev;
  285. size_t bytes_read = 0;
  286. size_t bytes_to_read = count;
  287. int i;
  288. int retval = 0;
  289. int timeout = 0;
  290. int should_submit = 0;
  291. unsigned long flags;
  292. DECLARE_WAITQUEUE(wait, current);
  293. dev = file->private_data;
  294. if (mutex_lock_interruptible(&dev->mtx))
  295. return -ERESTARTSYS;
  296. /* verify that the device wasn't unplugged */
  297. if (dev->udev == NULL) {
  298. retval = -ENODEV;
  299. pr_err("No device or device unplugged %d\n", retval);
  300. goto exit;
  301. }
  302. /* verify that some data was requested */
  303. if (count == 0) {
  304. dev_dbg(&dev->udev->dev, "%s : read request of 0 bytes\n",
  305. __func__);
  306. goto exit;
  307. }
  308. timeout = COMMAND_TIMEOUT;
  309. dev_dbg(&dev->udev->dev, "%s : about to start looping\n", __func__);
  310. while (bytes_to_read) {
  311. int data_in_secondary = dev->secondary_tail - dev->secondary_head;
  312. dev_dbg(&dev->udev->dev,
  313. "%s : while, data_in_secondary=%d, status=%d\n",
  314. __func__, data_in_secondary,
  315. dev->interrupt_in_urb->status);
  316. if (data_in_secondary) {
  317. /* drain secondary buffer */
  318. int amount = bytes_to_read < data_in_secondary ? bytes_to_read : data_in_secondary;
  319. i = copy_to_user(buffer, dev->read_buffer_secondary+dev->secondary_head, amount);
  320. if (i) {
  321. retval = -EFAULT;
  322. goto exit;
  323. }
  324. dev->secondary_head += (amount - i);
  325. bytes_read += (amount - i);
  326. bytes_to_read -= (amount - i);
  327. } else {
  328. /* we check the primary buffer */
  329. spin_lock_irqsave (&dev->buflock, flags);
  330. if (dev->read_buffer_length) {
  331. /* we secure access to the primary */
  332. char *tmp;
  333. dev_dbg(&dev->udev->dev,
  334. "%s : swap, read_buffer_length = %d\n",
  335. __func__, dev->read_buffer_length);
  336. tmp = dev->read_buffer_secondary;
  337. dev->read_buffer_secondary = dev->read_buffer_primary;
  338. dev->read_buffer_primary = tmp;
  339. dev->secondary_head = 0;
  340. dev->secondary_tail = dev->read_buffer_length;
  341. dev->read_buffer_length = 0;
  342. spin_unlock_irqrestore(&dev->buflock, flags);
  343. /* we have a free buffer so use it */
  344. should_submit = 1;
  345. } else {
  346. /* even the primary was empty - we may need to do IO */
  347. if (!dev->read_urb_finished) {
  348. /* somebody is doing IO */
  349. spin_unlock_irqrestore(&dev->buflock, flags);
  350. dev_dbg(&dev->udev->dev,
  351. "%s : submitted already\n",
  352. __func__);
  353. } else {
  354. /* we must initiate input */
  355. dev_dbg(&dev->udev->dev,
  356. "%s : initiate input\n",
  357. __func__);
  358. dev->read_urb_finished = 0;
  359. spin_unlock_irqrestore(&dev->buflock, flags);
  360. usb_fill_int_urb(dev->interrupt_in_urb, dev->udev,
  361. usb_rcvintpipe(dev->udev,
  362. dev->interrupt_in_endpoint->bEndpointAddress),
  363. dev->interrupt_in_buffer,
  364. usb_endpoint_maxp(dev->interrupt_in_endpoint),
  365. adu_interrupt_in_callback,
  366. dev,
  367. dev->interrupt_in_endpoint->bInterval);
  368. retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL);
  369. if (retval) {
  370. dev->read_urb_finished = 1;
  371. if (retval == -ENOMEM) {
  372. retval = bytes_read ? bytes_read : -ENOMEM;
  373. }
  374. dev_dbg(&dev->udev->dev,
  375. "%s : submit failed\n",
  376. __func__);
  377. goto exit;
  378. }
  379. }
  380. /* we wait for I/O to complete */
  381. set_current_state(TASK_INTERRUPTIBLE);
  382. add_wait_queue(&dev->read_wait, &wait);
  383. spin_lock_irqsave(&dev->buflock, flags);
  384. if (!dev->read_urb_finished) {
  385. spin_unlock_irqrestore(&dev->buflock, flags);
  386. timeout = schedule_timeout(COMMAND_TIMEOUT);
  387. } else {
  388. spin_unlock_irqrestore(&dev->buflock, flags);
  389. set_current_state(TASK_RUNNING);
  390. }
  391. remove_wait_queue(&dev->read_wait, &wait);
  392. if (timeout <= 0) {
  393. dev_dbg(&dev->udev->dev,
  394. "%s : timeout\n", __func__);
  395. retval = bytes_read ? bytes_read : -ETIMEDOUT;
  396. goto exit;
  397. }
  398. if (signal_pending(current)) {
  399. dev_dbg(&dev->udev->dev,
  400. "%s : signal pending\n",
  401. __func__);
  402. retval = bytes_read ? bytes_read : -EINTR;
  403. goto exit;
  404. }
  405. }
  406. }
  407. }
  408. retval = bytes_read;
  409. /* if the primary buffer is empty then use it */
  410. spin_lock_irqsave(&dev->buflock, flags);
  411. if (should_submit && dev->read_urb_finished) {
  412. dev->read_urb_finished = 0;
  413. spin_unlock_irqrestore(&dev->buflock, flags);
  414. usb_fill_int_urb(dev->interrupt_in_urb, dev->udev,
  415. usb_rcvintpipe(dev->udev,
  416. dev->interrupt_in_endpoint->bEndpointAddress),
  417. dev->interrupt_in_buffer,
  418. usb_endpoint_maxp(dev->interrupt_in_endpoint),
  419. adu_interrupt_in_callback,
  420. dev,
  421. dev->interrupt_in_endpoint->bInterval);
  422. if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL) != 0)
  423. dev->read_urb_finished = 1;
  424. /* we ignore failure */
  425. } else {
  426. spin_unlock_irqrestore(&dev->buflock, flags);
  427. }
  428. exit:
  429. /* unlock the device */
  430. mutex_unlock(&dev->mtx);
  431. return retval;
  432. }
  433. static ssize_t adu_write(struct file *file, const __user char *buffer,
  434. size_t count, loff_t *ppos)
  435. {
  436. DECLARE_WAITQUEUE(waita, current);
  437. struct adu_device *dev;
  438. size_t bytes_written = 0;
  439. size_t bytes_to_write;
  440. size_t buffer_size;
  441. unsigned long flags;
  442. int retval;
  443. dev = file->private_data;
  444. retval = mutex_lock_interruptible(&dev->mtx);
  445. if (retval)
  446. goto exit_nolock;
  447. /* verify that the device wasn't unplugged */
  448. if (dev->udev == NULL) {
  449. retval = -ENODEV;
  450. pr_err("No device or device unplugged %d\n", retval);
  451. goto exit;
  452. }
  453. /* verify that we actually have some data to write */
  454. if (count == 0) {
  455. dev_dbg(&dev->udev->dev, "%s : write request of 0 bytes\n",
  456. __func__);
  457. goto exit;
  458. }
  459. while (count > 0) {
  460. add_wait_queue(&dev->write_wait, &waita);
  461. set_current_state(TASK_INTERRUPTIBLE);
  462. spin_lock_irqsave(&dev->buflock, flags);
  463. if (!dev->out_urb_finished) {
  464. spin_unlock_irqrestore(&dev->buflock, flags);
  465. mutex_unlock(&dev->mtx);
  466. if (signal_pending(current)) {
  467. dev_dbg(&dev->udev->dev, "%s : interrupted\n",
  468. __func__);
  469. set_current_state(TASK_RUNNING);
  470. retval = -EINTR;
  471. goto exit_onqueue;
  472. }
  473. if (schedule_timeout(COMMAND_TIMEOUT) == 0) {
  474. dev_dbg(&dev->udev->dev,
  475. "%s - command timed out.\n", __func__);
  476. retval = -ETIMEDOUT;
  477. goto exit_onqueue;
  478. }
  479. remove_wait_queue(&dev->write_wait, &waita);
  480. retval = mutex_lock_interruptible(&dev->mtx);
  481. if (retval) {
  482. retval = bytes_written ? bytes_written : retval;
  483. goto exit_nolock;
  484. }
  485. dev_dbg(&dev->udev->dev,
  486. "%s : in progress, count = %zd\n",
  487. __func__, count);
  488. } else {
  489. spin_unlock_irqrestore(&dev->buflock, flags);
  490. set_current_state(TASK_RUNNING);
  491. remove_wait_queue(&dev->write_wait, &waita);
  492. dev_dbg(&dev->udev->dev, "%s : sending, count = %zd\n",
  493. __func__, count);
  494. /* write the data into interrupt_out_buffer from userspace */
  495. buffer_size = usb_endpoint_maxp(dev->interrupt_out_endpoint);
  496. bytes_to_write = count > buffer_size ? buffer_size : count;
  497. dev_dbg(&dev->udev->dev,
  498. "%s : buffer_size = %zd, count = %zd, bytes_to_write = %zd\n",
  499. __func__, buffer_size, count, bytes_to_write);
  500. if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write) != 0) {
  501. retval = -EFAULT;
  502. goto exit;
  503. }
  504. /* send off the urb */
  505. usb_fill_int_urb(
  506. dev->interrupt_out_urb,
  507. dev->udev,
  508. usb_sndintpipe(dev->udev, dev->interrupt_out_endpoint->bEndpointAddress),
  509. dev->interrupt_out_buffer,
  510. bytes_to_write,
  511. adu_interrupt_out_callback,
  512. dev,
  513. dev->interrupt_out_endpoint->bInterval);
  514. dev->interrupt_out_urb->actual_length = bytes_to_write;
  515. dev->out_urb_finished = 0;
  516. retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL);
  517. if (retval < 0) {
  518. dev->out_urb_finished = 1;
  519. dev_err(&dev->udev->dev, "Couldn't submit "
  520. "interrupt_out_urb %d\n", retval);
  521. goto exit;
  522. }
  523. buffer += bytes_to_write;
  524. count -= bytes_to_write;
  525. bytes_written += bytes_to_write;
  526. }
  527. }
  528. mutex_unlock(&dev->mtx);
  529. return bytes_written;
  530. exit:
  531. mutex_unlock(&dev->mtx);
  532. exit_nolock:
  533. return retval;
  534. exit_onqueue:
  535. remove_wait_queue(&dev->write_wait, &waita);
  536. return retval;
  537. }
  538. /* file operations needed when we register this driver */
  539. static const struct file_operations adu_fops = {
  540. .owner = THIS_MODULE,
  541. .read = adu_read,
  542. .write = adu_write,
  543. .open = adu_open,
  544. .release = adu_release,
  545. .llseek = noop_llseek,
  546. };
  547. /*
  548. * usb class driver info in order to get a minor number from the usb core,
  549. * and to have the device registered with devfs and the driver core
  550. */
  551. static struct usb_class_driver adu_class = {
  552. .name = "usb/adutux%d",
  553. .fops = &adu_fops,
  554. .minor_base = ADU_MINOR_BASE,
  555. };
  556. /**
  557. * adu_probe
  558. *
  559. * Called by the usb core when a new device is connected that it thinks
  560. * this driver might be interested in.
  561. */
  562. static int adu_probe(struct usb_interface *interface,
  563. const struct usb_device_id *id)
  564. {
  565. struct usb_device *udev = interface_to_usbdev(interface);
  566. struct adu_device *dev = NULL;
  567. int retval = -ENOMEM;
  568. int in_end_size;
  569. int out_end_size;
  570. int res;
  571. /* allocate memory for our device state and initialize it */
  572. dev = kzalloc(sizeof(struct adu_device), GFP_KERNEL);
  573. if (!dev)
  574. return -ENOMEM;
  575. mutex_init(&dev->mtx);
  576. spin_lock_init(&dev->buflock);
  577. dev->udev = udev;
  578. init_waitqueue_head(&dev->read_wait);
  579. init_waitqueue_head(&dev->write_wait);
  580. res = usb_find_common_endpoints_reverse(&interface->altsetting[0],
  581. NULL, NULL,
  582. &dev->interrupt_in_endpoint,
  583. &dev->interrupt_out_endpoint);
  584. if (res) {
  585. dev_err(&interface->dev, "interrupt endpoints not found\n");
  586. retval = res;
  587. goto error;
  588. }
  589. in_end_size = usb_endpoint_maxp(dev->interrupt_in_endpoint);
  590. out_end_size = usb_endpoint_maxp(dev->interrupt_out_endpoint);
  591. dev->read_buffer_primary = kmalloc((4 * in_end_size), GFP_KERNEL);
  592. if (!dev->read_buffer_primary)
  593. goto error;
  594. /* debug code prime the buffer */
  595. memset(dev->read_buffer_primary, 'a', in_end_size);
  596. memset(dev->read_buffer_primary + in_end_size, 'b', in_end_size);
  597. memset(dev->read_buffer_primary + (2 * in_end_size), 'c', in_end_size);
  598. memset(dev->read_buffer_primary + (3 * in_end_size), 'd', in_end_size);
  599. dev->read_buffer_secondary = kmalloc((4 * in_end_size), GFP_KERNEL);
  600. if (!dev->read_buffer_secondary)
  601. goto error;
  602. /* debug code prime the buffer */
  603. memset(dev->read_buffer_secondary, 'e', in_end_size);
  604. memset(dev->read_buffer_secondary + in_end_size, 'f', in_end_size);
  605. memset(dev->read_buffer_secondary + (2 * in_end_size), 'g', in_end_size);
  606. memset(dev->read_buffer_secondary + (3 * in_end_size), 'h', in_end_size);
  607. dev->interrupt_in_buffer = kmalloc(in_end_size, GFP_KERNEL);
  608. if (!dev->interrupt_in_buffer)
  609. goto error;
  610. /* debug code prime the buffer */
  611. memset(dev->interrupt_in_buffer, 'i', in_end_size);
  612. dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL);
  613. if (!dev->interrupt_in_urb)
  614. goto error;
  615. dev->interrupt_out_buffer = kmalloc(out_end_size, GFP_KERNEL);
  616. if (!dev->interrupt_out_buffer)
  617. goto error;
  618. dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL);
  619. if (!dev->interrupt_out_urb)
  620. goto error;
  621. if (!usb_string(udev, udev->descriptor.iSerialNumber, dev->serial_number,
  622. sizeof(dev->serial_number))) {
  623. dev_err(&interface->dev, "Could not retrieve serial number\n");
  624. retval = -EIO;
  625. goto error;
  626. }
  627. dev_dbg(&interface->dev,"serial_number=%s", dev->serial_number);
  628. /* we can register the device now, as it is ready */
  629. usb_set_intfdata(interface, dev);
  630. retval = usb_register_dev(interface, &adu_class);
  631. if (retval) {
  632. /* something prevented us from registering this driver */
  633. dev_err(&interface->dev, "Not able to get a minor for this device.\n");
  634. usb_set_intfdata(interface, NULL);
  635. goto error;
  636. }
  637. dev->minor = interface->minor;
  638. /* let the user know what node this device is now attached to */
  639. dev_info(&interface->dev, "ADU%d %s now attached to /dev/usb/adutux%d\n",
  640. le16_to_cpu(udev->descriptor.idProduct), dev->serial_number,
  641. (dev->minor - ADU_MINOR_BASE));
  642. return 0;
  643. error:
  644. adu_delete(dev);
  645. return retval;
  646. }
  647. /**
  648. * adu_disconnect
  649. *
  650. * Called by the usb core when the device is removed from the system.
  651. */
  652. static void adu_disconnect(struct usb_interface *interface)
  653. {
  654. struct adu_device *dev;
  655. dev = usb_get_intfdata(interface);
  656. mutex_lock(&dev->mtx); /* not interruptible */
  657. dev->udev = NULL; /* poison */
  658. usb_deregister_dev(interface, &adu_class);
  659. mutex_unlock(&dev->mtx);
  660. mutex_lock(&adutux_mutex);
  661. usb_set_intfdata(interface, NULL);
  662. /* if the device is not opened, then we clean up right now */
  663. if (!dev->open_count)
  664. adu_delete(dev);
  665. mutex_unlock(&adutux_mutex);
  666. }
  667. /* usb specific object needed to register this driver with the usb subsystem */
  668. static struct usb_driver adu_driver = {
  669. .name = "adutux",
  670. .probe = adu_probe,
  671. .disconnect = adu_disconnect,
  672. .id_table = device_table,
  673. };
  674. module_usb_driver(adu_driver);
  675. MODULE_AUTHOR(DRIVER_AUTHOR);
  676. MODULE_DESCRIPTION(DRIVER_DESC);
  677. MODULE_LICENSE("GPL");