mmzone.h 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <linux/page-flags-layout.h>
  17. #include <linux/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coalesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. enum {
  34. MIGRATE_UNMOVABLE,
  35. MIGRATE_MOVABLE,
  36. MIGRATE_RECLAIMABLE,
  37. MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
  38. MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  39. #ifdef CONFIG_CMA
  40. /*
  41. * MIGRATE_CMA migration type is designed to mimic the way
  42. * ZONE_MOVABLE works. Only movable pages can be allocated
  43. * from MIGRATE_CMA pageblocks and page allocator never
  44. * implicitly change migration type of MIGRATE_CMA pageblock.
  45. *
  46. * The way to use it is to change migratetype of a range of
  47. * pageblocks to MIGRATE_CMA which can be done by
  48. * __free_pageblock_cma() function. What is important though
  49. * is that a range of pageblocks must be aligned to
  50. * MAX_ORDER_NR_PAGES should biggest page be bigger then
  51. * a single pageblock.
  52. */
  53. MIGRATE_CMA,
  54. #endif
  55. #ifdef CONFIG_MEMORY_ISOLATION
  56. MIGRATE_ISOLATE, /* can't allocate from here */
  57. #endif
  58. MIGRATE_TYPES
  59. };
  60. /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  61. extern char * const migratetype_names[MIGRATE_TYPES];
  62. #ifdef CONFIG_CMA
  63. # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  64. #else
  65. # define is_migrate_cma(migratetype) false
  66. #endif
  67. #define for_each_migratetype_order(order, type) \
  68. for (order = 0; order < MAX_ORDER; order++) \
  69. for (type = 0; type < MIGRATE_TYPES; type++)
  70. extern int page_group_by_mobility_disabled;
  71. #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
  72. #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
  73. #define get_pageblock_migratetype(page) \
  74. get_pfnblock_flags_mask(page, page_to_pfn(page), \
  75. PB_migrate_end, MIGRATETYPE_MASK)
  76. static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  77. {
  78. BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
  79. return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
  80. MIGRATETYPE_MASK);
  81. }
  82. struct free_area {
  83. struct list_head free_list[MIGRATE_TYPES];
  84. unsigned long nr_free;
  85. };
  86. struct pglist_data;
  87. /*
  88. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  89. * So add a wild amount of padding here to ensure that they fall into separate
  90. * cachelines. There are very few zone structures in the machine, so space
  91. * consumption is not a concern here.
  92. */
  93. #if defined(CONFIG_SMP)
  94. struct zone_padding {
  95. char x[0];
  96. } ____cacheline_internodealigned_in_smp;
  97. #define ZONE_PADDING(name) struct zone_padding name;
  98. #else
  99. #define ZONE_PADDING(name)
  100. #endif
  101. enum zone_stat_item {
  102. /* First 128 byte cacheline (assuming 64 bit words) */
  103. NR_FREE_PAGES,
  104. NR_ALLOC_BATCH,
  105. NR_LRU_BASE,
  106. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  107. NR_ACTIVE_ANON, /* " " " " " */
  108. NR_INACTIVE_FILE, /* " " " " " */
  109. NR_ACTIVE_FILE, /* " " " " " */
  110. NR_UNEVICTABLE, /* " " " " " */
  111. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  112. NR_ANON_PAGES, /* Mapped anonymous pages */
  113. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  114. only modified from process context */
  115. NR_FILE_PAGES,
  116. NR_FILE_DIRTY,
  117. NR_WRITEBACK,
  118. NR_SLAB_RECLAIMABLE,
  119. NR_SLAB_UNRECLAIMABLE,
  120. NR_PAGETABLE, /* used for pagetables */
  121. NR_KERNEL_STACK,
  122. /* Second 128 byte cacheline */
  123. NR_UNSTABLE_NFS, /* NFS unstable pages */
  124. NR_BOUNCE,
  125. NR_VMSCAN_WRITE,
  126. NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
  127. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  128. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  129. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  130. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  131. NR_DIRTIED, /* page dirtyings since bootup */
  132. NR_WRITTEN, /* page writings since bootup */
  133. NR_PAGES_SCANNED, /* pages scanned since last reclaim */
  134. #ifdef CONFIG_NUMA
  135. NUMA_HIT, /* allocated in intended node */
  136. NUMA_MISS, /* allocated in non intended node */
  137. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  138. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  139. NUMA_LOCAL, /* allocation from local node */
  140. NUMA_OTHER, /* allocation from other node */
  141. #endif
  142. WORKINGSET_REFAULT,
  143. WORKINGSET_ACTIVATE,
  144. WORKINGSET_NODERECLAIM,
  145. NR_ANON_TRANSPARENT_HUGEPAGES,
  146. NR_FREE_CMA_PAGES,
  147. NR_VM_ZONE_STAT_ITEMS };
  148. /*
  149. * We do arithmetic on the LRU lists in various places in the code,
  150. * so it is important to keep the active lists LRU_ACTIVE higher in
  151. * the array than the corresponding inactive lists, and to keep
  152. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  153. *
  154. * This has to be kept in sync with the statistics in zone_stat_item
  155. * above and the descriptions in vmstat_text in mm/vmstat.c
  156. */
  157. #define LRU_BASE 0
  158. #define LRU_ACTIVE 1
  159. #define LRU_FILE 2
  160. enum lru_list {
  161. LRU_INACTIVE_ANON = LRU_BASE,
  162. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  163. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  164. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  165. LRU_UNEVICTABLE,
  166. NR_LRU_LISTS
  167. };
  168. #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
  169. #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
  170. static inline int is_file_lru(enum lru_list lru)
  171. {
  172. return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
  173. }
  174. static inline int is_active_lru(enum lru_list lru)
  175. {
  176. return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
  177. }
  178. struct zone_reclaim_stat {
  179. /*
  180. * The pageout code in vmscan.c keeps track of how many of the
  181. * mem/swap backed and file backed pages are referenced.
  182. * The higher the rotated/scanned ratio, the more valuable
  183. * that cache is.
  184. *
  185. * The anon LRU stats live in [0], file LRU stats in [1]
  186. */
  187. unsigned long recent_rotated[2];
  188. unsigned long recent_scanned[2];
  189. };
  190. struct lruvec {
  191. struct list_head lists[NR_LRU_LISTS];
  192. struct zone_reclaim_stat reclaim_stat;
  193. /* Evictions & activations on the inactive file list */
  194. atomic_long_t inactive_age;
  195. #ifdef CONFIG_MEMCG
  196. struct zone *zone;
  197. #endif
  198. };
  199. /* Mask used at gathering information at once (see memcontrol.c) */
  200. #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
  201. #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
  202. #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
  203. /* Isolate clean file */
  204. #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
  205. /* Isolate unmapped file */
  206. #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
  207. /* Isolate for asynchronous migration */
  208. #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
  209. /* Isolate unevictable pages */
  210. #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
  211. /* LRU Isolation modes. */
  212. typedef unsigned __bitwise__ isolate_mode_t;
  213. enum zone_watermarks {
  214. WMARK_MIN,
  215. WMARK_LOW,
  216. WMARK_HIGH,
  217. NR_WMARK
  218. };
  219. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  220. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  221. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  222. struct per_cpu_pages {
  223. int count; /* number of pages in the list */
  224. int high; /* high watermark, emptying needed */
  225. int batch; /* chunk size for buddy add/remove */
  226. /* Lists of pages, one per migrate type stored on the pcp-lists */
  227. struct list_head lists[MIGRATE_PCPTYPES];
  228. };
  229. struct per_cpu_pageset {
  230. struct per_cpu_pages pcp;
  231. #ifdef CONFIG_NUMA
  232. s8 expire;
  233. #endif
  234. #ifdef CONFIG_SMP
  235. s8 stat_threshold;
  236. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  237. #endif
  238. };
  239. #endif /* !__GENERATING_BOUNDS.H */
  240. enum zone_type {
  241. #ifdef CONFIG_ZONE_DMA
  242. /*
  243. * ZONE_DMA is used when there are devices that are not able
  244. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  245. * carve out the portion of memory that is needed for these devices.
  246. * The range is arch specific.
  247. *
  248. * Some examples
  249. *
  250. * Architecture Limit
  251. * ---------------------------
  252. * parisc, ia64, sparc <4G
  253. * s390 <2G
  254. * arm Various
  255. * alpha Unlimited or 0-16MB.
  256. *
  257. * i386, x86_64 and multiple other arches
  258. * <16M.
  259. */
  260. ZONE_DMA,
  261. #endif
  262. #ifdef CONFIG_ZONE_DMA32
  263. /*
  264. * x86_64 needs two ZONE_DMAs because it supports devices that are
  265. * only able to do DMA to the lower 16M but also 32 bit devices that
  266. * can only do DMA areas below 4G.
  267. */
  268. ZONE_DMA32,
  269. #endif
  270. /*
  271. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  272. * performed on pages in ZONE_NORMAL if the DMA devices support
  273. * transfers to all addressable memory.
  274. */
  275. ZONE_NORMAL,
  276. #ifdef CONFIG_HIGHMEM
  277. /*
  278. * A memory area that is only addressable by the kernel through
  279. * mapping portions into its own address space. This is for example
  280. * used by i386 to allow the kernel to address the memory beyond
  281. * 900MB. The kernel will set up special mappings (page
  282. * table entries on i386) for each page that the kernel needs to
  283. * access.
  284. */
  285. ZONE_HIGHMEM,
  286. #endif
  287. ZONE_MOVABLE,
  288. #ifdef CONFIG_ZONE_DEVICE
  289. ZONE_DEVICE,
  290. #endif
  291. __MAX_NR_ZONES
  292. };
  293. #ifndef __GENERATING_BOUNDS_H
  294. struct zone {
  295. /* Read-mostly fields */
  296. /* zone watermarks, access with *_wmark_pages(zone) macros */
  297. unsigned long watermark[NR_WMARK];
  298. unsigned long nr_reserved_highatomic;
  299. /*
  300. * We don't know if the memory that we're going to allocate will be
  301. * freeable or/and it will be released eventually, so to avoid totally
  302. * wasting several GB of ram we must reserve some of the lower zone
  303. * memory (otherwise we risk to run OOM on the lower zones despite
  304. * there being tons of freeable ram on the higher zones). This array is
  305. * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
  306. * changes.
  307. */
  308. long lowmem_reserve[MAX_NR_ZONES];
  309. #ifdef CONFIG_NUMA
  310. int node;
  311. #endif
  312. /*
  313. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  314. * this zone's LRU. Maintained by the pageout code.
  315. */
  316. unsigned int inactive_ratio;
  317. struct pglist_data *zone_pgdat;
  318. struct per_cpu_pageset __percpu *pageset;
  319. /*
  320. * This is a per-zone reserve of pages that are not available
  321. * to userspace allocations.
  322. */
  323. unsigned long totalreserve_pages;
  324. #ifndef CONFIG_SPARSEMEM
  325. /*
  326. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  327. * In SPARSEMEM, this map is stored in struct mem_section
  328. */
  329. unsigned long *pageblock_flags;
  330. #endif /* CONFIG_SPARSEMEM */
  331. #ifdef CONFIG_NUMA
  332. /*
  333. * zone reclaim becomes active if more unmapped pages exist.
  334. */
  335. unsigned long min_unmapped_pages;
  336. unsigned long min_slab_pages;
  337. #endif /* CONFIG_NUMA */
  338. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  339. unsigned long zone_start_pfn;
  340. /*
  341. * spanned_pages is the total pages spanned by the zone, including
  342. * holes, which is calculated as:
  343. * spanned_pages = zone_end_pfn - zone_start_pfn;
  344. *
  345. * present_pages is physical pages existing within the zone, which
  346. * is calculated as:
  347. * present_pages = spanned_pages - absent_pages(pages in holes);
  348. *
  349. * managed_pages is present pages managed by the buddy system, which
  350. * is calculated as (reserved_pages includes pages allocated by the
  351. * bootmem allocator):
  352. * managed_pages = present_pages - reserved_pages;
  353. *
  354. * So present_pages may be used by memory hotplug or memory power
  355. * management logic to figure out unmanaged pages by checking
  356. * (present_pages - managed_pages). And managed_pages should be used
  357. * by page allocator and vm scanner to calculate all kinds of watermarks
  358. * and thresholds.
  359. *
  360. * Locking rules:
  361. *
  362. * zone_start_pfn and spanned_pages are protected by span_seqlock.
  363. * It is a seqlock because it has to be read outside of zone->lock,
  364. * and it is done in the main allocator path. But, it is written
  365. * quite infrequently.
  366. *
  367. * The span_seq lock is declared along with zone->lock because it is
  368. * frequently read in proximity to zone->lock. It's good to
  369. * give them a chance of being in the same cacheline.
  370. *
  371. * Write access to present_pages at runtime should be protected by
  372. * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
  373. * present_pages should get_online_mems() to get a stable value.
  374. *
  375. * Read access to managed_pages should be safe because it's unsigned
  376. * long. Write access to zone->managed_pages and totalram_pages are
  377. * protected by managed_page_count_lock at runtime. Idealy only
  378. * adjust_managed_page_count() should be used instead of directly
  379. * touching zone->managed_pages and totalram_pages.
  380. */
  381. unsigned long managed_pages;
  382. unsigned long spanned_pages;
  383. unsigned long present_pages;
  384. const char *name;
  385. #ifdef CONFIG_MEMORY_ISOLATION
  386. /*
  387. * Number of isolated pageblock. It is used to solve incorrect
  388. * freepage counting problem due to racy retrieving migratetype
  389. * of pageblock. Protected by zone->lock.
  390. */
  391. unsigned long nr_isolate_pageblock;
  392. #endif
  393. #ifdef CONFIG_MEMORY_HOTPLUG
  394. /* see spanned/present_pages for more description */
  395. seqlock_t span_seqlock;
  396. #endif
  397. /*
  398. * wait_table -- the array holding the hash table
  399. * wait_table_hash_nr_entries -- the size of the hash table array
  400. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  401. *
  402. * The purpose of all these is to keep track of the people
  403. * waiting for a page to become available and make them
  404. * runnable again when possible. The trouble is that this
  405. * consumes a lot of space, especially when so few things
  406. * wait on pages at a given time. So instead of using
  407. * per-page waitqueues, we use a waitqueue hash table.
  408. *
  409. * The bucket discipline is to sleep on the same queue when
  410. * colliding and wake all in that wait queue when removing.
  411. * When something wakes, it must check to be sure its page is
  412. * truly available, a la thundering herd. The cost of a
  413. * collision is great, but given the expected load of the
  414. * table, they should be so rare as to be outweighed by the
  415. * benefits from the saved space.
  416. *
  417. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  418. * primary users of these fields, and in mm/page_alloc.c
  419. * free_area_init_core() performs the initialization of them.
  420. */
  421. wait_queue_head_t *wait_table;
  422. unsigned long wait_table_hash_nr_entries;
  423. unsigned long wait_table_bits;
  424. ZONE_PADDING(_pad1_)
  425. /* free areas of different sizes */
  426. struct free_area free_area[MAX_ORDER];
  427. /* zone flags, see below */
  428. unsigned long flags;
  429. /* Write-intensive fields used from the page allocator */
  430. spinlock_t lock;
  431. ZONE_PADDING(_pad2_)
  432. /* Write-intensive fields used by page reclaim */
  433. /* Fields commonly accessed by the page reclaim scanner */
  434. spinlock_t lru_lock;
  435. struct lruvec lruvec;
  436. /*
  437. * When free pages are below this point, additional steps are taken
  438. * when reading the number of free pages to avoid per-cpu counter
  439. * drift allowing watermarks to be breached
  440. */
  441. unsigned long percpu_drift_mark;
  442. #if defined CONFIG_COMPACTION || defined CONFIG_CMA
  443. /* pfn where compaction free scanner should start */
  444. unsigned long compact_cached_free_pfn;
  445. /* pfn where async and sync compaction migration scanner should start */
  446. unsigned long compact_cached_migrate_pfn[2];
  447. #endif
  448. #ifdef CONFIG_COMPACTION
  449. /*
  450. * On compaction failure, 1<<compact_defer_shift compactions
  451. * are skipped before trying again. The number attempted since
  452. * last failure is tracked with compact_considered.
  453. */
  454. unsigned int compact_considered;
  455. unsigned int compact_defer_shift;
  456. int compact_order_failed;
  457. #endif
  458. #if defined CONFIG_COMPACTION || defined CONFIG_CMA
  459. /* Set to true when the PG_migrate_skip bits should be cleared */
  460. bool compact_blockskip_flush;
  461. #endif
  462. bool contiguous;
  463. ZONE_PADDING(_pad3_)
  464. /* Zone statistics */
  465. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  466. } ____cacheline_internodealigned_in_smp;
  467. enum zone_flags {
  468. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  469. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  470. ZONE_CONGESTED, /* zone has many dirty pages backed by
  471. * a congested BDI
  472. */
  473. ZONE_DIRTY, /* reclaim scanning has recently found
  474. * many dirty file pages at the tail
  475. * of the LRU.
  476. */
  477. ZONE_WRITEBACK, /* reclaim scanning has recently found
  478. * many pages under writeback
  479. */
  480. ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */
  481. };
  482. static inline unsigned long zone_end_pfn(const struct zone *zone)
  483. {
  484. return zone->zone_start_pfn + zone->spanned_pages;
  485. }
  486. static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
  487. {
  488. return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
  489. }
  490. static inline bool zone_is_initialized(struct zone *zone)
  491. {
  492. return !!zone->wait_table;
  493. }
  494. static inline bool zone_is_empty(struct zone *zone)
  495. {
  496. return zone->spanned_pages == 0;
  497. }
  498. /*
  499. * The "priority" of VM scanning is how much of the queues we will scan in one
  500. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  501. * queues ("queue_length >> 12") during an aging round.
  502. */
  503. #define DEF_PRIORITY 12
  504. /* Maximum number of zones on a zonelist */
  505. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  506. enum {
  507. ZONELIST_FALLBACK, /* zonelist with fallback */
  508. #ifdef CONFIG_NUMA
  509. /*
  510. * The NUMA zonelists are doubled because we need zonelists that
  511. * restrict the allocations to a single node for __GFP_THISNODE.
  512. */
  513. ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
  514. #endif
  515. MAX_ZONELISTS
  516. };
  517. /*
  518. * This struct contains information about a zone in a zonelist. It is stored
  519. * here to avoid dereferences into large structures and lookups of tables
  520. */
  521. struct zoneref {
  522. struct zone *zone; /* Pointer to actual zone */
  523. int zone_idx; /* zone_idx(zoneref->zone) */
  524. };
  525. /*
  526. * One allocation request operates on a zonelist. A zonelist
  527. * is a list of zones, the first one is the 'goal' of the
  528. * allocation, the other zones are fallback zones, in decreasing
  529. * priority.
  530. *
  531. * To speed the reading of the zonelist, the zonerefs contain the zone index
  532. * of the entry being read. Helper functions to access information given
  533. * a struct zoneref are
  534. *
  535. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  536. * zonelist_zone_idx() - Return the index of the zone for an entry
  537. * zonelist_node_idx() - Return the index of the node for an entry
  538. */
  539. struct zonelist {
  540. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  541. };
  542. #ifndef CONFIG_DISCONTIGMEM
  543. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  544. extern struct page *mem_map;
  545. #endif
  546. /*
  547. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  548. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  549. * zone denotes.
  550. *
  551. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  552. * it's memory layout.
  553. *
  554. * Memory statistics and page replacement data structures are maintained on a
  555. * per-zone basis.
  556. */
  557. struct bootmem_data;
  558. typedef struct pglist_data {
  559. struct zone node_zones[MAX_NR_ZONES];
  560. struct zonelist node_zonelists[MAX_ZONELISTS];
  561. int nr_zones;
  562. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  563. struct page *node_mem_map;
  564. #ifdef CONFIG_PAGE_EXTENSION
  565. struct page_ext *node_page_ext;
  566. #endif
  567. #endif
  568. #ifndef CONFIG_NO_BOOTMEM
  569. struct bootmem_data *bdata;
  570. #endif
  571. #ifdef CONFIG_MEMORY_HOTPLUG
  572. /*
  573. * Must be held any time you expect node_start_pfn, node_present_pages
  574. * or node_spanned_pages stay constant. Holding this will also
  575. * guarantee that any pfn_valid() stays that way.
  576. *
  577. * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
  578. * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
  579. *
  580. * Nests above zone->lock and zone->span_seqlock
  581. */
  582. spinlock_t node_size_lock;
  583. #endif
  584. unsigned long node_start_pfn;
  585. unsigned long node_present_pages; /* total number of physical pages */
  586. unsigned long node_spanned_pages; /* total size of physical page
  587. range, including holes */
  588. int node_id;
  589. wait_queue_head_t kswapd_wait;
  590. wait_queue_head_t pfmemalloc_wait;
  591. struct task_struct *kswapd; /* Protected by
  592. mem_hotplug_begin/end() */
  593. int kswapd_max_order;
  594. enum zone_type classzone_idx;
  595. #ifdef CONFIG_COMPACTION
  596. int kcompactd_max_order;
  597. enum zone_type kcompactd_classzone_idx;
  598. wait_queue_head_t kcompactd_wait;
  599. struct task_struct *kcompactd;
  600. #endif
  601. #ifdef CONFIG_NUMA_BALANCING
  602. /* Lock serializing the migrate rate limiting window */
  603. spinlock_t numabalancing_migrate_lock;
  604. /* Rate limiting time interval */
  605. unsigned long numabalancing_migrate_next_window;
  606. /* Number of pages migrated during the rate limiting time interval */
  607. unsigned long numabalancing_migrate_nr_pages;
  608. #endif
  609. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  610. /*
  611. * If memory initialisation on large machines is deferred then this
  612. * is the first PFN that needs to be initialised.
  613. */
  614. unsigned long first_deferred_pfn;
  615. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  616. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  617. spinlock_t split_queue_lock;
  618. struct list_head split_queue;
  619. unsigned long split_queue_len;
  620. #endif
  621. } pg_data_t;
  622. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  623. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  624. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  625. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  626. #else
  627. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  628. #endif
  629. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  630. #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
  631. #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
  632. static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
  633. {
  634. return pgdat->node_start_pfn + pgdat->node_spanned_pages;
  635. }
  636. static inline bool pgdat_is_empty(pg_data_t *pgdat)
  637. {
  638. return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
  639. }
  640. static inline int zone_id(const struct zone *zone)
  641. {
  642. struct pglist_data *pgdat = zone->zone_pgdat;
  643. return zone - pgdat->node_zones;
  644. }
  645. #ifdef CONFIG_ZONE_DEVICE
  646. static inline bool is_dev_zone(const struct zone *zone)
  647. {
  648. return zone_id(zone) == ZONE_DEVICE;
  649. }
  650. #else
  651. static inline bool is_dev_zone(const struct zone *zone)
  652. {
  653. return false;
  654. }
  655. #endif
  656. #include <linux/memory_hotplug.h>
  657. extern struct mutex zonelists_mutex;
  658. void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
  659. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
  660. bool zone_watermark_ok(struct zone *z, unsigned int order,
  661. unsigned long mark, int classzone_idx, int alloc_flags);
  662. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  663. unsigned long mark, int classzone_idx);
  664. enum memmap_context {
  665. MEMMAP_EARLY,
  666. MEMMAP_HOTPLUG,
  667. };
  668. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  669. unsigned long size);
  670. extern void lruvec_init(struct lruvec *lruvec);
  671. static inline struct zone *lruvec_zone(struct lruvec *lruvec)
  672. {
  673. #ifdef CONFIG_MEMCG
  674. return lruvec->zone;
  675. #else
  676. return container_of(lruvec, struct zone, lruvec);
  677. #endif
  678. }
  679. extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
  680. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  681. void memory_present(int nid, unsigned long start, unsigned long end);
  682. #else
  683. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  684. #endif
  685. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  686. int local_memory_node(int node_id);
  687. #else
  688. static inline int local_memory_node(int node_id) { return node_id; };
  689. #endif
  690. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  691. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  692. #endif
  693. /*
  694. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  695. */
  696. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  697. static inline int populated_zone(struct zone *zone)
  698. {
  699. return (!!zone->present_pages);
  700. }
  701. extern int movable_zone;
  702. #ifdef CONFIG_HIGHMEM
  703. static inline int zone_movable_is_highmem(void)
  704. {
  705. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  706. return movable_zone == ZONE_HIGHMEM;
  707. #else
  708. return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
  709. #endif
  710. }
  711. #endif
  712. static inline int is_highmem_idx(enum zone_type idx)
  713. {
  714. #ifdef CONFIG_HIGHMEM
  715. return (idx == ZONE_HIGHMEM ||
  716. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  717. #else
  718. return 0;
  719. #endif
  720. }
  721. /**
  722. * is_highmem - helper function to quickly check if a struct zone is a
  723. * highmem zone or not. This is an attempt to keep references
  724. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  725. * @zone - pointer to struct zone variable
  726. */
  727. static inline int is_highmem(struct zone *zone)
  728. {
  729. #ifdef CONFIG_HIGHMEM
  730. return is_highmem_idx(zone_idx(zone));
  731. #else
  732. return 0;
  733. #endif
  734. }
  735. /* These two functions are used to setup the per zone pages min values */
  736. struct ctl_table;
  737. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  738. void __user *, size_t *, loff_t *);
  739. int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
  740. void __user *, size_t *, loff_t *);
  741. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  742. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  743. void __user *, size_t *, loff_t *);
  744. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  745. void __user *, size_t *, loff_t *);
  746. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  747. void __user *, size_t *, loff_t *);
  748. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  749. void __user *, size_t *, loff_t *);
  750. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  751. void __user *, size_t *, loff_t *);
  752. extern char numa_zonelist_order[];
  753. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  754. #ifndef CONFIG_NEED_MULTIPLE_NODES
  755. extern struct pglist_data contig_page_data;
  756. #define NODE_DATA(nid) (&contig_page_data)
  757. #define NODE_MEM_MAP(nid) mem_map
  758. #else /* CONFIG_NEED_MULTIPLE_NODES */
  759. #include <asm/mmzone.h>
  760. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  761. extern struct pglist_data *first_online_pgdat(void);
  762. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  763. extern struct zone *next_zone(struct zone *zone);
  764. /**
  765. * for_each_online_pgdat - helper macro to iterate over all online nodes
  766. * @pgdat - pointer to a pg_data_t variable
  767. */
  768. #define for_each_online_pgdat(pgdat) \
  769. for (pgdat = first_online_pgdat(); \
  770. pgdat; \
  771. pgdat = next_online_pgdat(pgdat))
  772. /**
  773. * for_each_zone - helper macro to iterate over all memory zones
  774. * @zone - pointer to struct zone variable
  775. *
  776. * The user only needs to declare the zone variable, for_each_zone
  777. * fills it in.
  778. */
  779. #define for_each_zone(zone) \
  780. for (zone = (first_online_pgdat())->node_zones; \
  781. zone; \
  782. zone = next_zone(zone))
  783. #define for_each_populated_zone(zone) \
  784. for (zone = (first_online_pgdat())->node_zones; \
  785. zone; \
  786. zone = next_zone(zone)) \
  787. if (!populated_zone(zone)) \
  788. ; /* do nothing */ \
  789. else
  790. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  791. {
  792. return zoneref->zone;
  793. }
  794. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  795. {
  796. return zoneref->zone_idx;
  797. }
  798. static inline int zonelist_node_idx(struct zoneref *zoneref)
  799. {
  800. #ifdef CONFIG_NUMA
  801. /* zone_to_nid not available in this context */
  802. return zoneref->zone->node;
  803. #else
  804. return 0;
  805. #endif /* CONFIG_NUMA */
  806. }
  807. struct zoneref *__next_zones_zonelist(struct zoneref *z,
  808. enum zone_type highest_zoneidx,
  809. nodemask_t *nodes);
  810. /**
  811. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  812. * @z - The cursor used as a starting point for the search
  813. * @highest_zoneidx - The zone index of the highest zone to return
  814. * @nodes - An optional nodemask to filter the zonelist with
  815. *
  816. * This function returns the next zone at or below a given zone index that is
  817. * within the allowed nodemask using a cursor as the starting point for the
  818. * search. The zoneref returned is a cursor that represents the current zone
  819. * being examined. It should be advanced by one before calling
  820. * next_zones_zonelist again.
  821. */
  822. static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
  823. enum zone_type highest_zoneidx,
  824. nodemask_t *nodes)
  825. {
  826. if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
  827. return z;
  828. return __next_zones_zonelist(z, highest_zoneidx, nodes);
  829. }
  830. /**
  831. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  832. * @zonelist - The zonelist to search for a suitable zone
  833. * @highest_zoneidx - The zone index of the highest zone to return
  834. * @nodes - An optional nodemask to filter the zonelist with
  835. * @zone - The first suitable zone found is returned via this parameter
  836. *
  837. * This function returns the first zone at or below a given zone index that is
  838. * within the allowed nodemask. The zoneref returned is a cursor that can be
  839. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  840. * one before calling.
  841. */
  842. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  843. enum zone_type highest_zoneidx,
  844. nodemask_t *nodes,
  845. struct zone **zone)
  846. {
  847. struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,
  848. highest_zoneidx, nodes);
  849. *zone = zonelist_zone(z);
  850. return z;
  851. }
  852. /**
  853. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  854. * @zone - The current zone in the iterator
  855. * @z - The current pointer within zonelist->zones being iterated
  856. * @zlist - The zonelist being iterated
  857. * @highidx - The zone index of the highest zone to return
  858. * @nodemask - Nodemask allowed by the allocator
  859. *
  860. * This iterator iterates though all zones at or below a given zone index and
  861. * within a given nodemask
  862. */
  863. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  864. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  865. zone; \
  866. z = next_zones_zonelist(++z, highidx, nodemask), \
  867. zone = zonelist_zone(z)) \
  868. /**
  869. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  870. * @zone - The current zone in the iterator
  871. * @z - The current pointer within zonelist->zones being iterated
  872. * @zlist - The zonelist being iterated
  873. * @highidx - The zone index of the highest zone to return
  874. *
  875. * This iterator iterates though all zones at or below a given zone index.
  876. */
  877. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  878. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  879. #ifdef CONFIG_SPARSEMEM
  880. #include <asm/sparsemem.h>
  881. #endif
  882. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  883. !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  884. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  885. {
  886. return 0;
  887. }
  888. #endif
  889. #ifdef CONFIG_FLATMEM
  890. #define pfn_to_nid(pfn) (0)
  891. #endif
  892. #ifdef CONFIG_SPARSEMEM
  893. /*
  894. * SECTION_SHIFT #bits space required to store a section #
  895. *
  896. * PA_SECTION_SHIFT physical address to/from section number
  897. * PFN_SECTION_SHIFT pfn to/from section number
  898. */
  899. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  900. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  901. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  902. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  903. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  904. #define SECTION_BLOCKFLAGS_BITS \
  905. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  906. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  907. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  908. #endif
  909. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  910. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  911. #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
  912. #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
  913. struct page;
  914. struct page_ext;
  915. struct mem_section {
  916. /*
  917. * This is, logically, a pointer to an array of struct
  918. * pages. However, it is stored with some other magic.
  919. * (see sparse.c::sparse_init_one_section())
  920. *
  921. * Additionally during early boot we encode node id of
  922. * the location of the section here to guide allocation.
  923. * (see sparse.c::memory_present())
  924. *
  925. * Making it a UL at least makes someone do a cast
  926. * before using it wrong.
  927. */
  928. unsigned long section_mem_map;
  929. /* See declaration of similar field in struct zone */
  930. unsigned long *pageblock_flags;
  931. #ifdef CONFIG_PAGE_EXTENSION
  932. /*
  933. * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
  934. * section. (see page_ext.h about this.)
  935. */
  936. struct page_ext *page_ext;
  937. unsigned long pad;
  938. #endif
  939. /*
  940. * WARNING: mem_section must be a power-of-2 in size for the
  941. * calculation and use of SECTION_ROOT_MASK to make sense.
  942. */
  943. };
  944. #ifdef CONFIG_SPARSEMEM_EXTREME
  945. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  946. #else
  947. #define SECTIONS_PER_ROOT 1
  948. #endif
  949. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  950. #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
  951. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  952. #ifdef CONFIG_SPARSEMEM_EXTREME
  953. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  954. #else
  955. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  956. #endif
  957. static inline struct mem_section *__nr_to_section(unsigned long nr)
  958. {
  959. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  960. return NULL;
  961. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  962. }
  963. extern int __section_nr(struct mem_section* ms);
  964. extern unsigned long usemap_size(void);
  965. /*
  966. * We use the lower bits of the mem_map pointer to store
  967. * a little bit of information. There should be at least
  968. * 3 bits here due to 32-bit alignment.
  969. */
  970. #define SECTION_MARKED_PRESENT (1UL<<0)
  971. #define SECTION_HAS_MEM_MAP (1UL<<1)
  972. #define SECTION_MAP_LAST_BIT (1UL<<2)
  973. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  974. #define SECTION_NID_SHIFT 2
  975. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  976. {
  977. unsigned long map = section->section_mem_map;
  978. map &= SECTION_MAP_MASK;
  979. return (struct page *)map;
  980. }
  981. static inline int present_section(struct mem_section *section)
  982. {
  983. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  984. }
  985. static inline int present_section_nr(unsigned long nr)
  986. {
  987. return present_section(__nr_to_section(nr));
  988. }
  989. static inline int valid_section(struct mem_section *section)
  990. {
  991. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  992. }
  993. static inline int valid_section_nr(unsigned long nr)
  994. {
  995. return valid_section(__nr_to_section(nr));
  996. }
  997. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  998. {
  999. return __nr_to_section(pfn_to_section_nr(pfn));
  1000. }
  1001. #ifndef CONFIG_HAVE_ARCH_PFN_VALID
  1002. static inline int pfn_valid(unsigned long pfn)
  1003. {
  1004. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1005. return 0;
  1006. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1007. }
  1008. #endif
  1009. static inline int pfn_present(unsigned long pfn)
  1010. {
  1011. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1012. return 0;
  1013. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1014. }
  1015. /*
  1016. * These are _only_ used during initialisation, therefore they
  1017. * can use __initdata ... They could have names to indicate
  1018. * this restriction.
  1019. */
  1020. #ifdef CONFIG_NUMA
  1021. #define pfn_to_nid(pfn) \
  1022. ({ \
  1023. unsigned long __pfn_to_nid_pfn = (pfn); \
  1024. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  1025. })
  1026. #else
  1027. #define pfn_to_nid(pfn) (0)
  1028. #endif
  1029. #define early_pfn_valid(pfn) pfn_valid(pfn)
  1030. void sparse_init(void);
  1031. #else
  1032. #define sparse_init() do {} while (0)
  1033. #define sparse_index_init(_sec, _nid) do {} while (0)
  1034. #endif /* CONFIG_SPARSEMEM */
  1035. /*
  1036. * During memory init memblocks map pfns to nids. The search is expensive and
  1037. * this caches recent lookups. The implementation of __early_pfn_to_nid
  1038. * may treat start/end as pfns or sections.
  1039. */
  1040. struct mminit_pfnnid_cache {
  1041. unsigned long last_start;
  1042. unsigned long last_end;
  1043. int last_nid;
  1044. };
  1045. #ifndef early_pfn_valid
  1046. #define early_pfn_valid(pfn) (1)
  1047. #endif
  1048. void memory_present(int nid, unsigned long start, unsigned long end);
  1049. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  1050. /*
  1051. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  1052. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  1053. * pfn_valid_within() should be used in this case; we optimise this away
  1054. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  1055. */
  1056. #ifdef CONFIG_HOLES_IN_ZONE
  1057. #define pfn_valid_within(pfn) pfn_valid(pfn)
  1058. #else
  1059. #define pfn_valid_within(pfn) (1)
  1060. #endif
  1061. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  1062. /*
  1063. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  1064. * associated with it or not. In FLATMEM, it is expected that holes always
  1065. * have valid memmap as long as there is valid PFNs either side of the hole.
  1066. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  1067. * entire section.
  1068. *
  1069. * However, an ARM, and maybe other embedded architectures in the future
  1070. * free memmap backing holes to save memory on the assumption the memmap is
  1071. * never used. The page_zone linkages are then broken even though pfn_valid()
  1072. * returns true. A walker of the full memmap must then do this additional
  1073. * check to ensure the memmap they are looking at is sane by making sure
  1074. * the zone and PFN linkages are still valid. This is expensive, but walkers
  1075. * of the full memmap are extremely rare.
  1076. */
  1077. bool memmap_valid_within(unsigned long pfn,
  1078. struct page *page, struct zone *zone);
  1079. #else
  1080. static inline bool memmap_valid_within(unsigned long pfn,
  1081. struct page *page, struct zone *zone)
  1082. {
  1083. return true;
  1084. }
  1085. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  1086. #endif /* !__GENERATING_BOUNDS.H */
  1087. #endif /* !__ASSEMBLY__ */
  1088. #endif /* _LINUX_MMZONE_H */