intel.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725
  1. #include <linux/kernel.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/smp.h>
  5. #include <linux/sched.h>
  6. #include <linux/thread_info.h>
  7. #include <linux/module.h>
  8. #include <linux/uaccess.h>
  9. #include <asm/processor.h>
  10. #include <asm/pgtable.h>
  11. #include <asm/msr.h>
  12. #include <asm/bugs.h>
  13. #include <asm/cpu.h>
  14. #ifdef CONFIG_X86_64
  15. #include <linux/topology.h>
  16. #endif
  17. #include "cpu.h"
  18. #ifdef CONFIG_X86_LOCAL_APIC
  19. #include <asm/mpspec.h>
  20. #include <asm/apic.h>
  21. #endif
  22. static void early_init_intel(struct cpuinfo_x86 *c)
  23. {
  24. u64 misc_enable;
  25. /* Unmask CPUID levels if masked: */
  26. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  27. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  28. if (misc_enable & MSR_IA32_MISC_ENABLE_LIMIT_CPUID) {
  29. misc_enable &= ~MSR_IA32_MISC_ENABLE_LIMIT_CPUID;
  30. wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  31. c->cpuid_level = cpuid_eax(0);
  32. get_cpu_cap(c);
  33. }
  34. }
  35. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  36. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  37. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  38. if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
  39. unsigned lower_word;
  40. wrmsr(MSR_IA32_UCODE_REV, 0, 0);
  41. /* Required by the SDM */
  42. sync_core();
  43. rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
  44. }
  45. /*
  46. * Atom erratum AAE44/AAF40/AAG38/AAH41:
  47. *
  48. * A race condition between speculative fetches and invalidating
  49. * a large page. This is worked around in microcode, but we
  50. * need the microcode to have already been loaded... so if it is
  51. * not, recommend a BIOS update and disable large pages.
  52. */
  53. if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
  54. c->microcode < 0x20e) {
  55. printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
  56. clear_cpu_cap(c, X86_FEATURE_PSE);
  57. }
  58. #ifdef CONFIG_X86_64
  59. set_cpu_cap(c, X86_FEATURE_SYSENTER32);
  60. #else
  61. /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
  62. if (c->x86 == 15 && c->x86_cache_alignment == 64)
  63. c->x86_cache_alignment = 128;
  64. #endif
  65. /* CPUID workaround for 0F33/0F34 CPU */
  66. if (c->x86 == 0xF && c->x86_model == 0x3
  67. && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
  68. c->x86_phys_bits = 36;
  69. /*
  70. * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
  71. * with P/T states and does not stop in deep C-states.
  72. *
  73. * It is also reliable across cores and sockets. (but not across
  74. * cabinets - we turn it off in that case explicitly.)
  75. */
  76. if (c->x86_power & (1 << 8)) {
  77. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  78. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
  79. if (!check_tsc_unstable())
  80. sched_clock_stable = 1;
  81. }
  82. /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
  83. if (c->x86 == 6) {
  84. switch (c->x86_model) {
  85. case 0x27: /* Penwell */
  86. case 0x35: /* Cloverview */
  87. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
  88. break;
  89. default:
  90. break;
  91. }
  92. }
  93. /*
  94. * There is a known erratum on Pentium III and Core Solo
  95. * and Core Duo CPUs.
  96. * " Page with PAT set to WC while associated MTRR is UC
  97. * may consolidate to UC "
  98. * Because of this erratum, it is better to stick with
  99. * setting WC in MTRR rather than using PAT on these CPUs.
  100. *
  101. * Enable PAT WC only on P4, Core 2 or later CPUs.
  102. */
  103. if (c->x86 == 6 && c->x86_model < 15)
  104. clear_cpu_cap(c, X86_FEATURE_PAT);
  105. #ifdef CONFIG_KMEMCHECK
  106. /*
  107. * P4s have a "fast strings" feature which causes single-
  108. * stepping REP instructions to only generate a #DB on
  109. * cache-line boundaries.
  110. *
  111. * Ingo Molnar reported a Pentium D (model 6) and a Xeon
  112. * (model 2) with the same problem.
  113. */
  114. if (c->x86 == 15) {
  115. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  116. if (misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING) {
  117. printk(KERN_INFO "kmemcheck: Disabling fast string operations\n");
  118. misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
  119. wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  120. }
  121. }
  122. #endif
  123. /*
  124. * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
  125. * clear the fast string and enhanced fast string CPU capabilities.
  126. */
  127. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  128. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  129. if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
  130. printk(KERN_INFO "Disabled fast string operations\n");
  131. setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
  132. setup_clear_cpu_cap(X86_FEATURE_ERMS);
  133. }
  134. }
  135. }
  136. #ifdef CONFIG_X86_32
  137. /*
  138. * Early probe support logic for ppro memory erratum #50
  139. *
  140. * This is called before we do cpu ident work
  141. */
  142. int ppro_with_ram_bug(void)
  143. {
  144. /* Uses data from early_cpu_detect now */
  145. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  146. boot_cpu_data.x86 == 6 &&
  147. boot_cpu_data.x86_model == 1 &&
  148. boot_cpu_data.x86_mask < 8) {
  149. printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
  150. return 1;
  151. }
  152. return 0;
  153. }
  154. static void intel_smp_check(struct cpuinfo_x86 *c)
  155. {
  156. /* calling is from identify_secondary_cpu() ? */
  157. if (!c->cpu_index)
  158. return;
  159. /*
  160. * Mask B, Pentium, but not Pentium MMX
  161. */
  162. if (c->x86 == 5 &&
  163. c->x86_mask >= 1 && c->x86_mask <= 4 &&
  164. c->x86_model <= 3) {
  165. /*
  166. * Remember we have B step Pentia with bugs
  167. */
  168. WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
  169. "with B stepping processors.\n");
  170. }
  171. }
  172. static void intel_workarounds(struct cpuinfo_x86 *c)
  173. {
  174. unsigned long lo, hi;
  175. #ifdef CONFIG_X86_F00F_BUG
  176. /*
  177. * All current models of Pentium and Pentium with MMX technology CPUs
  178. * have the F0 0F bug, which lets nonprivileged users lock up the
  179. * system. Announce that the fault handler will be checking for it.
  180. */
  181. clear_cpu_bug(c, X86_BUG_F00F);
  182. if (!paravirt_enabled() && c->x86 == 5) {
  183. static int f00f_workaround_enabled;
  184. set_cpu_bug(c, X86_BUG_F00F);
  185. if (!f00f_workaround_enabled) {
  186. printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
  187. f00f_workaround_enabled = 1;
  188. }
  189. }
  190. #endif
  191. /*
  192. * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
  193. * model 3 mask 3
  194. */
  195. if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
  196. clear_cpu_cap(c, X86_FEATURE_SEP);
  197. /*
  198. * P4 Xeon errata 037 workaround.
  199. * Hardware prefetcher may cause stale data to be loaded into the cache.
  200. */
  201. if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
  202. rdmsr(MSR_IA32_MISC_ENABLE, lo, hi);
  203. if ((lo & MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE) == 0) {
  204. printk (KERN_INFO "CPU: C0 stepping P4 Xeon detected.\n");
  205. printk (KERN_INFO "CPU: Disabling hardware prefetching (Errata 037)\n");
  206. lo |= MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE;
  207. wrmsr(MSR_IA32_MISC_ENABLE, lo, hi);
  208. }
  209. }
  210. /*
  211. * See if we have a good local APIC by checking for buggy Pentia,
  212. * i.e. all B steppings and the C2 stepping of P54C when using their
  213. * integrated APIC (see 11AP erratum in "Pentium Processor
  214. * Specification Update").
  215. */
  216. if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
  217. (c->x86_mask < 0x6 || c->x86_mask == 0xb))
  218. set_cpu_cap(c, X86_FEATURE_11AP);
  219. #ifdef CONFIG_X86_INTEL_USERCOPY
  220. /*
  221. * Set up the preferred alignment for movsl bulk memory moves
  222. */
  223. switch (c->x86) {
  224. case 4: /* 486: untested */
  225. break;
  226. case 5: /* Old Pentia: untested */
  227. break;
  228. case 6: /* PII/PIII only like movsl with 8-byte alignment */
  229. movsl_mask.mask = 7;
  230. break;
  231. case 15: /* P4 is OK down to 8-byte alignment */
  232. movsl_mask.mask = 7;
  233. break;
  234. }
  235. #endif
  236. #ifdef CONFIG_X86_NUMAQ
  237. numaq_tsc_disable();
  238. #endif
  239. intel_smp_check(c);
  240. }
  241. #else
  242. static void intel_workarounds(struct cpuinfo_x86 *c)
  243. {
  244. }
  245. #endif
  246. static void srat_detect_node(struct cpuinfo_x86 *c)
  247. {
  248. #ifdef CONFIG_NUMA
  249. unsigned node;
  250. int cpu = smp_processor_id();
  251. /* Don't do the funky fallback heuristics the AMD version employs
  252. for now. */
  253. node = numa_cpu_node(cpu);
  254. if (node == NUMA_NO_NODE || !node_online(node)) {
  255. /* reuse the value from init_cpu_to_node() */
  256. node = cpu_to_node(cpu);
  257. }
  258. numa_set_node(cpu, node);
  259. #endif
  260. }
  261. /*
  262. * find out the number of processor cores on the die
  263. */
  264. static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
  265. {
  266. unsigned int eax, ebx, ecx, edx;
  267. if (c->cpuid_level < 4)
  268. return 1;
  269. /* Intel has a non-standard dependency on %ecx for this CPUID level. */
  270. cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
  271. if (eax & 0x1f)
  272. return (eax >> 26) + 1;
  273. else
  274. return 1;
  275. }
  276. static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
  277. {
  278. /* Intel VMX MSR indicated features */
  279. #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
  280. #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
  281. #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
  282. #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
  283. #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
  284. #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
  285. u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
  286. clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  287. clear_cpu_cap(c, X86_FEATURE_VNMI);
  288. clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  289. clear_cpu_cap(c, X86_FEATURE_EPT);
  290. clear_cpu_cap(c, X86_FEATURE_VPID);
  291. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
  292. msr_ctl = vmx_msr_high | vmx_msr_low;
  293. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
  294. set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  295. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
  296. set_cpu_cap(c, X86_FEATURE_VNMI);
  297. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
  298. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  299. vmx_msr_low, vmx_msr_high);
  300. msr_ctl2 = vmx_msr_high | vmx_msr_low;
  301. if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
  302. (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
  303. set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  304. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
  305. set_cpu_cap(c, X86_FEATURE_EPT);
  306. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
  307. set_cpu_cap(c, X86_FEATURE_VPID);
  308. }
  309. }
  310. static void init_intel(struct cpuinfo_x86 *c)
  311. {
  312. unsigned int l2 = 0;
  313. early_init_intel(c);
  314. intel_workarounds(c);
  315. /*
  316. * Detect the extended topology information if available. This
  317. * will reinitialise the initial_apicid which will be used
  318. * in init_intel_cacheinfo()
  319. */
  320. detect_extended_topology(c);
  321. l2 = init_intel_cacheinfo(c);
  322. if (c->cpuid_level > 9) {
  323. unsigned eax = cpuid_eax(10);
  324. /* Check for version and the number of counters */
  325. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  326. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  327. }
  328. if (cpu_has_xmm2)
  329. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  330. if (cpu_has_ds) {
  331. unsigned int l1;
  332. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  333. if (!(l1 & (1<<11)))
  334. set_cpu_cap(c, X86_FEATURE_BTS);
  335. if (!(l1 & (1<<12)))
  336. set_cpu_cap(c, X86_FEATURE_PEBS);
  337. }
  338. if (c->x86 == 6 && c->x86_model == 29 && cpu_has_clflush)
  339. set_cpu_cap(c, X86_FEATURE_CLFLUSH_MONITOR);
  340. #ifdef CONFIG_X86_64
  341. if (c->x86 == 15)
  342. c->x86_cache_alignment = c->x86_clflush_size * 2;
  343. if (c->x86 == 6)
  344. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  345. #else
  346. /*
  347. * Names for the Pentium II/Celeron processors
  348. * detectable only by also checking the cache size.
  349. * Dixon is NOT a Celeron.
  350. */
  351. if (c->x86 == 6) {
  352. char *p = NULL;
  353. switch (c->x86_model) {
  354. case 5:
  355. if (l2 == 0)
  356. p = "Celeron (Covington)";
  357. else if (l2 == 256)
  358. p = "Mobile Pentium II (Dixon)";
  359. break;
  360. case 6:
  361. if (l2 == 128)
  362. p = "Celeron (Mendocino)";
  363. else if (c->x86_mask == 0 || c->x86_mask == 5)
  364. p = "Celeron-A";
  365. break;
  366. case 8:
  367. if (l2 == 128)
  368. p = "Celeron (Coppermine)";
  369. break;
  370. }
  371. if (p)
  372. strcpy(c->x86_model_id, p);
  373. }
  374. if (c->x86 == 15)
  375. set_cpu_cap(c, X86_FEATURE_P4);
  376. if (c->x86 == 6)
  377. set_cpu_cap(c, X86_FEATURE_P3);
  378. #endif
  379. if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
  380. /*
  381. * let's use the legacy cpuid vector 0x1 and 0x4 for topology
  382. * detection.
  383. */
  384. c->x86_max_cores = intel_num_cpu_cores(c);
  385. #ifdef CONFIG_X86_32
  386. detect_ht(c);
  387. #endif
  388. }
  389. /* Work around errata */
  390. srat_detect_node(c);
  391. if (cpu_has(c, X86_FEATURE_VMX))
  392. detect_vmx_virtcap(c);
  393. /*
  394. * Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
  395. * x86_energy_perf_policy(8) is available to change it at run-time
  396. */
  397. if (cpu_has(c, X86_FEATURE_EPB)) {
  398. u64 epb;
  399. rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  400. if ((epb & 0xF) == ENERGY_PERF_BIAS_PERFORMANCE) {
  401. printk_once(KERN_WARNING "ENERGY_PERF_BIAS:"
  402. " Set to 'normal', was 'performance'\n"
  403. "ENERGY_PERF_BIAS: View and update with"
  404. " x86_energy_perf_policy(8)\n");
  405. epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
  406. wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  407. }
  408. }
  409. }
  410. #ifdef CONFIG_X86_32
  411. static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
  412. {
  413. /*
  414. * Intel PIII Tualatin. This comes in two flavours.
  415. * One has 256kb of cache, the other 512. We have no way
  416. * to determine which, so we use a boottime override
  417. * for the 512kb model, and assume 256 otherwise.
  418. */
  419. if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
  420. size = 256;
  421. return size;
  422. }
  423. #endif
  424. #define TLB_INST_4K 0x01
  425. #define TLB_INST_4M 0x02
  426. #define TLB_INST_2M_4M 0x03
  427. #define TLB_INST_ALL 0x05
  428. #define TLB_INST_1G 0x06
  429. #define TLB_DATA_4K 0x11
  430. #define TLB_DATA_4M 0x12
  431. #define TLB_DATA_2M_4M 0x13
  432. #define TLB_DATA_4K_4M 0x14
  433. #define TLB_DATA_1G 0x16
  434. #define TLB_DATA0_4K 0x21
  435. #define TLB_DATA0_4M 0x22
  436. #define TLB_DATA0_2M_4M 0x23
  437. #define STLB_4K 0x41
  438. static const struct _tlb_table intel_tlb_table[] = {
  439. { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
  440. { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
  441. { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
  442. { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
  443. { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
  444. { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
  445. { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
  446. { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  447. { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  448. { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  449. { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  450. { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
  451. { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
  452. { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
  453. { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
  454. { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
  455. { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
  456. { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
  457. { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
  458. { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
  459. { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
  460. { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
  461. { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
  462. { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
  463. { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
  464. { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
  465. { 0x00, 0, 0 }
  466. };
  467. static void intel_tlb_lookup(const unsigned char desc)
  468. {
  469. unsigned char k;
  470. if (desc == 0)
  471. return;
  472. /* look up this descriptor in the table */
  473. for (k = 0; intel_tlb_table[k].descriptor != desc && \
  474. intel_tlb_table[k].descriptor != 0; k++)
  475. ;
  476. if (intel_tlb_table[k].tlb_type == 0)
  477. return;
  478. switch (intel_tlb_table[k].tlb_type) {
  479. case STLB_4K:
  480. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  481. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  482. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  483. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  484. break;
  485. case TLB_INST_ALL:
  486. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  487. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  488. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  489. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  490. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  491. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  492. break;
  493. case TLB_INST_4K:
  494. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  495. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  496. break;
  497. case TLB_INST_4M:
  498. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  499. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  500. break;
  501. case TLB_INST_2M_4M:
  502. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  503. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  504. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  505. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  506. break;
  507. case TLB_DATA_4K:
  508. case TLB_DATA0_4K:
  509. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  510. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  511. break;
  512. case TLB_DATA_4M:
  513. case TLB_DATA0_4M:
  514. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  515. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  516. break;
  517. case TLB_DATA_2M_4M:
  518. case TLB_DATA0_2M_4M:
  519. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  520. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  521. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  522. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  523. break;
  524. case TLB_DATA_4K_4M:
  525. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  526. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  527. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  528. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  529. break;
  530. }
  531. }
  532. static void intel_tlb_flushall_shift_set(struct cpuinfo_x86 *c)
  533. {
  534. switch ((c->x86 << 8) + c->x86_model) {
  535. case 0x60f: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
  536. case 0x616: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
  537. case 0x617: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
  538. case 0x61d: /* six-core 45 nm xeon "Dunnington" */
  539. tlb_flushall_shift = -1;
  540. break;
  541. case 0x61a: /* 45 nm nehalem, "Bloomfield" */
  542. case 0x61e: /* 45 nm nehalem, "Lynnfield" */
  543. case 0x625: /* 32 nm nehalem, "Clarkdale" */
  544. case 0x62c: /* 32 nm nehalem, "Gulftown" */
  545. case 0x62e: /* 45 nm nehalem-ex, "Beckton" */
  546. case 0x62f: /* 32 nm Xeon E7 */
  547. tlb_flushall_shift = 6;
  548. break;
  549. case 0x62a: /* SandyBridge */
  550. case 0x62d: /* SandyBridge, "Romely-EP" */
  551. tlb_flushall_shift = 5;
  552. break;
  553. case 0x63a: /* Ivybridge */
  554. tlb_flushall_shift = 1;
  555. break;
  556. default:
  557. tlb_flushall_shift = 6;
  558. }
  559. }
  560. static void intel_detect_tlb(struct cpuinfo_x86 *c)
  561. {
  562. int i, j, n;
  563. unsigned int regs[4];
  564. unsigned char *desc = (unsigned char *)regs;
  565. if (c->cpuid_level < 2)
  566. return;
  567. /* Number of times to iterate */
  568. n = cpuid_eax(2) & 0xFF;
  569. for (i = 0 ; i < n ; i++) {
  570. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  571. /* If bit 31 is set, this is an unknown format */
  572. for (j = 0 ; j < 3 ; j++)
  573. if (regs[j] & (1 << 31))
  574. regs[j] = 0;
  575. /* Byte 0 is level count, not a descriptor */
  576. for (j = 1 ; j < 16 ; j++)
  577. intel_tlb_lookup(desc[j]);
  578. }
  579. intel_tlb_flushall_shift_set(c);
  580. }
  581. static const struct cpu_dev intel_cpu_dev = {
  582. .c_vendor = "Intel",
  583. .c_ident = { "GenuineIntel" },
  584. #ifdef CONFIG_X86_32
  585. .legacy_models = {
  586. { .family = 4, .model_names =
  587. {
  588. [0] = "486 DX-25/33",
  589. [1] = "486 DX-50",
  590. [2] = "486 SX",
  591. [3] = "486 DX/2",
  592. [4] = "486 SL",
  593. [5] = "486 SX/2",
  594. [7] = "486 DX/2-WB",
  595. [8] = "486 DX/4",
  596. [9] = "486 DX/4-WB"
  597. }
  598. },
  599. { .family = 5, .model_names =
  600. {
  601. [0] = "Pentium 60/66 A-step",
  602. [1] = "Pentium 60/66",
  603. [2] = "Pentium 75 - 200",
  604. [3] = "OverDrive PODP5V83",
  605. [4] = "Pentium MMX",
  606. [7] = "Mobile Pentium 75 - 200",
  607. [8] = "Mobile Pentium MMX"
  608. }
  609. },
  610. { .family = 6, .model_names =
  611. {
  612. [0] = "Pentium Pro A-step",
  613. [1] = "Pentium Pro",
  614. [3] = "Pentium II (Klamath)",
  615. [4] = "Pentium II (Deschutes)",
  616. [5] = "Pentium II (Deschutes)",
  617. [6] = "Mobile Pentium II",
  618. [7] = "Pentium III (Katmai)",
  619. [8] = "Pentium III (Coppermine)",
  620. [10] = "Pentium III (Cascades)",
  621. [11] = "Pentium III (Tualatin)",
  622. }
  623. },
  624. { .family = 15, .model_names =
  625. {
  626. [0] = "Pentium 4 (Unknown)",
  627. [1] = "Pentium 4 (Willamette)",
  628. [2] = "Pentium 4 (Northwood)",
  629. [4] = "Pentium 4 (Foster)",
  630. [5] = "Pentium 4 (Foster)",
  631. }
  632. },
  633. },
  634. .legacy_cache_size = intel_size_cache,
  635. #endif
  636. .c_detect_tlb = intel_detect_tlb,
  637. .c_early_init = early_init_intel,
  638. .c_init = init_intel,
  639. .c_x86_vendor = X86_VENDOR_INTEL,
  640. };
  641. cpu_dev_register(intel_cpu_dev);