safexcel_cipher.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985
  1. /*
  2. * Copyright (C) 2017 Marvell
  3. *
  4. * Antoine Tenart <antoine.tenart@free-electrons.com>
  5. *
  6. * This file is licensed under the terms of the GNU General Public
  7. * License version 2. This program is licensed "as is" without any
  8. * warranty of any kind, whether express or implied.
  9. */
  10. #include <linux/device.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/dmapool.h>
  13. #include <crypto/aead.h>
  14. #include <crypto/aes.h>
  15. #include <crypto/authenc.h>
  16. #include <crypto/sha.h>
  17. #include <crypto/skcipher.h>
  18. #include <crypto/internal/aead.h>
  19. #include <crypto/internal/skcipher.h>
  20. #include "safexcel.h"
  21. enum safexcel_cipher_direction {
  22. SAFEXCEL_ENCRYPT,
  23. SAFEXCEL_DECRYPT,
  24. };
  25. struct safexcel_cipher_ctx {
  26. struct safexcel_context base;
  27. struct safexcel_crypto_priv *priv;
  28. u32 mode;
  29. bool aead;
  30. __le32 key[8];
  31. unsigned int key_len;
  32. /* All the below is AEAD specific */
  33. u32 alg;
  34. u32 state_sz;
  35. u32 ipad[SHA256_DIGEST_SIZE / sizeof(u32)];
  36. u32 opad[SHA256_DIGEST_SIZE / sizeof(u32)];
  37. };
  38. struct safexcel_cipher_req {
  39. enum safexcel_cipher_direction direction;
  40. bool needs_inv;
  41. };
  42. static void safexcel_skcipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
  43. struct safexcel_command_desc *cdesc,
  44. u32 length)
  45. {
  46. struct safexcel_token *token;
  47. unsigned offset = 0;
  48. if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
  49. offset = AES_BLOCK_SIZE / sizeof(u32);
  50. memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
  51. cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
  52. }
  53. token = (struct safexcel_token *)(cdesc->control_data.token + offset);
  54. token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  55. token[0].packet_length = length;
  56. token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET |
  57. EIP197_TOKEN_STAT_LAST_HASH;
  58. token[0].instructions = EIP197_TOKEN_INS_LAST |
  59. EIP197_TOKEN_INS_TYPE_CRYTO |
  60. EIP197_TOKEN_INS_TYPE_OUTPUT;
  61. }
  62. static void safexcel_aead_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
  63. struct safexcel_command_desc *cdesc,
  64. enum safexcel_cipher_direction direction,
  65. u32 cryptlen, u32 assoclen, u32 digestsize)
  66. {
  67. struct safexcel_token *token;
  68. unsigned offset = 0;
  69. if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
  70. offset = AES_BLOCK_SIZE / sizeof(u32);
  71. memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
  72. cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
  73. }
  74. token = (struct safexcel_token *)(cdesc->control_data.token + offset);
  75. if (direction == SAFEXCEL_DECRYPT)
  76. cryptlen -= digestsize;
  77. token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  78. token[0].packet_length = assoclen;
  79. token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH |
  80. EIP197_TOKEN_INS_TYPE_OUTPUT;
  81. token[1].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  82. token[1].packet_length = cryptlen;
  83. token[1].stat = EIP197_TOKEN_STAT_LAST_HASH;
  84. token[1].instructions = EIP197_TOKEN_INS_LAST |
  85. EIP197_TOKEN_INS_TYPE_CRYTO |
  86. EIP197_TOKEN_INS_TYPE_HASH |
  87. EIP197_TOKEN_INS_TYPE_OUTPUT;
  88. if (direction == SAFEXCEL_ENCRYPT) {
  89. token[2].opcode = EIP197_TOKEN_OPCODE_INSERT;
  90. token[2].packet_length = digestsize;
  91. token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
  92. EIP197_TOKEN_STAT_LAST_PACKET;
  93. token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
  94. EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
  95. } else {
  96. token[2].opcode = EIP197_TOKEN_OPCODE_RETRIEVE;
  97. token[2].packet_length = digestsize;
  98. token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
  99. EIP197_TOKEN_STAT_LAST_PACKET;
  100. token[2].instructions = EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
  101. token[3].opcode = EIP197_TOKEN_OPCODE_VERIFY;
  102. token[3].packet_length = digestsize |
  103. EIP197_TOKEN_HASH_RESULT_VERIFY;
  104. token[3].stat = EIP197_TOKEN_STAT_LAST_HASH |
  105. EIP197_TOKEN_STAT_LAST_PACKET;
  106. token[3].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT;
  107. }
  108. }
  109. static int safexcel_skcipher_aes_setkey(struct crypto_skcipher *ctfm,
  110. const u8 *key, unsigned int len)
  111. {
  112. struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
  113. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  114. struct safexcel_crypto_priv *priv = ctx->priv;
  115. struct crypto_aes_ctx aes;
  116. int ret, i;
  117. ret = crypto_aes_expand_key(&aes, key, len);
  118. if (ret) {
  119. crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  120. return ret;
  121. }
  122. if (priv->version == EIP197 && ctx->base.ctxr_dma) {
  123. for (i = 0; i < len / sizeof(u32); i++) {
  124. if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
  125. ctx->base.needs_inv = true;
  126. break;
  127. }
  128. }
  129. }
  130. for (i = 0; i < len / sizeof(u32); i++)
  131. ctx->key[i] = cpu_to_le32(aes.key_enc[i]);
  132. ctx->key_len = len;
  133. memzero_explicit(&aes, sizeof(aes));
  134. return 0;
  135. }
  136. static int safexcel_aead_aes_setkey(struct crypto_aead *ctfm, const u8 *key,
  137. unsigned int len)
  138. {
  139. struct crypto_tfm *tfm = crypto_aead_tfm(ctfm);
  140. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  141. struct safexcel_ahash_export_state istate, ostate;
  142. struct safexcel_crypto_priv *priv = ctx->priv;
  143. struct crypto_authenc_keys keys;
  144. if (crypto_authenc_extractkeys(&keys, key, len) != 0)
  145. goto badkey;
  146. if (keys.enckeylen > sizeof(ctx->key))
  147. goto badkey;
  148. /* Encryption key */
  149. if (priv->version == EIP197 && ctx->base.ctxr_dma &&
  150. memcmp(ctx->key, keys.enckey, keys.enckeylen))
  151. ctx->base.needs_inv = true;
  152. /* Auth key */
  153. switch (ctx->alg) {
  154. case CONTEXT_CONTROL_CRYPTO_ALG_SHA224:
  155. if (safexcel_hmac_setkey("safexcel-sha224", keys.authkey,
  156. keys.authkeylen, &istate, &ostate))
  157. goto badkey;
  158. break;
  159. case CONTEXT_CONTROL_CRYPTO_ALG_SHA256:
  160. if (safexcel_hmac_setkey("safexcel-sha256", keys.authkey,
  161. keys.authkeylen, &istate, &ostate))
  162. goto badkey;
  163. break;
  164. default:
  165. dev_err(priv->dev, "aead: unsupported hash algorithm\n");
  166. goto badkey;
  167. }
  168. crypto_aead_set_flags(ctfm, crypto_aead_get_flags(ctfm) &
  169. CRYPTO_TFM_RES_MASK);
  170. if (priv->version == EIP197 && ctx->base.ctxr_dma &&
  171. (memcmp(ctx->ipad, istate.state, ctx->state_sz) ||
  172. memcmp(ctx->opad, ostate.state, ctx->state_sz)))
  173. ctx->base.needs_inv = true;
  174. /* Now copy the keys into the context */
  175. memcpy(ctx->key, keys.enckey, keys.enckeylen);
  176. ctx->key_len = keys.enckeylen;
  177. memcpy(ctx->ipad, &istate.state, ctx->state_sz);
  178. memcpy(ctx->opad, &ostate.state, ctx->state_sz);
  179. memzero_explicit(&keys, sizeof(keys));
  180. return 0;
  181. badkey:
  182. crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  183. memzero_explicit(&keys, sizeof(keys));
  184. return -EINVAL;
  185. }
  186. static int safexcel_context_control(struct safexcel_cipher_ctx *ctx,
  187. struct crypto_async_request *async,
  188. struct safexcel_cipher_req *sreq,
  189. struct safexcel_command_desc *cdesc)
  190. {
  191. struct safexcel_crypto_priv *priv = ctx->priv;
  192. int ctrl_size;
  193. if (ctx->aead) {
  194. if (sreq->direction == SAFEXCEL_ENCRYPT)
  195. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_ENCRYPT_HASH_OUT;
  196. else
  197. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_DECRYPT_IN;
  198. } else {
  199. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_OUT;
  200. /* The decryption control type is a combination of the
  201. * encryption type and CONTEXT_CONTROL_TYPE_NULL_IN, for all
  202. * types.
  203. */
  204. if (sreq->direction == SAFEXCEL_DECRYPT)
  205. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_NULL_IN;
  206. }
  207. cdesc->control_data.control0 |= CONTEXT_CONTROL_KEY_EN;
  208. cdesc->control_data.control1 |= ctx->mode;
  209. if (ctx->aead)
  210. cdesc->control_data.control0 |= CONTEXT_CONTROL_DIGEST_HMAC |
  211. ctx->alg;
  212. switch (ctx->key_len) {
  213. case AES_KEYSIZE_128:
  214. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128;
  215. break;
  216. case AES_KEYSIZE_192:
  217. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192;
  218. break;
  219. case AES_KEYSIZE_256:
  220. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256;
  221. break;
  222. default:
  223. dev_err(priv->dev, "aes keysize not supported: %u\n",
  224. ctx->key_len);
  225. return -EINVAL;
  226. }
  227. ctrl_size = ctx->key_len / sizeof(u32);
  228. if (ctx->aead)
  229. /* Take in account the ipad+opad digests */
  230. ctrl_size += ctx->state_sz / sizeof(u32) * 2;
  231. cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(ctrl_size);
  232. return 0;
  233. }
  234. static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
  235. struct crypto_async_request *async,
  236. struct scatterlist *src,
  237. struct scatterlist *dst,
  238. unsigned int cryptlen,
  239. struct safexcel_cipher_req *sreq,
  240. bool *should_complete, int *ret)
  241. {
  242. struct safexcel_result_desc *rdesc;
  243. int ndesc = 0;
  244. *ret = 0;
  245. spin_lock_bh(&priv->ring[ring].egress_lock);
  246. do {
  247. rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
  248. if (IS_ERR(rdesc)) {
  249. dev_err(priv->dev,
  250. "cipher: result: could not retrieve the result descriptor\n");
  251. *ret = PTR_ERR(rdesc);
  252. break;
  253. }
  254. if (likely(!*ret))
  255. *ret = safexcel_rdesc_check_errors(priv, rdesc);
  256. ndesc++;
  257. } while (!rdesc->last_seg);
  258. safexcel_complete(priv, ring);
  259. spin_unlock_bh(&priv->ring[ring].egress_lock);
  260. if (src == dst) {
  261. dma_unmap_sg(priv->dev, src,
  262. sg_nents_for_len(src, cryptlen),
  263. DMA_BIDIRECTIONAL);
  264. } else {
  265. dma_unmap_sg(priv->dev, src,
  266. sg_nents_for_len(src, cryptlen),
  267. DMA_TO_DEVICE);
  268. dma_unmap_sg(priv->dev, dst,
  269. sg_nents_for_len(dst, cryptlen),
  270. DMA_FROM_DEVICE);
  271. }
  272. *should_complete = true;
  273. return ndesc;
  274. }
  275. static int safexcel_aes_send(struct crypto_async_request *base, int ring,
  276. struct safexcel_request *request,
  277. struct safexcel_cipher_req *sreq,
  278. struct scatterlist *src, struct scatterlist *dst,
  279. unsigned int cryptlen, unsigned int assoclen,
  280. unsigned int digestsize, u8 *iv, int *commands,
  281. int *results)
  282. {
  283. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  284. struct safexcel_crypto_priv *priv = ctx->priv;
  285. struct safexcel_command_desc *cdesc;
  286. struct safexcel_result_desc *rdesc;
  287. struct scatterlist *sg;
  288. unsigned int totlen = cryptlen + assoclen;
  289. int nr_src, nr_dst, n_cdesc = 0, n_rdesc = 0, queued = totlen;
  290. int i, ret = 0;
  291. if (src == dst) {
  292. nr_src = dma_map_sg(priv->dev, src,
  293. sg_nents_for_len(src, totlen),
  294. DMA_BIDIRECTIONAL);
  295. nr_dst = nr_src;
  296. if (!nr_src)
  297. return -EINVAL;
  298. } else {
  299. nr_src = dma_map_sg(priv->dev, src,
  300. sg_nents_for_len(src, totlen),
  301. DMA_TO_DEVICE);
  302. if (!nr_src)
  303. return -EINVAL;
  304. nr_dst = dma_map_sg(priv->dev, dst,
  305. sg_nents_for_len(dst, totlen),
  306. DMA_FROM_DEVICE);
  307. if (!nr_dst) {
  308. dma_unmap_sg(priv->dev, src,
  309. sg_nents_for_len(src, totlen),
  310. DMA_TO_DEVICE);
  311. return -EINVAL;
  312. }
  313. }
  314. memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len);
  315. if (ctx->aead) {
  316. memcpy(ctx->base.ctxr->data + ctx->key_len / sizeof(u32),
  317. ctx->ipad, ctx->state_sz);
  318. memcpy(ctx->base.ctxr->data + (ctx->key_len + ctx->state_sz) / sizeof(u32),
  319. ctx->opad, ctx->state_sz);
  320. }
  321. spin_lock_bh(&priv->ring[ring].egress_lock);
  322. /* command descriptors */
  323. for_each_sg(src, sg, nr_src, i) {
  324. int len = sg_dma_len(sg);
  325. /* Do not overflow the request */
  326. if (queued - len < 0)
  327. len = queued;
  328. cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len),
  329. sg_dma_address(sg), len, totlen,
  330. ctx->base.ctxr_dma);
  331. if (IS_ERR(cdesc)) {
  332. /* No space left in the command descriptor ring */
  333. ret = PTR_ERR(cdesc);
  334. goto cdesc_rollback;
  335. }
  336. n_cdesc++;
  337. if (n_cdesc == 1) {
  338. safexcel_context_control(ctx, base, sreq, cdesc);
  339. if (ctx->aead)
  340. safexcel_aead_token(ctx, iv, cdesc,
  341. sreq->direction, cryptlen,
  342. assoclen, digestsize);
  343. else
  344. safexcel_skcipher_token(ctx, iv, cdesc,
  345. cryptlen);
  346. }
  347. queued -= len;
  348. if (!queued)
  349. break;
  350. }
  351. /* result descriptors */
  352. for_each_sg(dst, sg, nr_dst, i) {
  353. bool first = !i, last = (i == nr_dst - 1);
  354. u32 len = sg_dma_len(sg);
  355. rdesc = safexcel_add_rdesc(priv, ring, first, last,
  356. sg_dma_address(sg), len);
  357. if (IS_ERR(rdesc)) {
  358. /* No space left in the result descriptor ring */
  359. ret = PTR_ERR(rdesc);
  360. goto rdesc_rollback;
  361. }
  362. n_rdesc++;
  363. }
  364. spin_unlock_bh(&priv->ring[ring].egress_lock);
  365. request->req = base;
  366. *commands = n_cdesc;
  367. *results = n_rdesc;
  368. return 0;
  369. rdesc_rollback:
  370. for (i = 0; i < n_rdesc; i++)
  371. safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr);
  372. cdesc_rollback:
  373. for (i = 0; i < n_cdesc; i++)
  374. safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
  375. spin_unlock_bh(&priv->ring[ring].egress_lock);
  376. if (src == dst) {
  377. dma_unmap_sg(priv->dev, src,
  378. sg_nents_for_len(src, totlen),
  379. DMA_BIDIRECTIONAL);
  380. } else {
  381. dma_unmap_sg(priv->dev, src,
  382. sg_nents_for_len(src, totlen),
  383. DMA_TO_DEVICE);
  384. dma_unmap_sg(priv->dev, dst,
  385. sg_nents_for_len(dst, totlen),
  386. DMA_FROM_DEVICE);
  387. }
  388. return ret;
  389. }
  390. static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
  391. int ring,
  392. struct crypto_async_request *base,
  393. bool *should_complete, int *ret)
  394. {
  395. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  396. struct safexcel_result_desc *rdesc;
  397. int ndesc = 0, enq_ret;
  398. *ret = 0;
  399. spin_lock_bh(&priv->ring[ring].egress_lock);
  400. do {
  401. rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
  402. if (IS_ERR(rdesc)) {
  403. dev_err(priv->dev,
  404. "cipher: invalidate: could not retrieve the result descriptor\n");
  405. *ret = PTR_ERR(rdesc);
  406. break;
  407. }
  408. if (rdesc->result_data.error_code) {
  409. dev_err(priv->dev, "cipher: invalidate: result descriptor error (%d)\n",
  410. rdesc->result_data.error_code);
  411. *ret = -EIO;
  412. }
  413. ndesc++;
  414. } while (!rdesc->last_seg);
  415. safexcel_complete(priv, ring);
  416. spin_unlock_bh(&priv->ring[ring].egress_lock);
  417. if (ctx->base.exit_inv) {
  418. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  419. ctx->base.ctxr_dma);
  420. *should_complete = true;
  421. return ndesc;
  422. }
  423. ring = safexcel_select_ring(priv);
  424. ctx->base.ring = ring;
  425. spin_lock_bh(&priv->ring[ring].queue_lock);
  426. enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
  427. spin_unlock_bh(&priv->ring[ring].queue_lock);
  428. if (enq_ret != -EINPROGRESS)
  429. *ret = enq_ret;
  430. queue_work(priv->ring[ring].workqueue,
  431. &priv->ring[ring].work_data.work);
  432. *should_complete = false;
  433. return ndesc;
  434. }
  435. static int safexcel_skcipher_handle_result(struct safexcel_crypto_priv *priv,
  436. int ring,
  437. struct crypto_async_request *async,
  438. bool *should_complete, int *ret)
  439. {
  440. struct skcipher_request *req = skcipher_request_cast(async);
  441. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  442. int err;
  443. if (sreq->needs_inv) {
  444. sreq->needs_inv = false;
  445. err = safexcel_handle_inv_result(priv, ring, async,
  446. should_complete, ret);
  447. } else {
  448. err = safexcel_handle_req_result(priv, ring, async, req->src,
  449. req->dst, req->cryptlen, sreq,
  450. should_complete, ret);
  451. }
  452. return err;
  453. }
  454. static int safexcel_aead_handle_result(struct safexcel_crypto_priv *priv,
  455. int ring,
  456. struct crypto_async_request *async,
  457. bool *should_complete, int *ret)
  458. {
  459. struct aead_request *req = aead_request_cast(async);
  460. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  461. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  462. int err;
  463. if (sreq->needs_inv) {
  464. sreq->needs_inv = false;
  465. err = safexcel_handle_inv_result(priv, ring, async,
  466. should_complete, ret);
  467. } else {
  468. err = safexcel_handle_req_result(priv, ring, async, req->src,
  469. req->dst,
  470. req->cryptlen + crypto_aead_authsize(tfm),
  471. sreq, should_complete, ret);
  472. }
  473. return err;
  474. }
  475. static int safexcel_cipher_send_inv(struct crypto_async_request *base,
  476. int ring, struct safexcel_request *request,
  477. int *commands, int *results)
  478. {
  479. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  480. struct safexcel_crypto_priv *priv = ctx->priv;
  481. int ret;
  482. ret = safexcel_invalidate_cache(base, priv, ctx->base.ctxr_dma, ring,
  483. request);
  484. if (unlikely(ret))
  485. return ret;
  486. *commands = 1;
  487. *results = 1;
  488. return 0;
  489. }
  490. static int safexcel_skcipher_send(struct crypto_async_request *async, int ring,
  491. struct safexcel_request *request,
  492. int *commands, int *results)
  493. {
  494. struct skcipher_request *req = skcipher_request_cast(async);
  495. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  496. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  497. struct safexcel_crypto_priv *priv = ctx->priv;
  498. int ret;
  499. BUG_ON(priv->version == EIP97 && sreq->needs_inv);
  500. if (sreq->needs_inv)
  501. ret = safexcel_cipher_send_inv(async, ring, request, commands,
  502. results);
  503. else
  504. ret = safexcel_aes_send(async, ring, request, sreq, req->src,
  505. req->dst, req->cryptlen, 0, 0, req->iv,
  506. commands, results);
  507. return ret;
  508. }
  509. static int safexcel_aead_send(struct crypto_async_request *async, int ring,
  510. struct safexcel_request *request, int *commands,
  511. int *results)
  512. {
  513. struct aead_request *req = aead_request_cast(async);
  514. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  515. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  516. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  517. struct safexcel_crypto_priv *priv = ctx->priv;
  518. int ret;
  519. BUG_ON(priv->version == EIP97 && sreq->needs_inv);
  520. if (sreq->needs_inv)
  521. ret = safexcel_cipher_send_inv(async, ring, request, commands,
  522. results);
  523. else
  524. ret = safexcel_aes_send(async, ring, request, sreq, req->src,
  525. req->dst, req->cryptlen, req->assoclen,
  526. crypto_aead_authsize(tfm), req->iv,
  527. commands, results);
  528. return ret;
  529. }
  530. static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm,
  531. struct crypto_async_request *base,
  532. struct safexcel_cipher_req *sreq,
  533. struct safexcel_inv_result *result)
  534. {
  535. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  536. struct safexcel_crypto_priv *priv = ctx->priv;
  537. int ring = ctx->base.ring;
  538. init_completion(&result->completion);
  539. ctx = crypto_tfm_ctx(base->tfm);
  540. ctx->base.exit_inv = true;
  541. sreq->needs_inv = true;
  542. spin_lock_bh(&priv->ring[ring].queue_lock);
  543. crypto_enqueue_request(&priv->ring[ring].queue, base);
  544. spin_unlock_bh(&priv->ring[ring].queue_lock);
  545. queue_work(priv->ring[ring].workqueue,
  546. &priv->ring[ring].work_data.work);
  547. wait_for_completion(&result->completion);
  548. if (result->error) {
  549. dev_warn(priv->dev,
  550. "cipher: sync: invalidate: completion error %d\n",
  551. result->error);
  552. return result->error;
  553. }
  554. return 0;
  555. }
  556. static int safexcel_skcipher_exit_inv(struct crypto_tfm *tfm)
  557. {
  558. EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE);
  559. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  560. struct safexcel_inv_result result = {};
  561. memset(req, 0, sizeof(struct skcipher_request));
  562. skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  563. safexcel_inv_complete, &result);
  564. skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm));
  565. return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
  566. }
  567. static int safexcel_aead_exit_inv(struct crypto_tfm *tfm)
  568. {
  569. EIP197_REQUEST_ON_STACK(req, aead, EIP197_AEAD_REQ_SIZE);
  570. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  571. struct safexcel_inv_result result = {};
  572. memset(req, 0, sizeof(struct aead_request));
  573. aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  574. safexcel_inv_complete, &result);
  575. aead_request_set_tfm(req, __crypto_aead_cast(tfm));
  576. return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
  577. }
  578. static int safexcel_aes(struct crypto_async_request *base,
  579. struct safexcel_cipher_req *sreq,
  580. enum safexcel_cipher_direction dir, u32 mode)
  581. {
  582. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  583. struct safexcel_crypto_priv *priv = ctx->priv;
  584. int ret, ring;
  585. sreq->needs_inv = false;
  586. sreq->direction = dir;
  587. ctx->mode = mode;
  588. if (ctx->base.ctxr) {
  589. if (priv->version == EIP197 && ctx->base.needs_inv) {
  590. sreq->needs_inv = true;
  591. ctx->base.needs_inv = false;
  592. }
  593. } else {
  594. ctx->base.ring = safexcel_select_ring(priv);
  595. ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
  596. EIP197_GFP_FLAGS(*base),
  597. &ctx->base.ctxr_dma);
  598. if (!ctx->base.ctxr)
  599. return -ENOMEM;
  600. }
  601. ring = ctx->base.ring;
  602. spin_lock_bh(&priv->ring[ring].queue_lock);
  603. ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
  604. spin_unlock_bh(&priv->ring[ring].queue_lock);
  605. queue_work(priv->ring[ring].workqueue,
  606. &priv->ring[ring].work_data.work);
  607. return ret;
  608. }
  609. static int safexcel_ecb_aes_encrypt(struct skcipher_request *req)
  610. {
  611. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  612. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB);
  613. }
  614. static int safexcel_ecb_aes_decrypt(struct skcipher_request *req)
  615. {
  616. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  617. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB);
  618. }
  619. static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm)
  620. {
  621. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  622. struct safexcel_alg_template *tmpl =
  623. container_of(tfm->__crt_alg, struct safexcel_alg_template,
  624. alg.skcipher.base);
  625. crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
  626. sizeof(struct safexcel_cipher_req));
  627. ctx->priv = tmpl->priv;
  628. ctx->base.send = safexcel_skcipher_send;
  629. ctx->base.handle_result = safexcel_skcipher_handle_result;
  630. return 0;
  631. }
  632. static int safexcel_cipher_cra_exit(struct crypto_tfm *tfm)
  633. {
  634. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  635. memzero_explicit(ctx->key, sizeof(ctx->key));
  636. /* context not allocated, skip invalidation */
  637. if (!ctx->base.ctxr)
  638. return -ENOMEM;
  639. memzero_explicit(ctx->base.ctxr->data, sizeof(ctx->base.ctxr->data));
  640. return 0;
  641. }
  642. static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm)
  643. {
  644. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  645. struct safexcel_crypto_priv *priv = ctx->priv;
  646. int ret;
  647. if (safexcel_cipher_cra_exit(tfm))
  648. return;
  649. if (priv->version == EIP197) {
  650. ret = safexcel_skcipher_exit_inv(tfm);
  651. if (ret)
  652. dev_warn(priv->dev, "skcipher: invalidation error %d\n",
  653. ret);
  654. } else {
  655. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  656. ctx->base.ctxr_dma);
  657. }
  658. }
  659. static void safexcel_aead_cra_exit(struct crypto_tfm *tfm)
  660. {
  661. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  662. struct safexcel_crypto_priv *priv = ctx->priv;
  663. int ret;
  664. if (safexcel_cipher_cra_exit(tfm))
  665. return;
  666. if (priv->version == EIP197) {
  667. ret = safexcel_aead_exit_inv(tfm);
  668. if (ret)
  669. dev_warn(priv->dev, "aead: invalidation error %d\n",
  670. ret);
  671. } else {
  672. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  673. ctx->base.ctxr_dma);
  674. }
  675. }
  676. struct safexcel_alg_template safexcel_alg_ecb_aes = {
  677. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  678. .alg.skcipher = {
  679. .setkey = safexcel_skcipher_aes_setkey,
  680. .encrypt = safexcel_ecb_aes_encrypt,
  681. .decrypt = safexcel_ecb_aes_decrypt,
  682. .min_keysize = AES_MIN_KEY_SIZE,
  683. .max_keysize = AES_MAX_KEY_SIZE,
  684. .base = {
  685. .cra_name = "ecb(aes)",
  686. .cra_driver_name = "safexcel-ecb-aes",
  687. .cra_priority = 300,
  688. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  689. CRYPTO_ALG_KERN_DRIVER_ONLY,
  690. .cra_blocksize = AES_BLOCK_SIZE,
  691. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  692. .cra_alignmask = 0,
  693. .cra_init = safexcel_skcipher_cra_init,
  694. .cra_exit = safexcel_skcipher_cra_exit,
  695. .cra_module = THIS_MODULE,
  696. },
  697. },
  698. };
  699. static int safexcel_cbc_aes_encrypt(struct skcipher_request *req)
  700. {
  701. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  702. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  703. }
  704. static int safexcel_cbc_aes_decrypt(struct skcipher_request *req)
  705. {
  706. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  707. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  708. }
  709. struct safexcel_alg_template safexcel_alg_cbc_aes = {
  710. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  711. .alg.skcipher = {
  712. .setkey = safexcel_skcipher_aes_setkey,
  713. .encrypt = safexcel_cbc_aes_encrypt,
  714. .decrypt = safexcel_cbc_aes_decrypt,
  715. .min_keysize = AES_MIN_KEY_SIZE,
  716. .max_keysize = AES_MAX_KEY_SIZE,
  717. .ivsize = AES_BLOCK_SIZE,
  718. .base = {
  719. .cra_name = "cbc(aes)",
  720. .cra_driver_name = "safexcel-cbc-aes",
  721. .cra_priority = 300,
  722. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  723. CRYPTO_ALG_KERN_DRIVER_ONLY,
  724. .cra_blocksize = AES_BLOCK_SIZE,
  725. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  726. .cra_alignmask = 0,
  727. .cra_init = safexcel_skcipher_cra_init,
  728. .cra_exit = safexcel_skcipher_cra_exit,
  729. .cra_module = THIS_MODULE,
  730. },
  731. },
  732. };
  733. static int safexcel_aead_encrypt(struct aead_request *req)
  734. {
  735. struct safexcel_cipher_req *creq = aead_request_ctx(req);
  736. return safexcel_aes(&req->base, creq, SAFEXCEL_ENCRYPT,
  737. CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  738. }
  739. static int safexcel_aead_decrypt(struct aead_request *req)
  740. {
  741. struct safexcel_cipher_req *creq = aead_request_ctx(req);
  742. return safexcel_aes(&req->base, creq, SAFEXCEL_DECRYPT,
  743. CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  744. }
  745. static int safexcel_aead_cra_init(struct crypto_tfm *tfm)
  746. {
  747. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  748. struct safexcel_alg_template *tmpl =
  749. container_of(tfm->__crt_alg, struct safexcel_alg_template,
  750. alg.aead.base);
  751. crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
  752. sizeof(struct safexcel_cipher_req));
  753. ctx->priv = tmpl->priv;
  754. ctx->aead = true;
  755. ctx->base.send = safexcel_aead_send;
  756. ctx->base.handle_result = safexcel_aead_handle_result;
  757. return 0;
  758. }
  759. static int safexcel_aead_sha256_cra_init(struct crypto_tfm *tfm)
  760. {
  761. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  762. safexcel_aead_cra_init(tfm);
  763. ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
  764. ctx->state_sz = SHA256_DIGEST_SIZE;
  765. return 0;
  766. }
  767. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_aes = {
  768. .type = SAFEXCEL_ALG_TYPE_AEAD,
  769. .alg.aead = {
  770. .setkey = safexcel_aead_aes_setkey,
  771. .encrypt = safexcel_aead_encrypt,
  772. .decrypt = safexcel_aead_decrypt,
  773. .ivsize = AES_BLOCK_SIZE,
  774. .maxauthsize = SHA256_DIGEST_SIZE,
  775. .base = {
  776. .cra_name = "authenc(hmac(sha256),cbc(aes))",
  777. .cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-aes",
  778. .cra_priority = 300,
  779. .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
  780. CRYPTO_ALG_KERN_DRIVER_ONLY,
  781. .cra_blocksize = AES_BLOCK_SIZE,
  782. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  783. .cra_alignmask = 0,
  784. .cra_init = safexcel_aead_sha256_cra_init,
  785. .cra_exit = safexcel_aead_cra_exit,
  786. .cra_module = THIS_MODULE,
  787. },
  788. },
  789. };
  790. static int safexcel_aead_sha224_cra_init(struct crypto_tfm *tfm)
  791. {
  792. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  793. safexcel_aead_cra_init(tfm);
  794. ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
  795. ctx->state_sz = SHA256_DIGEST_SIZE;
  796. return 0;
  797. }
  798. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_cbc_aes = {
  799. .type = SAFEXCEL_ALG_TYPE_AEAD,
  800. .alg.aead = {
  801. .setkey = safexcel_aead_aes_setkey,
  802. .encrypt = safexcel_aead_encrypt,
  803. .decrypt = safexcel_aead_decrypt,
  804. .ivsize = AES_BLOCK_SIZE,
  805. .maxauthsize = SHA224_DIGEST_SIZE,
  806. .base = {
  807. .cra_name = "authenc(hmac(sha224),cbc(aes))",
  808. .cra_driver_name = "safexcel-authenc-hmac-sha224-cbc-aes",
  809. .cra_priority = 300,
  810. .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
  811. CRYPTO_ALG_KERN_DRIVER_ONLY,
  812. .cra_blocksize = AES_BLOCK_SIZE,
  813. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  814. .cra_alignmask = 0,
  815. .cra_init = safexcel_aead_sha224_cra_init,
  816. .cra_exit = safexcel_aead_cra_exit,
  817. .cra_module = THIS_MODULE,
  818. },
  819. },
  820. };