irq-stm32-exti.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. /*
  2. * Copyright (C) Maxime Coquelin 2015
  3. * Author: Maxime Coquelin <mcoquelin.stm32@gmail.com>
  4. * License terms: GNU General Public License (GPL), version 2
  5. */
  6. #include <linux/bitops.h>
  7. #include <linux/interrupt.h>
  8. #include <linux/io.h>
  9. #include <linux/irq.h>
  10. #include <linux/irqchip.h>
  11. #include <linux/irqchip/chained_irq.h>
  12. #include <linux/irqdomain.h>
  13. #include <linux/of_address.h>
  14. #include <linux/of_irq.h>
  15. #define IRQS_PER_BANK 32
  16. struct stm32_exti_bank {
  17. u32 imr_ofst;
  18. u32 emr_ofst;
  19. u32 rtsr_ofst;
  20. u32 ftsr_ofst;
  21. u32 swier_ofst;
  22. u32 pr_ofst;
  23. };
  24. static const struct stm32_exti_bank stm32f4xx_exti_b1 = {
  25. .imr_ofst = 0x00,
  26. .emr_ofst = 0x04,
  27. .rtsr_ofst = 0x08,
  28. .ftsr_ofst = 0x0C,
  29. .swier_ofst = 0x10,
  30. .pr_ofst = 0x14,
  31. };
  32. static const struct stm32_exti_bank *stm32f4xx_exti_banks[] = {
  33. &stm32f4xx_exti_b1,
  34. };
  35. static const struct stm32_exti_bank stm32h7xx_exti_b1 = {
  36. .imr_ofst = 0x80,
  37. .emr_ofst = 0x84,
  38. .rtsr_ofst = 0x00,
  39. .ftsr_ofst = 0x04,
  40. .swier_ofst = 0x08,
  41. .pr_ofst = 0x88,
  42. };
  43. static const struct stm32_exti_bank stm32h7xx_exti_b2 = {
  44. .imr_ofst = 0x90,
  45. .emr_ofst = 0x94,
  46. .rtsr_ofst = 0x20,
  47. .ftsr_ofst = 0x24,
  48. .swier_ofst = 0x28,
  49. .pr_ofst = 0x98,
  50. };
  51. static const struct stm32_exti_bank stm32h7xx_exti_b3 = {
  52. .imr_ofst = 0xA0,
  53. .emr_ofst = 0xA4,
  54. .rtsr_ofst = 0x40,
  55. .ftsr_ofst = 0x44,
  56. .swier_ofst = 0x48,
  57. .pr_ofst = 0xA8,
  58. };
  59. static const struct stm32_exti_bank *stm32h7xx_exti_banks[] = {
  60. &stm32h7xx_exti_b1,
  61. &stm32h7xx_exti_b2,
  62. &stm32h7xx_exti_b3,
  63. };
  64. static unsigned long stm32_exti_pending(struct irq_chip_generic *gc)
  65. {
  66. const struct stm32_exti_bank *stm32_bank = gc->private;
  67. return irq_reg_readl(gc, stm32_bank->pr_ofst);
  68. }
  69. static void stm32_exti_irq_ack(struct irq_chip_generic *gc, u32 mask)
  70. {
  71. const struct stm32_exti_bank *stm32_bank = gc->private;
  72. irq_reg_writel(gc, mask, stm32_bank->pr_ofst);
  73. }
  74. static void stm32_irq_handler(struct irq_desc *desc)
  75. {
  76. struct irq_domain *domain = irq_desc_get_handler_data(desc);
  77. struct irq_chip *chip = irq_desc_get_chip(desc);
  78. unsigned int virq, nbanks = domain->gc->num_chips;
  79. struct irq_chip_generic *gc;
  80. const struct stm32_exti_bank *stm32_bank;
  81. unsigned long pending;
  82. int n, i, irq_base = 0;
  83. chained_irq_enter(chip, desc);
  84. for (i = 0; i < nbanks; i++, irq_base += IRQS_PER_BANK) {
  85. gc = irq_get_domain_generic_chip(domain, irq_base);
  86. stm32_bank = gc->private;
  87. while ((pending = stm32_exti_pending(gc))) {
  88. for_each_set_bit(n, &pending, IRQS_PER_BANK) {
  89. virq = irq_find_mapping(domain, irq_base + n);
  90. generic_handle_irq(virq);
  91. stm32_exti_irq_ack(gc, BIT(n));
  92. }
  93. }
  94. }
  95. chained_irq_exit(chip, desc);
  96. }
  97. static int stm32_irq_set_type(struct irq_data *data, unsigned int type)
  98. {
  99. struct irq_chip_generic *gc = irq_data_get_irq_chip_data(data);
  100. const struct stm32_exti_bank *stm32_bank = gc->private;
  101. int pin = data->hwirq % IRQS_PER_BANK;
  102. u32 rtsr, ftsr;
  103. irq_gc_lock(gc);
  104. rtsr = irq_reg_readl(gc, stm32_bank->rtsr_ofst);
  105. ftsr = irq_reg_readl(gc, stm32_bank->ftsr_ofst);
  106. switch (type) {
  107. case IRQ_TYPE_EDGE_RISING:
  108. rtsr |= BIT(pin);
  109. ftsr &= ~BIT(pin);
  110. break;
  111. case IRQ_TYPE_EDGE_FALLING:
  112. rtsr &= ~BIT(pin);
  113. ftsr |= BIT(pin);
  114. break;
  115. case IRQ_TYPE_EDGE_BOTH:
  116. rtsr |= BIT(pin);
  117. ftsr |= BIT(pin);
  118. break;
  119. default:
  120. irq_gc_unlock(gc);
  121. return -EINVAL;
  122. }
  123. irq_reg_writel(gc, rtsr, stm32_bank->rtsr_ofst);
  124. irq_reg_writel(gc, ftsr, stm32_bank->ftsr_ofst);
  125. irq_gc_unlock(gc);
  126. return 0;
  127. }
  128. static int stm32_irq_set_wake(struct irq_data *data, unsigned int on)
  129. {
  130. struct irq_chip_generic *gc = irq_data_get_irq_chip_data(data);
  131. const struct stm32_exti_bank *stm32_bank = gc->private;
  132. int pin = data->hwirq % IRQS_PER_BANK;
  133. u32 imr;
  134. irq_gc_lock(gc);
  135. imr = irq_reg_readl(gc, stm32_bank->imr_ofst);
  136. if (on)
  137. imr |= BIT(pin);
  138. else
  139. imr &= ~BIT(pin);
  140. irq_reg_writel(gc, imr, stm32_bank->imr_ofst);
  141. irq_gc_unlock(gc);
  142. return 0;
  143. }
  144. static int stm32_exti_alloc(struct irq_domain *d, unsigned int virq,
  145. unsigned int nr_irqs, void *data)
  146. {
  147. struct irq_chip_generic *gc;
  148. struct irq_fwspec *fwspec = data;
  149. irq_hw_number_t hwirq;
  150. hwirq = fwspec->param[0];
  151. gc = irq_get_domain_generic_chip(d, hwirq);
  152. irq_map_generic_chip(d, virq, hwirq);
  153. irq_domain_set_info(d, virq, hwirq, &gc->chip_types->chip, gc,
  154. handle_simple_irq, NULL, NULL);
  155. return 0;
  156. }
  157. static void stm32_exti_free(struct irq_domain *d, unsigned int virq,
  158. unsigned int nr_irqs)
  159. {
  160. struct irq_data *data = irq_domain_get_irq_data(d, virq);
  161. irq_domain_reset_irq_data(data);
  162. }
  163. struct irq_domain_ops irq_exti_domain_ops = {
  164. .map = irq_map_generic_chip,
  165. .xlate = irq_domain_xlate_onetwocell,
  166. .alloc = stm32_exti_alloc,
  167. .free = stm32_exti_free,
  168. };
  169. static int
  170. __init stm32_exti_init(const struct stm32_exti_bank **stm32_exti_banks,
  171. int bank_nr, struct device_node *node)
  172. {
  173. unsigned int clr = IRQ_NOREQUEST | IRQ_NOPROBE | IRQ_NOAUTOEN;
  174. int nr_irqs, nr_exti, ret, i;
  175. struct irq_chip_generic *gc;
  176. struct irq_domain *domain;
  177. void *base;
  178. base = of_iomap(node, 0);
  179. if (!base) {
  180. pr_err("%pOF: Unable to map registers\n", node);
  181. return -ENOMEM;
  182. }
  183. domain = irq_domain_add_linear(node, bank_nr * IRQS_PER_BANK,
  184. &irq_exti_domain_ops, NULL);
  185. if (!domain) {
  186. pr_err("%s: Could not register interrupt domain.\n",
  187. node->name);
  188. ret = -ENOMEM;
  189. goto out_unmap;
  190. }
  191. ret = irq_alloc_domain_generic_chips(domain, IRQS_PER_BANK, 1, "exti",
  192. handle_edge_irq, clr, 0, 0);
  193. if (ret) {
  194. pr_err("%pOF: Could not allocate generic interrupt chip.\n",
  195. node);
  196. goto out_free_domain;
  197. }
  198. for (i = 0; i < bank_nr; i++) {
  199. const struct stm32_exti_bank *stm32_bank = stm32_exti_banks[i];
  200. u32 irqs_mask;
  201. gc = irq_get_domain_generic_chip(domain, i * IRQS_PER_BANK);
  202. gc->reg_base = base;
  203. gc->chip_types->type = IRQ_TYPE_EDGE_BOTH;
  204. gc->chip_types->chip.irq_ack = irq_gc_ack_set_bit;
  205. gc->chip_types->chip.irq_mask = irq_gc_mask_clr_bit;
  206. gc->chip_types->chip.irq_unmask = irq_gc_mask_set_bit;
  207. gc->chip_types->chip.irq_set_type = stm32_irq_set_type;
  208. gc->chip_types->chip.irq_set_wake = stm32_irq_set_wake;
  209. gc->chip_types->regs.ack = stm32_bank->pr_ofst;
  210. gc->chip_types->regs.mask = stm32_bank->imr_ofst;
  211. gc->private = (void *)stm32_bank;
  212. /* Determine number of irqs supported */
  213. writel_relaxed(~0UL, base + stm32_bank->rtsr_ofst);
  214. irqs_mask = readl_relaxed(base + stm32_bank->rtsr_ofst);
  215. nr_exti = fls(readl_relaxed(base + stm32_bank->rtsr_ofst));
  216. /*
  217. * This IP has no reset, so after hot reboot we should
  218. * clear registers to avoid residue
  219. */
  220. writel_relaxed(0, base + stm32_bank->imr_ofst);
  221. writel_relaxed(0, base + stm32_bank->emr_ofst);
  222. writel_relaxed(0, base + stm32_bank->rtsr_ofst);
  223. writel_relaxed(0, base + stm32_bank->ftsr_ofst);
  224. writel_relaxed(~0UL, base + stm32_bank->pr_ofst);
  225. pr_info("%s: bank%d, External IRQs available:%#x\n",
  226. node->full_name, i, irqs_mask);
  227. }
  228. nr_irqs = of_irq_count(node);
  229. for (i = 0; i < nr_irqs; i++) {
  230. unsigned int irq = irq_of_parse_and_map(node, i);
  231. irq_set_handler_data(irq, domain);
  232. irq_set_chained_handler(irq, stm32_irq_handler);
  233. }
  234. return 0;
  235. out_free_domain:
  236. irq_domain_remove(domain);
  237. out_unmap:
  238. iounmap(base);
  239. return ret;
  240. }
  241. static int __init stm32f4_exti_of_init(struct device_node *np,
  242. struct device_node *parent)
  243. {
  244. return stm32_exti_init(stm32f4xx_exti_banks,
  245. ARRAY_SIZE(stm32f4xx_exti_banks), np);
  246. }
  247. IRQCHIP_DECLARE(stm32f4_exti, "st,stm32-exti", stm32f4_exti_of_init);
  248. static int __init stm32h7_exti_of_init(struct device_node *np,
  249. struct device_node *parent)
  250. {
  251. return stm32_exti_init(stm32h7xx_exti_banks,
  252. ARRAY_SIZE(stm32h7xx_exti_banks), np);
  253. }
  254. IRQCHIP_DECLARE(stm32h7_exti, "st,stm32h7-exti", stm32h7_exti_of_init);